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Introduction to both volumes

These books originated in lectures that I have given for many years at the
Department of Mathematics of the University of Rome, La Sapienza, and at
the Mathematical Physics Sector of the SISSA in Trieste.

I have tried to give a presentation which, while preserving mathematical
rigor, insists on the conceptual aspects and on the unity of Quantum Mechan-
ics.

The theory which is presented here is Quantum Mechanics as formulated
in its essential parts on one hand by de Broglie and Schrödinger and on the
other by Born, Heisenberg and Jordan with important contributions by Dirac
and Pauli.

For editorial reason the book in divided in two parts, with the same main
title (to stress the unity of the subject).

The present second volume consists of Lectures 1 to 16. Each lecture is
devoted to a specific topic, often still a subject of advanced research, chosen
among the ones that I regard as most interesting. Since ”interesting” is largely
a matter of personal taste other topics may be considered as more significant
or more relevant.

I want to express here my thanks to the students that took my courses and
to numerous colleagues with whom I have discussed sections of this book for
comments, suggestions and constructive criticism that have much improved
the presentation.

In particular I want to thank my friends Sergio Albeverio, Giuseppe Gaeta,
Alessandro Michelangeli, Andrea Posilicano for support and very useful com-
ments.

I want to thank here G.G and A.M. also for the help in editing.

Content of Volume II

Lecture 1- Wigner functions. Husimi distribution. Semiclassical limit. KB
states. Coherent states. Gabor transform. Semiclassical limit of joint distri-
bution functions.
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1

Lecture 1.
Wigner functions. Coherent states. Gabor
transform. Semiclassical correlation functions

In Classical Mechanics a pure state is described by a Dirac measure supported
by a point in phase space.

We have seen that in quantum Mechanics a pure state is represented by
complex-valued functions on configuration space, and functions that differ
only for a constant phase represent the same pure state.

Alternatively one can describe pure states by complex-valued functions in
momentum space.

To study the semiclassical limit it would be convenient to represent pure
states by real-valued functions on phase-space, and that this correspondence
be one-to-one. These requirements are satisfied by the Wigner function Wψ

associated to the wave function ψ ∈ L2(RN ).
The function Wψ is not positive everywhere (except for coherent states

with total dispersion ≥ h̄) and therefore cannot be interpreted as probability
density.

Still it has a natural connection to the Weyl system and good regularity
properties.

To a pure state described in configuration space by the wave function
ψ(x) one associates the Wigner function Wψ which is a real function on R2N

defined by

Wψ(x, ξ) = (2π)−N
∫
RN

e−i(ξ,y)ψ(x+
y

2
)ψ̄(x− y

2
)dNy x, ξ ∈ RN . (1.1)

We shall say that Wψ is the Wigner transform of ψ and will call Wigner
map the map ψ →Wψ.

It is easy to verify that the function Wψ is real and that Wψ = Weiaψ ∀a ∈
R.

Therefore the Wigner map maps rays in Hilbert space (pure states) to real
functions on phase space.

Moreover we will see that the integral over momentum space of Wψ(x, ξ)
is a positive function that coincides with |ψ(x)|2 and the integral over con-
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figuration space coincides with |ψ̂(p)|2 where ψ̂ is the Fourier transform of
ψ.

The correspondence between Wψ and the integral kernel ψ̄(x) ψ(x′) per-
mits to associate by linearity a Wigner function Wρ to a density matrix ρ,

ρ =
∑
k

ckPk, ck ≥ 0,
∑

ck = 1 (1.2)

where Pk is the orthogonal projection on ψk one has

Wρ =
∑
k

ckWψk (1.3)

Explicitly

Wρ(x, ξ) =
∑
k

ck(2π)−N
∫
e−i(ξ,y)ψk(x+

y

2
)ψ̄k(x− y

2
)dy (1.4)

If ρ is a density matrix (positive trace-class operator of trace one) with
integral kernel

ρ(x, y) =
∑
n

cnφ̄n(x)φn(y) (1.5)

its Wigner function is

Wρ(x, ξ) = (2π)−N
∫
e−i(ξ,y)ρ(x+

1
2
y, x− 1

2
y)dy (1.6)

where the sum converges pointwise in x, ξ if ρ(x, x′) is continuous and in the
L1 sense otherwise.

The definition can be generalized to cover Hilbert-Schmidt operators when
the convergence of the series is meant in a suitable topology.

¿From (6) one has

Wρ(x, ξ) ∈ L2(RN ×RN ) ∩ C0(RNy , L
1(RNx )) ∩ C0(RNx , L

1(RNy )) (1.7)

Through (6) one can extend by linearity the definition of Wigner func-
tion to operators defined by an integral kernel; this can be done in suitable
topologies and the resulting kernels are in general distribution-valued.

When ρ is a Hilbert-Schmidt operator and one has

‖Wρ‖22 = (2π)−N‖ρ‖2 (1.8)

If ψ(x, t) is a solution of the free Schroedinger equation

i
∂ψ

∂t
= −1

2
∆ψ (1.9)
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the function Wψ solves the transport (or Liouville) equation

∂W

∂t
+ ξ.∇xW = 0 (1.10)

Introducing Planck’s constant one rescales Wigner’s function as follows

W h̄
ψ (x, ξ, t) = (

i

h̄
)NWψ(x,

ξ

h̄
, t) (1.11)

and Liouville equation is satisfied if ψ satisfies

ih̄
∂ψ

∂t
= −1

2
h̄2∆ψ.

Consider now the equation that is satisfied byWφ if φ satisfies Schroedinger’s
equation with hamiltonian H = − 1

2∆+ V .
We have seen in Volume I that under the condition

V ∈ L2
loc(R

N ), V − ∈ St(RN ),
∫
|x|<R

|V (x)|2dx ≤ c(1 +R)m (1.12)

(St denotes Stummel class) the operator H is self-adjoint with domain

D(H) ≡ {φ ∈ L2, |V |φ ∈ L1
loc, −∆φ+ V φ ∈ L2} (1.13)

Let ρ0 be a density matrix and set ρ(t) ≡ e−iHtρ0e
iHt. Denote by

Wρ(t)(x, ξ; t) the Wigner function of ρ(t).
Under these conditions the following theorem holds (the easy proof is left

to the reader)

Theorem 1.1
If V satisfies (12) then Wρ(t) belongs to the space

C(Rt, L2(RNx ×RNξ )) ∩ Cb(Rt ×RNx ,FL1(RNξ )) ∩ Cb(Rt ×RNξ ,FL1(RNx ))
(1.14)

(we have denoted by FL1 the space of functions with Fourier transform in L1)
and satisfies

∂W

∂t
+ (ξ,∇xW ) +K ∗W = 0 (1.15)

where K is defined by

K(x, ξ) ≡ (
i

2π
)N

∫
e−i(ξ,y)(V (x+

y

2
)− V (x− y

2
))dy (1.16)

and
(K ∗W )(x, ξ) ≡

∫
K(x, η)W (x, ξ − η)d η (1.17)
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♦

Setting f h̄(t) = W h̄
ψ (t) one derives

∂f h̄

∂t
+ ξ.∇xf h̄ +Kh̄ ∗ f h̄ = 0, ρh̄(t = 0) = ρ0(h̄) (1.18)

where

Kh̄(x, ξ) = (
i

2π
)Ne−iξ.yh̄−1[V (x+

h̄y

2
)− V (x− h̄y

2
)]dy (1.19)

If the potential V is sufficiently regular it reasonable to expect that if the
initial datum f h̄0 converges when h̄ → 0 in a suitable topology to a positive
measure f0, then the (weak) limit f ≡ limh̄→0f

h̄ exists, is a positive measure
and satisfies (weakly)

∂f

∂t
+ ξ.∇xf −∇V (x).∇ξf = 0 f(0) = f0 (1.20)

We shall prove indeed that when V satisfies suitable regularity assump-
tions, then for every T > 0 there exists a sequence h̄n → 0 such that f h̄n(t)
converges uniformly for |t| < T, in a weak ∗ sense for a suitable topology, to
a function f(t) ∈ Cb(RN ) which satisfies (20 ) as a distribution.

Under further regularity properties f(t) is the unique solution of (20) and
represents the transport of f0 along the free flow

ẋ = ξ, ξ̇ = −∇V (1.21)

Under these conditions the correspondence ψ →W h̄
ψ is a valid instrument

to study the semiclassical limit.
We shall give a precise formulation and a proof after an analysis of the

regularity properties of the Wigner functions.
We have remarked that in general the function Wψ(x, ξ) is not positive.

It has however the property that its marginals reproduce the probability dis-
tributions in configuration space and in momentum space of the pure state
represented by the function ψ. Indeed one has the following lemma (we omit
the easy proof)

Lemma 1.2

∫
(Wψ)(x, ξ)dx = |f̂(ξ)|2,

∫
(Wψ)(x, ξ)dξ = |f(x)|2 (1.22)

♦
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In a strict sense (22) holds if φ ∈ L1 ∩L2, φ̂ ∈ L1 ∩L2. In the other cases
one must resort to a limiting procedure.

We also notice that

W
e
i(ax−b ∂

∂x
)ψ = Wψ(x− b, ξ − a) Wf = Wg ⇔ f(x) = eicg(x) c ∈ R

(1.23)
and that

(Wψ,Wφ) = (ψ, φ) (1.24)

The essential support of a Wigner function cannot be too small; roughly
its volume cannot be less than one in units in which h̄ = 1.

In particular for any Lebesgue-measurable subset E ∈ R2N one has∫
E

Wf (x, ξ)dxdξ ≤ |f |22 µ(E) (1.25)

where µ(E) is the Lebesgue measure of E.

This statement is made precise by the following proposition [1] [2]

Proposition 1.3 (Hardy )
Let

Ca,b(x, ξ) = e−
aξ2

2 −b
x2
2 x, ξ ∈ RN a, b > 0 . (1.26)

Then for any f ∈ L2(R2N one has
1) If ab = 1 then (W ∗f , Ca,b)(x, ξ) ≥ 0
2) If ab > 1 then (W ∗f , Ca,b)(x, ξ) > 0
3) If ab < 1 there are values of {x, ξ} for which (W ∗f , Ca,b)(x, ξ) < 0.

♦

1.1 Coherent states

If ab = 1 the functions Ca,b defined above and suitably normalized are called
coherent states.

Coherent states play a relevant role in geometric optics and also, as we saw
in Volume I, in the Bargman-Segal representation of the Weyl system and in
the Berezin-Wick quantization.

Introducing Planck’s constant the coherent states are represented in con-
figuration space Rn by

Cq,p;∆(x) = cNe
− (x−q)2

2∆2 e
ix.p
h̄ ∆, q, p ∈ RN , ∆ > 0 (1.27)

where cN is a numerical constant.
These states have dispersion ∆ in configuration space and h̄

∆ in momen-
tum space, and therefore the product of the dispersions in configuration and
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momentum space is h̄, the minimal value possible value due to Heisenberg
inequalities.

The Wigner function of the coherent states is positive

Wq,p;∆(x, ξ) = cNe
− (x−q)2

2∆2 −
∆2(ξ−p)2

2h̄2 (1.28)

As a consequnce of the theorem of Hardy it can be proved [2] that the
Wigner function Wψ associated to a wave function ψ is positive if and only if
ψ(x) is a gaussian state of the form (26) with ∆0.∆ ≥ h̄.

The Wigner function Wψ is not positive in general but its average over
each coherent state is a non-negative number.

Since coherent states are parametrized by the points in phase space , one
can associate to the function φ the positive function on phase space

Hφ(q, p) =
∫
dx dξWq,p;∆(x, ξ)Wφ(x, ξ)dxdξ

This is the Husimi distribution associated to the function φ..
Since the coherent states form an over-complete system, one may want to

construct a positive functions associated to the function φ by integrating over
a smaller set of coherent states, but still sufficient to characterize completely
the function φ.

This is the aim of Gabor analysis [3] a structure that has gained promi-
nence in the field of signal analysis. We shall outline later the main features
and results in this field.

Not all phase-space functions are Wigner functions Wρ for some state ρ.
A simple criterion makes use of the symplectic Fourier transform ; we shall

encounter it again when in the next Lecture we will introduce the pseudo-
differential operators

If f ∈ L2(R2N ) define its symplectic Fourier transform fJ by

fJ(z) =
∫
R2N

f(ξ)e−iz
T Jξdξ, z ∈ R2N (1.29)

where J is the standard symplectic matrix.
The symplectic Fourier transform fJ(z) is said to be of β-positive type if

the m×m matrix M with entries

Mi,j = fJ(ai − aj)ei
β
2 (aT Ja) a = {a1, ..am} (1.30)

is hermitian and non negative.
With these notations the necessary and sufficient condition for a phase

space function to be a Wigner function is [4][5]

i) fJ(0) = 1
ii) fJ(z) is continuous and of h̄-positive type.
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1.2 Husimi distribution

For a generic density matrix ρ the positive function

Hρ(q, p) ≡ (Wρ,Wφq,p;h̄) (1.31)

is called a Husimi transform (or also Husimi distribution) of the density ma-
trix ρ.

If the density matrix has trace one, the corresponding Husimi distribution
has L1 norm one.

The correspondence Hρ ↔ ρ is one-to- one.
One verifies that ρ is of trace-class if and only if Hρ ∈ L1(R2N ) and that

Trρ =
∫
Hρdx

2N .

Denote by S and S ′ the Schwartz classes of functions.
The Fourier transform acts continuously in these classes and one can derive

the following regularity properties

ρ(x, y) ∈ S(RNx ×RNξ )⇔Wρ(x, ξ) ∈ S(RNx ×RNξ ) (1.32)

ρ ∈ S ′(RNx ×RNξ )⇔Wρ ∈ S ′(RNx ×RNξ ) (1.33)

More generally, for any pair of functions f ,g one can consider the quadratic
form

Wf,g(x, ξ) = (2π)−N
∫
e−i(ξ,y)f(x+

1
2
y)ḡ(x− 1

2
y)dy (1.34)

¿From the properties of Fourier transform one derives

Lemma 1.4
If f , g ∈ S(RN )× S(RN ) then Wf,g ∈ S(R2N ).
If f ; g ∈ S ′(RN )× S ′(RN ) then Wf,g ∈ S ′(R2N ).
If f, g ∈ L2(RN )× L2(RN ) thenWf,g ∈ L2(R2N ) ∩ C0(R2N )

Moreover

(Wf1,g1 ,Wf2,g2) = (f1, f2)(g2, g1) |Wf,g|∞ ≤ ‖f‖2‖g‖2 (1.35)

♦

We study next the limit when ε→ 0 of a one-parameter family of functions
uε.

Consider the corresponding Wigner functions

W ε
uε(x, ξ) = (

1
2πε

)N )
∫
RN

e−
i
ε (ξ,y)uε(x+

y

2
)ūε(x−

y

2
)dy (1.36)

= (
1

2π
)N

∫
RN

e−i(ξ,z)uε(x+
εz

2
)ūε(x−

εz

2
)dz (1.37)
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Let Hε
uε(q, p) be the corresponding Husimi functions.

If the family uε is bounded in L2(RN ), the family Hε
uε consists of non-

negative functions in L1(RN ) which define, if considered as densities, a family
of measures µuε .

We shall study limit point of this set of measures, in the sense of the weak∗

topology of Borel measures.
In order to be able to use compactness results it is convenient to introduce

a topological space in which the W ε(uε) are uniformly bounded.
To this end, we introduce the following Banach algebra

A ≡ {u ∈ C0(RNx ×RNξ ), (Fξu)(x, z) ∈ L1(RNz , C0(RNx ))} (1.38)

with norm
||Fξ(ux)||A =

∫
RN

supx|Fξu|(x, z)dz (1.39)

A is a separable Banach algebra that contains densely S(RNx × RNξ ),
C∞0 (RNx × RNξ ) and every finite linear combination of u1(x)u2(ξ), with
uk ∈ C∞0 or û ∈ C∞0 .

In (38) we have used the notation Fξu to denote Fourier transform of u
with respect to ξ.

With these notation one has

Proposition 1.4
The family W ε

uε is equibounded in A.
♦

Proof
A simple estimate gives∫
R2N

(W ε
uεφ)(x, ξ)dxdξ =

1
(2π)N

∫
RN

(Fξφ)(x, y)uε(x+
εz

2
)ūε(x−

εz

2
)dx dy dz

(1.40)
It follows

|
∫
R2N

(W ε
uεφ)(x, ξ)dxdξ| ≤ (

1
2π

)N
∫
RN

(supx|(Fξφ)(x, y)|dy)| |supzuε(x+
εz

2
)ūε(x−

εz

2
)|dx

≤ (
1

2π
)N ||φ||A||uε||2 (1.41)

♥

Denote by A′ the topological dual of A.
¿From Proposition 1.4 one derives by compactness that there exists a sub-

sequence {uεn} which converges weakly to an element of u ∈ A′′ and at the
same time W εn

uεn
converges in the ∗-weak topology to an element of A′′ that

we denote by µ.
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Note that the convergence of uεn to u does not imply weak convergence of
W εn
uεn

; in general one must select a further subsequence.
In the same way we can construct sequences of Husimi functions Hεn

uεn
and

of corresponding measures that converge weakly.
Denote by µ̃ the limit measure. One has

Theorem 1.5
1) One has always µ = µ̃
2) µ ≥ |u(x)|2δ0(ξ)
3)

∫
RN
|u(x)|2dx ≤

∫
R2N dµ ≤ liminfε→0

∫
RN
|uε|2dx.

♦

Proof
We provide the proof only in the case n = 1. Notice that

Hε
uε = W ε

uε ∗Gε, Gε = (πε)−
1
2 e−

(|x|2+|ξ|2)
ε (1.42)

(∗ denotes convolution in ξ ).
We must prove that if φ ∈ A (or in a dense subset) then φ ∗Gε converges

to φ in the topology of A.
From

Fξ(φ ∗Gε)(x, z) = [(Fξφ)(x, z)(πε)−1/2 ∗ e−
|x|2
ε ]e−ε

|z|2
4 (1.43)

it follows

|φ ∗Gε − φ|A ≤
∫
RN

supx| Fξφ−Fξφ ∗ (πε)−
1
2 e−

|x|2
ε |dz

+
∫

(1− eε|z|
2/4) supx|Fξφ| dz (1.44)

The second term converges to zero so does the first term if φ ∈ S(R × R).
Point 1 of the theorem is proved, since S(R×R) is dense in A.

Point 3 follows from Point 1 since∫
R2
µ̃udx ≤ lim inf

∫
R

|uε|2dx (1.45)

To prove Point 2 notice that for a compact sequence uε that converges
weakly to u in L2(R) one has, for every z ∈ R

uε(x+
εz

2
) ūε(x−

εz

2
)⇒ |u(x)|2 (1.46)

Therefore one has, weakly for subsequences in S ′(R×R)

W ε
uε → |u(x)|2 (1.47)

and from this one derives µu = ‖u‖2δ0(ξ).
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Define

H(u, v)(ξ, x) = (2π)−1

∫
e−iξ.yu(x+

y

2
)v̄(x− y

2
)dξ (1.48)

Then
Hε
uε ≥ H

ε
u + 2Hε

uε−u (1.49)

and to prove Point 2 it suffices to prove that W̃ ε(u, vε) converges weakly (in
the topology of Borel measures) if u ∈ C∞0 (R) and vε converge weakly to zero
in L2(R).

One has
Hε(u, vε) ∗Gε (1.50)

W ε(u, vε) = (2π)−1Re

∫
e−iξ.yu(x+

εy

2
ū(x− εy

2
)dξ (1.51)

Therefore for every φ ∈ S(RN ×RN )

< W ε(u, vε), φ >= (2π)−1Re

∫
R2
dydzv̄ε(y)u(x+

εy

2
)(Fξφ)(y − εz/2, z)

(1.52)
If u ∈ C∞0 (RN ) one has moreover

limε→0u(x+
εy

2
)(Fξφ)(y − εz

2
, z) = u(x) Fξφ(y, z) (1.53)

in the topology of L2(RNz , L
2(RNx )).

It follows that W ε(u, vε) converges weakly to zero in A′.
Similar estimates show that Hε(u, vε) converges weakly to zero in the sense

of measures.
♥

The following remarks are useful and easily verifiable.
a) It may occur that µ = 0 (we shall presently see an example)
b) If µu is the measure associated to the subsequence uε weakly convergent

to u , then µ(.− x0, .− ξξ0) is the measure associated to to the subsequence

uε(x− x0)ei
(ξ0−x)

ε (1.54)

c) The measure µu is also the limit of

(2π)−n
∫
e−iξ.zuε(x+

αεz

2
)ūε(x+

βεz

2
)dz (1.55)

for all values of the parameters α, β ∈ (0, 1), α+ β = 1
d) If the measure µu is associated to the sequence uε and the measure νv

to the sequence vε, in general the measure µu + νv is not associated to the
sequence (uε+vε) (for example if uε = vε the associated measure is 4µu). This
fact is a consequence of the superposition principle.

Additivity always holds when µ and ν are mutually singular.
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1.3 Semiclassical limit using Wigner functions

Example 1
Sequence of functions that concentrate in one point

uε(x) ≡ 1

ε
nNα

2
u(
x

εα
) (1.56)

One has

α < 1 limε→0W
ε
uε = δ0(x)δ0(ξ)

∫
|u(y)|2dy (1.57)

α > 1 limε→0W
ε
uε = 0 (1.58)

α = 1 limε→0W
ε
uε =

1
(4π)N

|û(ξ)|2 δ0(x) (1.59)

♣

Example 2 ( coherent states)

uε =
1
ε
nα
2
u(
x− x0

εα
)ei

ξ0.x
ε (1.60)

0 < α < 1 limε→0Wε,uε = ‖u‖22 δx0(x)δξ0(ξ) (1.61)

α > 1 limε→0W
ε
uε = 0 (1.62)

α = 1 limε→0Wε,uε = (2π)−n|û(ξ − ξ0)|2 δx0(x) (1.63)

♣

Example 3 ( WKB states)

uε(x) ≡ u(x)eia(x)/ε, u ∈ L2(RN ), u(x) ∈ R a ∈W 1,1
loc (1.64)

Notice that uε(x + εαz
2 )ūε(x − εαz

2 ) converges in S ′(R2N ) to |u(x)|2 if
0 < α < 1 and to |u(x)|2ei∇a(x).z if α = 1.

One has therefore

α < 1 limε→0W
ε
uε = |u(x)|2δ0(ξ) (1.65)
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α = 1 limε→0W
ε
uε = |u(x)|2δ(ξ −∇u(x)) (1.66)

♣

Example 4 ( superposition of coherent states)

uε =
∑
xj 6=xk

βju
j(
x− xj
εα

)eN/4eiξ.x/ε 0 < α < 1 (1.67)

It can be verified that the limit is∑
|βj |2δ(x− xj)δ(ξ − ξj) (1.68)

♣

A detailed analysis of Wigner functions in the semiclassical limit can be
found in [6].

We now give details of the use of Wigner functions in study the semiclas-
sical limit.

Theorem 1.6 [6]
i) Let V ∈ C1(RN ) and verify (12). Then for every T > 0 there is a sub-
sequence f h̄n(t) that converges in the weak* -topology of A′ for |t| < T to a
function f ∈ Cb(RN ) which satisfies (20) in distributional sense.
ii) If moreover V ∈ C1,1(RN ) and V (x) ≥ −c(1+|x|2), then f(t) is the unique
solution of (28) and represents the evolution of f0 under the flow defined by

ẋ = ξ, ξ̇ = −∇V (1.69)

♦

Notice that under the assumptions we have made this equation does not
have in general a unique solution.

It is possible to construct examples of lack of uniqueness by taking coherent
states localized on different solutions.

Sketch of the proof of Theorem 1.6
By density it is sufficient to prove that if

φ ∈ S(RNx ×RNξ ), Fξφ ∈ C∞0 (RNx ×RNξ ) (1.70)

and Kh̄ is defined as in (20), then < Kh̄ ∗ξ f h̄, φ > is bounced for |t| ≤ T and
converges weakly when h̄→ 0, to∫

R2N
∇V (x).∇ξφ(x, ξ)f(x, ξ)dxdξ (1.71)

One has
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< Kh̄ ∗ f, φ >=
i

(2π)N
< f h̄, φh̄ >A′⊗A (1.72)

where

φh̄(x, y) =
∫
RN

h̄−1(Fξφ)(x, y)(y.∇V (x))eiη.y((V (x+
h̄z

2
)− (V (x− h̄z

2
))dy

(1.73)
It follows for every φ ∈ A′

<
∂f h̄

∂t
, φh̄ > − < f h̄, ξ.∇xφh̄ > + < f h̄, (Kh̄ ∗ I)φh̄ >= 0 (1.74)

When h̄ tends to zero, the sequences φh̄ and ∂fh̄

∂t are convergent in the topology
induced by A′.

Taking into account that φh̄ converges to φ in the topology of A′ one has

<
∂f

∂t
, φ > − < f, ξ.∇xφ > + < f,∇V.∇ξφ) = 0 φ ∈ A′ (1.75)

Therefore f ≡ limh̄→0f
h̄ is a weak solution of (20). This proves i).

To prove point ii) an integration by parts is needed in order to pass from
the weak form of the solution to the classical solution. For this, it is convenient
to regularize f and then undo the regularization after having taken the limit
ε→ 0 taking advantage from the fact that the classical solution is of Lipshitz
class. This is legitimate under the assumptions made on V.

♥

This analysis of the semiclassical limit for the Schroedinger equation can be
extended with minor modifications to the Schroedinger-Poisson system which
describes the propagation of a system of N quantum mechanical particles
subject to the electric field generated by their charges and possibly to an
external field E0 generated by an external charge ρ0.

The equations which describe this quantum system are

ih̄
∂φj
∂t

= − h̄
2

2
∆φj + V φj , j = 1, ..N (1.76)

V = E0 −
∑
j

ej |φj(t, x)|2 (1.77)

It is possible to show that the limit h̄ → 0, denoted by f (a function on
classical phase space) of the Wigner function associated to the density matrix
of any particle does not depend on the particle chosen and satisfies the system
of classical equations (called equations of Vlasov-Poisson)

∂f

∂t
+ ξ.∇f − E.∇ξf = 0, E(x) = ∇x(

∫
1

|x− y|
[ρ0(y)−

∫
f(y, ξ)dξ]dy)

(1.78)
where x, ξ are coordinates in the classical phase space



28 1 Lecture 1.Wigner functions. Coherent states. Gabor transform. Semiclassical correlation functions

1.4 Gabor transform

For completeness we mention here the Gabor transform [3], much used in
signal analysis: the time modulation and frequency modulation of an acoustic
signal have the same role as position and momentum in the description of a
wave function.

The Gabor transform Gḡf or two complex-valued functions f, g on R1 is
obtained from the corresponding Wigner function by a change of variables

W (f, g)(x, ξ) = (2π)Ne2i(x.ξ)[Gḡ(f)](2x, 2ξ) (1.79)

Inverting this formula one obtains

Gḡf(x, ξ) = (2π)
N
2 (f,MξT−xg)

Mξ(h)(t) = eitξh(t) T−th = h(t− x) (1.80)

The Gabor tranform is also called short time Fourier transform of f with
window ḡ

The function
φx,ξ = MξT−xφ (1.81)

is called Gabor wavelet generated by φ.
The operators Mξ and T−x are called respectively modulation operator

and translation operator Occasionally one uses the notation φt,ν to stress the
time-frequency analysis

The role of the Gabor wavelets in signal analysis is seen in the following
formula that allow to reconstruct a signal from its Gabor spectrum.

Let φ ∈ L1(RN )∩L2(RN ) with
∫
φ(x, ξ))dNx = 1. The function φ is called

the window .
For all f ∈ L2(RN )

f = (2π)−N
∫ ∫

(f, φx,ξ)φx,ξdxdξ (1.82)

Let σ ∈ L2(RN ⊗RN ). The Gabor multiplier Gσ,φ : L2(RN )→ L2(RN ) is
defined by

(Gσ,φf, g) =
∫ ∫

σ(x, ξ)Gφf(x, ξ)(x, ξ)(Ḡφg)(x, ξ)dxdξ =

= (2π)−N
∫ ∫

(σ(x, ξ)(f, φx,ξ)L2φ(x, ξ)dxdξ (1.83)

for f, g ∈ L2(RN ‘).
Gabor operators are also called localization operators.
One proves the following results:
1) if σ ∈ L2(RN ×RN the Gabor multiplier is a Hilbert-Schmidt operator
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2) if σ ∈ L2(RN ×RN ) one has

G∗σ,φGσ̄,φ =
∫
|σ(x)|2dx.

∫
|φ(x, ξ)|2dxdξ (1.84)

3) moreover

Gσ,φGτ,φ = Gλ,φ λ̂ = (2π)−N (σ̂, ∗1
2
τ̂ (1.85)

where
(f ∗ 1

2 g) =
∫
CN

f(z − w)g(w)e
(zw̄−|w|2

2 dw (1.86)

1.5 Semiclassical limit of joint distribution function

Recall that in Quantum Mechanics a state can be characterized by the ex-
pectation values of the operators. Typically one considers expectation values
in the state described by the wave function φ of product of the canonical
operators q̂k, p̂k, k = 1, . . . d ()

(φ,Πi,j;h,kq
k
i p
h
j φ) i, j = 1 . . . d, k.h = 1, 2, . . . (1.87)

Notice that by using the canonical commutation relations one can restrict
oneself to polynomials of this type.

To avoid proliferation of indices we shall consider from now on a system
with one degree of freedom.

The evolution of the state φ(0) → φ(t) under the Schödinger equation is
described by evolution of the correlation functions.

In Classical Mechanics correspond to measures concentrated in a point
in phase space, expectation values correspond to position and momentum of
the particle considered and the evolution of the pure state is described by
Hamilton’s equation of motion for the canonical coordinates.

In Quantum Mechanics a state which is not pure is described by a ρ and
again the evolution ρ → ρ(t) corresponding to the Hamiltonian H(q, p) can
be described by giving the map

Tr(ρqmk p
n
h)→ Tr(ρ(t)qmk p

n
h)) = Tr(ρ, eitH(q̂,p̂)qmk p

M
h e
−itH(q̂,p̂)) (1.88)

Correspondingly one has in Classical Mechanics the evolution of a proba-
bility distribution under the Liouville equation corresponding to the hamilto-
nian H(q, p).

Of course in Quantum Mechanics the expressions we have given are formal,
since the canonical variables q̂, p̂ and the hamiltonian H are unbounded
operators and one must keep track of their domains.

