Lectures on Linear Algebra, Week 2.
Test (18/1/2019): tick the correct answer.

Question 1. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be vectors of a real vector space V and $n \in \mathbb{N}, n>1$. If any $v \in V$ can be written as $v=a_{1} v_{1}+\ldots .+a_{n} v_{n}$, where $a_{i} \in \mathbb{R}$, then:
(A) $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V.
(B) $v_{i} \cdot v_{j}=k \delta_{i j}$, where $k \in \mathbb{R}$.
(C) V is a finitely generated vector space.

Question 2. Which one, among the following equations, describes a plane in \mathbb{R}^{3} ?
(A) $y=x z+z_{0}$, where $z_{0} \in \mathbb{R}$
(B) $y=x$
(C) $x_{0} x+\left(y_{0}+y\right) z+z_{0} z=0$, where $x_{0}, y_{0}, z_{0} \in \mathbb{R}$

Question 3. If $A, B \in G L(n)$ then:
(A) $(A B)^{-1}=B^{-1} A^{-1}$
(B) $A B=B A$
(C) $(A B)^{2}=A B$

Question 4. In $V=\mathbb{R}^{2}$ consider the bilinear symmetric form $g: V \times V \rightarrow \mathbb{R}$ defined on the canonical basis $\left\{e_{1}, e_{2}\right\}$ as: $g\left(e_{1}, e_{1}\right)=2, g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{1}\right)=0, g\left(e_{2}, e_{2}\right)=3$. Then, it is true that:
(A) $g(v, v)>0 \forall v \in V$.
(B) The vectors $v_{1}, v_{2} \in(V, g)$ defined by: $v_{1}=(1 / \sqrt{2}, 0), v_{2}=(0,1 / \sqrt{3})$, are orthonormal.
(C) g is not positively definite.

Question 5. Given the matrix $A \in \mathbb{R}^{3,2}$, with $A=\left(\begin{array}{cc}1 & 2 \\ 0 & 1 \\ 2 & -2\end{array}\right)$, the rank of A is such that:
(A) $r k(A)=1$
(B) $r k(A)=3$
(C) $r k\left({ }^{t} A\right)=r k(A)$

Question 6. Let V, W be two \mathbb{R}-vector spaces. A linear transformation $f: V \rightarrow W$ is injective if it is found that:
(A) $f\left(0_{V}\right)=0_{W}$
(B) $\operatorname{ker}(f)=\left\{0_{V}\right\}$
(C) $f\left(k_{1} v_{1}+k_{2} v_{2}\right)=k_{1} f\left(v_{1}\right)+k_{2} f\left(v_{2}\right), \forall k_{1}, k_{2} \in \mathbb{R}$ and any $v_{1}, v_{2} \in V$.

Question 7. Let (V, \cdot) be an euclidean real vector space. If a basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$ is given on V such that $v, w \in V$ are written as $v=\sum_{j=1}^{n} a_{j} v_{j}, w=\sum_{j=1}^{n} b_{j} v_{j}$, then $v \cdot w$ is:
(A) $\sum_{k=1}^{n} a_{k} b_{k}$
(B) always positive if $v_{i} \cdot v_{j} \geq 0 \forall i, j$
(C) $\sum_{k=1}^{n} a_{k} b_{k}$, for example, when \mathcal{B} has been obtained by using the Gram-Schmidt method.