Before giving a precise statement we note the analogy with mean field
models.
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In these models, mostly used in (Quantum) Statistical Mechanics, one
considers (in one dimension)a system with N degrees of freedom and a set of
M (quantum) intensive observables αkN , k = 1, ..M which are space averages

αMN = N−1
N+M∑
n=M

an

of local observables an.
The local observables almost commute at long distances : [an, am] ' (n−

m)−p for some large p. Both the local and the intensive observables depend
on time through a (Quantum) hamiltonian H.

The intensive observables became classical in the limit N →∞ (i.e. they
form a commutative algebra). And under the hamiltonian H the evolution
t→ α(t) of the observables is describes by an effective equation.

One is interested in the structure and the evolution in of the fluctuations

βkt = limN→∞
√
N(

1
N

N∑
h=1

ah+k(t)− αk(t)) (1.89)

Under suitable assumptions [7] one proves that if akn are quantum canon-
ical variables their fluctuations β(t) are at first order in

√
h̄ again quantum

canonical variables for a system with M degrees of freedom and they evolve
according to a quadratic hamiltonian.

In this sense our analysis of the semiclassical limit h̄ → 0 is analogous to
the analysis for N → ∞ in Quantum Statistical Mechanics of a system of N
particles (with h̄ taking the place of 1

M .

1.6 Semiclassical limit using coherent states

We return to the semiclassical approximation which we now understand a
semiclassical limit of quantum correlation functions. Of course one should
expect this convergence to hold only for a suitable class of initial states, which
we take to be coherent states with joint dispersion of order h̄.

We give here first a formulation of the problem in terms of the Weyl algebra
and unitary evolution, due to K.Hepp [7]. We shall later sketch a formulation
in terms of correlation functions for canonical variables.

We consider hamiltonian system with one degree of freedom and classical
hamiltonians of the form Hcl(p, q) = p2

2m + V (x) with V sufficiently regular
so that both the classical equation of motion and the quantum one have a
unique solution for the initial data we will consider , at least up to a time a
time T .

The classical equations of motion are

ẋ(t) = p(t) ṗ(t) = −∇V (x(t) (1.90)
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The corresponding equation in Quantum Mechanics are

d

dt
(ψt, q̂h̄ψt) = (ψt, p̂h̄ψ(t))

d

dt
(ψt, p̂h̄ψt) = −(ψt,∇V (x̂)ψ(t)) (1.91)

where ∇V (x̂) is defined by the functional calculus for the self-adjoint operator
V (x̂) and we have assumed that q̂h̄ p̂h̄ satisfy the Heisenberg relations

[q̂h̄, p̂h̄] = −ih̄ (1.92)

on suitable dense domain (by antisymmetry one has [q̂h̄, q̂h̄] = [p̂h̄p̂h̄] = 0).
However (ψt,∇V (x̂)ψ(t)) 6= ∇V ((ψt, q̂h̄ψt) unless the potential V is at

most quadratic, and even if the error is small for t = 0 it may become incon-
trollable for large values of T even if h̄ is very small.

Formally one recovers (91) from (90) in the limit h̄ → 0 ( Eherenfest
theorem) when ψ is a coherent state centered around large mean values
h̄−

1
2 p0, h̄

− 1
2x0 .

The introduction of the following macroscopic representation of the Heisen-
berg relations

p̂ = h̄−
1
2 p̂h̄, , q̂ = h̄−

1
2 q̂h̄

[q̂, p̂] = I, [q̂, q̂] = [p̂, p̂] = 0 (1.93)

is suggested by the fact that the product q̂(t1) . . . p̂(tN ) bar should be observed
at scale 1

h̄ .
This change of scale can be achieved considering the expectation value

of these observables in semiclassical states, in particular in coherent states,
localized at points of the phase space (in the present case, R2) and seen at a
semiclassical scale, i.e. at a scale that differs from the atomic scale by a factor
h̄−

1
2 .
The states that we will consider are coherent states φα centered at the

point α of classical phase space.
Recall that a coherent state is given by

φα ≡ U(α)Ω U(α) = eαa
∗−α∗a = epq̂−qp̂ (1.94)

where Ω is the Fock vacuum.
The operator U(α) acts on the annihilation operator as follows

U(α)aU∗(α) = a− α, a = p̂+ iq̂ α = q + ip (1.95)

For any choice of monomial P in the p̂ q̂ one has

(h̄−
1
2α, P [q̂ − (h̄−

1
2 q), p̂− (h̄−

1
2 p]h̄−

1
2α) = (Ω, q̂...p̂Ω)

and therefore
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limh̄→0(h̄−
1
2α, q̂h̄....p̂h̄h̄

− 1
2α) = q...p (1.96)

We now show that this relation is preserved under time evolution Uh̄(t)
associated to the self-adjoint extension of Hh̄ = p2

h̄

2m + V (qh̄) i.e.

limh̄→0(h−
1
2α), qh̄(t1) . . . ph̄(tN )(h−

1
2α) = q(α, t1) . . . p(α, tN ) (1.97)

(for more singular Hamiltonians the statement is true for times for which the
classical orbit exists).

This result must be compared with the statement (see Volume I) that
along coherent states the quantum mechanical evolution

(h−
1
2α, ah̄(t)h−

1
2α)

and the classical evolution

z(α, t) = (h−
1
2α(t)ah̄h−

1
2α(t))

differ by terms of order h̄
1
2 (more exactly are in correspondence and their

difference vanish for h̄→ 0 ).
Notice that the result can be put in a probabilistic setting (stressing the

analogy with the central limit theorem) as a comparison between the expecta-
tion value of a quantum observable under the classical evolution of coherent
states (i.e. the parameter of the coherent states evolve according to a classical
equation of motion) and the quantum mechanical evolution of the expectation
values in given coherent state).

As a consequence one can view, to first order in h̄ , the quantum mechanical
evolution as quantum mechanical ( central limit) gaussian oscillations around
the classical evolution.

One has indeed

limh̄→0(h̄−
1
2α, [q̂(t1)−q(α, t1) . . . h̄−

1
2 [p̂(t1)−p(α, tN )](h̄−

1
2α) = q(α, t1) . . . p(α, tN )

(1.98)
where q(α, t) and p(α, t) are solutions of the linearized classical equation

around ξ(α, t) (the classical trajectory of the barycenter of the coherent state)

q̇(α, t) = p(α, t) ṗ(α, t)−∇V (ξ(α, t))q(α, t)

(φ
h̄−

1
2 α
, (Q̂1 − h̄−

1
2 ξ1)...(P̂n − h̄−

1
2πn)φ

h̄−
1
2 α

) = (Ω, Q̂1, ..P̂nΩ) (1.99)

¿From (98), multiplying by h̄s/2 ( s is the degree of the monomial) one
obtains

limh̄→0(φ
h̄−

1
2 α
, (qh̄1 − ξ1), ...(πh̄n − ηn)φ

h̄−
1
2 α

) = 0

By iteration, for polynomials of type P ∗ P ,

limh̄→0(φ
h̄−

1
2 α
, (qh̄1 , ...p

h̄
n)φ

h̄−
1
2 α

) = ξ1...πn (1.100)
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We want to prove that, if {ξm(s)}, {ηm(s)} are solutions of Hamilton’s
equation with potential term V and if

q(α, t) ≡ {qm(α, t)} p(α, t) ≡ {pm(α, t))} (1.101)

are the solutions of the tangent flow i.e.,

q̇(α, t) = p(α, t), ṗ(α, t) = −∇V (ξ(α, t).q(α, t)

ξ̇(t) = π(t), π̇(t) = −∇V (ξ(t)) (1.102)

then (96) e (97) are satisfied at all finite times if they are satisfied by the
initial conditions, i.e. for any T and all |s| ≤ T one has

limh̄→0 < φ
h̄−

1
2 α
, (qh̄1 − ξ1(α, s)), ...(ph̄n − ηn(α, s))φ

h̄−
1
2 α

= q1(α, s)...pn(α, s)
(1.103)

1.7 Convergence of quantum solutions to classical
solutions

We state the following theorem in the case of one degree of freedom; it is easy
to generalize the proof to the case of an arbitrary finite number of degrees of
freedom.

Formally the result can be extended to the case of a system with infinitely
many degrees of freedom, but in that case care must be put in the choice of
the representation and on the definition of the Hamiltonian.

Theorem 1.7 (Hepp) [7]
Let ξ(α, t) be a solution of the classical equation of motion for the hamiltonian
Hclass = 1

2mp
2 + V (x, t) for |t| ≤ T . Let V (x) be real and of Kato class so

that the quantum Hamiltonian Hh̄ is self-adjoint; we use the notation

Uh̄(t) = ei
t
h̄Hh̄ , U(t) = eitHh̄ (1.104)

Let V (x) be of class C2+ε in a neighborhood of the classical trajectory
ξ(α, t), π(α, t) so that the cotangent flow q(α, t), p(α, t) is well defined for |t| <
T and of class C1+ε.

Then for all r, s,∈ R2 and uniformly in |t| ≤ T

s− limh̄→0U(h̄−
1
2α)∗Uh̄(t)∗ei[rqh̄+sph̄]Uh̄(t)U((h̄−

1
2α)

= ei[rξ(α,t)+sπ(α,t)] (1.105)

Let ξ(α, t), π(α, t) be a solution of Hamilton’s equation with initial data
α ≡ (ξ, π) and defined in t ∈ (−T,+T ).

Let V (x) be of class C2+δ δ > 0, in a neighborhood of ξ(α, t), and let
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|V (x)|2e−ρx

2
dx <∞ (1.106)

for some ρ > 0.
Let Hh̄ be a self-adjiont extension of the symmetric operator

− h̄
2
d2

dx2
+ V (

√
h̄x) (1.107)

and set
Uh̄(t) ≡ e−i

Hh̄t

h̄ (1.108)

Let {p(t), q(t)} be the solution of the linearized flow at ξ(α, t) with initial
data p, q. This flow corresponds to the Hamiltonian

H(t) ≡ p2

2
+ C(t)

q2

2
C(t) ≡ d2V

dq2
(ξ(α, t)) (1.109)

Under these assumptions, for every r, s ∈ R2 and uniformly in t ∈
(−T,+T ) one has

1)

s− limh̄→0U
∗(

α√
h̄

)U∗h̄(t)e[i(r(q− ξ(α,t)√
h̄

)+s(p−π(α,t)√
h̄

)]
Uh̄(t)U(

α√
h̄

)

= ei(rq(α,t)+sp(α,t)) (1.110)

2)

s− limh̄→0U
∗(

α√
h̄

)U∗h̄(t)ei(rQ
h̄+sP h̄)Uh̄(t)U(

α√
h̄

). = ei(rξ(α,t)+sπ(α,t))

(1.111)

♦

We remark that the same result is obtained using modified (squeezed)
coherent states for which the dispersion in configuration space is of order h̄α

and the dispersion in momentum space is of order h̄
1
2−α with 0 < α < 1

2 .

Proof of Theorem 1.7
The strategy of the proof is to expand formally the Hamiltonian around the
classical orbit in powers of

√
h̄ up to the second order and to consider the

corresponding evolution equations. (this corresponds classically to consider
only the tangent flow).

If the potential is smooth the first term is a constant (as a function of q̂)
and does not contribute to the dynamics of the canonical variables.

Since the term of first order is linear in the q̂, p̂ the evolution corresponds
to a scalar shift in the canonical variables.This provides a rotating frame for
the canonical variables



1.7 Convergence of quantum solutions to classical solutions 35

The second order term provides in the rotating frame a linear homoge-
neous map that depends differentiably on time. Classically this would give
the evolution of the fluctuations.

Our assumption on the hamiltonian imply that the higher order terms
provide a negligible effect in the limit h̄→ 0.

These remarks imply that one can obtain similar results for classical Hamil-
tonians with smooth coefficients (in particular one can add a )

We shall give a sketch of the proof. Details can be found in Hepp’s paper
[7] .

Expand formally h̄−1Hh̄ in powers of h̄ in a h̄ neighborhood of the classical
orbit ξ(α, t) ≡ ξ(t)

h̄−1Hh̄ = H0
h̄(t) +H1

h̄(t) +H2
h̄(t) +H3

h̄(t)

H0
h̄(t) = h̄−1H(π, ξ)

H1
h̄(t) = h̄−1[πt(p̂−

πt√
h̄

) +
dV

dx
(ξ(t))(q̂ − ξ(t)√

h̄
)]

H2
h̄(t) =

1
2

(p̂− πt√
h̄

)2 − 1
2

(ξ(t))(q̂ − ξ(t)√
h̄

)2 (1.112)

Define

H3
h̄(t) = V (x)−V (ξ(t))−(x−ξ(t)). dV

dx
(ξ(t))− 1

2
(x−ξ(t))2 d

2V

dx2
(ξ(t)) (1.113)

The term H3
h̄(t) is, at least formally, an operator of order O(h̄

1
2 ).

Since the operator is unbounded, one must qualify the meaning of this
statement. We consider the restriction of the operator to functions of fast
space decay (coherent states) and will have to control that this remains true
under evolution.

This will be guaranteed by the fact that under the total evolution the set
of coherent spates is left invariant modulo a small correction.

Notice that H1
h̄ is a liner function of p̂ e q̂ and therefore the propagator

Ush̄(t) exists for every t and is unitary.
This provided a one-parameter map of gaussian coherent states differen-

tiable in time. To see this, use on the convex closure of Hermite functions
Dyson’s perturbation series, or apply the result on the metaplectic group de-
scribed in Volume I of these Lecture Notes.

The unitary operators U1
h̄(t) ≡ eiH

1
h̄t provide a family of automorphisms

of Weyl algebra and the evolution can be written

W h̄(t, 0)∗ei(rq̂+sp̂)W h̄(t, 0) (1.114)

with

W h̄(t, s) ≡ U∗( α√
h̄

) U1
h̄(t)∗ Uh̄(t− s)U1

h̄(s)U(
α√
h̄

)ei
∫ t

s
drH0

h̄(r) (1.115)
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This proves point 1) in the theorem.
Point 2) is proved if one shows that

s− limh̄→0W
h̄(t, s) ≡W (t, s) = e

−i
∫ t

s
H0(r)dr (1.116)

where the (time ordered) integral on the right hand side is defined using
spectral representation.

Since the operators in the Weyl system are uniformly bounded it is suffi-
cient to prove this on a dense set of states, which we shall choose to be the
coherent states

φa(x) ≡ e−(x−a)2/2, a ∈ R (1.117)

We must show that for every τ, |τ | < T one can find h̄(τ) > 0 such that
for any h̄ < h̄(τ) the states

φh̄,sa ≡ U1
h̄U(

a√
h̄

)W (s, 0)φa (1.118)

belong to the domain of the operator H1.
To show this, we note H1 is quadratic and we use the explicit form of

W h̄(t, s) and the identity

W (s, 0)q̂W (s, 0)∗ = α q̂ + β p̂ W (s, 0)p̂W (s, 0)∗ = γ q̂ + δ p̂ (1.119)

in which α, β, γ, δ depend continuously on time. We obtain

φh̄,sa = Cexp[− α+ iγ

2(δ − iβ)
(x− ξs√

h̄
)− a

(α+ iγ)2
+ i

πs√
h̄
x]

Re
α+ iγ

2(δ − iβ
=

1
2

(δ2 + β2) > ηε > 0 (1.120)

for any |s| < T . Since for a suitable ρ > 0∫
dx|V (x)|2 e−ρx

2
<∞ (1.121)

one has the inclusion in the domain of H1 if

h̄(τ) = 2ηε(τ)ρ−1, ηε = |Reα+ i γ

δ − i β
| (1.122)

We conclude that for h̄ < h̄(τ) the product W (t, s)W (s, r) is strongly differ-
entiable in s.

¿From Duhamel’s formula one has

W (t, 0)φa − φa =
∫
ds

d

ds
Wh̄(t, s)φa =
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0

iWh̄,s[h̄−1(V (ξs + h̄; q)− V (ξs))− h̄−
1
2V ′(ξs, q)− V ′′(ξ0)

q2

2
]φa (1.123)

We provide now an estimate of the L2 norm of the right hand side. Using
V ∈ C2+δ we can bound the integral over a ball of radius O(1) (and therefore√
h̄x '

√
h̄)

For large values of |x| we use instead the rapid decrease of |W (s, 0)φ0|2.
In
√
h̄x '

√
h̄ we use the estimate

|h̄−1[V (ξ + h̄ x)− V (ξ)]− h̄−1/2x V ′(ξ)− 1
2
x2 V ′′(ξs)| ≤ x2+δh̄δ/2 (1.124)

and derive
|W (t, 0)φα −Wh̄(t, 0)φα| = o((h̄δ/2) (1.125)

With a similar estimate one completes the proof of Theorem using the
identity

|U(
α√
h̄

)∗U∗h̄e
i(r qh̄+s ph̄)Uh̄(t)U(

−α√
h̄

)φ− ei(r ξt+s πtφ|

= |W h̄(t, 0)eih̄(r q+s p)W h̄(t, 0)φ− φ| (1.126)

and

s− limh̄→0 W
h̄(t, 0) ≡W (t, 0), s− limh̄→o e

ih̄(r q+s p) = 1 (1.127)

This concludes the sketch of the proof of Theorem 1.7.
♥

It is easy to verify that under our hypothesis on the hamiltonian the formu-
las obtained for the coherent states eiax̂+ibp̂Ω are differentiable in the param-
eters a, b and therefore provide a semiclassical approximation for expectation
values of any polynomial.

A direct proof (i.e. without going through the Weyl operators and keeping
track of domain problems ) can be given but requires attention to the domain
problems.

The proof using gaussian coherent states holds for potential that grow not
more than a polynomial at infinity since at each step the decay in space of
the wave function must compensate uniformly the increase of the potential.

Notice the change in time scale between the unitary groups Uh̄(t) and U(t)
: the motion is seen as adiabatic at macroscopic scale.

This is in accordance with Eherenfest theorem [8].
The space-time change of scale x→ h̄−

1
2x, t→ 1

h̄ t leaves the Schrödinger
equation invariant.

The space-time adiabatic change of scales x → x
ε , t →

t
ε , which is effi-

ciently used in solid state physics, corresponds for the Schródinger equation
on macroscopic scale to an adiabatic scaling t→ 1

h̄−
1
2
t ,
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We remark that a similar estimates one proves that a “semiclassical” limit
holds in the case of a quantum particle of mass M in the limit M →∞.

For this one considers the Hamiltonian

H(ξ, x) =
1

2M
ξ2 + V (x) (1.128)

and sets
ξλ = M

√
λξ, xλ =

√
λx (1.129)

Let h̄−1Hλ be a self-adjoint extension of H and denote by Uλ the operator

exp{−iHλt} (1.130)

Then in the limit λ→ 0 Theorem 1.7 holds.
It is worth remarking that in the semiclassical limit superpositions of vec-

tor states
φh̄ =

∑
U(

αn√
h̄

)φn (1.131)

tend weakly to the corresponding statistical mixtures. Indeed one has for
|t| ≤ T

limh̄→0(φh̄, U∗h̄(t)ei(r q̂+s p̂)Uh̄(t)φh̄) =
∑
n

|φn|2ei(r ξ(αn,t)+s η(αn,t)) (1.132)
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Lecture 2
Pseudifferential operators . Berezin,
Kohn-Nirenberg, Born-Jordan quantizations

Weyl quantization is strictly linked to Wigner transform.
If l(q, p) is a linear function of the q′s and of the p′s (coordinates of the

cotangent space at any point q ∈ Rd ) the Weyl quantization is defined, in
the Schrödinger representation , by

Opw(eit(q,p)) = e−it(x,−ih̄∇x) (2.1)

Let S be the Schwartz class of functions on R2d. It follows from the def-
inition of Wigner function Wψ(q, p) that in the Weyl quantization one can
associate to a function a ∈ S(R2d) an operator Opw(a) through the relation

(ψ,Opw(a)ψ) =
∫
Wψ(q, p)(Fa)(q, p)dpdq, q, p ∈ Rd ψ ∈ L2(Rd) (2.2)

where the symbol F stands for Fourier transform in the second variable (a
map − i∇h̄ → p).

To motivate this relation recall that the Weyl algebra is formally defined
a twisted product (twisted by a phase).

Introducing the parameter h̄ to define a microscopic scale, we define the
operator Opwh̄ (a), as operator on L2(Rd) , by

[Opwh̄ (a) φ](x) ≡ (2πh̄)−d
∫ ∫

a(
x+ y

2
, ξ)e

i
h̄ (x−y,ξ)φ(y)dy dξ (2.3)

or equivalently

(Opwh̄ (a)φ)(x) =
∫
ã(
x+ y

2
, x−y)φ(y)dy, ã(η, ξ) ≡ (

1
2h̄

)N
∫
a(η, z)e

i
h̄ (z,ξ)dz

(2.4)
Notice that (3) can also be written (from now on, for brevity, we omit the

symbol h̄ in the operator)

(Opw(a) φ)(x) = (
1

2πh̄
)d

∫ ∫
e
i
h̄ (y−ξ),ξ)a(

1
2

(x− y), ξ)φ(y)dξ dy (2.5)
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In this form it can be used to extend the definition (at least as quadratic
form) to functions a(x, y) ) that are not in S.

2.1 Weyl symbols

We will call the function a Weyl symbol of the operator Opwh̄ (a).
Some Authors refer to the function a in (3) as contravariant symbol and

define as covariant symbol the expression the following expression

a#(z) = (2πh̄)−da(Jz) (2.6)

With this definition one has

Opw(a) = (2πh̄)−1

∫
a#(z)T̂ (z)dz T̂ (z) = e

i
h̄ (y.q̂−x.p̂) z = x+ iy (2.7)

Notice that T (z) is translation by z in the Weyl system. The use of co-
variant symbols is therefore most convenient if one works in the Heisenberg
representation, regarding q, p as translation parameters. (hence the name co-
variant).

It is easy to prove

(φ,Opw(a)ψ) = (
1

2πh̄
)−d

∫
a#(z)(φ, T̂ (z)ψ)dz ∀φ, ψ ∈ S(Rd) (2.8)

In particular in the case of coherent states centered in z

(ψz, Opw(a)ψz) = (
1

2πh̄
)−d

∫
a#(z′)e−

|z−z′|2
4h̄ − i

2h̄σ(z′,z))dz′ (2.9)

Recall that
ψz = T̂ (z)ψ0, ψ0 = (

1
πh̄

)
d
2 e−

x2
2h̄ (2.10)

where T̂ (z) is the operator of translation by z in the Weyl representation.
The covariant symbol a# is therefore suited for the analysis of the semiclas-

sical limit in the coherent states representation and in real Bergmann-Segal
representation.

2.2 Pseudodifferential operators

Definition 2.1 (Pseudo-differential operators) [1][2][3[]4]
The operators obtained by Weyl’s quantization are called pseudo-differential
operators.

They are a subclass of the Fourier Integral Operators [5] which are defined
as in (5) by substituting the factor e

i
h̄ (x−y,ξ) with e

i
h̄ f(x,y),ξ) where f is a

regular function.
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Notice that when h̄ is very small, this function is fast oscillating in space.
The function a will be called the (contravariant) symbol of the pseudo-

differential operator Opw(a)
♦

As a remark we mention that the notation pseudo-differential originates
from that fact that if a(q, p) = P (p) where P is a polynomial, the operator
Opw(a) is the differential operator P (−i∇) and if a(q, p) = f(q), the operator
Opw(a) acts as multiplication by the function f(x).

In the case of a generic function a the operator Opw(a) is far being a
simple differential operator (whence the name pseudo-differential).

Later we discuss other definitions of quantization; Weyl quantization has
the advantage of being invariant under symplectic transformations (since it is
defined through a symplectic form) and therefore is most suited to consider a
semiclassical limit.

In the analysis of the regularity of the solutions of a P.D.E. with space
dependent coefficients other quantization procedures may be more useful, e.g.
the one of Kohn-Nirenberg [7] that we shall define later.

For the generalization to system with an infinite number of degrees of
freedom other quantizations (e.g.the Berezin one ) [6] are more suited be-
cause they stress the role of a particular element in the Hilbert space of the
representation, the vacuum.

In a finite dimensional setting this vector is represented by function ι(z)
which takes everywhere the value one and therefore satisfies ∂ι(z)

∂zk
= 0 ∀k (is

annihilated by all destruction operators) in the Berezin-Fock representation.
In this representation a natural role is taken by the operator N =∑
k zk

∂
∂zk

= 0, the number operator, which has as eigenvalues the integer
numbers and as eigenvectors the homogeneous polynomials in the zk’s .

In the Theoretical Physics literature this representation is often called the
Wick representation and the operator N is called number operator.

For a detailed analysis of pseudo-differential operators, also in connection
with the semiclassical limit, one can consult e.g. [1], [2],[3][8] .

Let us notice that one has

Opwh̄ (a) =
∫ ∫

ei[(p,x)+h̄(q,Dx)]Fa(p, q)dpdq (2.11)

where Fa is the Fourier transform of a in the second variable . In particular

‖Opwh̄ (a)‖2L2 =
∫ ∫

|(Fa)(p, q)|2dqdp (2.12)

Remark that integrability of the absolute value of Fa is a sufficient ( but
not a necessary) condition for Opwh̄ ∈ B(H).

The relation between Weyl symbols and Wigner functions associated to
vectors in the Hilbert space (or to density matrices) is obtained by considering
the pairing between bounded operators and bilinear forms in S.
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More explicitely on has

(Opw(a)f, g) =
∫
a(ξ, x)Wf,g(ξ, x)dξ dx ∀f, g ∈ S (2.13)

where
Wf,g(ξ, x) ≡

∫
e−i(ξ,p)f(x+ h̄

p

2
)g(, x− h̄ p

2
)dp (2.14)

¿From this one concludes that the Wigner function associated to a density
matrix ρ is the symbol of ρ as a pseudo-diffental operator.

Define in general, for f ∈ S ′

Wf (ξ, x) ≡
∫
e−i(p,ξ)f(x+ h̄

p

2
, x− h̄ p

2
)dp (2.15)

Notice that it is the composition of Fourier transform with a change of variable
that preserves Lebesgue measure:

It follows that (11) preserves the classes S and S ′ and is unitary in L2(R2n).
One has moreover

Opwh̄ (ā) = [Opwh̄ (a)]∗ (2.16)

and therefore if the function a is real the operator Opwh̄ (ā) is symmetric.
One can prove that if the symbol a is sufficiently regular this operator is

essentially self-adjoint on S(Rd).
One can give sufficient conditions in order that a pseudo-differential op-

erator belong to a specific class (bounded, compact, Hilbert-Schmidt, trace
class...).

We shall make use of the following theorem

Theorem 2.1 [2][3]
Let l1, ..lk be independent linear function on R2d and {lh, li} = 0. Let τ :
Rk → R be a polynomial.

Define
a(ξ, x) ≡ τ(l1(ξ, x), ..lk(ξ, x)) (2.17)

Then
i) a(ξ, x) maps S in B(L2(Rd)) and is a self-adjoint operator
ii) For every continuous function g one has

(g.a)(ξ, x) = g(a(ξ, x)) (2.18)

♦

We leave to the reader the easy proof.
¿From the relation between Wigner functions and pseudo-differential op-

erators one derives the following properties ( L denotes a linear map).
1) Opw(a) is a continuous map from S(Rd) to L(S(Rd)),S ′(Rd)
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2) Opw(a) extends to a continuous map S ′(Rd)→ L(S(Rd)S ′(Rd)
3) If a(z) ∈ L2(Cd) one has

|Opw(a)|H.S. = (2π h̄)−
n
2 [

∫
|a(z)|2 dz]1/2 (2.19)

4) If a, b ∈ L2(Rd), then the product Opw(a).Opw(b) is a trace class operator
and

Tr (Opw(a) Opw(b)) = (2π h̄)−d
∫
ā(z) b(z) dz (2.20)

In order to find conditions on the symbol a under which Opw(a) is a
bounded operator on H one can use the duality between states and operators
and

(ψ,Opw(a)ψ) =
∫
Fa(p, q)Wψ(p, q)dqdp (2.21)

One can verify in this way that ‖Op(a)‖ ≤ |â|1 , but â ∈ L1 is not
necessary in order Op(a) be a bounded operator.

Remark that using this duality one can verify that Weyl quantization is a
strict quantization (see Volume I).

One can indeed verify that, if A0 is the class of functions continuous to-
gether with all derivatives, introducing explicitly the dependence on h̄.

i) Rieffel condition. If a ∈ A0 then h̄→ Opwh̄ (a) is continuous in h̄.
ii) von Neumann condition. If a ∈ A0

limh̄→0‖Opwh̄ (a)Opwh̄ (b)−Opwh̄ (a⊗ b)‖ = 0 (2.22)

where ⊗ is convolution.
iii) Dirac condition. If a ∈ A0

limh̄→∞‖
1

2h̄
[Opwh̄ (a)Opwh̄ (b)−Opwh̄ (b)Opwh̄ (a)−Opwh̄ ({a, b}]‖ = 0 (2.23)

where {a, b} are the Poisson brackets.
If one wants to make use of the duality with Wigner function to find

bounds on Opwh̄ (a) in term of its symbol a(x, h̄∇) one should consider that
Wigner’s functions can have strong local oscillations at scale h̄.

2.3 Calderon - Vaillantcourt theorem

The corresponding quadratic forms are well defined in S but to obtain regular
operators on L2(Rd) these oscillations (which become stronger as h̄→ 0) must
be smoothed out by using regularity properties of the symbol .

This is the content of the theorem of Calderon and Vaillantcourt.
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¿From the proof we shall give one sees that the conditions we will put on
the symbol a in order to estimate the norm of the pseudo-differential operator
Opw(a) are far from being necessary.

We give an outline of the proof of this theorem because it is a prototype of
similar proofs and points out the semiclassical aspects of Weyl’s quantization.

Theorem 2.2 (Calderon- Vaillantcourt) [2][3][8]
If

A0(a) ≡
∑

|α|+|β|≤2d+1

|Dα
ξD

β
xa(x, ξ)|∞ <∞, x, ξ ∈ Rd (2.24)

then Opw(a) is a bonded operator on L2(Rd) and its norm satisfies

||Opw(a)|| < c(d)A0(a) (2.25)

where the constant c(d) depends on the dimensions of configuration space.
♦

The proof relies on the decomposition of the symbol a as

a(x, ξ) =
∑
j,k

a(x, ξ)ζj,k(x, ξ)
∑
j,k

ζj,k = 1 (2.26)

where ζj,k are smooth function providing a covering of R2d each having sup-
port in a hypercube of side 1 + δ centered in {j, k} and taking value one in a
cube of side 1− δ with the same center.

One gives then estimates of the norm of Opw(
∑
Γ a(x, ξ)ζj,k), where Γ is

a bounded domain in terms of the derivatives of a(x, ξ) up to an order which
depends on the dimension of configuration space.

These bounds rely on embeddings of Sobolev spaces Hp(R2d) in the space
of continuous functions for a suitable choice p (that depends on d).

The convergence Γ → Rd is controlled by the decay at infinity of the
symbol a(x, ξ).

A standard procedure is to require at first more decay, and prove by density
the theorem in the general case.

The estimates on Opw(aζj,k) are obtained noticing that the symbols of
these operators are the product of a function that is almost the product the
characteristic function of a set on configuration space and of a function that
is almost the characteristic function of a set on momentum space.

The word almost refers to the fact that the partition is smooth, and the
functions one uses tend to characteristic functions as h̄→ 0.

If one chooses the side of the hypercubes to be of order
√
h̄ these qualitative

remarks explain why the estimates that are provided in the analysis of pseudo-
differential operators have relevance for the study of the semiclassical limit.

And explains why pseudo-differential calculus is relevant if one considers
a macroscopic crystal and the partition is at the scale of elementary cell and
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one must analyze the properties of projection operator in a Bloch band (these
pseudo-differential operators are far from being simple polynomials).

The proof of the theorem of Calderon-Vaillantcourt is based on two results
of independent interest.

The first is the theorem of Cotlar-Knapp-Stein; we give the version by L.
Hormander [5] ; this paper is a very good reference for a detailed analysis of
pseudo-differental operators.

In what follows we shall use units in which h̄ = 1.

Theorem 2.3 (Cotlar-Knapp-Stein)
If a sequence A1, A2, ...AN of bounded operators in a Hilbert space H satisfies

N∑
k,j=1

‖A∗j Ak‖ ≤M
N∑

k,j=1

‖Aj A∗k‖ ≤M (2.27)

then
N∑
k=1

‖Ak‖ ≤M (2.28)

♦

Proof
The proof follows the lines of the corresponding proof for finite matrices. For
each integer m

‖A‖2m = ‖(A∗A)m‖ (2.29)

Also
(A∗A)m =

∑
1≤j1≤j2..≤jm

A∗j1Aj2 ....A
∗
j2m−1

Aj2m (2.30)

and

‖A∗j1Aj2 ....A
∗
j2m−1

, Aj2m‖ ≤ min{‖A∗j1Aj2‖.....‖A
∗
j2m−1

Aj2m‖, ‖A∗j1‖‖Aj1A
∗
j2‖..‖Aj2m‖

(2.31)
Making use of the inequality for positive numbers min{a, b} ≤

√
ab and

taking into account the assumption ‖Aj‖ ≤M e ‖A∗j‖ ≤M one has

‖A∗j1Aj2 ....A
∗
j2m−1,j2m‖ ≤M‖A

∗
j1Aj2‖

1
2 ...‖A∗j2m−1

Aj2m‖
1
2 (2.32)

Performing the summation j2, j3, j2m one obtains

‖A‖2m ≤ NM2m (2.33)

so that, taking logarithms, for m→∞

‖A‖ ≤M logN

m
(2.34)

♦
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It is possible [2][5] to generalize the theorem replacing the sum by the
integration over a finite measure space Y. In this case the theorem takes the
form

Theorem 2.4 (Kotlar-Knapp-Stein, continuous version)
Let {Y, µ} be a finite measure space and A(y) be a measurable family of oper-
ators on a Hilbert space H such that∫

‖A(x)A(y)∗‖dµ ≤ C
∫
‖A(x)∗A(y)‖dµ ≤ C (2.35)

Then the integral A =
∫
A(x)dµ is well defined under weak convergence and

one has ‖A‖ ≤ C.
♦

Outline of the proof of the Theorem of Calderon-Vaillantcourt
We build a smooth partition of the identity by means of functions ζj,k(x, ξ)
of class C∞ such that

ζj,k(x, ξ) = ζ0,0(x− j, ξ− k),
∑
j,k∈Z

ζ(x− j, ξ− k) = 1 x, ξ ∈ Rd (2.36)

We choose ζ0,0(x, ξ) to have value one if |x|2+|ξ|2 ≤ 1 and zero if |x|2+|ξ|2 ≥ 2.
Define

aj,k = ζj,ka Aj,k = Opw(aj,k) (2.37)

We must verify that the corresponding operators are bounded and that their
sum converges in the weak (or strong) topology. We shall see that these re-
quirements can be satisfied provided the symbol a is sufficiently regular as a
function of x and ξ.

The regularity conditions do not depend on the value of the indices j, k
since the functions ζj,k differ from each other by translations.

It follows from the definitions that
∑
Aj,k converges to Opw(a) in the weak

topology of the functions from L(S(Rd)) to L(S ′(Rd)). We are interested in
conditions under which convergence is in B(L2(Rd)).

For this it is sufficient to prove that there exists an integer K(d) such that,
for any finite part Γ of the lattice with integer coordinates

‖
∑
j,k∈Γ

A‖ ≤ Csup|α|≤K(d),|β|≤K(d),(x,ξ∈Rd)|∂αξ ∂βxa(x, ξ)| (2.38)

This provides conditions on the symbol and at the same time provides bounds
for the operator norm.

¿From Theorem 2.3 it follows that it is sufficient to obtain bounds on the
norm of

A∗γ .A
′
γ (2.39)

for any choice of the index γ ≡ {j, k}.
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Define aγ,γ′ by
Opw(aγ,γ′) = A∗γ .A

′
γ (2.40)

One derives

aγ,γ′ = e
i
2σ(Dx,Dξ;Dy,Dη)(āγ(x, ξ).aγ′(y, η))

y=x,η=ξ

∀γ ∈ Z2d aγ ∈ L2(Rd) (2.41)

where σ is the standard symplectic form.
Notice that we have used estimates on Sobolev embeddings to obtain an

estimate of the norm of Opw(a) in term of Sobolev norms of the symbol a;
recall that the operator norm of Op(a) is the L2 norm of its Fourier transform
.Remark that aγ has support in R2d of radius

√
2.

The partition of phase space serves the purpose of localizing the estimates;
the number of elements in the Cottlar-Kneipp-Stein procedure depends on the
dimension 2d of phase space.

Remark that
∑
k∈Z2d A(γ) converges to A = Opwa in the topology of

linear bound operators from S(Rd) to S ′(Rd).
Therefore it is sufficient to prove, for any bounded subset Γ ⊂ Z2d,

‖
∑
γ∈Γ

A(γ)‖L2(Rd) ≤ C(d)sup|α|≤2d+1,|β|≤2d+1,(x,ξ∈R2d |∂αξ ∂βxa(x, ξ)| (2.42)

We must have a control over ‖A∗γ .Aγ′‖ and therefore of the norm of the
operator with symbol aγ,γ′

We use Sobolev-type estimates. If B is a real quadratic form on R2n, for
every R > 0 and integer M ≥ 1 there exists a constant C(R,M) such that

|(eiB(x,D)u(x)| ≤ C(R,M)(1 + |x− x0|2)−dsup|α|≤2M+d+1,x∈B(x0,R)|∂αx u(x)|
(2.43)

for every function u ∈ C∞0 (B(x0, R)) and every x0 ∈ R2d.
This is a classical Sobolev inequality for x0 = 0, M = 0; it holds x0 6= 0

since the operator commutes with translation and it is satisfied for every M
since

Fx→ζ [(1 + q|x|2)MeiB(D)u](ζ) = eiB(ζ)
∑

|α|+|β|≤2M

Cα,βFx→ζ [xβ ∂αu](ζ)

(2.44)
where Fx→ζ denotes total Fourier transform and the constants cα,β depend
only on the dimension n and on the quadratic form B.

This ends our sketch of the proof of the theorem of Calderon-Valliantcourt.
♥
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2.4 Classes of Pseudodifferential operators. Regularity
properties

To characterize other classes of pseudo-differential operators we introduce two
further definitions.

Definition 2.2
We shall denote by tempered weight on Rd a continuous positive function m(x)
for which there exist positive constants C0 , N0 such that

∀x, y ∈ Rd m(x) ≤ C0m(y)(1 + |y − x|)N0 (2.45)

♦

Definition 2.3
If Ω is open in Rd , ρ ∈ [0, 1] and m is a tempered weight, we denote symbol
of weight (m, ρ) in Ω a function a ∈ C∞(Ω) such that

∀x ∈ Ω |∂αa(x)| ≤ Cα.m(x)(1 + |x|)−ρ|α| (2.46)

We shall denote byΣm,ρ the space of symbols of weight (m, ρ); in particular
Σρ ≡ Σι,ρ where ι is the function identically equal to one.

♦

With these notations one can prove (following the lines of the proof of the
Theorem of Calderon-Vaillantcourt).

Theorem 2.5
1) If a ∈ Σι,0, there exists T (d) ∈ R such that

‖Opw(a)‖Tr ≤ T (d)
∑

|α|+|β|≤d+2

∫ ∫
|∂αx ∂βη a(x, η)|dxdη (2.47)

(α and β are multi-indices).
2) If a ∈ Σm,0 and lim|x|+|η|→∞a(x, η) = 0 then the closure of Opw(a) is a
compact operator on L2(Rd).

♦

The proof is obtained exploiting the duality with Wigner’s functions taking
into account that both trace class operators and Hilbert -Schmidt operators
are sum of one-dimensional projection operators and the eigenvalues converge
respectively in l1 and l2 norm , and that a compact operator is norm-limit of
Hilbert-Schmidt operators.

A more stringent condition which is easier to prove (making use of the
duality with Wigner’s functions) and provides an estimate of the trace norm
is given by the following theorem

Theorem 2.6
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Let a ∈ Σι,0 be such that for all multi-indices α , β

∂αx ∂
β
η a ∈ L1(R2d) (2.48)

Then Opw(a) is trace class and one has

trOpw(a) =
∫ ∫

a(x, η)dxdη (2.49)

♦

Since Hilbert-Schmidt operators form a Hilbert space, it is easier to verify
convergence and then to find conditions on the symbol such that the resulting
operator be of Hilbert-Schmidt class. A first result is the following

Theorem 2.7
Let a ∈ Σm,0, b ∈ S(R2n). Then

tr[Opw(a).Opw(b)] =
∫ ∫

a(x, ξ)b(x, ξ)dxdξ (2.50)

♦

Proof
If B ≡ Opw(b) is a rank one operator B = ψ ⊗ φ ψ, φ ∈ S one has

tr(A.B) = (φ,Aψ) A = Opw(a) (2.51)

¿From the definition of Opw(a) it follows

(φ,Aψ) =
∫ ∫

a(x, p)[
∫
eipζ φ̄(x+

ζ

2
)ψ(x− ζ

2
)dζ]dxdp (2.52)

and (50) is proven in this particular case.
The proof is the same if B has finite rank, and using the regularity of

a(x, p) , b(x.p) one achieves the proof of (50).
♥

The bilinear form

A, B → Tr(A∗B) ≡< A,B > (2.53)

can be extended to

L(S(R2d),S ′(R2d))× L(S ′(R2d),S(R2d)) (2.54)

with the property < A,B >=< B,A >∗.
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This duality can be used to extend the definition of the symbol σw(a) to
an operator-valued tempered distribution A by

Tr(A.Opw(b)) = 2π−n(b, σw(a)) (2.55)

and the duality can extended to symbols belonging to Sobolev classes dual
with respect to L2(Rd). Remark that one has

a ∈ L2(R2d)↔ Opw(a) ∈ H.S. (2.56)

but |a|∞ <∞ does not imply that a(D,x) be bounded.
For example if a(ξ, x) = ei(ξ,x) one has (a(D,x))f(x) =

∫
f(y)dy.δ(x).

It is convenient to introduce a further definition.

Definition 2.4 (Class O(M))
A function a on Cd ≡ R2d belongs to O(M) if and only if f ∈ C∞(Rd) and
for every multi-index m : |m| = M one has

| ∂
m

∂zm
a(z)| ≤ C|zM |, ∀z ∈ Cd (2.57)

We shall denote by ΣM the collection of functions in O(M).
♦

Following the lines of the proof of Theorem 2.7 one proves

Theorem 2.8
i) If a ∈ O(0), then Opw(a)is a bounded operator
ii) If a ∈ O(M), M ≤ −2d then Opw(a) is trace-class and

TrOpw(a) = (2π h̄)−d
∫
|A(z)| dz (2.58)

iii) If a ∈ O(M) is real, then Opw(a) is essentially self-adjoint on C∞0 (Rd).
♦

2.5 Product of Operator versus products of symbols

The next step is to establish the correspondence between the product of
symbols and the product of the corresponding operators. We can inquire
e.g. whether, given two symbols a e b, there exists a symbol c such that
Opw(c) = Opw(a).Opw(b).

The answer is in general no. To obtain a (partially) positive answer it will
be necessary to enlarge the class of symbols considered and add symbols that
depend explicitly on the small parameter h̄.

In their dependence on h̄ they must admit an expansion to an order M
such that the remainder has the regularity properties that imply that the
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corresponding operator is a bounded operator with suitable estimates for its
norm.

This possibility to control the residual term is an important advantage
of the (strict) quantization with pseudo-differential operators as compared
to formal power series quantization. We limit ourselves to consider pseudo-
differential operators with symbols in O(M).

Definition 2.5 ( h̄ admissible symbol)
A h̄− admissible symbol of weight M is a C∞ map from h̄ ∈]0, h̄0] to ΣM
such that there exists a collection of functions aj(z) ∈ O(M) with the property
that, for every integer N and for every multi-index γ with |γ| = N there exists
a constant CN such that

supz[(
1

1 + |z|2
)d/2| ∂

γ

∂zγ
a(z, h̄)−

N∑
1

h̄jaj(z)| < cN h̄
N+1 (2.59)

♦

Definition 2.6 (h̄-admissible operator )
An h̄-admissible operator of weight M is a C∞ map

Ah̄ : h̄ ∈]0, h0 ⇒ L(S(Rd), L2(Rd)) (2.60)

for which there exists a sequence of symbols aj ∈ ΣM and a sequence RN ∈
L(L2(Rd)) such that for all φ ∈ S

Ah̄ =
∑

hjOpwh aj +RN (h̄), sup0<h̄≤h̄0 |RN (h)φ|2 <∞ ∀φ ∈ L2(Rd)
(2.61)

The function a0(z) is called principal symbol of the h̄−admissible operator
Ah̄; it will be denoted σP (Ah̄).

The function a1(z) is called sub-principal symbol of the h̄−admissible op-
erator Ah̄; it will be denoted σSP (Ah̄).

♦

Definition 2.7 (class Ôs.c. operators)
We shall denote ÔscM the set in L(S(X)) (the collection of all bounded opera-
tors in S(X)) that is obtained associating to each function in ΣM the operator
obtained by Weyl quantization.

This class of operators is sometimes called h̄-admissible.
♦

The following theorem states that the h̄-admissible operators form an al-
gebra:

Theorem 2.9
For any pair a ∈ O(M) and b ∈ O(P ) there exists unique a semiclassical
observable Ĉ ∈ OscM+P such that
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Opw(a).Opw(b) = Ĉ (2.62)

The semiclassical observable has the representation

Ĉ =
∑

h̄jOpw(cj) (2.63)

cj = 2−j
∑

|α|+|β|=j

(1)β

α! β!
(Dβ

x D
α
ξ a) (Dβ

x D
α
ξ b)(x, ξ) (2.64)

Moreover
i

h̄
[Opw(a), Opw(b)] ∈ Ôsc(M + P ) (2.65)

with principal symbol the Poisson bracket {a, b}.
♦

Sketch of the proof
The proof follow the same lines as the proof of the Theorem of Calderon-
Vaillantcourt and makes use of the definition of pseudo-differential operator,
the duality with Wigner’s functions and the explicit form of the phase factor
in Weyl product.

Notice that the structure of Weyl algebra implies that if L is a linear form
on R2d and a ∈ O(M) one has for any linear operator L

L(x, h̄∇)Opwh̄ (a) = Opwh̄ (b), b = L.a+
h̄

2i
{L, a} (2.66)

where {., .} denotes Poisson brackets.
This remark is useful to write in a more convenient form the product of

the phase factors that enter in the definition of the product Opw(a).Opw(a1).
Recall that by definition

(Opwh̄ aφ)(x) = h̄−n
∫ ∫

a(y, z)e
2πi
h̄ ( x+z

2 ,ξ)φ(y)dydξ (2.67)

and that Opwh̄ (b) is given by a similar expression.
The integral kernel KOpw

h̄
(a).Opw

h̄
(b) of the operator Opwh̄ (a) , Opwh̄ (b) is

then given by

KOpw
h̄

(a).Opw
h̄

(b(x, y) = h̄2n

∫ ∫
e
i
h̄ [(x−z,ξ)+(z−y,η)]a(

1
2

(x+z), ξ) b(
1
2

(y+z), η))dzdξdη

(2.68)
In general there is no symbol c such that Ch̄ ≡ Opwh̄ (a)Opwh̄ (b) = Opw(c)

One can verify, making use of (67), that if ah̄, bh̄ ∈ O(M) the operator
Ch̄ is h̄-admissible, i.e. for some N ∈ Z it can be written as

Ch̄ =
∑

n=0,..N

cn(h̄) + h̄N+1RN+1(h) (2.69)
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where an ∈ O(M) and suph∈[0,h̄0]‖RN+1(h)‖
L(L2(Rd))

♥

With the new definition Theorem 2.9 can be extended to all semiclassical
observables

For each A ∈ Osc(M), B ∈ Osc(N) there exists a unique semiclassical
observable C ∈ Ôsc(N +M) such Â.B̂ = Ĉ.

Moreover the usual composition and inversion rules apply

2.6 Correspondence between commutators and Poisson
brackets; time evolution

¿From the analysis given above one derives the following relations.
Let Ah̄ and Bh̄ be two h̄-admissible operators and denote by σP (A) the

principal symbol of A and by σSP (A) its sub-principal symbol. Then
1)

σP (Ah̄.Bh̄) = σP (Ah̄).σP (Bh̄) (2.70)

2)

σSP (Ah̄.Bh̄) = σP (Ah̄).σP (Bh̄) + σSP (Ah̄).σP (Bh̄) +
h̄

2i
{σP (Ah̄).σP (Bh̄)}

(2.71)
These relations give the correspondence between the commutator of two

quantum variables and the Poisson brackets of the corresponding classical
variables.

The introduction of semiclassical observables is also useful in the study of
time evolution. One has [2][3][4]

Theorem 2.10
Let H ∈ Osc(2) be a classical hamiltonian satisfying

|∂γzHj(z)| < cγ , γ + j ≥ 2 (2.72)

h̄−2(H −H0 − h̄H1) ∈ Ôsc(0) (2.73)

Let a ∈ O(m),m ∈ Z. Then
i) For any sufficiently small value of h̄, Ĥ is essentially selfadjoint with natural
domain S(X). Therefore exp{−ih̄−1Ĥt} is well defined and unitary for each
value of t and continuous in t in the strong topology.
ii)

∀t ∈ R, Opw(a(t)) ≡ ei th̄ ĤOpw(a)e−i
t
h̄ Ĥ ∈ Ôsc(m) (2.74)

Moreover
a(t) =

∑
k≥0

h̄kak(t) ak(t) ∈ Osc(m) (2.75)
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uniformly over compacts.
♦

Proof (outline)
Under the conditions stated the classical flow z → z(t) exists globally. From
the properties of the tangent flow it easy to deduce that a(z(t)) ∈ O(m)
uniformly over compacts in t.

With UH(t) = exp{−i th̄Ĥ} Heisenberg equations give

d

ds
(UH(−s)Opw(a(z(t− s))UH(s) =

UH(−s)( i
h̄

[H,Opw(a(z(t− s)]−Opw{H, a0})]UH(s) (2.76)

¿From the product rule one derives then that the principal symbol of

i

h̄
[H,Opwa0(t− s)]−Opw({H0, a0(zt− s)}) (2.77)

vanishes. Therefore the right hand side of (76) is of order one in h̄ and the the-
sis of the follows by a formal iteration as an expansion in h̄ through Duhamel
series.

Using the estimates one proves convergence of the series.
♥

Remark that if His a polynomial at most of of second order in x, i ddx one
has

(Opw(a))(t) = Opw(a(z(t)) (2.78)

where ψtH is the classical solution of Hamilton’s equations. Indeed in this case
one has

i

h̄
[Ĥ, Op(b)] = Op{h, b} (2.79)

In particular if W (z) is an element of Weyl’s algebra

W (z)Op(b)W (−z) = Op(bz) bz(z′) = b(z′ − z) (2.80)

(this is a corollary of Eherenfest theorem). Relation (80) does not hold in
general if H is not a polynomial of order ≤ 2.

Still, under the assumptions of Theorem 2.10 a relation of type (80) holds
in the limit h̄→ 0 in a weak sense, i.e. as an identity for the matrix elements
between semiclassical states (e.g. coherent states). We have remarked this in
our analysis of the semiclassical limit in volume I of these Lecture Notes.

Theorem 2.10 can be extended to Hamiltonians which are not in O(2) (for
example to Hamiltonians of type H = p2

2 + V (q) with V bounded below) if
the classical hamiltonian flow is defined globally in time.



2.7 Berezin quantization 55

Weyl quantization can be extended to distributions in S ′; in this case the
operator Â is bounded from S to S ′ and the correspondence it induces is a
bijection.

This follows from an analogue of a Theorem of L.Schwartz which states
that every bilinear map from S(X) to L2(X) continuous in the L2(X) topology
can be extended as a continuous map from S(X) to S ′(X).

A way to achieve this extension exploits the properties of Weyl symbol
OpW (Πu,v) of the rank-one operator Πu,v defined, for u, v ∈ S(X), by

Πu,vψ = (ψ, u)v (2.81)

One has then

(Opw(a)u, v) = (2πh̄)−1

∫
a(x, ξ)πu,v(x, ξ)dxdξ (2.82)

since by definition

< Opw(a)u, v >= Tr(Πu,vOp
w(a)) =

∫
Πu,v(x, ξ)A(x, ξ)dx dξ (2.83)

The function πu,v(x, ξ) is the Wigner function of the pair u, v. Remark
that

(Opw(a)u, v) = (2π h̄)−n
∫
a(z)πu,v(z)dz (2.84)

The definition of pseudo-differential operator on a Hilbert space H can be
extended to the case in which the symbol a(q, p) is itself an operator on a
Hilbert space K.

A typical case, occasionally used in information theory, is the one in which
the phase space is substituted with the (linear) space of the (Hilbert) space
of Hilbert-Schmidt operators with the commutator as symplectic form.

This linear space is itself a Hilbert space with scalar product < A,B >=
Tr(AB) (in information theory the Hilbert space K on which the Hilbert-
Schmidt operators act is usually chosen to be finite-dimansional).

Another case, which has gained relevance in the Mathematics of Solid
State Physics, is the treatment of adiabatic perturbation theory through the
Weyl formalism [10].

This procedure is useful e.g. in the study of the dynamics of the atoms in
crystals but also in the study of a system composed of N nuclei of mass mN

with charge Z and of NZ electrons. of mass me.
In the latter case one chooses the ratio ε ≡ me

mN
as small parameter in a

multi-scale approach. We shall come back to this problem in Lecture 5

2.7 Berezin quantization

A quantization which associates to a positive function a positive operator in
the Berezin quantization defined by means of coherent states i.e. substituting
the Wigner function with its Husimi transform.
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This quantization does not preserve polynomial relations, the product rules
are more complicated than in Weyl quantization and the equivalent to Eheren-
fest theorem does not hold.

Recall that a coherent state “centered in the point” (y, η) of phase space
is by definition

φy,η ≡ e
i
h̄ (η,x)+i(y Dx)φ0(x) (2.85)

where φ0(x) is the ground state of the harmonic oscillator for a system with
d degrees of freedom.

φ0 ≡ (π h̄)−ne−
|x|2
2 h̄ (2.86)

Definition 2.8
The Berezin quantization of the classic observable a is the map a→ OpB(a)
given by

OpBh̄ (a)φ ≡ (2π h̄)−d
∫ ∫

a(y, η) ¯(ψ, φy,η)φy,ηdy dη (2.87)

♦

One can prove, either directly or through its relation with Weyl quanti-
zation to construct OpBh̄ (a), that the Berezin quantization has the following
properties:
1) If a ≥ 0 then OpBh̄ (a) ≥ 0
2) The Weyl symbol aB of the operator OpBh̄ (a) is

aB(x, ξ) = (π h̄)−d
∫ ∫

a(y, η)e−
1
h̄ [(x−y)2+(ξ−η)2]dy dη (2.88)

3) For every a ∈ O(0) (bounded with all its derivatives) one has

||OpBh̄ (a)−Opwh̄ (a)|| = O(h̄) (2.89)

We have noticed that the Berezin quantization is dual to the operation
that associates to a vector ψ in the Hilbert space H a positive measure µψ in
phase space, the Husimi measure.

On the contrary Weyl’s quantization is dual to the operation which asso-
ciates to ψ the Wigner function Wψ, which is real but not positive in general.

We recall the

Definition 2.9 Husimi measure
The Husimi ’s measure µφ associated to the vector φ is defined by

dµψ = ρ̃(q, p)dq dp ρ̃(q, p) ≡ |(φq,p, ψ)|2 (2.90)

¿From this one derives that Husimi measure is a positive Radon measure.
Its relation with Berezin quantization is given by
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a dµψ = (OpBh̄ (a)ψ,ψ), a ∈ S (2.91)

♦

Although it gives a map between positive functions and positive operators
the Berezin quantization is less suitable for a description of the evolution of
quantum observables. In particular Eherenfest’s and Egorov’s theorems do no
hold and the semiclassical propagation theorem has a more complicated form.

The same is true for the formula that gives the Berezin symbol of an
operator which is the product of two operators OpBh̄ (a)OpBh̄ (b) where a, b are
functions on phase space.

Berezin representation is connected the Bargman-Segal representation of
the Weyl system (in the same way as Weyl representation has its origin in the
Weyl-Schroedinger representation).

Recall that the Bargman-Segal representation is set in the space of function
over Cd which are holomorphic in the sector Imzk ≥ 0, k = 1, ., d and square
integrable with respect to the gaussian probability measure

dµr(z) = (
r

π
)de−r|z|

2
dz, r > 0 (2.92)

We shall denote this space Hr. In the formulation of the semiclassical limit
the parameter r plays the role h−1.

2.8 Toeplitz operators

In the Berezin representation an important is played by the Toeplitz operators.
For g ∈ L2(dµr) the Toeplitz operator T (r)

g is defined on a dense subspace
of Hr by

(T (r)
g f)(z) =

∫
g(w)f(w)ei(z.w)dµr(w) (2.93)

In part I of these Lecture Notes we introduced the reproducing kernel
erz.w) within the discussion of the Bargman-Segal representation.

Remark that if g f ∈ L2(dµr) then T
(r)
g f ∈ Hr. The map g → T

(r)
g

(Berezin quantization) is a complete strict deformation (the deformation pa-
rameter is r−1).

Under the Bargman-Segal isometry Br : L2(Rn, dx) → Hr the Weyl-
Schroedinger representation is mapped onto the Bargman-Segal complex rep-
resentation and the quantized operators ẑk are mapped into Toeplitz opera-
tors.

For these Toeplitz operators are valid the same ”deformation estimates”
which hold in Berezin quantization (and are useful when studying the semi-
classical limit)
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‖T (r)
f T (r)

g − T (r)
fg +

1
r
T

(r)∑
j
( ∂f∂zj

∂g
∂z̄j

)
‖r ≤ C(f, g)r−2 (2.94)

The interested reader can consult [6], [7] for the Berezin quantization and
its relation with Toeplitz operators.

Let us remark that Berezin quantization is rarely used in non relativis-
tic Quantum Mechanics to describe the dynamics of particles; as mentioned,
Eherenfest’s and Egorov’s Theorems do not hold and the formulation of the-
orems about semiclassical evolution is less simple.

On the contrary Berezin quantization is much used in Relativistic Quan-
tum Field Theory (under the name of Wick quantization ) since it leads nat-
urally to the definition of vacuum state Ω (in the case of finite number of
degrees of freedom in the Schrödinger representation it is constant function)
as the state which is annichilated by ∂

∂zk
, ∀k) and of the

∑
k zk∂zk ( number

operator) .
In the infinite dimensional case it is useful to choose as vacuum a gaussian

state or equivalently use instead of the Lebesgue measure a Gaussian measure
(which is defined in R∞

In turn this permits the definition of normal ordered polynomials (or Wick
ordered polynomials) in the variables zh, ∂

∂zk
; the normal order is defined by

the prescription that that all the operators ∂
∂zk

stand to the right of all oper-
ators zk.

The Berezin quantization is much used in Quantum Optics where the co-
herent states play a dominant role ( coherent states are in some way “classical
states” of the quantized electromagnetic field).

2.9 Kohn-Nirenberg Quantization

For completeness we describe briefly the quantization prescription of Kohn-
Nirenberg [7], often introduced in the study of inhomogeneous elliptic equa-
tion and of the regularity of their solutions.It is is seldom used in Quantum
Mechanics.

By definition

(σK.N.(D,x)f)(x) ≡
∫
σ(ξ, x)ei(x−y)f(y)dydξ∫ ∫

σ̂(p, q)(ei(q,x)ei(p,D)f)(x)dp dq (2.95)

In the particular case σ(ξ, x) =
∑
ak(x)ξk one has

σK.N (D,x) =
∑
k

ak(x)Dk (2.96)

In the Kohn-Nirenberg quantization the relation between an operator and
its symbol is
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OpKN (a)φ(x) = (
1

2πh̄
)
d
2

∫
Rd
e
i
h̄pxaK,N (x, p)φ̂(p)dp (2.97)

where we have indicated with φ̂ the Fourier transform of φ.
This is the definition of pseudo-differential operator that is found in most

books of Partial Differential Equations. In this theory one proves that the
pseudo-differential operators are singled out by the fact that they satisfy the
weak maximum principle.

In general if the K,N symbol aK,N (q, p) is real the operator OpK,N (a) is
not (essentially) self-adjoint. The quantization of Kohn-Nirenberg is usually
employed in micro-local analysis and also in the time-frequency analysis since
in these fields it leads to simpler formulations [2][9].

In general this quantization is most useful when considering equations
in which the differential operators appear as low order polynomials (usually
second or fourth); in this case it is not interesting to study operators of the
form L(x,∇) for a generic smooth function L.

If the K.N. operators do not depend polynomially in the differential oper-
ators, their reduction to spectral subspaces is not easy. For this reason Weyl
quantization is preferred in solid state physics when one wants to analyze
operators which refer to Bloch bands.

2.10 Shubin Quantization

The quantizations of Weyl and of Berezin are particular cases of a more general
form of quantization, parametrized by a parameter τ ∈ [0, 1], as pointed out
by Shubin [4].

In this more general form to the function a ∈ S(R2d) one associates the
continuous family of operators OpS,τ (a) on S(Rd) defined by

(OpS,τ (a)φ)(x) = (
1

2πh̄
)d

∫ ∫
a((τx+ (1− τ)y), ξ)f(y)e

i
h̄ (x−y,ξ)dydξ (2.98)

It is easy to verify that the choice τ = 1
2 corresponds to Weyl’s quan-

tization, τ = 0 to Kohn-Niremberg’s and τ = 1 to Berezin’s . Notice that
Eherenfest theorem holds only for τ = 1

2 .
It is easy to verify that only for τ = 1

2 the relation between the operator
and its symbol is covariant under linear symplectic transformations. In general
if s ∈ Sp(2d,R) is a linear symplectic transformation, there exists a unitary
operator S such that

S−1(s)Opw(a)S(s) = Opw(a ◦ s) (2.99)

S(s) belongs to a representation of the metaplectic group generated by
quadratic form in the canonical variables.
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For all values of the parameter τ one has

FOpS,τF−1 = OpS,1−τ (a ◦ J−1) (2.100)

where J is the standard symplectic matrix and F denoted Fourier transform.
One can consider also Wigner functions associated to Shubin’s τ−quantization.

In particular

Wτ (φ, ψ)(x.p) = (
1

2πh̄
)d

∫
Rd
e−

i
h̄pyφ(x+ τy)ψ(x− (1− τ)y)dy (2.101)

Independently of the value of the parameter τ one has∫
Rd
Wτ (x, p)dp = |φ(x)|2,

∫
Rd
Wτ (x, p)dx = |φ̂(p)|2 (2.102)

The relation between Wτ and Opτ (a) is

(Opτ (a)ψ, φ)L2 = (a,Wτ (ψ, φ) (2.103)

For allτ
Πφ(x, y)) = [2πh̄]−dWτφ(x, p) (2.104)

where Πφ is the projection operator on the vector φ.

2.11 Born-Jordarn quantization

We end this Lecture with the quantization introduced by Born and Jordan
[11] to give a prescription for associating operators to functions over classical
phase space of the form

∑
k fk(x)Pk(p) where fk(x), x ∈ Rd are sufficiently

regular function and Pk(p) are polynomials in the momenta {pj}.
Notice that all Hamiltonians introduced in non relativistic Quantum Me-

chanics have this structure. The correspondence proposed by Born and Jordan
is

f(x)pnj →
1

n+ 1

n∑
k=0

p̂n−kj f((̂x))p̂kj (2.105)

where x̂j (in the Schroedinger representation) is multiplication by xj and
p̂j = −ih̄ ∂

∂xj .

For comparison, Weyl quantization corresponds to the prescription

f(x)pkj →
1
2k

k∑
m=0

m!
m!(k −m)!

p̂n−mj f(x̂)p̂mj (2.106)

One has
OpBJ(a) = (

1
2π

)d
∫
Opτ (a)dτ (2.107)
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Weyl’s prescription coincides with that of Born and Jordan if the monomial
is of rank at most two in the momentum.

Therefore the quantization of Born and Jordan coincides with Weyl’s for
Hamiltonians that are of polynomial type in the momentum coordinates (the
Hamiltonians that are of common use in Quantum Mechanics).

Also for the quantization of the magnetic hamiltonian the B-J quantization
coincides with the Weyl quantization.

One can verify that the symbol of aB,J of operator A in Born-Jordan
quantization is given by

aW = (
1

2π
)da ∗ FσΘ (2.108)

where Fσ is the symplectic Fourier transform and the function Θ is given by

Θ(z) =
sinpxh̄
px
h̄

(2.109)

This implies that the symbols aw and aB,J are related by

aw = (
1

2π
)daB,J ∗ FσΘ (2.110)

therefore aB,J is not determined by aw.
Through (110) one can define the equivalent of the Wigner function ( Born-

Jordan functions) in phase space. They are not positive but the negative part
for elementary elements is somewhat reduced.

The quantization of Born and Jordan is related to the Shubin quantization
by the formula

OpBJ(a)φ = (
1

2πh̄
)d

∫ 1

0

OpS,τ (a)φdτ (2.111)

on a suitable domain (in general the operator one obtains is unbounded).
From the relation between OpS,τ (a) and Op1−τ (ā) one derives

OpBJ(a)∗ = OpBJ(ā) (2.112)

Therefore the operator OpBJ(a) is formally self-adjiont if and only if a is
a real function.

The relation between a magnetic Born-Jordan quantization and the quan-
tization given by the magnetic Weyl algebra is still unexplored.
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3

Lecture 3
Compact and Schatten class operators.
Compactness criteria. Bouquet of Inequalities

Compactness is a property that is very frequently used in the theory of
Schroedinger operators. For example, as we shall see, in scattering theory
compactness of the resolvent operator plays an important role. In this Lec-
ture we shall give a collection of definitions and results that pertain to the
problem of compactness and some useful inequalities.

Definition 3.1 Compact Operator
A closable operator A on a Hilbert space H is compact if the set {Aφ φ ∈
D(A), |φ| = 1} is pre-compact in H (i.e. its closure is compact).

♦

Recall that a closed subset Y of a topological space X is compact if from
any bounded sequence in Y one can extract a convergent subsequence. The
unit ball in H is compact in the weak topology. It follows that A is compact
iff for any sequence {φn} which converges weakly in H the sequence {A φn}
converges strongly.

¿From the definition one derives that the set of compact operators is closed
in the uniform topology and that it is a bilateral ideal in B(H). One proves
easily that if A is compact also A∗ is compact.

Definition 3.2 Finite Rank Operator
An operator is of finite rank if its range is finite-dimesional, i.e. there existN <
∞ vectors φn in H and N linear functionals γn such that Aψ =

∑N
1 γn(ψ)φn

for any ψ ∈ H.
♦

Since any closed set in RN is compact, every finite rank operator is com-
pact.

Theorem 3.1
Every compact operator is norm-limit of finite rank operators.

♦
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Proof
Let H a separable infinite-dimensional Hilbert space (the proof in the non-
separable case is slightly more elaborated, makes use of Zorn’s lemma and of
the fact that the norm topology is separable).

Let {φn} be an orthonormal basis in H and denote by HN the subspace
spanned by {φk, k = 1, ..N}. Define

λN ≡ sup{φ∈H⊥
N
,|φ|=1}|A φ| (3.1)

The numerical sequence λN is monotone decreasing; let λ be the limit.
By construction λN = |A−AN | where AN is the restiction of A to HN . The
theorem is proved if λ = 0.

Suppose that λ > 0; then |Aφ| ≥ λ|φ| and the image under A of the unit
ball contains a ball of finite radius.

This contradicts the fact that A is compact.
♥

A particularly useful result is

Theorem 3.2
The self-adjoint operator A is compact iff its spectrum is pure point, the eigen-
values different from zero have finite multiplicity and zero is the only possible
accumulation point.

♦

Proof
If σcont is not empty it contains an interval I ≡ (λ0− ε, λ0 + ε). Without loss
of generality we can assume λ0 = 0.

Denote with Π the orthogonal projection one the subspace associated to
the continuous spectrum in I; by Weyl’s lemma this subspace has infinite
dimension.

By construction if φ ∈ Π H then |A φ| ≥ ε|φ|. Therefore the image under
A of the unit ball in H contains a finite ball in a subspace of infinite dimension
and cannot be compact.

In the same way one proves that the eigenvalues different from zero have
finite multiplicity.

♥

Let H be a separable Hilbert space and {φn} an ortho-normal complete
basis. Let A be a positive operator.

Set

Tr(A) ≡ limN→∞

N∑
n=1

(φn, Aφn) (3.2)

The sequence is not decreasing and therefore the limit exists (may be +∞).
One easily verifies that the function Tr (for the moment defined only for
positive operators) is invariant under unitary transformations.
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If U(t) is a one-parameter group of unitary operators, d
dtTrΦ U(t)AU(t)t=0 =

0. Choosing as basis the eigenvectors of A one has Tr(A) =
∑∞
n=1 an where

an are the eigenvalues.

Definition 3.3
The operator A ∈ BH is of class Hilbert-Schmidt if there exist an orthonormal
basis {φn}, n ∈ Z in H such that∑

n≥1

‖Aφn‖2 < +∞ (3.3)

One proves that this condition is independent of the basis chosen.
♦

Definition 3.4
The operator A is of trace class if Tr

√
A∗ A) <∞.

Equivalently if there exists a decomposition A = A1A2 with A1, A2

Hilbert-Schmidt operators.
♦

An equivalent definition is

Definition 3.5
The operator A is of class Hilbert-Schmidt if A∗A is trace class.

♦

Every bounded self-adjoint operator A can be written as A = A+ − A−
where A± are positive operators; A is of trace class iff both A± are of trace
class. In this case one has TrA = TrA+TrA−.

The function Tr can be extended to a class of bounded operators. Recall
that any bounded closed operator A can be written as sum over the complex
field of two self-adjoint operators

A =
A+A∗

2
+
A−A∗

2
≡ Re A+ i ImA (3.4)

Therefore the function Tr is defined for any closed bounded operator whose
real and imaginary parts are of trace class.

The function Tr has the following properties
i) Tr(A+B) = Tr A+ Tr B
ii) Tr(λ A) = λTr A
iii) 0 < A ≤ B ⇒ Tr A ≤ Tr B

Theorem 3.3
The collection J1 of the trace class operators is a bilateral *-ideal in B(H)
and a Banach space with norm ‖A‖ = Tr|A| where |A| =

√
A∗A.

♦

Proof



66 3 Lecture 3Compact and Schatten class operators. Compactness criteria. Bouquet of Inequalities

We must prove
a) J1 is a vector space
b) A ∈ J1, b ∈ B(H) ⇒ A B ∈ J1, B A ∈ J1

c) A ∈ J1 ⇒ A∗ ∈ J1

d) The space J1 is closed for the topology given by the norm ‖A‖1 = Tr|A| .
We call it trace topology .

The first two statements follow from the definition. Notice that every closed
bounded operator maps compact sets in compact sets and that if A, B are
closed and bounded one has (A B)∗ = B∗ A∗.

We now prove d). If A ∈ J1, consider AN = A −
∑N

1 (φn, .)Aφn where
{φk} are the eigenvectors of |A| ≡

√
A∗A.

Let ak be the eigenvalues of |A| in decreasing order. Let HN be the sub-
space spanned by the first N eigenvectors; by construction ANφ = 0, φ ∈
HN .

If A is positive, an ≥ 0 and limN→∞
∑
k>N ak = 0 since the series con-

verges. If A is not positive, consider the polar decomposition A = UA|A| where
UA is a partial isometry from the closure of the range of |A| to the closure of
the range of A and is such that Ker|A| ⊂ Ker UA.

LetAN = U |A|N . Then limN→∞Tr(AN ) = 0 and therefore limNto∞Tr(|AN |) =
0. T r(|A|) defines a norm

Tr(|A+B|) ≤ Tr|A|+ Tr|B| (3.5)

and J1 is closed in this topology. Remark that A+ B = UA+B |A+ B|, A =
UA|A|, B = uB |B|. Therefore∑
n

(φn, |A+B|φn) =
∑
n

[(φn, U∗A+BUA|A|φn) + (φn, U∗A+BUB |B|φn)] (3.6)

(φn, U∗ V |A|φn) = (|A|1/2V ∗ uφn, |A|1/2φn) (3.7)

and

|
∑
n

(φn, U∗ V |A|φn)| ≤ (
∑
n

| |A|1/2V ∗Uφn|2)1/2(
∑
n

| |A|1/2φn|2)1/2 (3.8)

Partial isometries map orthonormal complete bases to orthonormal bases
which are in general not complete. Therefore the right hand side in (8) is no
bigger than

∑
n(φn, ‖A‖φn). This inequality, together with the same inequal-

ity for B concludes the proof.
♥

Theorem 3.4
The finite rank operators are dense in J1.

♦

Proof
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Any trace class operator can be written as sum over the complex field of
positive trace class operators. For positive trace class operators the non zero
eigenvalues have 0 as accumulation point.

♥

We have proved that the function Tr defined on J1 is positive, order pre-
serving, and has the following properties
i) Tr(A B) = Tr(B A) A, B ∈ J1

ii) Tr(U A U∗) = TrA if U is unitary.

If A ∈ J1, B ∈ B(H) also AB and BA are in J1 (J1 is an ideal in BH
Moreover the following identity holds Tr(AB) = Tr(BA). Therefore Tr is

defined on a product of bounded operators when at least one of the factors is
of trace class.

We remark explicitly that only for positive operators in J1 one has TrA =∑
n(φn, Aφn) where {φn} is an orthonormal complete basis.
We have seen in Volume I that the trace class operators have an important

role in Quantum Mechanics because those of trace one represent states of the
system. In that context we have noticed that B(H) is the dual of J1 and that
the states represented by J1,+,1 are normal states.

In fact it can be proved that Tr is completely additive. We denote with
J2 the class of Hilbert-Schmidt operators. It is easy to verify that J2 is a
∗bilateral ideal of B(H). Let A, B ∈ J2 and let {φn}be an orthonormal basis
in H. Then A∗B is trace class and

Tr(A∗ B B∗ A)
1
2 = Tr[(A;A∗)(B B∗)]

1
2 ≤ |A|Tr|B| (3.9)

Define
< A,B >2= Tr(A∗ B) ≡

∑
n

(Aφn, Bφn) (3.10)

(it is easy to see that this definition does not depend on the basis).
The quadratic form < ., . > defines J2 a non-degenerate scalar product

and therefore a pre-hilbert structure. It is not difficult to verify that with this
scalar product J2 has the structure of a complete Hilbert space.

Moreover

| < A,B > | ≤ (TrA∗ A)1/2 (TrB∗ B)1/2 = ‖A‖1 ‖B‖1 (3.11)

Setting ‖A‖2 = (Tr(A∗A))1/2 one has

{A : ‖A‖1 ≤ 1} ⊂ {A : ‖A‖2 ≤ 1} ⊂ {A : |A| ≤ 1} (3.12)

and ‖A‖1 ≥ ‖A‖2 ≥ |A|.
Therefore the topology of J2 is intermediate between that of J1 and the

uniform topology of B(H). Proceeding as we have done for J1 one can prove
that the hermitian part of J2, denoted Jher2 , satisfies
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Jher2 ≡ {A ∈ B(H), A∗ = A,
∑
k

a2
k <∞} (3.13)

where {an} are the eigenvalues of A.
It is convenient to keep in mind the following inclusion and density scheme.
Denote by F the finite rank operators and by K the compact operators.

Then
1) F is dense in J1 in the topology ‖.‖1.
2) J1 is dense in J2 in the topology ‖.‖2.
3) J2 is dense K in the uniform operator topology.
4) K is dense in B(H) in the strong operator topology.

Moreover F ⊂ J1 ⊂ J2 ⊂ K ⊂ B(H) and all inclusions are strict if H has
infinite dimension.

The elements of J1 and J2 are particular cases of Schatten class operators.

3.1 Schatten Classes

Definition 3.4 Schatten Classes
Let 1 ≤ p < ∞. An operator A is a Schatten operator of class p if
Tr(|A∗A|

p
2 ) <∞.

♦

We denote the space of all Schatten operators of class p by Sp(H). It
is a Banach space with norm ‖A‖p = (tr(|A|p))

1
p and it has properties (in

particular interpolation properties) similar to Lebesgue’s spaces Lp(µ) where
µ is a Lebesgue measure.

In particular S1(H) are the trace class operators and S2(H) are the
Hilbert-Schmidt operators.

Let µn(A) be the eigenvalues of |A| taken in decreasing order. The operator
A belongs to Sp(H) iff

∑
n µn(A)p <∞. One has

1) Sp(H) is a ∗-ideal of B(H).
2) Sp(H) is complete with respect to ‖A‖p.
3) p ≤ q ⇒ Sp(H) ⊂ Sq(H) and ‖A‖ ≤ ‖A‖p ≤ ‖A‖q.
4) Hoelder inequality holds for 0 ≤ p, q, r <∞ :

1
q

+
1
p

=
1
r
, A ∈ Sp(H) B ∈ Lq(H)⇒ AB ∈ Sr(H), ‖AB‖r ≤ ‖A‖p‖B‖q

(3.14)
5) Let 1 < p, q < ∞ satisfy 1

q + 1
p = 1. Then for A ∈ Sp(H) and B ∈ Sq(H)

one has Tr(AB) = Tr(BA). Moreover for A ∈ S1(H) and B ∈ B(H) one has
Tr(AB) = Tr(BA).

As one sees from the properties listed above, the spaces Sp(H) are non-
commutative analogues of Lp(X,µ) spaces defined for a measure space X with
finite measure µ.
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These properties are also shared by the space Sp defined on a von Neumann
algebra M with a trace state ω by defining Lp(M) as those elements in M
for which

‖a‖p = (ω(a∗a))
p
2 <∞ (3.15)

The corresponding non-commutative integration theory has been devel-
oped, among others, by D.Gross, I.Segal, E.Nelson. We shall treat it briefly
in Lecture 16

One can prove the following theorem (Lidskii identity [1])

Theorem 3.5 (Lidskii)
For every trace-class operator A ∈ BH and for every orthonormal base {φn}
of H the following holds∑

n≥1

(φn, Aφn) = sumi≥1λj(A) (3.16)

where {λi} are the eigenvalues of A.
♦

Notice that Lidskii’s theorem is a fundamental theorem for the spectral
analysis of non-self-adjoint operators.

In general it is difficult to determine these eigenvalues but one can write
a trace formula of the type

Trfµ(A) =
∑
j≥1

fµ(λj(A)) (3.17)

where µ is a parameter (real or complex) and estimate {λi} with a Tauberian-
type procedure.

3.2 General traces

The definition of Schatten class can be generalized to the case 0 < p < 1
The Schatten classes Sp for 0 < p < 1 are composed by all the operators

such that
∞∑
j=0

sj(A)p <∞ (3.18)

where sj are the eigenvalues of (A∗A)
1
2 arranged in increasing order, counting

multiplicities.
For p < 1 the space Sp is not a Banach space but rather a quasi-Banach

space (‖A‖‖B‖ ≤ c‖AB‖, c > 1.
For p > 1 one defines also the Schatten classes Sp,∞ consisting of all A for

which
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sup
j

(j + 1)
1
p sj(A) <∞ (3.19)

Also this class in a Banach space.
For p = 1 this norm is not a Banach norm. To have a Banach space one

must introduce a norm, the Dixmier norm

supk≥2

∑k
j=0 sj(A)
logk

(3.20)

and the corresponding Dixmier class SDixm.
All spaces Sp, 0 < p ≤ ∞ and Sp,∞, 1 ≤ p ≤ ∞ are ideals for B(calH).

One can also verify that A,B ∈ S2,∞ implies AB ∈ S1,∞.
For the positive operators which belong to the Dixmier class one can define

a trace TrDixm ( Dixmier trace) by

TrDixm(A) = limk→∞
logk∑k
j=1 sj

(A) (3.21)

This trace plays a relevant role in the study of von Neumann algebras
which are type 2 factors. In particular note that if A ∈ SDixm then TrA = 0
whenever A is trace-class.

3.3 General Lp spaces

One can further generalize the definition of trace.
Denote by L+(H the cone of positive operators on the separable Hilbert

space H.
One can define trace any function with values in [0,∞] L+(H which is

positive, additive and homogeneous. A trace is normal if it is completely
additive.

It is possible to prove that every normal trace is proportional to the trace
we have studied.

We shall now study the structure of some Lp(H) spaces in the represen-
tation of the Hilbert space H as L2(X, dµ) for some locally compact space X
and regular measure µ.

In this case the Schatten class operators have a representation as integral
kernels.

Theorem 3.5
Let H ≡ L2(X, dµ). Then A ∈ J2 iff there exists a measurable function

a(x, y) ∈ L2(X ×X, dµ× dµ) (3.22)

such that, for every f ∈ H
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(A f)(x) =
∫
a(x, y)f(y)dµ(y) (3.23)

Moreover one has

‖A‖22 =
∫
|a(x, y|2dµ(x)dµ(y) (3.24)

♦

Proof
To prove sufficiency, let a(x, y) ∈ L2(X×X, dµ×dµ) and set, for any function
f ∈ H ≡ L2(X, dµ)

(Af)(x) ≡
∫

a(x, y)f(y)dµ(y) (3.25)

Then for any g ∈ H Schwartz inequality gives

(g,Af) =
∫
ḡ(x)a(x, y)f(y)dµ(y)dµ(y) ≤ |a|2 |f | |g| (3.26)

Therefore A is bounded ‖A‖2 ≤ |a|2.
Let {φn} an orthonormal basis of H, then φn⊗φm is an orthonormal basis

in H⊗H. Therefore there exists cn,m ∈ C for which

a(x, y) =
∑
n,m

cn,mφ̄n(x)φm(y),
∑
n,m

|cn,m|2 = |a|22 <∞ (3.27)

Setting

aN (x, y) =
∑

n,m≤N

cn,mφ̄n(x)φm(y), (ANf)(x) =
∑
n,m

aN (x, y)f(y)dµ(y)

(3.28)
one has

limN→∞|aN − a|2 = 0, limN→∞‖AN −A‖2 = 0 (3.29)

and therefore A is compact (as norm limit of compact operators). Moreover

Tr(A∗ A) =
∑
N

|Aφn|2 =
∑
n,m

|cn,m|2 = |b|22 <∞ (3.30)

and therefore A is of Hilbert-Schmidt class.
To prove that the condition is necessary one makes use of the fact that J2

is the closure of F in the ‖.‖2 norm.
By definition every finite rank operator is represented by an integral kernel.

Choosing a sequence An ∈ F that converges to A it easy to see that the
corresponding integral kernels an converge in the topology of L2(X×X, dµ×
dµ).



72 3 Lecture 3Compact and Schatten class operators. Compactness criteria. Bouquet of Inequalities

Let a(x, y) be the limit integral kernel. For any f ∈ L2(X, dµ) one has
(Af) =

∫
a(x, y) f(y)dµ(y) and ‖A‖2 = |a|2.

♥

If A ∈ J1 and A > 0 one can prove ‖A‖1 =
∫
a(x, x)µ(dx).

But in general if A is not positive is not true that |
∫
a(x, x)dµ(x)| ≤ ∞ ⇒

A ∈ J1.

Example
The operator − d2

dx2 on L2((0, π), dx) with Dirichlet boundary conditions has
discrete spectrum with simple eigenvalues n2 and corresponding eigenfunc-
tions

√
2/π sen n x, n ≥ 1.

The resolvent Rλ is represented by the integral kernel

Rλ(x, y) =
2c
π

∞∑
1

1
n2 + λ

sen n x. sen n y (3.31)

and has eigenvalues (λ+ n2)−1. Therefore for λ /∈ (−∞,−1] the operator Rλ
is of trace class.

One can extend this result to all λ which are not in the spectrum using
the resolvent identity and the fact that J1 is a bilateral ideal of B(H).

An easy consequence of Theorem 3.5 is the following proposition which we
state without proof.

Proposition 3.7
Let A be a linear operator on L2(X, dµ). The following statements are equiv-
alent to each other
a) A is a Hilbert-Schmidt operator
b) There exists ξ(x) ∈ L2(X, dµ) such that f ∈ D(A)⇒ |(A f)(x)| ≤ |f | ξ(x).
c) There exists a kernel K(x, y) ∈ L2(X, dµ) such that, for any f ∈ L2(X, dµ)
and for almost all x ∈ X one has (A f)(x) =

∫
K(x, y)f(y)dy.

♦

Notice that an operator A defined by an integral kernel may be bounded
also when the kernel is singular. For example, the identity operator has integral
kernel K(x, y) = δ(x− y).

On the other hand, the kernel K(x, y) = h(x) δ(y) h ∈ C∞ corresponds to
the operator (K f)(x) = h(x) + f(0) with domain the functions in L2(X, dµ)
which are continuous at the origin.

This operator is not closable since the map f(.)→ f(0) is not continuous
L2(X, dµ).
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3.4 Carleman operators

Before discussing more in detail the compact operators we briefly mention the
Carleman operators. They are frequently encountered in Quantum Mechanics
because they intervene naturally in the inversion of differential operators.

Definition 3.4
A linear map T from H to L2(X, dµ) is a Carleman operator if there exists
a measurable function KT (x) with values in H such that for any f ∈ D(A)

(T f)(x) = (KT (x), f) (3.32)

holds for almost all x. The measurable function KT is called Carleman kernel
associated to T.

♦

Theorem 3.8
The map T is a Carleman operator iff there exists a positive measurable func-
tion g(x) such that for any f ∈ D(T ) one has, for µ-almost all x ∈ X,

|(T f)(x)| ≤ g(x)|f |2 (3.33)

♦

Proof
The condition is necessary: let T be a Carleman operator and let K(x) be its
kernel. The inequality is satisfied by taking g(x) ≡ |K(x)|.

The condition is sufficient: let ρ(x) be a positive bounded measurable
function such that g(x) ρ(x) ∈ L2(X, dµ). Then |(ρ T f)(x)| ≤ |f |2g(x) ρ(x)
and therefore according to proposition 3.6 ρ T is a Hilbert-Schmidt operator.

It follows that there exist a measurable function K̃(x) with value in the
Hilbert-Schmidt operators such that for almost all x (ρ T f)(x) =< K̃(x), T >
.

Setting K(x) = ρ−1 K̃(x) one has (T f)(x) = (K(x), f).
♥

Often the integral kernels that one encounters in the study of Schroedinger
equation have the form K(x, y) = K1(x, y) K2(x, y).

Let T be an operator represented by this integral kernel and let K1, K2

satisfy, for almost all x, y ∈ RN∫
|K1(x, y)2|µ(dy) < C1,

∫
|K2(y, x)2|µ(dy) < C2 (3.34)

Since ‖T‖ ≡ supφ, |φ|=1|(φ, Tφ)| it is easy to see that T is bounded in
L2(RN dµ) and its norm satisfies ‖T‖ ≤ (C1 C2)1/2. Moreover the adjoint T ∗

has integral kernel K̄(x, y). Choosing
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K1(x, y) ≡ |K(x, y)|1/2 K2(x, y) ≡ Sign K(x, y) |K|1/2(x, y) (3.35)

one derives the following important result

Theorem 3.9
If the integral kernel of T is such that a.e.∫

|K(x, y)|µ(dy) ≤ C1

∫
|K(x, y)|µ (dx) ≤ C2 (3.36)

then ‖T‖ ≤
√
C1 C2.

♦

3.5 Criteria for compactness

We give now a useful criterion which gives a sufficient condition for the com-
pactness of an operator.

Theorem 3.10
Let A be operator with integral kernel K(x, y) = K1(x, y) K2(x, y) where K1,2

are measurable. Let X1
n, X

2
n two increasing sequences of measurable subsets

of X, and X be their common limit.
The operator A is compact if for n∫

X1
n×X2

n

∫
|K(x, y)|2µ(dx) µ(dy) <∞ (3.37)

and moreover for any ε > 0 there exists an integer N(ε) such that the following
inequalities are satisfied
a)

∫
X
|K1(x, y)|µ(dy) < ε a.e. in X −X1,N(ε)

b)
∫
X
|K2(x, y)|µ(dx) < ε a.e. in X −X2,N(ε)

c)
∫
X−X1,N(ε

|K1(x, y)|µ(dy) < ε

d)
∫
X−X2,N(ε)

|K2(x, y)|µ(dy) < ε

♥

Outline of the proof
Consider the operators An with integral kernel given by Kn(x, y) = K(x, y)
if x, y ∈ Xn×Xn, and zero otherwise. The preceding theorems imply that An
is of Hilbert-Schmidt class.

It follows from a), b) c) d) that |Sn| < ε where the integral kernel of Sn is
the restriction of K to X1,N(ε) × X⊥2,N(ε). Hence A is norm limit of Hilbert-
Schmidt operators and therefore compact.

♦

Example 1
Let X ≡ Rd, let µ be Lebesgue measure and assume that T has integral kernel
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K(x, y) = f1(x) f2(y) f3(x− y) (3.38)

with f1, f2 bounded measurable, lim|x|→∞fk(x) = 0 and f3 ∈ L1(Rd). Set

X(1,n) = X(1,n) ≡ {x : x ∈ Rd, |x| < n} (3.39)

K1 = f1(x)|f3(x− y)|1/2, K2 = f2(y)|f3(x− y)|1/2sign (f3(x− y)) (3.40)

Then A is compact.
♣

It can be shown that if one assumes a suitable decay at infinity of the
functionsf1 and f2 to prove the result it is sufficient that f3 ∈ L1

loc.
The result is applicable therefore for f3(z) = 1

|z| .

Example 2
Let X = Rd and µ Lebesgue measure. Let A have integral kernel

K(x, y) = |x− y|α−dH(x, y) x 6= y K(x, x) ≡ 0 α > 0 (3.41)

where H bounded measurable. Set Kn(x, y) = |x− y|α−dH(x, y) if |x− y| ≥
n−1, zero otherwise. Then for every n, An is of Hilbert-Schmidt class and the
sequence An converges to A in norm. Therefore A is compact.

♣

Given the importance of the compactness property in Quantum Mechanics
we give yet another compactness criterion.

Theorem 3.10
Let A be a positive operator. The following properties are equivalent
i) (A− µ0)−1 is compact when we choose µ0 ∈ ρ(A).
ii) (A− µ)−1 is compact for every µ ∈ ρ(A).
iii) {φ ∈ D(A), |A φ| ≤ I, |Aφ| ≤ b} is a compact set for every b > 0.
iv) {φ ∈ D(A), |φ| ≤ I, (φ,Aφ) ≤ b} is a compact set for every b > 0.
v) A has discrete spectrum and, denoting by an the eigenvalues taken in de-
creasing order limn→∞an = 0.

♦

Proof
i) ↔ ii). We use the resolvent identity

(A− µ)−1 = (A− µ0)−1 + (A− µ0)−1(µ− µ0)(A− µ)−1 (3.42)

The first term on the right-hand side is compact by assumption. Also the
second is compact because the compact operators are an ideal in B(H).
i)→ v). By definition
v) → iv). Let Q(A) the domain of the close positive quadratic form φ →
(φ,Aφ) ∈ R+ and let
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FAb ≡ {ψ ∈ Q, , |ψ| = 1, (ψ,Aψ) ≤ b} (3.43)

The set FAb is closed because the form is closed. To show that it is compact
we prove that for any ε > 0 it is possible to cover FAb with a finite number of
ball in H of radius ε.

We choose N such that aN ≤ bε. Then v) implies∑
n>N

|(ψ, φn)|2 ≤ ε (3.44)

Therefore every ψ ∈ FAb is at a distance less than
√
ε from the intersection of

the ball of radius ε with the subspace spanned by the first N eigenfunctions.
Since this is compact set (it is a closed bounded subset in a finite-

dimensional space) it can be covered with a finite number of balls of radius√
ε. Therefore also FAb has this property.

iv)→ iii). By assumption iv) holds for A and therefore also for A2. It follows
that FA2

b is compact. On the other hand, (ψ,A2ψ) = |Aψ)|2.
iii)→ i). Let M≡ ψ : ∃φ ∈ H, ψ = (A+ 1)−1φ, |φ| ≤ 1}. Then

|ψ| ≤ |φ| ≤ 1 |Aψ| = |A(A+ 1)−1φ| ≤ |φ| ≤ 1 (3.45)

Therefore the set GAb ≡ {ψ ∈ H, |ψ| ≤ 1, |(A + 1)ψ)| ≤ b} is closed and
contained in FBb . It follows that (1 +A)−1is compact.

♥

¿From this theorem one sees that it is convenient to have criteria to decide
whether a subset of H is compact.

In the realization of H as L2(Ω, dx), Ω ⊂ RN , these criteria rely on in-
equalities among norms in suitable function spaces (often related to Sobolev
immersion theorems).

We shall collect in the Appendix to this Lecture a collection of inequalities
that are useful in studying the solutions of the Schroedinger equation and in
estimating their regularity.

We also give some other compactness criteria that are derivable from gen-
eral inequalities.

As an example consider the operator H ≡ L2(−π, π) defined by

A ≡ − d2

dx2
, D(A) = {φ ∈ C∞, φ(−π) = φ(π)} (3.46)

and define
S ≡ {φ ∈ L2 (−π, π), |φ|2 ≤ 1, |dφ

dx
|2 ≤ 1} (3.47)

(i.e. the domain of the quadratic form associated toA).
Denoting with cn the Fourier coefficients of a function, it is easy to see

that S is characterized by
∑
|cn|2 <∞,

∑
n2 |cn|2 <∞.
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In these notations one sees immediately that S is compact in the topol-
ogy of H and therefore (Ā + I)−1 is compact. In the same way one proves
compactness of the closure of − d2

dx2 + x2 defined on C∞0 (R).
Remark that the same is not true for the closure of the operator − d2

dx2

defined on C∞0 (R). Indeed the closure of this operator is a self-adjoint operator
with continuous spectrum.

Rellich compactness criterion
Let F and G be two continuous positive functions on Rd which satisfy

lim|x|→∞F (x) = +∞, lim|p|→∞G(p) = +∞ (3.48)

The set

S ≡ {f :
∫
F (x) |f(x)|2dx ≤ 1,

∫
G(p) f̂(p)|2dp ≤ 1} (3.49)

is compact in L2(Rd).
♦

Proof
The set S is closed. Without loss of generality we can assume

F (x) ≤ x2, G(p) ≤ p2 (3.50)

Indeed if this equation is not satisfied the set S is closed and contained in the
set of functions that satisfy the equation.

The set S is dense in L2(Rd). Denote by Ĝ the operator that acts as G(p)
in the Fourier transformed space. If V (x) is bounded and has compact support
then [V (x)(Ĝ)−1](x, y) is compact. Indeed for every value of ε > 0 the kernel
of V (x)[ε(p̂)d+ Ĝ+ 1)−1] belongs to L2(Rd)⊗L2(Rd) and [εpd+G(p) + 1)−1]
converges to [G(p) + 1)−1] in L∞.

Therefore V [Ĝ + 1)−1] is compact since it is the norm-limit of compact
operators.

For α > 0 define Vα ≡ min{F (x), α+1}−α−1. Since lim|x|→∞F (x) = +∞
, Vα has compact support an therefore Vα[Ĝ+1)−1] is compact. From the min-
max principle

λn(A) ≥ λn(Ĝ+ Vα(x) + α+ 1) (3.51)

and therefore for each α > 0 there exists m(α) such that λm(α)(A) ≥ α. Since
α is arbitrary, limn→∞λn =∞.

♥

Example 1
Let V ∈ L1

loc(R
d), V (x) ≥ 0, lim V (x)|x|→∞ → 0.

Then H ≡ −∆+ V defined as sum of quadratic forms has compact resol-
vent.
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♦

Proof
Since both −∆ and V are positive operators (φ,Hφ) ≤ b ⇒ (φ,−∆φ) ≤
b (φ, V φ) ≤ b for every φ.

Therefore the set

FH,b ≡ {φ ∈ D(H), |φ| ≤ 1, (φ,Hφ) ≤ b } (3.52)

is closed and contained in { φ : |φ| ≤ 1,
∫
p2|φ̂(p)|2dp,

∫
V (x)|φ(x)|2dx ≤

b}.
This set is compact by the Rellich criterion.

♥

Example 2
Let d ≥ 3 and set

V = V1 + V2 V2 ∈ Ld/2(Rd) + L∞(Rd)

lim|x|→∞V1(x) = 0, V1 ∈ L1
loc(R

d), V1 ≥ 0. (3.53)

Then H ≡ −∆+ V defined as sum of quadratic forms has compact resol-
vent.

♦

Proof
V2 is form-small with respect to ∆ and therefore also with respect to

−∆+ V1.
If A ≥ 0 has compact resolvent and B is form-small with respect to A,

then C ≡ A+B as sum of quadratic forms has compact resolvent.
Define qA(φ) = (φ,Aφ) and let Q(a) the domain of the form qA i .e.

the closure of D(A) in the topology induced by the (strictly positive) form
qAφ)+!φ|2. For any φ ∈ Q(C)∩Q(A) one has qB(φ) ≤ α[qA(φ) + b|φ|2] where
α < 1, β > 0.

It follows
qC(φ) ≥ (1− α)(qA(φ)− β|φ|2 (3.54)

¿From the min-max principle λn(C) ≥ (1− α)λn(A)− β.
Therefore λn →∞ implies λ(A)n →∞.

♥

A further compactness criterion which is frequently used is

Riesz compactness criterion
Let 1 ≤ p <∞ and let S be a subset of the unit ball in Lp(Rd).

The closure Lp of S is compact iff the following conditions hold
a) ∀ε > 0 there exists a compact K ⊂ Rd such that

∫
Rd−K |f(x)|pdx < εp for

each f ∈ S).
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b) ∀ε > 0 there exists δ > 0 such that if f ∈ S and |y| < δ then
∫
|f(x− y)−

f(x)|pdx < ε.
♦

Proof
Necessity. If S is compact, given α > 0 let f1, ..fN such that the balls of radius
α
3 centered on the unit ball of the subspace spanned by the fk cover S̄.

There exist therefore K and δ such that conditions a) and b) be satisfied
for f1, ..fN and ε = α

3 . To extend this inequality to the entire set S notice
that for every g ∈ Lp one has

limK→Rd

∫
Rd−K

|g(x)|pdx = 0, limy→0‖gy − g‖2 = 0, gy(x) ≡ g(x− y)

(3.55)
A standard argument shows then that a) and b) hold in S. Sufficiency. Let S

satisfy a) and b). For any compact Ω ⊂ Rd and positive constants α, β the
Ascoli-Arzelá theorem gives the compactness of

T (Ω, α, β) ≡ {f ∈ C∞0 , suppf ∈ Ω, |f |∞ ≤ α, |∇ f |2 ≤ β} (3.56)

Therefore, given ε > 0, it is sufficient to find Ω, α, β such that for every
f ∈ S there exists g ∈ T (Ω,α, β) with |f − g|p < ε.

Indeed in this case since T (Ω,α, β) can be covered by a finite number of
balls of radius ε and S can be covered by a finite number of balls of radius 2ε.

To find Ω, α β with the desired properties, given ε > 0 choose K, δ so
that for f ∈ S,∫

Rd−K
|f(x)|pdx < εp

4
, |y| < δ ⇒ ‖fy − f‖p ≤

ε

4
(3.57)

Let η be a positive C∞ function with support in y : |y| < δ,
∫
η(x)dx.

Let ξ be the indicator function of the set K ′ ≡ {y : dist(y,K) < δ}. Then
a possible choice for {Ω, α β} is

Ω ≡ {y : dist(y,K) ≤ 2δ}, α = |η|q, β|∇η|p p−1 + q−1 = 1 (3.58)

This follows from the following inequalities (the first is Hölder’s inequali-
tiy)

|f ∗ g|∞ ≤ |f |p|g|q, p−1 + q−1 = 1, (|f | ∗ g|)1 ≤ |f |1|g|1 (3.59)

and (by interpolation) |f ∗ g|s ≤ |f |q |g|p, p−1 + q−1 = 1 + s−1.
We must prove that |f−g|p < ε. From the definitons it follows

∫
Rd−K′ |f−

g|pdx ≤
∫
Rd−K′ |f(x)|pdx < ε

4
p and therefore

‖ξ fy − ξ ‖p ≤ ‖fy − f‖p + ‖(1− ξ)‖fp + ‖[1− ξy]fy‖p ≤
3
4
ε (3.60)
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‖(η ∗ ξ)f − ξ f‖p ≤
∫
η(y)‖ξf(.− y)− ξf(.)‖pdy ≤

3ε
4

(3.61)

¿From this one derives ‖g − f‖p ≤ ‖g − ξ f‖p + ‖(1− ξ)f‖p < ε.
♥

3.6 Appendix to Lecture 3: Inequalities

We give in this appendix a collection of inequalities that are frequently used
in the the theory of Schroedinger operators. A detailed account can be found
in the review paper [2] and in the books [3][ 4].

Some of these inequalities can be obtained in an elementary way making
use of the Fourier transform. For other the proof requires more sophisticated
techniques.

We give an example of an inequality which can be obtained by elementary
means. In Rd one has

|f |∞ ≤
∫
|f̂(p)|dp ≤ (p2 + 1)αf̂(p)|(p21)−α

≤ [
∫

(p2 + 1)2α|f̂(p)|2dp]1/2
∫

(p2 + 1)−2αdp]1/2 (3.62)

i.e. for 4α > d one has |f |∞ ≤ C|(p2 + 1)2αf̂ |2.
This means that for any d the space H

d
2 +ε is compact in L∞

Among the inequalities a relevant role is played by the Jensen inequalities
Recall that a real valued function f defined on a convex subset C of a real

vector space E is called convex if

∀x, y ∈ C, ∀θ ∈ (0, 1) f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y) (3.63)

If the inequality is strict, the function is strictly convex.

Jensen inequality I
Let f be convex on a convex set C and let p1....pn be positive numbers with∑
k pk = 1, then

f(p1x1 + ...pnxn) ≤ p1f(x1) + ...+ pnf(xn) (3.64)

If the function is strictly convex, equality holds only if x1 = ... = xn.
♦

Jensen inequality II
Let µ a probability measure on the Borel subsets of an open interval I of
R and let µ̄ be its baricenter. If f is a convex measurable function with
−∞ <

∫
I
fdµ <∞ then
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f(µ̄) ≤
∫
I

fdµ (3.65)

If f is strictly convex equality holds iff µ({µ̄} = 1, i.e. if the measure is
concentrated in µ̄.

♦
Proof

It is easy to see that if f is real and convex in the interval I then for each
point x0 ∈ I there exists an affine function a(x) such that a(x0) = f(x0) and
for all x ∈ I one has a(x) ≤ f(x) (which implies

∫
I
adµ ≤

∫
I
fdµ).

If f is strictly convex then f(x) > a(x) if x 6= µ̄ and therefore the equality
holds iff the maesure µ is concentrated in µ̄.

♥

Jensen inequality III
Let µ be a probability measure on the Borel sets of the real Banach space E,
and call µ̄ its baricenter.

If f is continuous and convex with −∞ <
∫
E
fdµ <∞ then

f(µ̄) ≤
∫
E

fdµ (3.66)

If f is strictly convex equality holds if the measure is concentrated in the point
µ̄.

♦

Proof
The proof follows the lines of the proof of Jensen II.
To construct an affine comparison functional we use the separation theo-

rem for disjoint convex sets in a Banach space. Choose as affine functional an
element of Φ ∈ E∗.

Jensen’s inequality proves this inequality for the integration along the
direction of the affine functional Φ

The proof follows by induction over a complete set of elements in E∗.
♦

3.6.1 Lebesgue decomposition theorem

We are going to use often the decomposition of measure in a part that is
continuous with respect to Lebesgue measure and in a singular part .

Lebesgue decomposition theorem
Let {Ω,Σ, µ} be a measure space ν a measure on Σ with ν(Ω) <∞.
There exist a non-negative measurable function f ∈ L1(µ) and a measur-

able set B ∈ Σ with µ(B) = 0 such that

ν(A) =
∫
A

fdµ+ ν(A ∩B), ∀A ∈ Σ (3.67)
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♦

Define a measure νB by νB(A) = ν(A ∩ B). The measures µ and νB are
mutually singular.

If we decompose Ω as B ∪ (Ω/B) one has µ(B) = 0 and νB(Ω/B) = 0
(the measures µ and νB have disjoint supports).

♣

Proof of Lebesgue decomposition theorem.
Set ρ(A) ≡ µ(A) + ν(A). Take g ∈ L2

π and set L(g) =
∫
gdν. From Schwartz’s

inequality
|L(g)| ≤ (ν(Ω))

1
2 ‖g‖L2

ρ
(3.68)

According to the Riesz representability theorem there exists h ∈ L2
π such

that L(g) = (g, h). It follows
∫
Ω
g(1− h)dν =

∫
Ω
ghdµ.

Choosing for g the indicator function ξA of the set A one has ν(A) =
L(IA) =

∫
A
hdµ+

∫
A
h ν. The function h is a.e. defined.

Denote by N ,G ,GN , B the collection of points in which h takes value
respectively in (−∞, 0), [0, 1) , [0, 1− 1

N ) , [1,∞).
It is easy to see that ν(N) = 0, µ(B) = 0. Set f = h(x)

1−h(x) for x ∈ GN and
zero elsewhere.

Then
ν(A ∩Gn) =

∫
Ω

1− h
1− h

ξA∩Gndν =
∫
ω

fξA∩Gndµ (3.69)

By monotone convergence one has ν(A ∩G) =
∫
A
fdµ. It follows

ν(A) =
∫
A

fdµ+ ν(A ∩B) (3.70)

Taking A = Ω one has f ∈ L1(µ).
♥

As a corollary to the Lebesgue decomposition theorem one has

Radon-Nikodym Theorem
Let {Ω,Σ, µ} be a measure space and ν a measure on Σ with ν(Ω) <∞.

The measure ν is absolutely continuous with respect to µ iff there exists a
non negative function f ∈ L1

µ such that for any A ∈ Σ one has ν(A) =
∫
A
fdµ.
♦

3.6.2 Further inequalities

We will give now a list of inequalities that are more frequently used. We shall
prove the simplest ones, and give references for the others.

Hölder inequality
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If 1 < p <∞ and f ∈ Lp, g ∈ Lp′ with 1
p + 1

p′ = 1 then fg ∈ L1 and∫
|fg|dµ ≤ ‖f‖p‖g‖p′ (3.71)

The equality sign holds if ‖f‖p‖g‖p′ = 0 or if a.e. g = λ|f |p−1signf.
We shall call conjugate to p the exponent p′ defined by 1

p + 1
p′ = 1.

♦

We shall not prove this inequality [2][4] . We only quote the following two
corollaries

Corollary 1
If f ∈ Lp one has

‖f‖p = max{|
∫
fgdµ| : ‖g‖p′ = 1} (3.72)

Conversely a measurable function f belongs to Lp, 1 ≤ p <∞ iff fg ∈ L1

for every function g ∈ Lp′ .
♦

Corollary 2
Let f be a non-negative function on (Ω1, Σ1, µ1) × (Ω2, Σ2, µ2) and let

0 < p ≤ q <∞.
Then

(
∫
Ω1

[
∫
Ω2

f(x, y)pdµ2(y)]
q
p dµ1(x))

1
q ≤ (

∫
Ω2

[
∫
Ω1

f(x, y)qdµ1(x)]
p
q dµ2(y))

1
p

(3.73)
♦

The proof is obtained from Corollary 1 by using Fubini’s theorem to ex-
change the order of integration.

Sobolev inequalities
Let f a C1 function on Rd d > 1 with compact support.
For 1 ≤ p < d the following inequality holds

‖f‖ pd
d−p
≤ p(d− 1)
d(d− p)

[Πd
j=1‖

∂f

∂xj
‖p]

1
d ≤ p(d− 1)

2d(d− p)
[Πd

j=1‖
∂f

∂xj
‖pp]

1
p (3.74)

♦
Proof

A repeated application of the fundamental theorem of calculus gives

‖f‖ d
d−1
≤ 1

2
(Πd

j=1‖
∂f

∂xj
‖1)

1
d ≤ 1

2d
(
d∑
j=1

‖ ∂f
∂xj
‖1) (3.75)
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This proves the inequality for p = 1.
Consider next the case 1 < p ≤ d. For any s and any 1 ≤ j ≤ d one has

|f(x)|s ≤ s
∫ xj

−∞
|f(t, xj)|s−1| ∂f

∂xj
|dt (3.76)

(we have used the notation xj for the remaining coordinates).
A similar inequality is obtained integration between x and ∞. Therefore

|f(x)| ≤ [
s

2

∫ ∞
−∞
|f(t, xj)|s−1| ∂f

∂xj
|dt] 1

s (3.77)

and then
‖f‖ssd

d−1
≤ s

2
[Πd

j=1‖|f |s−1| ∂f
∂xj
|‖1]

1
d . (3.78)

Using Hölder inequality one derives

‖f‖ssd
s−1
≤ s

2
[Πd

j=1‖
∂f

∂xj
‖p]

1
d (3.79)

The choice s = p(d−1)
d−p (and therefore (s − 1)p′ = sd

d−1 = pd
d−p ) concludes the

proof.
♥

Schur’s Test
Let k(x, y) be non negative measurable on a product space (X,Σ, µ) ×

(Y,Ξ, ν) and let 1 < p <∞.
Assume the existence of measurable strictly positive functions g on (X,Σ, µ)

and h on (Y,Ξ, ν) and of two constants a and b such that a.e.∫
Y

k(x, y)(h(y))p
′
dν(y) ≤ (ag(x))p

′
∫
Y

k(x, y)(g(x))pdν(x) ≤ (bh(y))p

(3.80)
Then if f ∈ Lp(Y ) one has

a) T (f) ≡
∫
Y
k(x, y)f(y)dν(y) exists almost all values of x

b) T (f) ∈ Lp(X) and ‖T (f)‖ ≤ ab‖f‖p
♦

Proof
The proof uses Hoelder’s inequality.
Remark that it is sufficient to prove that if g is a non-negative function in

Lp(Y ) and h is non-negative in Lp
′
(X) then∫

X

∫
y

h(x)k(x, y)g(y)dν(y)dµ(x) ≤ ab‖h‖p′‖g‖p (3.81)

Making use of this inequality and applying twice Hoelder’s inequality one
completes the proof.

♥
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3.6.3 Interpolation inequalities

We give now interpolation formulas between Banach spaces; their proofs
makes use of classical results from complex analysis, which have an interest
of their own.

The strategy is to construct Banach space that admits as closed subspaces
the two Banach spaces B0, B1 of interest and then to construct a family of
Banach spaces parametrized by point z ∈ S where S is the strip Re z ∈ [0, 1]
in the complex plane.

This spaces are defined in such a way that the norms are analytic in z in
the open strips, continuous up to the boundary and at the boundary coincide
with the norms of the two Banach spaces B0, B1.

This procedure allows the use of theorems and inequalities in the theory of
complex variables, among them the Hadamard’s three-lines inequality which
is the prototype of inequalities for functions analytic in the strip S ≡ {z =
x+ iy, 0 < x < 1 y ∈ R} (we shall denote by S̄ its closure).

Hadamard’s inequality
Let f be continuous and bounded in S̄ and analytic in S. Define Mx =
sup{|f(x+ iy)|, y ∈ R}. Then

∀x ∈ [0, 1] Mx ≤Mx
0M

1−x
1 (3.82)

♦

Proof
Choose a0 > b0 a1 > b1 and set g(z) = ax−1

0 a−x1 f(z). We prove ∀z ∈
S |g(z)| ≤ 1.

¿From this follows |f(x + iy| ≤ a1−x
0 ax1 and since we can choose a0 −

b0, a1 − b1 arbitrary small the thesis of the theorem follows,
To prove ∀z ∈ S |g(z)| ≤ 1 we use the maximum modulus principle for

analytic functions.
To avoid a possible difficulty in the control of the function G(z) for

|Imz| → ∞ we study the function hε(z) = g(z)eεz
2
. This function vanishes

when |Imz| → ∞ and therefore the maximum of its modulus in S̄ is reached
for Imz finite.

¿From the maximum modulus principle we derive |h(z)ε| ≤ eε. Since ε is
arbitrary , |g(z)| ≤ 1 ∀z ∈ S̄.

♥

Before introducing the Riesz-Thorin interpolation theorem, one of the most
used criteria for a-priori estimates, we give some definitions.

Definition 3.6 (Compatible pairs)
Let A0 with norm ‖.‖A0 and A1 with norm ‖.‖A1 be linear subspaces of a
Banach space(V, ‖.‖V ) and assume the the maps (Aj , ‖.‖Aj )→ (V ‖.‖V ) are
continuous, j = 1, 2.
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We will say that the pair (A0, ‖.‖A0) , (A1, ‖.‖A1) is a compatible pair.
A Banach space (A, ‖.‖A) contained in A0+A1 and which contains A0∩A1

is called intermediate space if the maps

(A0 ∩A1, ‖.‖A0∩A1)→ (A, ‖.‖A)→ (A0 +A1, ‖.‖A0+A1) (3.83)

are continuous. Recall that the topology on A0∩A1 and on A0+A1 are defined
by

‖a‖A0∩A1 = max[‖a‖A0 , ‖a‖A1 ] ‖a‖A0+A1 = inf [‖a‖A0 , , ‖a‖A1 ]

a = a0 + a1, aj ∈ Aj (3.84)

Notice that In the applications we use (Lp, ‖.‖p) and (Lq, ‖.‖q), with 1 ≤
p, q ≤ +∞ as compatible pair and (Lr, ‖.‖r) r ∈ (p, q) as intermediate spaces.

In order to apply Hadamard’s lemma, we introduce in the strip S a suitable
space of functions. Let (A0, ‖.‖0) and (A1, ‖.‖1) be a compatible pair and
denote by L1 = {iy, y ∈ R} and L2 = {1 + iy y ∈ R} the two boundaries of S.

Denote by F(A0, A1) the complex vector space of those functions f in S̄
that take value in A0 +A1 and are such that
1) f is continuous in S̄.
2) for each Φ ∈ (A0 +A1)∗ the function Φ(f) is analytic in S
3) f is continuous and bounded from Bj to Aj , j = 0, 1.

The space F is a Banach space with norm ‖F‖F(A0,A1) = maxj=0,1(supz ∈ S{‖F (z)‖Aj , z ∈
Bj}).

Proposition 3.12
If F ∈ F(A0, A1) and z ∈ S then ‖F (z)‖A0+A1 ≤ ‖F‖F .

♦

Proof
There exists Φ ∈ (A0 +A1)∗ of unit norm such that Φ(F (z)) = ‖F (z)‖A0+A1 .

Therefore Φ(F )satisfies the conditions under which Hadamard’s inequality
holds, and then Φ(F (z)) ≤ ‖F‖F .

♥

Notice that the map F → F (θ), θ = Rez 0 < θ < 1 is continuous from F
a A0 +A1. Denote with Aθ its image with the quotient norm

‖a‖θ = inf{‖F‖F : Fθ = a} (3.85)

With this notation (Aθ, ‖.‖θ) becomes an intermediate space and one has

Theorem 3.13
Let (A0, A1) and (B0, B1) be compatible pairs. Let T be a linear map from
(A0, A1) to (B0+B1) which maps Aj to Bj and satisfies ‖T (a)‖Bj ≤Mj‖a‖Aj
if a ∈ Aj j = 1, 2.

Assume moreover 0 < θ < 1. Then T (Aθ) ⊂ Bθ and one has, if a ∈ Aθ
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‖T (a)‖θ ≤M1−θ
0 Mθ

1 ‖a‖θ (3.86)

♦

Proof
Let a be a non-zero element of Aθ and choose ε > 0. There exists F ∈
F(A0, A1) such that F (θ) = a and ‖T (a)‖Bθ < (1 + ε)‖a‖θ.

By definition the function T (F (z)) belongs to F(B0, B1) and one has

‖T (F (z))‖Bj ≤ (1 + ε)Mj‖F (z)‖Aj z ∈ Lj (3.87)

It follows T (a) = T (F (θ)) ∈ Bθ.
Setting G(z) ≡Mz−1

0 M−z1 T (F (z)) one concludes that G ∈ F(B0, B1) and
‖G(z)‖Bj ≤ ‖F (z)‖Aj per z ∈ Lj .

Hence
‖G(θ)‖θ = Mθ−1

0 M−θ1 ‖T (a)‖θ) ≤ (1 + ε)Mj‖a‖θ (3.88)

It follows ‖T (a)‖θ ≤ M1−θ
0 Mθ

1 ‖a‖θ). Since ε was arbitrary the thesis of
the theorem follows.

♥

We can now state and prove the interpolation formula of Riesz-Thorin.

Riesz-Thorin interpolation theorem
Let (Ω,Σ, µ) and (Ψ,Ξ, ν) be regular measure space. Let 1 ≤ p0, p1, q0, q1 ≤
∞.

Let T a linear map from Lp0(Ω,Σµ) + Lp1(Ω,Σ, µ) to Lq0(Ψ,Ξ, ν) +
Lq1(Ψ,Ξ, ν).

Suppose moreover that T map continuously Lpj (Ω,Σ, µ on Lqj (Ψ,Ξ, ν)
with norms Mj , j = 1, 2.

Let 0 < θ < 1 and define p(θ) and q(θ) as

1
p(θ)

=
1− θ
p0

+
θ

p1

1
q(θ)

=
1− θ
q0

+
θ

q1
(3.89)

Then T maps continuously Lp(Ω,Σ, µ) on Lq(Ψ,Ξ, ν) with norm at most
equal to M1−θ

0 Mθ
1 .

♦

Proof

The theorem holds if p0 = p1. If p0 6= p1 for z ∈ S̄ define 1
p(z) ≡

1−z
p0

+ z
p1
.

Notice that if z ∈ Lj one has Re( 1
p(z) ) = 1

pj
, j=1,2.

Consider a finite measurable partition of Ω in subsets Ek and consider the
simple function (weighted sum of indicator functions)

f =
K∑
1

rke
iαkξ(Ek), ‖f‖p(θ) = 1 (3.90)
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where ξ(Ek) is the indicator function of the set Ek and the constants rk are
chosen so that ‖f‖p(θ) = 1.

Define

F (z) =
K∑
1

r
p(θ)
p(z)

k eiαkξ(Ek) (3.91)

so that F (θ) = f. If z ∈ Lj one has

|F (z)| =
K∑
1

r
p(θ)
pj

k ξ(Ek), ‖F (z)‖pj = ‖f‖
p(θ)
pj
p = 1 (3.92)

Therefore the function F is analytic in S, bounded and continuous in S̄ in
the topology of A0 + A1. It follows ‖f‖θ ≤ 1, . Therefore ‖f‖θ ≤ ‖f‖p(θ) for
any simple function f..

The result still holds, via approximation, for any f ∈ Lp(Ω,Σ.µ) and
therefore ‖f‖θ ≤ ‖f‖p(θ).

We shall now prove that ‖f‖θ ≥ ‖f‖p(θ). We make use of the duality
between Lp and Lp

′
. Let f a non zero function on (A0, A1)θ.

If ε > 0 there exists a function F ∈ F(A0, A1) such that F (θ) = f and
‖F‖F ≤ (1 + ε)‖f‖θ . Set Bj = Lp

′
j(θ).

Then (B0, B1) is a compatible pair, Lp
′(θ)(Ω,Σ, µ) ⊂ (B0, B1)θ and ‖g‖θ ≤

‖g‖p′(θ) for g ∈ Lp′(θ)(Ω,Σ, µ).
If g is a simple function there exists G ∈ F(B0, B1) such that G(θ) = g

and ‖G‖F ≤ (1 + ε)‖g‖p′(θ).
Setting I(z) =

∫
F (z)G(z)dµ this function is bounded continuous in S̄ and

analytic in S. Moreover if z ∈ Lj Hoelder’s inequality gives

|I(z)| ≤
∫
|F (z)||G(z)|dµ ≤ ‖F (z)‖pj(θ).‖G(z)‖p′

j
(θ)

≤ (1 + ε)2‖f‖θ‖g‖θ ≤ (1 + ε)2‖f‖θ‖g‖p′(θ) (3.93)
¿From Hadamard’s inequality one derives

|I(θ)| = |
∫
gfdµ| ≤ (1 + ε)2‖f‖θ‖g‖p′ (3.94)

This inequality holds for every ε if g belongs to a dense subset of Lp
′(θ) and

therefore for all f ∈ Lp(θ).
It follows f ∈ Lp(θ) and ‖f‖θ = ‖f‖p(θ).

♥

The last inequality for which we give a proof is Young’s inequality. It refers
to a locally compact metrizable group and the measure is Haar measure. In
the applications it is usually Rd with Lebesgue measure or finite products of
Rd with the product measure.

The same theorems are useful in other cases,e.g. for Zd with the counting
measure or Z2 ≡ {1, 0} with addition rule mod. two and measure µ({1} =
µ{−1} = 1

2 .
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3.6.4 Young inequalities

Let G be an abelian metrizable group σ-compact (countable union of compact
sets) and assume 1 < p, q <∞ and 1

p + 1
q = 1 + 1

r > 1.
Denote by ∗ the convolution product. If g ∈ Lp(G), f ∈ Lq(G) then

f ∗ g ∈ Lr(G) and one has

‖f ∗ g‖r ≤ ‖f‖q‖g‖p (3.95)

♦

Proof

If f ∈ L1(G) +Lp
′
(G) the operator Tg : f → f ∗ g maps L1 in Lp with norm

≤ ‖g‖. By duality it also maps Lp
′

in L∞with the same norm.
Choosing θ = p

q′ = q
r one has

1− θ
1

+
θ

p′
=

1
q
,

1− θ
p

+
θ

∞
=

1
q′

(3.96)

and therefore we can use the Riesz-Thorin interpolation formula with con
p0 = 1, p1 = p′ q0 = p q1 =∞.

♥

We give now, together with references, a collection of inequalities which
are commonly used.

Hölder-Young inequality [5]
Set 1 ≤ p, q, r ≤ ∞, p−1 + q−1 = 1 + r−1. Then

|f ∗ g|r ≤ |f |q |g|p (3.97)

Moreover the same inequality holds for the weak Lp spaces.
♦

We recall here the definition of weak Lp space (in notation Lpw)

f ∈ Lpw(M,µ)⇔ ∃c > 0 : µ({x : f(x) > t} < c t−p ∀t > O (3.98)

|f |Wp ≡ supttpµ ({ f(x) > t−1})−p (3.99)

Notice that this is not a norm because it does not satisfy the triangular
inequality. One has Lp ⊂ Lpw with strict inclusion unless M is a finite collection
of atoms.

If f ∈ Lpw then there exists a constant C such that
∫
|t|<N µ({x : f(x) >

t})tp−1dt ≤ C logN.
♣

Young inequality II
Let p, q, r ≥ 1 such that 1

p + 1
q + 1

r = 2.
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As usual denote by p′ the exponent dual to p. Then

|
∫
Rd

∫
Rd
f(x)g(x− y)h(y)dx dy| ≤ [CpCqCr‖f‖p‖f‖q‖h‖r (3.100)

where C2
p = p

1
p

p
′ 1
p′

and CpCqCr ≤ 1.

♦

Notice that when s =∞ this inequality reduces to Hölder’s and if p = r =
2 one obtains another variant of Hölder’s inequality..

Hardy-Littlewood-Sobolev inequality
Let 1 < p, t < ∞, 0 < λ < d and 1

p + 1
t + λ

d = 2. The following inequality
holds

|
∫ ∫

f(x)|x− y|−λg(y)dxdy| ≤ Np,t,λ‖f‖p‖g‖t (3.101)

where Np,t,λ is a constant which can be given explicitly for some values of
p, t, λ. If p = t = 2d

2d−λ

Np,t,λ = π
λ
2
Γ (d2 −

1
2 )

Γ (d− λ
2 )

(
Γ (d2
Γ (d)

)
λ
d−1 (3.102)

where for α > 0 the function Γ is defined by Γ (α) =
∫∞

0
tα−1e−tdt.

♦

A generalization of the latter inequality is YOUNG’s weak inequality

|
∫ ∫

f(x)h(x− y)g(y)dxdy| ≤ Np,t,λ‖f‖p‖g‖t‖h‖ωq (3.103)

where we have denoted by ‖g‖ωq the norm

h‖ωq = (
1
Bd

)
1
q supα>0V ol{x ∈ Rd, ‖h(x)‖ > α}

1
q (3.104)

♦

Haussdorf-Young inequality
Let p′ ≥ 2. Then

‖f̂ | p ≤ (2π)
d
p′ Cdp‖f‖p′ . C2

p = p
1
p (p′)−

1
p′ (3.105)

and the equality sign holds iff the function is gaussian. This inequality shows
that the Fourier transform is linear continuous from da Lp

′
(Rd) to Lp(Rd).

♦
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3.6.5 Sobolev-type inequalities

Other inequalities compare the norm of a function with the norm of its gra-
dient.

Generalized Sobolev inequality [6]
Let d ≥ 3, 0 ≤ b ≤ 1, p = 2d

2b+2d−2 . Then

Kn,p|∇f |2 ≥ ||x|−bf |p (3.106)

where

Kn,p = ω
− 1

2r
d−1 (d− 2)

1
2r−1 (

r − 1
r

)
r−1
2r

γ(2r)
Γ (r + 1)Γ (r)

)
1
2r , (3.107)

r =
p

p− 2
=

d

2(1− b)
, ωd−1 =

2πd/2

Γ (d/2)
(3.108)

(if b = 0 one has p = 2d
d−2 ≡ d

∗).
If 1− d/2 ≤ b < 0 the inequality holds for functions of the radial variable

|x|.
♦

The generalized Sobolev inequality can be derived [7] by the following
Sobolev inequality in R1

|f ′|22 + |f |22 ≥M−1
p |f |2p, Mp = 2

1
r−2(

r − 1
r

)
r−1
r (

Γ (2r)
Γ (r)Γ (r + 1)

)
1
r (3.109)

where r = p
p−2 .

Before giving further inequalities we introduce some notation.

Definition 3.9
Let Ω be an open regular subset of RN . Define

W 1,p(Ω) ≡ {u ∈ Lp(Ω),∃g1..gN ∈ Lp,
∫
Ω

u
∂φ

∂xk
= −

∫
Ω

gk φ ∀φ ∈ C∞0 (Ω)}

(3.110)
where C∞0 is the space of C∞ functions in a neighborhood of ∂Ω (or outside
a compact if Ω is unbounded).

One often uses the notation H1,p(Ω) instead of W 1,p(Ω).
♦

One can prove that W 1,p(Ω) is reflexive for 1 < p <∞, is a Banach space
for 1 ≤ p ≤ ∞ (with norm |u|1,p) and is separable for 0 ≤ p <∞.

Moreover |u|1,p = |u|p + |
∑
k |

∂u
∂xk
|p (distributional derivatives). Let |u|1,p

denote the norm of u ∈W 1,p(Ω). One has
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|u|1,p = |u|p + |
∑
k

| ∂u
∂xk
|p (3.111)

where the derivatives are in the sense of distributions. Notice that a frequently
used notation is H1(Ω) ≡W 1,p(Ω).

If Ω is bounded the following compact inclusions hold
i) For q ∈ [N,∞).W 1,p(Ω) is compact in Lq(Ω)
ii) If q ∈ [p, p∗] then W 1,p(Ω) ⊂ Lq(Ω)
iii)

p < N ⇒W 1,p(Ω) ⊂c Lq(Ω) ∀q ∈ [1, p∗) (3.112)

iv)
p = N ⇒W 1,p(Ω) ⊂c Lq(Ω) ∀q ∈ [1,∞) (3.113)

v)
p > N ⇒W 1,p(Ω) ⊂c C(Ω̄) (3.114)

vi) Moreover, if Ω ⊂ R1 is bounded

W 1,p(Ω) ⊂c Lq(Ω), 1 ≤ q <∞ (3.115)

Sobolev-Gagliardo-Nirenberg inequality

W 1,p(Ω) ⊂ Lp
∗
(Ω),

1
p∗

=
1
p
− 1
N

(3.116)

and
|u|p∗ ≤ C(N, p)|∇u|p (3.117)

Remark that p∗ is a natural exponent as seen setting uλ(x) ≡ u(λ x).
♦

MORREY’s inequality
If p > N then W 1,p(Ω) ⊂ L∞(Ω) and

|u(x)− u(y)| ≤ C(p,N)|x− y|α|∇u|p ∀x, y ∈ RN , α = 1− N

p
(3.118)

♦

If Ω is bounded the following compact inclusions hold
i) For every q ∈ [N,∞), W 1,p(Ω) is immersed continuously and compactly in
Lq(Ω)
ii) If q ∈ [p, p∗] then W 1,p(Ω) ⊂ Lq(Ω)
iii) p < N ⇒W 1,p(Ω) ⊂c Lq(Ω) ∀q ∈ [1, p∗)
iv) p = N ⇒W 1,p(Ω) ⊂c Lq(Ω) ∀q ∈ [1,∞)
v)p > N ⇒W 1,p(Ω) ⊂c C(Ω̄)
vi) If Ω is a bounded subset of R1 then W 1,p(Ω) ⊂c Lq(Ω), 1 ≤ q <∞

♦

Poincaré inequality
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Let Ω be compact and u ∈W 1,p
0 (Ω), 1 ≤ p <∞. Then |u|p ≤ C|∇u|p

♦

Nash inequality
u ∈ H1 ∩ L1(Rn)⇒ |u|2+1/N

2 ≤ CN |∇ u|2|u|
2
N
2 (3.119)

♦

Logarithmic Sobolev inequality
If u ∈ H1(RN ) there exists a > 0 independent from N such that

a2

π

∫
|∇ u|2dx ≥

∫
|u(x)|2 log(

|u(x)|2

|u|22
)dx+ C(1 + log a)|u|22 (3.120)

♦

To conclude we recall an inequality we have already used in Volume I

Hardy inequality
If φ ∈ L2(R3) then ∫

R3

1
4|x|2

|φ(x)|2d3x ≤
∫
R3
|∇φ|2d3x (3.121)

Equivalently

(φ, |p̂|2φ) ≥ (φ,
1

4|x|2
φ) (3.122)

♦

Hardy’s inequality can be generalized to cover the case in which a magnetic
field is present. This generalization is useful to provide a-priori estimates which
are useful in the study of the properties of crystalline solids in magnetic fields.

Hardy magnetic inequality
If n ≥ 3 one has∫
|f(x)|2

|x2|
dnx ≤ 4

(n− 2)2

∫
|∇Af(x)|2dnx (∇Af)(x) ≡ (∇+ ieA(x))f(x)

(3.123)
♦

Proof For f ∈ C∞ and α ∈ R+ one has

0 ≤
∫
|∇Af+α

x

|x′2|
f |2 =

∫
|∇Af |2 +α2

∫
|f2|
|x2|

dx2αRe[
∫
f̄(x)

x

|x2|
.∇Afdx]

(3.124)
Using Leibnitz rule
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2αRe[
∫
f̄(x)

x

|x2|
.∇Afdx] = −α

∫
|f(x)|2div(

x

|x2|
)dx = −(n−2)α

∫
f(x)2

|x2|
dx

(3.125)
Therefore ∫

|∇Af(x)|2dx ≥ [−α2 + (n− 2)α]
∫
|f(x)|2

|x|2
dx (3.126)

Notice now that for n ≥ 3 one has

maxα∈R+ [−α2 + (n− 2)α] =
(n− 2)2

4
(3.127)

This proves the equality if f ∈ C∞.
The proof for the other functions is obtained by a density argument.

♥
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Lecture 4
Periodic potentials. Wigner-Seitz cell and
Brillouen zone. Bloch and Wannier functions

In this Lecture we will give some basic elements of the theory of Schroedinger
equation with periodic potentials. This theory is considered of relevant in-
terest for Solid State Physics, i.e. the Physics of crystalline solids and their
interaction with the electromagnetic field. The connections is the result of
some rude approximations.

Experimental data suggest that to a high degree of precision the nuclei
in crystals occupy fixed positions in each periodic cell of a crystal lattice in
R3; the number of atoms and their positions depend on the material under
consideration. This should be interpreted as follows: the mass of the nuclei is
far larger than the one of the electron, and therefore the wave function of the
nuclei is much more localized in space and the nuclei move more slowly.

It is convenient, in a first approximation, to regard the nuclei as fixed
points ( Born-Oppenheimer approximation).

As a second step, one may consider the motion of the atom in an effective
field due to the interaction among themselves and with the electrons.

Experimental data suggest that, in this approximation and if the temper-
ature is at not too high, the nuclei form a crystalline lattice L.

There is so far no complete explanation for this property, although some
attempts have been made to prove that this configuration corresponds to the
minimal energy of a system of many atoms interacting among themselves and
with the electrons through Coulomb forces.

In this Lecture we shall postulate that the atomic nuclei form a regular
periodic lattice and the electrons move in this lattice subject to the interaction
among themselves and with the nuclei.

More important and drastic is the assumption we will make that the inter-
action among electrons is negligible and so is the interaction with the (quan-
tized) electromagnetic field generated by the nuclei and by the electrons.

The lattice structure allows the definition of an elementary cell ( Wigner-
Satz cell).

For simplicity we assume that the interaction does not depend of the spin of
the electron and the presence of spin only doubles the number of eigenvalues.
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Under this assumption, the spin-orbit coupling can be neglected. If this
coupling has an effect on the structure of the wave function this assumption
can be easily removed.

Under these simplifying assumptions the electrons are described by a
Schroedinger equation with a periodic potential and possibly with an external
electromagnetic field.

Finer approximations can be made to take into account interactions be-
tween electrons and nuclear dynamics. Notice in particular that the nuclei are
much heavier than the electrons but their mass is not infinite. Therefore their
wave function is not localized at a point the variation in time of the function
of is not negligible at a time-scale much longer than the one used to describe
the motion of the electrons.

In a second approximation the motion of the nuclei and therefore the
variation (and therefore the variation of the potential that the electrons feel)
can be considered as adiabatic.

On this longer time scale the motion of the nuclei can be approximated
by the motion of a material point subject to the average action of the elec-
trons and, under suitable conditions, can be described by effective differential
equation.

We shall outline in the next Lecture the first steps of this adiabatic
(or multi-scale) approximation which in this context takes the name Born-
Oppenheimer approximation. In the approximation we are considering tin this
Lecture the wave function of a single electron is described by a Schroedinger
equation in an external periodic field (originated from the presence of nuclei
and from external fields).

This formulation hides a crucial assumption: the the crystal is infinitely
extended. Since physical crystal do not have this property, this approximation
is valid if the size of the crystal is very large as compared with the size of one
cell.

4.1 Fermi surface, Fermi energy

Since we have already made the one-body approximation, this approximation
can be relaxed if surface effect are relevant. For example one may consider
that the crystal occupies a half-space and consider currents on the boundary
due to an external field ( Hall effect). A remnant of the fact that physical
crystals are finite is the (artificial) introduction of a Fermi surface and of
Fermi energy.

Notice that the electrons are identical particles which satisfy the Fermi-
Dirac statistics and therefore the wave function of a system of N spinless
electrons in R3 is a square-integrable function φ(x1, σ1; ...;xN , σN ) xk ∈
R3 σk = 1, 2 which is antisymmetric for transposition of indices (the index
xkand the spin index σk). When considering a system of N electrons we must
keep into account this antisymmetry.
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In a macroscopic crystal the number of electrons is very large and the
electron wave function should be anti-symmetrized with respect to a large
number of variables.

To avoid discussing the dependence of the dynamics on the specific size and
shape of the (physical) crystal it is conventional to take the infinite volume
limit.

In this limit a formulation in terms of wave functions is no longer possible.
A way out is a more algebraic formulation, that relays partly on the for-

malism of second quantization and Quantum Statistical Mechanics. We shall
not discuss here this formulation.

We shall come back to a formulation through the use of C∗ algebras when
we will discuss briefly the case in which the lattice is substituted with a random
structure, still in the one-body approximation.

In the one-particle approximation the wave function of the electron in an
infinite crystal is not normalizable.

If we are interested in the properties of the crystal at equilibrium we
can follow an alternative strategy and consider the wave function of a single
electron in periodic potential as being normalized to one in a single cell. This
allows the definition of density, the number of electron in a give cell. Due to
translation invariance the density is a constant.

Therefore the wave function is not normalized in the whole space and we
will make use of generalized eigenfunctions of a Schrödinger operator in a
periodic potential

We summarize the interaction of the electron with the nuclei and the
external fields by introducing in the hamiltonian a potential V in the (one)
particle Schrödinger equation that describer the dynamics of a single electron.
For simplicity consider a cubic lattice with edges of length one.

Let the cell of the lattice be generated by the vectors η1, ..ηd applied to
the origin of the coordinates.

Let the Nel electrons be contained in a cube ΩN of edges 2Nηk centered in
the origin. Denote by VN the volume of ΩN . Then ρ(N) ≡ N

VN
is the density

of the N -particle system.
For the moment we neglect the spin; if the Hamiltonian does not lead

to spin-orbit coupling the resulting correction consists only in doubling the
multiplicity of some eigenvalues.

The free Hamiltonian is a Laplacian in ΩN . In order to define it we must
choose boundary conditions.

In the limit N → ∞ the volume of a neighborhood of the boundary be-
comes negligible with respect to the volume of the bulk, and we may expect
that the results be independent in the limit from the specific choice of bound-
ary conditions.

This can be proved in the absence of a potential when the infinite volume
limit V ol(ΩN ) → ∞ is taken in the van Hove sense: when N increases one
consider cubes of increasing size. In the presence of a potential the same can
be proved under suitable assumptions.
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We shall choose to work with periodic b.c. The spectrum of −∆ in ΩN
with periodic boundary conditions on the boundary ∂ΩN is pure point with
O(εNn ) eigenvalues (taking multiplicity into account) .

Since the electrons are fermions, the lowest energy state is the Slater de-
terminant made of the first N eigenfunctions in the box ΩN . Its energy is∑N
k=1 ε

N
k ≡ E(N).

We require that ρ ≡ limN→∞
Nel

V ol(ΩN ) exists; we call this limit density of
the infinite-volume system. We require also that the following limits exist

Ē ≡ limN→∞
E(Nel
V ol(ΩN

EF = limN→∞
E(N)
Nel

= ρĒ (4.1)

We call EF the Fermi potential of the infinite system. These limits exists
under very general conditions on the periodic potential V.

The proof uses, as in the case of the proof of the infinite volume limit
in Quantum Statistical Mechanics, decoupling techniques for disjoint regions
and the fact that for any regular bounded region Ω the sum of the first
M eigenvalues with arbitrary boundary condition is contained between the
corresponding sum for Neumann and Dirichlet boundary conditions.

In the case V = 0 the Schrödinger equation in ΩN with periodic boundary
conditions can be solved by separation of variables. The spectrum is pure
point and the spectral distribution converges to a uniform distribution on
the positive real line with multiplicity 2d, i.e to the spectral density of the
Laplacian in Rd.

It is easy to see that each eigenfunction has a difference of phase at opposite
sides of the unit cell of the type ei

2πM
N i.e. restricted to the unit cell they are

eigenfunction of some Laplacian defined with the corresponding b..c..
It possible to show, for sufficiently regular periodic potentials, that the

counting measure µN (the normalized sum of delta measures on the point of
the spectrum, counting multiplicity) converges weakly to a measure absolutely
continuous with respect to Lebesgue measure, with a density which is zero
outside disjoint intervals (bands). For a one-dimensional system the spectral
multiplicity is one but in dimension greater than one the multiplicity can vary
within a single band.

The heuristic arguments outlined above suggest that this counting measure
coincides in the limit N → ∞ with the spectral measure of the operator
−∆ + V in Rd. In the case d = 1 one recovers the spectrum of the operator
−∆ + V. In the case d ≥ 2 it is more difficult to make this simple argument
into a formal proof.

On the basis of this expectation one assumes that the system be well
described, for N → ∞ by the Bloch-Floquet theory of a single electron in a
periodic potential. [1] In particular one expects that this theory give correct re-
sults for quantities of interest, such as electric conductivity and polarizability,
and explain some important effects, like the quantum Hall effect.

These considerations on the limit when V →∞ are used to determine the
values of the parameters that enter the theory of Bloch-Floquet.
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In the case of a crystalline solid one assumes that the total system be
electrically neutral: for the system restricted to a finite region one assumes
therefore that the the number of electron present is such as to balance the
charge of the nuclei. This determines the number of electrons and therefore
their density ρ.

When V →∞ the density ρ is kept constant. The choice of the numerical
value for the Fermi energy has the same empirical origins. We shall come back
in the next Lecture to the description of macroscopic crystals.

4.2 Periodic potentials. Wigner-Satz cell. Brillouin zone.
The Theory of Bloch-Floquet-Zak

We shall present now the Bloch-Floquet-Zak theory [1] for the Schroedinger
equation for a single electron in a periodic potential, neglecting the spin. If
one neglects the interaction among electrons the solution for a system of N
electrons will be the anti-symmetrized product of single-electron solutions.

Consider the Schroedinger equation (in suitable units)

i
∂φ

∂t
= −∆φ(x; t) + V (x)φ(x; t), x ∈ Rd (4.2)

where the potential V (x) is periodic, i.e. there exists a minimal basis {ai ∈
Rd}, i = 1, ..n such that

V (x+ niai) = V (x) ∀ni ∈ N (4.3)

We will consider only the case d = 2, d = 3.
A basis is a collection of linearly independent vectors such that any ele-

ment x ∈ Rd can be uniquely written as x =
∑
i niai, ni ∈ N. For a cubic

lattice ai are orthogonal unit vectors.
Each cell determines a lattice i.e. a subset Γ ∈ Rd that has the following

properties
1) Γ has no accumulation points.
2) Γ is an additive subgroup of Rn.

A lattice may have several minimal bases. It determines however a unique
cell W called Wigner-Satz cell.

The cell associated to the lattice L) is defined as follows

W ≡ {x ∈ Rn : d(x, 0) < d(x, y),∀y ∈ L − {0}} (4.4)

(d(x, y) is the distance between x and y).
The Wigner-Seitz cell in in general a regular polyhedron. Define the dual

lattice as
Λ∗ ≡ {k ∈ Rn : k.a ∈ 2πZ ∀a ∈ L} (4.5)
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The Wigner-Seitz cell of the dual lattice is called Brillouin zone and is uniquely
defined. We shall denote it with the symbol B.

In the study of periodic potentials it is convenient to consider the space
L2(Rn) as direct sum of Hilbert spaces isomorphic L2(W). Every function
φ(x) ∈ L2(Rn) is in fact equivalent (as element of L2(Rn)) to the disjoint
union of the translates of its restriction to W by the vectors of the lattice.

This suggests the use of a formalism (Bloch-Floquet-Zak) in which the
direct sum is substituted by an integral over the dual cell, in analogy with
the formalism of inverse discrete Fourier transform (which leads from l2 to
L2((0, 2π). We are therefore led to consider the space

H =
∫ ⊕
W
L2(B) dµ =

∫ ⊕
B
L2(W) dµ13.4 (4.6)

where µ is Lebesgue measure. Notice the symmetry between B and W in (6).

4.3 Decompositions

The first decomposition considers properties of the functions in momentum
space (here called quasi-momentum ) i.e. points in the Brillouin zone. The
second decomposition considers properties in configuration space i.e. points in
the Wigner cell.

To see the interest of the notation (6) notice that if a self-adjoint operator
H on H commutes with a group of unitary operators U(g) that form a con-
tinuous representation UG of a Lie group G then one can write H as direct
integral, on the spectrum σ of a maximal commutative set of generators of
UG, of Hilbert spaces Ks, s ∈ σ each of them isomorphic to the same Hilbert
space K

H =
∫ ⊕
σ

K∫dµ (4.7)

where µ in the Haar measure on the group G. For this decomposition one has

H =
∫
σ

Hsdµ, Hs = K (4.8)

where K is a self-adjoint operator on K.

Definition 4.1
Let M,dµ be a measure space. A bounded operator A on H ≡

∫ ⊕
M
Hsdµ is

said to be decomposable if the exists an operator-valued function A(m) with
domain dense in L∞(M,dµ;B(Hs)) such that for any φ ∈ H one has

Aφ)(m) = A(m)φ(m) (4.9)

If this is the case, we write A =
∫ ⊕
M
A(m)dµ(m).
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The operators A(m) are the fibers of A.
♦

Conversely to each function A(m) ∈ L∞(M,dµ;B(H′)) is associated a
unique operator A ∈ B(H) such that (9) holds.

This provides an isometric isomorphism

L∞(M,dµ;B(H′))⇔ B(
∫ ⊕
M

H′ dµ) (4.10)

One can show that the decomposable operators are characterized by the
property of commuting with those decomposable operators that act on each
fiber as a multiple of the identity. Since the operators which we shall intro-
duce on each fiber are not bounded in general, we extend the definition of
decomposability to the case of unbounded self-adjoint operators.

Definition 4.2
On a regular measure space {M, µ} the function A with values in the self-
adjoint operators on a Hilbert space Hµ is called measurable iff the function
(A+ iI)−1 is measurable.

♦

Given such function, an operator A on H =
∫ ⊕
M
H′dµ is said to be contin-

uously decomposable if for almost all m ∈ M there exists an operator A(m)
with domain D(A(m), with domain

D(A) ≡ {φ ∈ H : φ(m) ∈ D(A(m)) q.o.
∫
M

‖A(m)φ(m)‖2H′dµ <∞}

(4.11)
with (Aφ)(m) = A(m)φ(m). We have used in (11) the notation almost every-
where to indicate that (11) holds for a set of full measure in M . We shall use
the notation A =

∫ ⊕
M
A(m)dµ.

The properties of decomposable operators are summarized in the following
theorem

Theorem 4.1 [1]
Let A =

∫ ⊕
M
A(m)dµ where A(m) is measurable and self-adjont for a.e. m.

then the following is true
a) The operator A is self-adjoint
b) The self-adjoint operator A on H can be written

∫ ⊕
M
A(m)dµ iff (A+ iI)−1

is bounded and decomposable.
c) For any bounded Borel function F on R one has F (A) =

∫ ⊕
M
F (A(m))dµ

d) λ belongs to the spectrum of A iff for any ε > 0 the measure of σ(A(m)) ∩
(λ− ε, λ+ ε) is strictly positive.
e) λ is an eigenvalue of A iff it is strictly positive the measure of the set of m
for which λ is an eigenvalue of A(m).
f) If every A(m) has absolutely continuous spectrum then A has absolutely
continuous spectrum.
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g) Let B admit the representation B =
∫ ⊕
M
B(m)dµ with B(m) self-adjoint.

If B is A-bounded with bound a then each B(m) is A(m)-bounded and the
bound satisfies a(m) ≤ a for a.e. m.

Moreover if a < 1 then A+B defined as
∫ ⊕
M

[A(m)+B(m)]dµ is essentially
self-adjoint on D(A).

♦
For the proof of this theorem we refer to [1][2] . We only remark that part

f) of Theorem 4.1 states that sufficient condition for A to have absolutely
continuous spectrum is that a.e. operator A(m) has absolutely continuous
spectrum. This condition is far from being necessary.

The following theorem is frequently used

Theorem 4.2
Let M = [0, 1] and µ be Lebesgue measure. Let H =

∫
[0,1]
Hmdm where Hm

is an infinite-dimensional separable Hilbert space and let A =
∫

[0,1]
A(m)dm

where A(m) is self-adjiont for a.e. m.
Suppose that for a.e value of m the spectrum of A(m) is pure point with a

complete basis of eigenvectors {φn(m), n = 1, 2, ..} and eigenvalues En(m).
Suppose moreover that for no value of n the function En(m) is constant,

that almost every function φn(m) is real analytic (as a function of m) in (0,1),
continuous in [0,1] and analytic in a complex neighborhood of [0, 1]. Then the
spectrum A is absolutely continuous.

♦

Proof
Let Hn = {φ ∈ H , φ(m) = f(m) φn(m)} f ∈ L2(M,dµ).

The subspaces Hn are mutually orthogonal for different value of the index
n. Moreover one has H = ⊕Hn, D(A) ⊂ Hn and AHn ⊂ Hn.

Consider the unitary map which for each value of n diagonalizes A(m);
one has

An = Un A U−1
n (Anf)(m) = En(m)f(m) f(m) ∈ L2([0, 1], dm) ∗ ∗

(4.12)
We prove that each An has purely continuous spectrum. Since E(m) is

analytic in neighborhood of [0,1] and is not constant, for a theorem of Weier-
strass its derivative dEn(m)

dm has at most a finite number of zeroes. Denote by
these zeroes by m1, ...mN−1 and set m0 = 0 mN = 1. One has

L2[0, 1] = ⊕N1 L2(mj−1,mj) (4.13)

The operator An leaves each summand invariant and acts there as indi-
cated in (12) On each interval En is strictly monotone and differentiable and
one can define a differentiable function α through En(α(λ)) = λ such that

dα = (
dEn(m)
dm

)−1dλ, m = α(λ) (4.14)
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Define the unitary operator U on L2((mj−1,mj)) by (Uf)(λ) =
√

dα
dλf(α(λ)).

Then
UAnU

−1g(λ) = λ g(λ) (4.15)

We have therefore constructed a spectral representation ofAn with Lebesgue
spectral measure. The spectrum of each operator An is therefore absolutely
continuous and so is the spectrum of A.

♥

4.4 One particle in a periodic potential

We apply now theorem 4.2 to the analysis of Schroedinger equation with
periodic potentials in dimension d. We begin with the simplest case, d = 1
and use the decomposition

∫ ⊕
B L2(W) dµ.

Denote by p̂2
θ the self-adjoint extension of the positive symmetric operator

− d
dx2 , which is defined on C2 functions with support in (0, 2π)) with boundary

conditions
φ(2π) = eiθφ(0),

dφ

dx
(2π) = eiθ

dφ

dx
(0) (4.16)

Theorem 4.3
Let V (x) a bonded measurable function on R with period 2π.. Consider the
operator on L2(0, 2π)

Hθ = p̂2
θ + V (x) (4.17)

and define

H =
∫ ⊕

0,2π

Kθ
dθ

2π
, Kθ = L2(0, 2π) (4.18)

Let U : L2(R, dx)→ H the unitary transformation defined on S by

(Uf)θ(x) =
∑
n

e−iθnf(x+ 2πn) (4.19)

Then one has

U(− d2

dx2
+ V )U−1 =

∫
[0,2π)

Hθ
dθ

2π
(4.20)

♦

Proof
Notice that, for f ∈ S and by the periodicity of V

(UV f)θ(x) = V (x)(Uf)θ(x) =
∑
n

e−iθnV (x+ 2πn)f(x+ 2πn) (4.21)
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and therefore on S one has UV U−1 =
∫

[0,2π)
V dθ

2π .

On the other hand, taking Fourier transform and noting that for f ∈ S
one has F [p̂2

θf ] = ( θ
2π + n)2Ff

−U d2

dx2
U−1 =

∫
[0,2π)

−p̂2nθdθ (4.22)

Equation (20) follows because S is a core for H + V.
♥

As a consequence of theorems 4.2 e 4.3 in order to study the spectral
properties of − d2

dx2 + V (x) with V 2π-periodic it suffices to study p̂2
θ + V (x)

for 0 ≤ θ < 2π in L2(0, 2π).

Lemma 4.4
For each value of θ :

i) The operator p̂2
θ has compact resolvent.

ii) p̂2
θ is the generator of a positivity improving contraction semigroup .

iii) The resolvent of p̂2
θ is an operator-valued function analytic in θ in a complex

neighborhood of [0, 2π].
♦

Proof
Items i) and ii) could be proved by general arguments. We give a constructive
proof which provides also a proof of iii).

Let Gθ = (p̂2
θ + I)−1. If f ∈ C∞0 ((0, 2π)) both g f and Gθ f solve the

equation −u′′(x)+u(x) = f(x) in (0, 2π)) and therefore their difference solves
−v′′θ + vθ = 0.

It follows that there exist constants a and b such that (Gθf)(x)−(Gf)(x) =
aex + be−x. .

The function (Gθf)(x) must satisfy the boundary condition

(Gθf)(2π) = eiθ(Gθf)(0), (Gθf)′(2π) = eiθ(Gθf)′(0) (4.23)

and therefore

Gθ(q, y) =
1
2
e−|x−y| + α(θ)ex−y + ᾱ(θ)ey−x, α(θ) =

1
2(e2π−iθ)− 1

(4.24)

Properties i),ii) follow from the explicit form of Gθ. Also iii) is satisfied
because θ → Gθ is analytic (as map from C to the Hilbert-Schmidt operators)
for all |Imθ| < 2π.

♥
We can now study the operators Hθ = p̂2

θ + V

Theorem 4.5 [2]
Let V be piece-wise continuous and 2π-periodic. Then
i) Hθ has purely point spectrum and is real-analytic in θ.
ii) Hθ and H2π−θ are (anti)-unitary equivalent under complex conjugation.
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iii) For θ ∈ (0, π) the eigenvalues En(θ), n = 1, 2, .. of Hθ are simple.
iv) Each En(θ) is real-analytic in (0, π) and continuous in [0, π].
v) For n odd (resp. even) En(θ) is strictly increasing (resp.dicreasing) in θ in
the interval (0, π). Moreover

Ek(0) ≤ Ek+1(0) Ek(π) ≤ Ek+1(π) k = 1, 2, .. (4.25)

vi) The eigenvectors φn(θ) can be chosen to be real-analytic in θ for θ ∈
(0, π) ∪ (π, 2π) and continuous in 0 and π (with φn(0) = φn(2π)).

♦

Proof
i) this follows from regular perturbation theory because the statement is true
for V = 0.
ii) this relation is verified for V = 0 and therefore holds if V is H0-bounded.
iii) If E is an eigenvalue of Hθ the equation −u′′ + V u = Eu has a solution,
but this can be true for at most one of the boundary conditions.
iv) Consider E1(0). It is a simple eigenvalue because H0 is the generator of
a positivity preserving semigroup. Since Hθ is analytic in a neighborhood of
0 and E1(0) is simple there exists a neighborhood of 0 in which Hθ has a
minimum eigenvalue E1(θ) analytic and simple.

If the upper end of the analyticity interval does not coincide with π there is
θ0 < π such that E1(θ)→∞ when θ → θ0 (remark that Hθ is bounded below
because V ∈ L∞). Therefore it is sufficient to prove that E1(θ) is bounded in
θ in [0, π).

This is true because E1(θ) is the lowest eigenvalue of Hθ.
This argument can be repeated for En(θ) n > 0. Notice that En(0), n > 1

can be degenerate but En(ε) is simple for ε small and different from zero.
v) We begin by proving ∀θ E1(0) ≤ E1(θ). Since e−tH0 is positivity improving
the eigenvector φ1(0) can be chosen to be strictly positive and extends to a
periodic function φ̃0 on R.

Consider its restriction to (−2πn, 2πn) and denote by Hk the operator
− d2

dx2 + V restricted to periodic functions in this interval. It is easy to prove
that E1(0) is the lowest eigenvalue of Hk. It follows for all positive integers n
and for every ψ ∈ C∞0 (−2πn, 2πn)

(ψ, [− d2

dx2
+ V ]ψ) ≥ E1(ψ,ψ) (4.26)

Since ∪n(C∞0 (−2πn, 2πn)) is dense in L2(R) we conclude that for a.a. θ
one has E1(θ) ≥ E1(0); from the continuity of Ei the inequality holds for all
values of θ.

Consider now the differential equation

−d
2u(x)
dx2

+ V (x)u(x) = Eu(x) (4.27)
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Let uE1 (x) and uE2 (x) be the solutions with boundary conditions uE1 (0) =
1, (uE1 )′(0) = 0 and uE2 (0) = 0, (uE2 (0))′ = 1 respectively.

Let M(E) be the Hessian matrix corresponding to the two solutions and
of their first derivatives in 2π and define

D(E) ≡ Tr M(E) = uE1 (2π) + (uE2 )′(2π) (4.28)

M(E) has determinant one (the Wronskian is constant); we denote by λ and
λ−1 its eigenvalues.

If v(x) is a solution of (27) then the matrix M(E) provides a linear relation
between the vector v(0), v′(0) and the vector v(2π), v′(2π). It follows that
the equation Hθψ = Eψ admits solutions iff eiθ is an eigenvalue of M(E);
therefore D(E) = 2 cos θ and

Arc cos[
1
2
D(E1(θ))] = θ (4.29)

We know that D(E1(0)) = 2. When θ increases from 0 to π the function
D(E) decreases monotonically from 2 to −2.

Therefore the first value of E for which D(E) = −2 is E1(π). The next
value must be E2(π). In the interval (E2(π), E2(0)) the function D(E) is
increasing and takes the value 2 when E = E2(0).

There are therefore intervals of the real line (called bands ) in which D(E)
increases from −2 to 2 followed by intervals in which it decreases from 2 to
−2.

This intervals are [E2k+1(0), E2k+1(π)] and [E2k(π), E2k(0))]. The band k
can touch the band k+ 1 only if either Ek(π) = Ek+1(π) or Ek(0) = Ek+1(0)
(therefore if the corresponding eigenvalue is degenerate). Notice that for V = 0
all eigenvalues are degenerate and the spectrum is the entire positive half-line.
vi) It follows from regular perturbation theory of self-adjoint operators that
the eigenvectors φn(θ) can be chosen as functions of θ analytic (0, π)∪ (π, 2π)
and continuous in [0, 2π].

♥
We summarize these results in

Theorem 4.6
Let H = −d

2

d2 +V (x) on L2(R) where V (x) is periodic and piece-wise continu-
ous. Denote Ek(0) the eigenvalues of the (self-adjoint) operator Hp on [0, 2π]
with periodic boundary conditions and Ek(π) those of Ha.p. with anti-periodic
b.c. ( φ(2π) = −φ(0) ).

Then
i) σ(H) = ∪n([E2k+1(0), E2k+1(π)] ∪ [E2k(π), E2k(0)])
ii) H does not have discrete spectrum.
iii) H has absolutely continuous spectrum.

♦

Proof



4.5 the Mathieu equation 107

Item i) is a consequence of theorem 4.1 since En(θ) is continuous for all n.
Item ii) is a consequence of theorem 4.2. since En(θ) is strictly monotone.
Therefore for each E0 the set of values of θ for which E(θ) is an eigenvalue
consists of at most two points.
Item iii) is a consequence of theorems 4.3 e 4.4.

♥
We shall call gap any open interval that separates two disjoint parts of the

spectrum.
Remark that the boundaries of a gap are given by eigenvalues corre-

sponding to the periodic and anti-periodic solutions of the Schroedinger equa-
tion. The eigenvalues corresponding to other boundary conditions are internal
points of the spectrum.

This property is no longer true [1] for dimension d ≥ 2. In this case the
eigenfunctions at the borders of the spectral bands ( edge states) may not
correspond to specific boundary conditions at the border of the Wigner-Satz
cell.

This feature constitutes a problem in the extension of the analysis we have
so far, based on a fibration of the Hilbert space with basis corresponding to
L2(B(L2(K)) and suggests the use of the fibration with base L2(K(L2(B)).

The fibration has the property that each fiber corresponds to a given en-
ergy (the energy is given as a function of the quasi-momentum by a dispersion
relation Recall that we are considering particles that obey the Fermi statis-
tics, and therefore two particles cannot be in the same (not degenerate) energy
state. Therefore the energy of the ground state of a system of finite size (and
therefore discrete spectrum) is an increasing function of the number of states
occupied.

This leads to the definition of occupation number and Fermi surface for
finite systems and, upon taking limits, of density and Fermi surface for in-
finitely extended systems (as are the crystals we are considering).

4.5 the Mathieu equation

Before studying this new fibration we give a concrete example of the analysis
in dimension one, the Mathieu equation corresponding to V (x) = µ cos x.

Lemma 4.7
In the case

H = − d2

dx2
+ µ cos x, µ 6= 0 (4.30)

every gap is open.
♦

Proof
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Let Hp ( resp. Ha) the self-adjoint operators on L2(0, 2π) be defined as restric-
tion of H = − d2

dx2 +µ cos x to functions that are periodic (resp. anti-periodic).
We must prove that Hp and Ha don’t have multiple eigenvalues. Let us

determine first the eigenvalues of Hp.. Taking the Fourier transform one has

Hpφn = n2φn, φn =
1√
2π
einx (4.31)

therefore the eigenvalues are given by

(n2 − E)an +
µ

2
(an+1 + an−1) = 0

∑
n

|an|2 = 1 (4.32)

We prove that the solution, if it exists, is unique. Suppose there are two
distinct solutions corresponding to the same E. Let {an}, {bn} be the two
solutions. Multiplying the equations by bn and an respectively and subtracting
we obtain

cn ≡ bnan+1 − anbn+1 = cn−1 (4.33)

Since both {an} and {bn} are in l2, cn = 0 ∀n. It follows

an+1bn = anbn+1 (4.34)

and therefore an = cbn ∀n.
We remark now that if two consecutive an are zero, then there is no non-

zero solution of (34) (this is due to the specific form of the potential). Therefore
at least one among an and an+1 is not zero, and the same holds for bn.

If E is doubly degenerate, since the potential is even, we can assume that
one of the solution is even and the other is odd. If {bn} is odd, then b0 = 0
and b1 6= 0.

On the other hand (32) for n = 0 gives −Ea0 + µa1 = 0. Since a0 and a1

cannot be both zero it follows a0 b1 6= 0. But a1 b0 = 0 and this violates (33).
The contradiction we have obtained shows that the eigenvalue is not de-

generate. We have proved that for the Mathieu potential all gaps are open.
♥

4.6 The case d ≥ 2. Fibration in momentum space

We have seen that for d ≥ 2 it in convenient to consider a fibration in mo-
mentum space.

We begin to discuss this fibration in one dimension. Assume V (x) ∈
C∞0 (R) so that H = − d2

dx2 +V (x) maps S into itself. Taking Fourier transform

Ĥf p = p2 f̂(p) +
1√
2π

∫
V̂ (p− p′)f̂(p′)dp′ (4.35)
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If V (x) is 2π-periodic one has

V (x) =
∞∑
−∞

Ṽne
inx (4.36)

where the sum is uniformly convergent. Correspondingly (35) reads

Ĥf(p) = p2f̂(p) +
∞∑
−∞

V̂nf̂(p− n) (4.37)

Theorem 4.8
Let H′ = l2 and define H =

∫ ⊕
[− 1

2 ,
1
2 ]
H′dq.

For j ∈ (− 1
2 ,

1
2 ] let

(Hjg)(p) = (p+ j)2gj(p) +
∞∑
−∞

(V̂ngj−n)(p) (4.38)

Setting H ≡ − d2

dx2 +V (x) one has, denoting by con F the Fourier transform
as unitary operator

FHF−1 =
∫ ⊕

(− 1
2 ,

1
2 ]

Hjdj, [(Ff)(q)]j = f̂(q − j) (4.39)

♦
Remark that (38) defines the operator through its integral kernel. In this

specific case, this kernel represents a differential operator on L2(W).
But if one restricts the operator to a spectral subspace one obtains in

general a pseudo-differential operator (the projection is represented by an
integral kernel in this representation). This is the reason why the mathematical
theory of Schroedinger operators with periodic potentials makes extensive use
of the theory of pseudo-differential operators

Before generalizing to the case d ≥ 2 we give estimates which extend to
periodic potentials Kato’s estimates. Notice that the Rollnik class criteria are
not applicable here because a periodic potential does not belong to Lp for any
finite p.

Making use of periodicity it is sufficient to have local estimates.

Definition 4.2
A function V on Rn is uniformly locally in Lp iff there exists a positive

constant M such that
∫
C
|V (x)|pdnx ≤M for any unitary cube C.

♦
With this definition Kato’s theory extends to perturbations uniformly lo-

cally in Lp.

Theorem 4.9
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Let p ≤ 2 for n ≤ 3, p > 2 for n = 4 and d ≥ n
2 for n ≥ 5. Then the

multiplication for a function V which is uniformly locally in Lp is an operator
on L2(Rn) which is Kato-bounded with respect to the Laplacian with bound
zero.

♦

Proof
If 1

p + 1
q = 1 for any ε > 0 there exists Aε such that

‖f‖2q ≤ ε‖∆f‖22 +Aε‖f‖22 (4.40)

For each unit cube C define ‖f‖r,C ≡ [
∫
C
‖f(x)‖rdnx]

1
r . Let C3 be the cube

of side with the same center.
We shall make use of a standard process of localization. Let η be a C∞

function with support strictly contained in C3 and taking value 1 on C.
¿From (40) we obtain

‖f‖2q,C ≤ ‖η f‖2q ≤ ε‖∆(η f)‖22 +Aε‖η f‖22

≤ 3ε‖∆f‖22,C3
+B‖∇f‖22,C3

+D‖f‖22,C3
(4.41)

We have used the identities (the constants B and D do not depend on C.)

∆(η f) = f ∆η + η ∆f + 2∇η.∇f, (a+ b+ c)2 ≤ 3(a2 − b2 + c2) (4.42)

Choose now ξ ∈ Zn and let Cξbe the unit cube centered in in ξ and Cξ,3
the cube of side 3 centered in ξ. By assumption

‖V ‖ ≡ supξ‖V ‖p,Cξ <∞ (4.43)

We have therefore, for 1
p + 1

q = 1
2

‖V f‖ =
∑
ξ

‖V f‖22,Cξ ≤
∑
ξ

‖V ‖2p,Cξ‖f‖
2
q,ξ ≤

‖V ‖2
∑
ξ

(3ε‖∆f‖22,Cξ,3 +B‖∇f‖22,Cξ,3 +D‖f‖22,Cξ,3

≤ ‖V ‖3n[4ε‖∆f‖22 + (D +
B

4ε
)‖f‖22] (4.44)

Notice that, a part from a set of zero measure, every x belongs to exactly 3n

cubes Cξ,3). and we have made use also of Plancherel inequality

‖∇f‖22 ≤ δ‖∆f‖22 +
1
4δ
‖f‖22 (4.45)

which in turn follows from the numerical inequality a ≤ δ a2 + 1
4δ .

♥
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4.7 Direct integral decomposition

We give now some details about the integral decomposition of a Schroedinger
operator in Rd with periodic potential.

This theory is a particular case of the general theory of direct integral
decomposition of Hilbert spaces and operators. [1][2]

If the periodicity lattice Γ has basis γ1, ..γn ∈ Rd, the dual lattice is defined
by the dual basis γ∗1 , ..γ

∗
n ∈ Rd with (γi, γ∗j ) = 2πδi,j).

We shall call Brillouin zone the fundamental centered domain of Γ ∗

B = {
n∑
i=1

ti γ
∗
i | 0 ≤ ti ≤ 1} (4.46)

We can now generalize to d > 1 the analysis in momentum space that we
have given for d = 1. With estimates similar to those for d = 1 and using
theorem 4.8 one proves that, denoting by W is the elementary cell

W = {x : x =
n∑
i=1

ti γi , 0 ≤ ti ≤ 1} (4.47)

if V ∈ Lp(W) (where p = 2 if d ≤ 3, p = 4 if d = 4 and p = d
2 if d ≥ 5, then

−∆+ V is unitary equivalent to

1
2π

∫ ⊕
[0,2π)n

Hθd
nθ Hθ = H0

θ + V (4.48)

We have denoted by H0
θ the operator ∆ on L2(W, dnx) with boundary

conditions

φ(x+ aj) = eiθjφ(x),
∂φ

∂xj
(x+ aj) = eiθj

∂φ

∂xj
(x), (4.49)

For every value of θ the potential V is Kato-infinitesimal with respect to
H0
θ .

As a consequence each Hθ has compact resolvent and a complete set of
eigenfunctions φm(θ, x) (that using (49) can be extended to Rn) and a corre-
sponding set of eigenvalues Em(θ).

It is possible to show that the functions En(θ) are measurable and that
the corresponding eigenfunction can be chosen to be measurable.

The operator H is equivalent to
∫ ⊕
B Hkdk where Hk is defined on l2(Zn)

by

(Hkg)m = (H0
kg)m +

∑
l∈Zm

Ṽl gm−l, (H0
kg)m = (k +

∑
mjαj)2 gm (4.50)

and has domain D = {g ∈ l2(Zn),
∑
kj |αj |2 <∞. In (50) m ∈ Zn and Ṽm

are the coefficients of V as a function on B. Explicitely
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Ṽm = (volK)−1

∫
K
e
−i

∑n

j=1
mj (αj ,x)

V (x)dnx (4.51)

with inverse relation V (x) =
∑
l∈Zn Ṽle

i
∑n

j=1
lj (αj .x)

. Notice that this sum is
uniformly convergent since V ∈ L2

loc.
Equation (50) can be used to extend to k ∈ Cn the resolvent of Hk as

an entire function. This will be useful to construct a basis of functions which
decay exponentially ( Wannier functions).

We prove now that −∆+ V has absolutely continuous spectrum. Since V
is infinitesimal with respect to H0

k it is sufficient to give the proof for H0. By
Theorem 4.2 it is sufficient to prove that the eigenvalues and eigenfunctions
of H0

k can be analytically continued.
Denote by Em(k) the eigenvalues, which from (50) are seen to be Em(k) =

(k+
∑

mjαj)2. We proceed by induction on the number of degrees of freedom.
Choose a basis αk, k = 1, ..n such that the first element be in the direction of
the vector a1 (the first element of the configuration lattice

k = s1a1 + s2α2 + ...snαn (4.52)

¿From (50)

H0
k =

∫
s⊥∈N

ds2..dsN

∫
s1∈Ms⊥

ds1[Hk(s1a1 + ..snkn) + (k +
∑

mjαj)2]

(4.53)
where s⊥ = {s2, ...sN} and N , M⊥ are chosen to cover all integration
domain.

If we regard the eigenvalues of Hk as functions of s1, s⊥ thy are are con-
tinuous in all variables and analytic in s1 in a neighborhood of Ms⊥ . With
this choice of basis (which depends on k) one has

Em(s, s⊥) = (1 + s1)a2
1 +

∑
p≥2

(k.sp)2 (4.54)

Moreover on can prove that if β > n
2 , β ≥ n− 1 the series

fβ(y) =
∑
m

|Em(x+ iy, s⊥) + 1|−β (4.55)

converges uniformly in s⊥ and that , if β > n−1, one has limy→±∞fβ(y) = 0.
For each m this function admits a continuation Em(z, s⊥ which is analytic in
z ∈ C and continuous in s⊥.

Also the eigenvectors are analytic functions of z in a neighborhood of
the real axis continuous in s⊥. From the explicit expression one sees that the
function f(s) is not constant for any value of s This estimates prove analyticity
off the real axis for the resolvent of H0

k . We have proved

Theorem 4.10
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Let V̂ ∈ lβ , where β < d−1
d−2 if d ≥ 3 and β = 2 if d = 2, the operator −∆+ V

has absolutely continuous spectrum.
♦

It is now useful to introduce for any φ ∈ S the Bloch-Floquet-Zak trans-
formation

(Uφ)(k, x) =
∑
γ∈Γ

e−i(x+γ).kφ(x+ γ), x, k ∈ Rd (4.56)

If φ(x) ∈ L2(Rd) the series (56) converges L2(B, L2(W)). The choice of
the exponential factor in (56) is convenient because it gives rise to simple
properties under lattice translations. One has indeed

(Uφ)(k, x+ γ) = (Uφ)(k, γ) (Uφ)(k + γ∗, ) = e−ix.γ
∗
(Uφ)(k, x) (4.57)

Definition 4.4
The function Uφ which is associated uniquely through (56) to the state

described by φ(x) is called Bloch function associated to φ.
♦

For each k ∈ Rd, (Uφ)(k, .) is Γ - periodic and therefore it can be regarded
as L2 function over T d ≡ Rd/Γ (the d-dimensional torus).

Remark that T d can be realized as Bloch cell or as Brillouin zone, with
opposite sides identified through the action of Γ ∗. The vector k ∈ Rd takes the
name of quasi-momentum (notice the analogy with with Fourier transform).

The function (Uφ)(k, x) can be written as

(Uφ)(k, x)) = eikxvk(x) (4.58)

where vk is periodic in x for each value of k. Moreover if φγ(x) = φ(x+γ), γ ∈
Γ then

(Uφγ)(k, x) = e−ik.γ(Uφ)(k, x) (4.59)

For periodic potentials the Bloch functions the Bloch-Floquet transform
have a role similar to that of plane waves and Fourier transform for potentials
vanishing at infinity, and one has analogues of the classical Plancherel and
Paley-Wiener theorems.

Let L2
a be the space of locally L2(Rd) that decay at infinity sufficiently

fast
φ ∈ L2

a ⇒ supγ∈Γ e
aγ |φ|L2(W+γ) <∞ (4.60)

We will say that a function ψ has exponential decay of type a if ψ ∈ L2
a.

If H is a Hilbert space and Ω ⊂ Cd we will use the notation A(Ω,H) for
the space of H-valued functions which are analytic in Ω (for the topology of
uniform convergence on compacts). One has the following results

Theorem 4.11 [1]
1) If φ ∈ L2(Rd) the series (56) converges in L2(T ∗, L2(B)) and the following
identity holds (analog of Plancherel identity) )
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|φ|”L2(Rd) =
1

vol(B)

∫
B
|U(φ)(k, .)|2L2(W)dk =

1
vol(T ∗)

∫
T∗
|(Uφ)(z, .)|L2(W)dz

(4.61)
where dk is Lebesgue measure on B and dz is Haar measure on T ∗.
2) For each 0 < a <∞ the map φ→ Uφ is a topological isomorphism between
L2
a(Rd) and A(Ωa, L2(W), where Ωa is the strip z ∈ Cd, |Imz| ≤ a. This is

the analogue of Paley-Wiener theorem.
3) The following inversion formula holds

φ(x) =
1

vol(T ∗)

∫
T∗

(Uφ)(k, x)dk (4.62)

♦
If H = −∆ + V (x) , V periodic, the Bloch-Floquet transform reduces H

with respect to T ∗.
Denote by H(k) the reduction of the operator H to the function with fixed

quasi-momentum k ∈ T ∗ (a self-adjoint operator with compact resolvent if
V ∈ L∞) and denote by λ1(k) ≤ λ2(k) ≤ .... its eigenvalues in increasing
order one proves without difficulties
a) The functions λk are continuous , Γ ∗-periodic and piece-wise analytic.
b) The spectrum of H is σ(H) = ∪mIm where Im is the collection of the
λm(k).

A detailed description of the band functions λk and of the corresponding
Bloch waves ψm(k, x) (solutions of Hψm = λmψm) can be found in [3]

We have noticed that the Bloch waves for V periodic, are the analog of
the generalized eigenfunctions for potentials that decrease at infinity. If V = 0
the latter are plane waves and the dual basis (Fourier transformed) are Dirac
measures.

We will be mainly concerned with the case of the hamiltonian H ≡ −∆+
VΓ (x) with VΓ real and periodic of period Γ

One has [H,Tγ ] = 0 where Tγ is the unitary operator implementing trans-
lations by vectors in the Bravais lattice.

Tγφ(x) = φ(x− γ) (4.63)

The same analysis can be applied to the periodic Pauli hamiltonian

HPauli =
1
2

[(−i∇x +AΓ (x).σ)2φ(x) + VΓ (x)φ(x)] (4.64)

where AΓ R3 → R3 is Γ−periodic and σ ≡ {σ1, σ2, σ3 are the Pauli matrices.
We shall consider here only the Schrödinger equation.
The lattice translation form an abelian group and therefore

Tγφ(x) = eik.γ k ∈ Td k ∈ T ∗d ≡ Rd/Γ ∗ (4.65)
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where Γ+ is the dual lattice of Γ. The quantum numbers k ∈ T ∗d are called
Bloch momenta and the quotient Rd/Γ ∗ is the Brillouin zone ( or Brillouin
torus).

Notice that the Bloch functions are written as

φ(k, x) = eikxu(k, x) (4.66)

where for each k the function u(k.x) is periodic in x and therefore an element
of the Hilbert space L2(T d).

Later we shall study the topological properties of the states (or rather
of the wave functions representing the states). For this it is convenient to
consider periodic functions, so that the topological properties (or rather ho-
mological properties) can be seen as obstructions to the continuation as a
smooth function in the interior of a periodic cell a function that is periodic
and smooth at the boundary.

We shall see that the phase of the function can be changed smoothly except
in a point (e.g.the center of the cell) . In dimension 2 the possible singularity
is a vorticity and in cohomology it correspond to a non trivial element of the
first Chern class.

We suppress the phase in (66) making use of the Bloch-Floquet-Zak trans-
formation defined for continuous functions by

UBFZψ(k, x) ≡ 1
volB

1
2 ∑
γ∈Γ

e−ik(x−y)ψ(x− y) (4.67)

B denotes the fundamental cell for Γ ∗ i.e.

B ≡ k =
d∑
j=1

kjbj − 1
2
≤ kj <

1
2

(4.68)

Notice that this implies that φ ≡ UBFZψ is Γ periodic in y and Γ ∗-
pseudoperiodic in k i.e.φ(k + λ, x) = e−iλ.xφ(k, x). As a consequence of the
definition one has

UBFZTγU
−1
BFZ

∫
B

dk(eikγI UBFZfγU
−1
BFZ =

∫
B

dkfγ(y) (4.69)

UBFZ − i
∂

∂xj
U−1
BFZ =

∫
B

dk((− ∂

∂yj
+ kj) (4.70)

4.8 Wannier functions

Analogous considerations lead for periodic potentials to the definition of Wan-
nier functions [1][2][3][4] ]
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Remark that, although Bloch waves are an important instrument in the
analysis of some electronic properties of a crystal, in particular conduction,
they are not a convenient tool for the analysis of other properties, especially
those that refer to chemical bonds and other local correlations [2][3][4][5],] .

For comparison, recall that in the case of potentials vanishing at infinity
in order to study scattering it is convenient to make use of the momentum
representation ( generalized plane waves) while to study local properties it is
convenient to use position coordinates, i.e. measures localized in a point. In a
similar way, to study local properties in a crystal it is convenient to make use
of a complete set of functions which are localized as much as possible. These
are the Wannier functions.

For example in the modern theory of polarization a fundamental role is
played by the modification under the action of an external electric field of
those Wannier functions which are localized at the surface of a crystal.

Since, as we shall see, the Wannier functions can be expressed as weighted
integrals over k of Bloch functions φm(k, x), the possibility to be localized in
a region of the size of a Wigner-Satz cell depends both on the weight and on
the regularity in k of the Bloch functions.

Let φm(k, x) ∈ L2(T ∗, L2(W )) be a Bloch function relative to the function
λm(k). Notice that, even when the eigenvalue λm(k) is simple the function
φm(k, x) is defined for each value of x only modulo a phase factor that may
depend on k. This freedom of choice (of gauge) will be useful in determining
properties of the Wannier functions.

Definition 4.5
We say that the Wannier function wm(x) is associated to the wave function

φm(k, x) if the following relation holds

wm(x) =
1

vol(T ∗)

∫
T∗
φm(k, x)dk, x ∈ Rd (4.71)

♦
¿From the definition it follows that the Bloch function φm(k, x) is the

Bloch-Floquet transform of wm

φm(k, x) =
∑
γ∈Γ

wm(x+ γ)e−ik.γ (4.72)

Conversely

wm(x+ γ) =
1

vol(B)

∫
B
eik.γφm(k, x)dk (4.73)

It is easy to verify that the Wannier functions belong to L2(Rd), that∫
Rd
|wm(x)|2dx =

1
vol(B)

∫
B
|φm(k, x)|2dkdx (4.74)
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and that the Wannier functions wm(x) and wm(x+ γ) are orthogonal iff the
functions φm(k, x) are chosen so that their L2(W ) norm does not depend on
k.

The most relevant property of the Wannier functions is their localizability
[1][5]. From Theorem 4.10 one sees that the dependence on k of φm(k, x)
determines the local properties of the corresponding Wannier function. In
particular
a) If

∑
γ∈Γ |wm|L2(W)+γ) < ∞ then φm(k, x) is a continuous function on T ∗

with values in L2(W).
b) |wm|L2(W+γ) decays when γ →∞ more rapidly that any power of |γ|−1 iff
φm(k, .) is C∞ as a function on T ∗ with values in L2(W).
c) |wm|L2(W+γ) decays exponentially iff φm(k, .) is analytic as a function on
T ∗ with values in L2(W).

When two bands cross the eigenvalue λm(k) becomes degenerate for some
value of k and the corresponding eigenfunctions are not in general continuous
at the crossing [1][4][5] . In this case it more convenient to try to consider Wan-
nier functions that are associated to a band i.e. to a set of Bloch eigenvalues
that are isolated as a set from the rest of the spectrum.

A Wannier system {w1, . . . wm} associated to a band is by definition a
family of orthonormal functions which have the property that their translates
by the generators of the Wigner-Seitz cells are mutually orthogonal

(wi,γ , wi′,γ′) = δi,i′δγ,γ′ (4.75)

and the projection Pb onto the band can be written as

Pb =
m∑
i=1

∑
γ∈Γ
|wi,γ >< wi,γ | (4.76)

Here m is the number of elements in the band.
A relevant question if m ≥ 2 (the band contains m eigenvalues which

cannot be disentangled) is whether one can always find a Wannier system
which is composed of sharply localized functions, in particularly exponentially
localized.

For d = 1 it is always possible to choose analytic Bloch functions and
therefore exponentially decreasing Wannier functions [2]. For d ≥ 2 and still
m = 1 existence of exponentially localized Wannier functions was proved by
Nenciu [ 7] (see also for an independent constructive proof [5]) under the
assumption of time-reversal symmetry.

This assumption allow the construction of regular Bloch functions by join-
ing smoothly a function constructed in the first half of the cell with the time-
reversed (conjugated and reversed with respect to the middle point) defined
on the second half of the cell.

A simplifying feature (also in the case m ¿1) [9] is provided by the fact that
the existence of continuous Bloch functions implies the existence of analytic
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Bloch function (this is sometimes referred to as the Oka principle. Therefore
exponential decay follows from a variant of the Paley-Wiener theorem.

For m ≥ 2 Thouless [10] proved that there are topological obstructions to
the existence of exponentially localized Wannier functions. It is not possible
to choose exponentially localized Wannier functions if the first Chern class c1
of the bundle given by the Bloch fibration does not vanish.

4.9 Chern class

We recall briefly few elements of the theory of the Chern classes [8], for a brief
introduction see [9].

Recall that a representative for the Chern classes of a hermitian bundle
V of rank m over a smooth manifold M are the characteristic polynomials of
the curvature form Ω of V which are defined as the coefficients in the formal
series expansion as power series in t of

det(I − i itΩ
2π

) =
∑
k

ck(V)tk, Ω ≡ dω +
1
2
ω ∧ ω (4.77)

where ω is the connection one-form of M.
By construction this construction is invariant under addition of an exact

differential form, i.e. the Chern classes are cohomology classes. This implies
that that the Chern classes do not depend on the choice of a connection on
M.

If the bundle is trivial (diffeomorphic to M×V) then ck = 0 ∀k > 0 but
the converse is not true in general. An important special case occurs when V
is a vector bundle (n = 1). In this case the only non trivial Chern class is c1.
Since the existence of exponentially localized Wannier functions is equivalent
to triviality of the Bloch bundle, the condition c1 = 0 is necessary but in
general not sufficient for their existence.

Time reversal invariance implies triviality [2][4][7]. This provides [5] triv-
iality of the Bloch bundle in absence of magnetic fields for any m ∈ N and
d ≤ 3 (d is the dimension of space on which the lattice is defined). This cov-
ers the physical situation (d = 3 ) but not when a periodic external field is
present. In this case there is an additional parameter so one led to study Bloch
waves in four dimensions.

The limitation in the dimension comes from the classification theory of
vector bundles [6]; since for 2j > d one has cj = 0. The presence of a magnetic
field alters the topology of the Bloch bundle and makes it non trivial in general.
A very weak magnetic field does not change the triviality [7]: since cn are
integers, a small modification cannot change this numerical value. The results
for strong magnetic fields are scarse.

To prove triviality one must find an analytic (or sufficiently differentiable)
fibration of complex dimension one on Rd by solutions of (H(k)−λm(k)I)u =
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0 in L2(W). If such section exists, the fiber bundle is trivial (isomorphic to
the topological product T ∗ ⊗W).

If the eigenvalue λm(k) remains isolated and simple for every k then regular
perturbation theory permits a local extension to a small neighborhood of T ∗

in Cd as an analytic function. Topological obstructions may occur to prevent
to obtain an analytic fiber bundle Λam

Λam = ∪zker (Hk − λj(k), z = eik, |Imk| < a13.45 (4.78)

The following proposition shows if these obstructions occur, they are
present already at a differential level.

Proposition 13.12 [5]
By a theorem of H.Grauert [6] the fiber bundle Λm on T ∗ is topologically

trivial iff it is trivial as analytically trivial (the transition functions can be
chosen to be analytic).

♦
The possible topological obstructions appear therefore at the continuous

level. We have seen that this implies the existence of Wannier functions that
are localized exponentially well on Wigner cells and these may be used to
describe local properties of the crystal.

Topological obstructions are frequent in analytic and differential geometry.
For example one cannot have an oriented segment on a Moebius strip or a
vector field without zeroes on a three-dimensional sphere.

In the case of the Bloch functions there is no topological obstruction to
the existence of exponentially localized Wannier functions in the case the
eigenvalue λm(k) remains simple and does not intersect other eigenvalues as
k varies.

One has indeed [7]

Theorem 13.13 (Nenciu)
Let λm(k) be an analytic family of simple eigenvalues of H(k) that does not
intersect (as a family) other eigenvalues H(k).

Therefore for small values of Im k the fiber bundle Λak is analytically
trivial. There exists therefore a complete orthonormal system of normalized
Wannier functions wm(x)which decay exponentially and such that for all γ ∈
Γ the functions wm,γ ≡ wm(x− γ) and wm(x) are mutually orthogonal.

♦
The theorem, with the same proof, holds for more general self-adjoint

strictly elliptic operators with real periodic coefficients (this excludes, e.g. the
presence of a magnetic field.

Remark that, if the coefficients are real, if φλ(k, x) is an eigenfunction
H to the (real) eigenvalue λ with quasi-momentum k then φ̄λ(k, x) is an
eigenfunction of H to the same eigenvalue and with quasi-momentum −k
(this corresponds to invariance under time-reversal).
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Consider next the case m > 1, i.e. there is a collection S of m bands that
is separated from the rest of the spectrum but there exists no separated sub-
band . The entire Hilbert space decomposes in the direct sum HS⊕H⊥S where
HS is the union of the subspaces that correspond to bands in S.

A function ψ ∈ HS corresponds, under the Bloch-Floquet transformation,
to a family of functions, parametrized by k ∈ B, which for each value of k
belong to the spectral subspace HS,k of the Floquet operator corresponding
S. Correspondingly we define generalized Wannier function a function in Rd

which can be represented as

w(x) =
1

vol(Γ ∗)

∫
Γ∗
φ(k, x)dk (4.79)

where φ(k, .) ∈ HkS .
The extension of the theorem of Nenciu to the case m > 1 presents new

difficulties. It seems natural to consider instead of the Bloch functions (or
their orthogonal projectors) the projection operators PS(k) on the subspace
associate to the collection S

PS(k) =
1

2πi

∫
Ck

(ζI −Hk)−1dζ (4.80)

where for each value of k ,Ck is a close path that encircles the eigenvalues
which belong to S. In equation (80) we can now extend k to a small complex
neighborhood in Cd. As in the case of separated bands, we can now construct
the fiber bundle (of dimension m) on a small complex neighborhood Ωa of Rd

ΛS = ∪z∈ΩaPS(z) (4.81)

We may ask whether there exists a family of N generalized Wannier func-
tions wj , j = 1, ..N, with exponential decay which together with their trans-
lates by Γ form a complete orthonormal system in HS .
Theorem 13.14 [1]
Let the band be composed of N subspaces.

Necessary and sufficient condition for the existence of a family of N gen-
eralized Wannier functions that together with their translates under Γ form a
complete orthonormal in HS is that the fiber bundle ΛS be topologically trivial.

♦
It is easy to prove that the condition is sufficient because then it is easy

to prove that triviality implies the existence of a family of m generalized
Wannier functions wn(x) which, together with their translates, for a complete
orthonormal system and satisfy∑

γ∈Γ
|wn|L2(W+γ) <∞ (4.82)

In case the fiber bundle is not trivial, N such Wannier functions cannot
exist. P. Kuchment [1] has shown that if N is the number of bands contained
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in S there exists M > N such and M Wannier functions with exponential
decay which, together with their translates under Γ are a complete (but not
orthonormal) system of functions in HS (their linear span is dense in KS .

This is due to a theorem of Whitney, according to which it is always
possible to provide an analytic immersion of a manifold of dimension N in
RM , irrespectively of its topological degree, provided on chooses M sufficiently
large.
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5

Lecture 5
Connection with the properties of a crystal.
Born-Oppenheimer approximation. Edge states
and role of topology

We return now to the problem of the connection of the theory of Bloch-Floquet
with the properties of a finite, very large crystal. We take up again, form a
slightly different viewpoint , the problem of mathematical formalization of
problems in Solid State Physics.

Consider a model of crystal in the frame of the approximations we have
made in Lecture 4. This model is a one-electron model because we regard the
electrons as non-interacting with each other. In the limit of an infinite crystal
the atomic lattice fills R3 and therefore the number of electrons in the system
is infinite.

It is convenient to introduce the density of states and keep into account
that the electrons satisfy the Fermi-Dirac statistics. This has lead to the def-
inition of the Fermi surface.

Let B be the Brillouin zone and for k ∈ B denote by En(k) the eigenvalues
of Hk in increasing order.

The integrated density of states ρ is defined by

µ(E) ≡ ρ(−∞, E] = (2ν(B)−1
∑
n

ν({k ∈ K, : En(k) ≤ E}) (5.1)

where ν is Lebesgue measure. Since limn→∞En(k) = ∞ uniformly in B one
has ρ((−∞, E]) < ∞ and ρ is absolutely continuous with respect to ν. We
shall call density of states the Radon-Nikodym derivative dρ

dE .
In nature the system to be described is a finite-size macroscopic crystal.

Since one is interested in properties that depend little on the specific size, the
role of the boundary is usually considered negligible. We shall see later the
role that can assume the boundary.

As we have seen in the preceding Lecture, if boundary properties are ne-
glected it is convenient to study a model in which the crystal is represented as
an infinite lattice. The mathematical treatment of this approximation requires
control of the limiting process.

Let W be the Wigner-Satz cell and let Wm, m ∈ Z be the cell of volume
m3ν(W) which is obtained by dilating by a factor m the linear dimension
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(we consider a three-dimensional solid). Let Hm be the operator −∆P +V in
L2(Wm) and let Pm be the spectral family of Hm. Define

ρm(−∞, E]) = 2
dimPm(−∞, E]

m3
(5.2)

The factor 2 keeps track of the fact that the electron has spin 1
2 but the

hamiltonian has no spin-orbit coupling term, therefore all level are doubly
degenerate.

The following theorem relates in special cases the density of states relative
to the Hamiltonians Hk with a density of states for the infinite system. Notice
the strong similarity with the procedures used in defining the thermodynamic
limit

Theorem 5.1
limm→∞ρm = ρ

♦
Outline of the proof
The main point consists in proving that each function on Wm with peri-

odic boundary condition when restricted to the elementary cells contained in
Wm defines m3 functions on the single cells with boundary conditions that
prescribe a phase difference multiple of ei

2π
m .

If Γ ≡
∑3
i=1 tiαi, 0 ≤ ti ≤ 1 in this decomposition of the Hilbert space

the hamiltonian Hm takes the form

Hm =
m−1∑

β1,β2,β3=0

H β1
m α1+

β2
m α2+

β3
m α3

(5.3)

where we denoted by H(k) the fibers of the operator H that we have con-
structed in the finite volume case. Therefore

ρm(−∞, E] =
2
m3

No{n : βi ∈ {0, 1, ...m− 1} : En =
∑
j

βj , αj)
m

≤ E}

(5.4)
Since the function E(k) is continuous this expression converges to ρ(∞, E]

when m→∞.
♥

In this macroscopic formulation when the crystal is in equilibrium a zero
temperature the Fermi level E(F ) is the maximum value of the energy level
E(k) such that if E > E(F ) then ρ(E) = 0.

Correspondingly the Fermi surface is the collection of k in the Brillouin
zone such that E(k) = E(F ).

In this description a crystal is regarded as an insulating material if the
Fermi level is placed in between two occupied bands and is interpreted as a
conducting material if the Fermi level lies inside a band (called conducting
band).



5.1 Crystal in a magnetic field 125

This interpretation fits the experimental data, but at present there are
suggestions (3) that its microscopic justification resides in the structure of
the eigenfunctions at the Fermi level and of their deformation in presence of
an external electric field (this deformation can be calculated to lowest order
in perturbation theory).

The corresponding structure has been studied in some detail by W.Kohn
[1 ]. More recent models and interpretations are discussed e.g. in [2] [3] [4].
The latter Authors attribute electric polarization and electric conduction to
the different structure of the ground state eigenfunctions for the insulating
and the conducting phases.

In the insulating case more states are available for the decomposition in
Bloch waves, and this gives the polarization. The deformation produced by
the electric field is in this case localized in a neighborhood of the boundary
while in the conducting case it is extended to the bulk of the material. In
the conducting case the modification gives rise to the flow of the electrical
current.

Analytically this is due to the fact that the localization tensor ( the mean
value in the ground state of the operator xkxh) diverges in the infinite volume
limit in the conducting case while it is bounded in the insulating case.

A similar analysis, based on the different structure of Wannier functions
can be done for electric polarizability and attempts have been made to study of
orbital magnetization in the insulating case (see e.g. [7]). This very interesting
analysis has not been developed yet from a mathematical point of view.

5.1 Crystal in a magnetic field

Consider now the case in which the crystal is placed in an external magnetic
field. Consider first the case in which the magnetic field M is constant. Under
the assumption that the interaction among electrons be negligible, the motion
of an electron in a crystal lattice Γ ∈ R3 is given by the Hamiltonian, in units
h̄ = 2m = e

2 = 1

H0 = (−i∇x +M × x)2 + V (x) x ∈ R3 (5.5)

where V (x) is a real γ-periodic potential. We shall always assume that V be
regular (e.g. of class C∞).

Denote by e1, e2 e3 the generating base of the lattice Γ and by {e∗i } the
dual basis (which generates the Brillouin cell Ω). Therefore (ei, e∗j ) = 2πδi,j .
The operator H0 is self-adjoint and commutes with the magnetic translations
Tγ defined by

(Tf )(x) = ei(M∧x,γ)f(x− γ) (5.6)

We shall assume for each choice of i, j (M.ej ∧ ei) ∈ 4π Z (the magnetic
flux across every face of the lattice is a multiple of the identity). Under this
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assumption G ≡ {Tγ , γ ∈ Γ} is an abelian group and we can reduce H0 over
the characters of G setting

Dk ≡ {φ ∈ H2
loc(R

3) , Tγ φ = e−i(k,γ), γ ∈ Γ k ∈ G∗} (5.7)

We can now use the decomposition of L2(R3) as direct integral over G∗.
It is easy to see that the operator H0(k) in this decomposition is self-adjoint
and has compact resolvent.

Denote E1(k) ≤ E2(k) ≤ .. its eigenvalues. The spectrum of H0 is therefore

∪k∈G∗ ∪∞m=1 Em(k) (5.8)

Remark that for every m one has

γ∗ ∈ G∗ → Em(k + γ∗) = Em(k) (5.9)

It follows from regular perturbation theory that Em(k) is a continuous
function of k which can be continued to a function analytic in a neighborhood
of those k for which

Em−1(k) < Em(k) < Em+1(k) (5.10)

The domain spanned by Em(k) when k ∈ G∗ is the mth magnetic band. In
what follows it will be convenient to consider on each fiber instead of H0(k)
the operator

H ′0(k) = e−ikx H0(k) eikx = (−i∇x +M ∧ x+ k)2 (5.11)

(M is the constant magnetic field) with domain

D = {φ ∈ H2
loc(R

3), Tγ φ = φ, γ ∈ Γ} (5.12)

We shall regard D as a subspace of L2(R3).

5.2 Slowly varying electric field

Consider now the case in which to the crystal in the field B is applied also an
electric field W varying slowly in space. The hamiltonian Hε of the system is

Hε = (−i∇+ µ× x+A(ε x)2 + V (x) +W (ε x) (5.13)

where W, A1, A2 A3 are smooth functions. The standard method to treat
slowly varying fields is to introduce a new independent variable y. At the end
we shall put y = ε x. Accordingly, introduce a new Hamitonian

H̃ε(x, y) = (−i∇x +M ∧ x+A(y)2 + V (x)− iε∇y +W (y) (5.14)
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To a function φ(x, y) on R3×R3 we associate the function w(x) ≡ φ(x, εx).
We shall use the adiabatic method based on the following identity

(H̃ε) φ(x, εx) = (Hεw)(x) (5.15)

This identity permits to solve the Schroedinger equation for Hε uniformly in
ε by solving the equation for H̃ε uniformly in y, ε.

We shall make the following assumptions:
i) For each value of k The magnetic band we consider is is isolated and remains
isolated after application of the electric field.
ii) For each γ∗ ∈ Γ ∗ one has

φ(x; k + γ∗) = ei(γ
∗,x)φ(x, k) (5.16)

iii) The flux of the magnetic field M across any of the faces of the elementary
cell is an integer multiple of 4π.

These hypotheses have the following consequences
- Under hypothesis i) we can choose the eigenfunctions φm(x, k) associate to
the eigenvalue Em(k) to be an analytic functions of k with values in D.
- Under hypothesis ii) the fiber bundle of complex dimension 1 on R3/Γ given
by the Bloch function φ(x, k) is trivial.

Remark that in general

φ(x, k + γ∗) = ei[γ
∗+x+θ(γ∗,k)]φ(x, k) (5.17)

where θ(γ∗, k) is a real valued function given by the structure of the fiber
bundle. Since the gauge group is abelian

θ(k,
∑
i

mie
∗
i ) =

∑
miθ(k, e∗i ) ≡ c2 (5.18)

where the constant c2 represents the second Chern class of the fiber bundle.
As we have seen in the discussion of the magnetic Weyl algebra in the first

Volume of these Lecture Notes, the presence of the magnetic field is equivalent
to a modification of the symplectic two-form. The appearance of c2 in (18) is
therefore natural.

The role of assumption iii) is to set c2 = 0 (the bundle is trivial). If this
term does not vanish the gradient with respect to k of the function φ(x, k) is
not uniformly bounded in the elementary cell and the regularity assumptions
we make in the multi- scale method are not satisfied.

We remark that condition iii) can be replaced by
iv) The magnetic flux across any face of the elementary cell is a rational
multiple of 4π.

To see this, recall that the analysis we do refer to the limit in which the
system covers the entire lattice, we can consider an elementary cell which is a
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multiple of the Wigner-Satz cell by an arbitrary factor N. If assumption iv)
is satisfied, we can choose N in such a way that the magnetic flux across the
faces of the new cell satisfies iii).

Under assumptions i), ii)), iii) the multi-scale method can be used to pro-
vide an expansion of the hamiltonian in an asymptotic series in ε.

Theorem 5.2
For each positive integer N there exist operators PN : L2(R3)→ L2(W×R3)
that are approximately isometric (i.e. P ∗N PN = I + O(εN+1)) and can be
written as PN = F0 + εF1 + ...+ εNFN where Fn is bounded for every n., and
exists an effective Hamiltonian

HN
eff = h0 + εh1 + ε2h2 + ..+ εNhN (5.19)

such that, for each ux ∈ S(R3); x ∈ Ω

H̃ε(PN (x, y, εDy, ε)ux − PN (x, y, εDyε)HN
eff (y,Dy)ux(y) = O(εN+1) (5.20)

Moreover if we set ΠN = PN P ∗N the operator ΠN is an approximate projec-
tion Π∗N = ΠN , Π2

N = ΠN +O(εN+1) and for φ ∈ S,

ΠN H̃εφ = H̃εΠNφ+O(εN+1) (5.21)

♦
Remark that the effective Hamiltonian does not depend on x ∈ W (though

the operators PN depend on x). The wave function of the electron is φ(x) =
ux(εx). To order zero

h0 = Em(k +A(y)) +W (y) (5.22)

Equation (22) is called Peierls substitution. The term Em(k+A(y)) which
substitutes the kinetic energy is a pseudo-differental operator (it is not the
Fourier transform of a polynomial).

Outline of the proof of Theorem 6.1
Define as before

H̃ε(k) ≡ e−ik.xH̃εe
ik.x) = (i∇x − iε∇y +M × x+A(y) + k)2 + V (x) +W (y)

(5.23)
and remark that

H̃εPN (x, y, εDy, ε)u = (
1

2πε
)3

∫
ei

(k,(y−z))
ε H̃ε(k)PN (x, y, k, ε)u(z)dk (5.24)

Expanding in powers of ε one obtains

H̃ε(k) = H̃0(k)+̃εH1(k) + ε2H̃2(k) + ... (5.25)

H̃0(k) = H0(k +A(y)) +W (y) H̃2(k) = −∆y (5.26)
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H̃1(k) = −2i[−i∇x +M ∧ x+ k +A(y)].∂y − i∂y.A(y) (5.27)

The proof of (21) and (22) is now completed by iteration and this procedure
provides also the explicit determination of the symbols F0, F1, ... and of the
Hamiltonians h0, h1 . . . In this process one uses the Fredholm alternative; the
arbitrary term in this process is chosen so as to satisfy (22).

We only give explicitly the first step. Set

h0(y, k) = Em(k +A(y)) +W (y), F0(x, y, k) = φ(x, k +A(y)) (5.28)

Keeping into account the terms up to first order in ε we have

(H̃0(k)− h0)F1 = −i∂F0

∂k
.
∂h0

∂y
− (H̃1(k)− h1)F0 (5.29)

For the Fredholm alternative, to obtain solutions a necessary condition
is that the right hand term of equation (27) be orthogonal to the kernel of
H̃0(k)− h0.

This leads to a unique choice for h1(y, k) and gives F1(x, y, k) modulo
addition of an element of the kernel. The result is

h1(y, k) = (F0(., y, k), i
∂F0

∂k

∂h0

∂k
(y, k)) + H̃1(k)F0(., y, k)) (5.30)

F1(x, y, k) = (H̃0(k)−h0)−1[−i∂F0

∂k

∂h0

∂k
+h1F0−H̃1(k)F0]+a1(y, k)F0 (5.31)

where a1(y, k) is an arbitrary function.
This function is then fixed by the requirement ΠN Π∗N = I + O(εN+1).

Here we give only the expression for h1

h1(y, k) =
1
2i

∂

∂y
[
∂Em(k +A(y)

∂k
]−(L.∇×A(y)−i < φ(., k+A(y), φ̇(., k+A(y) >

(5.32)
where E1(k) ≡< F0(., y, k), H̃1(k)F0(., y, k) >

L = Im[< M(y, k)
∂φ

∂k2
,
∂φ

∂k3
>< M(y, k)

∂φ

∂k3
,
∂φ

∂k1
>< M(y, k)

∂φ

∂k1
,
∂φ

∂k2
>]

(5.33)

M(y, k) = H̃0(k)−h0(y, k) φ̇(x, k+A(y)) =
∂φ(x, k +A(y)

∂y
.ẏ+

∂φ(x, k +A(y)
∂k

k̇

(5.34)

ẏ =
∂(E(m)(k +A(y)) +W (y)

∂k
, k̇ = −∂[Em(k +A(y) +W (y)]

∂y
(5.35)

The term i < φ(., k+A(y), φ̇(., k+A(y) > is precisely the term that gives
rise to the geometrical Berry phase, which we have briefly treated in the first
Volume of these Lecture Notes.

♥
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5.3 Heisenberg representation

It is interesting this result in the Heisenberg representation. For an observable
B(y, ε Dy) the evolution is given by

iε
dB

ds
= [Heff , B] (5.36)

(the coefficient ε originates in the difference in time scale typical of the adia-
batic approximation). The symbol b(y, ξ) of the operator B in its dependence
on time follows the trajectories of the classical system

ẏ =
∂Heff

∂ξ
, ξ̇ =

∂Heff

∂y
, (5.37)

with y ∈ R3, ξ ∈ Ω. Remark that one can still modify the operators ΠN

with the addition of terms with norm O(εN+1) in such a way as to obtain
a projection operator πN (since the operators are bounded the formal series
converges for ε small enough).

In the same way the formal series that defines HN can be modifies so that
for each value of k the group generated by ĤN

eff leaves ΠN invariant; the
corresponding subspace is therefore an invariant subspace.

As always in the theory of regular perturbations the projection operator is
modified to first order but the energy is only modified to order two. Therefore
h1 has the form given in equation (32).

A detailed analysis of perturbation theory by small periodic electric and
magnetic fields can be found in Nenciu [8]. The adiabatic method can also be
used in case the small external electromagnetic varies slowly in time, e.g. is
time-periodic with a very long period.

5.4 Pseudifferential point of view

For a presentation of the adiabatic and multi-scale methods, with particular
reference to the Schroedinger equation in periodic potentials and in presence
of weak external electromagnetic fields, also in the case of slow variation both
in space and in time, a very useful reference is the book by S.Teufel [9].

The latter Author stresses the advantage of approaching adiabatic per-
turbation theory through the Weyl formalism. This procedure is useful in the
study of the dynamics of the atoms in crystals but also in the study of a sys-
tem composed of N nuclei of mass mN with charge Z and of NZ electrons of
mass me. In the latter case one chooses the ratio ε ≡ me

mN
as small parameter

in a multi-scale approach.
Recall that to order zero in ε the nuclei are regarded as fixed centers of

force which determine the dynamics of the electrons. This (very fast) dynamics
gives rise to a mean potential of strength proportional to ε which acts on the
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nuclei. One then studies to first order in ε the dynamics of the nuclei in this
mean field ( Born-Oppenheimer approximation).

A multiscale approach can be used to study the motion of the electrons
in the crystal acted upon by an electromagnetic field which varies slowly in
space and time as compared to the linear size of the crystal cell (of order h̄)
and to the momentum of the electrons in units of h̄ ; the parameter ε has the
role of Planck’s constant in the semiclassical limit.

If one neglects the interaction between electrons, the Hilbert space of the
system decomposes as tensor product of a Hilbert space for the slow degrees
of freedom and one for the fast (external) degrees of freedom.

H = L2(R3)⊗Hfast (5.38)

When the electron in a crystal are subject to an external electromagnetic
field one can use the magnetic Weyl algebra (Volume I); in this case and the
parameter ε characterizes the speed of variation of the external field. In this
approach the hamiltonian Opw(H(z, ε)) generating the time evolution of the
states is given by the Weyl quantization of a semiclassical symbol i.e.

OpwH(z; ε) '
∞∑
k=0

εjOpwHj(z), z ∈ C3 (5.39)

with values in self-adjoint operators on Hf . The principal symbol Opw(H0(z)
describes the decoupled dynamics and therefore contains information on the
structure of the energy band.

For this system it is generally assumed that in the spectrum there is an
isolated band that remains isolated for small values of ε. The Hamiltonian in
this smaller space takes a simpler form under a suitable change of variables
that can be chosen in such a way that the resulting error can be made of order
εN for any N .

A crucial point in this procedure is to be able to express the projection
operator into a band, or a collection of bands, as a pseudo-differential opera-
tor. Expressing the projection as a power series in the parameter ε by Weyl
quantization one obtains a bounded operator that is a quasi-projection i.e. it
satisfies

Opw(π2) = Opw(π)+0(ε∞), Opw(π∗) = Opw(π), [Opw(H), Opw(π)] = 0(ε∞)

where the O(ε)∞ terms are pseudo-differential operators of suitable class [9].
Notice that the estimate is generally not true in operator norm. Using the
definition of the projection on bands as a Riemann integral of the resolvent
on a well chosen path in the complex plane it possible then to construct a
true projection operator Π that can be expressed as a sequence of pseudo-
differential operators wit an error 0(ε∞).

One can further simplify the problem by mapping the Hilbert space of
the band into a reference Hilbert space. The resulting hamiltonian Opw(Hε)
admits an expansion in powers of ε and to any order
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Opw(Hε) =
∑
n

Opw(Hn)εn (5.40)

and each Opw(Hn) is a pseudofferential operator. The principal symbol is the
band eigenvalue E(q, p). This gives the transcription of Peierls substitution in
the Weyl formalism.

The next orders, in particular H1 carry relevant information about the
polarizability and the conductivity of the crystal. We remark that although
the formulation of the Hamiltonin as pseudo-differential operator is optional,
it simplifies the analysis of the operators Hn.

The operators Hn are essentially self-adjoint on a natural domain but in
general unbounded. In order to give the estimates described above it is some-
times convenient to consider them as bounded operators between different
Hilbert spaces (for example d

dx2 is bounded if regarded as an application from
H2(R) to L2(R)).

We do not enter here in the details on how this generalization can be
constructed. The difficult point is related mainly to the need, when solving by
iteration the corresponding dynamics, to have a control the domains uniformly
in the parameter ε. For example one makes use of a result analogous to the
Theorem of Calderon-Vaillantcourt. If there exists a constant bn < ∞ such
that

a ∈ C2n+1(R2d,B(K)) supx‖ax‖ = bd (5.41)

then Opw(a) ∈ B(H) with the bound

‖Opw(a)‖B(H ≤ bdsup|α|+|β|≤2n+1supq,p∈Rn‖(∂αq ∂βp a)(q, p)‖B(K) = bd‖a‖C2n+1
b

(5.42)
In the case of strong magnetic field it is convenient to make use of the mag-

netic Weyl calculus which we have briefly described in Volume I of the Lecture
Notes. This calculus is particularly useful if the magnetic field is constant plus
a small perturbation so that the Landau gauge is a good approximation.

Denote by Opw,M the pseudo-differential operators associated to the mag-
netic Weyl system. They are defined using the unitary group associated to the
canonical variables in the minimal coupling formalism for the vector potential
A (for this reason they are particularly useful when the magnetic field is large
and is approximatively constant). One has

Opw,A(F )
∫
ΛAOpw(F ), ΛA(x, z) = e

−i
∫

[
x,z]

A (5.43)

where [x, z] is the oriented segment for x to z in configuration space.
For the magnetic pseudo-differential operators one has the same results as

for for the usual pseudo-differential operators; in particular a magnetic version
of the Calderon-Vaillantcourt theorem holds and conditions to be bounded or
in a specific Schatten class can be found. We don’t develop here this very
interesting line of research.
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5.5 Topology induced by a magnetic field

We shall give now a brief account of the way topology enters the description
of the states of an electron in a periodic two-dimensional potential V defined
in a plane Π in presence of a uniform magnetic field B perpendicular to Π.
The stationary Schroedinger equation is

Hφ ≡ (
1

2m
(p− eA)2 + U(x))φ = Eφ p = − 1

h̄
∇ (5.44)

where A is a vector potential such that rotA = B.
Consider for simplicity the case in which the two-dimenional lattice defined

by the potential V is generated by two vectors a, b ∈ R2 ( Bravais lattice Λ)
and consider a Bravais lattice vector λ = na + mb, n,m ∈ Z. Define a
magnetic translation operator [8].

Tλ(B) = Tλe
−i e2h̄ (λ∧B).x x ∈ R2 (5.45)

where Tλ is the operator of translation by the Bravais lattice vector λ, i.e.
Tλ = e h̄λ.∇.

Using the symmetric gauge ( A = B ∧ x ) one has TλH = HTλ; therefore
one can simultaneously diagonalize H and the operator of translation along
any Bravais vector. One has

TλTσ = e2πiΦTσTλ (5.46)

where Φ = eB
h̄ ab is the magnetic flux across the unit cell.

When Φ is rational (say p
q where p and q are relative prime integers with

p < q) consider a new Bravais lattice Λ′ with R′ = n(qa) + b (with a new
elementary cell, the magnetic unit cell.

One can now diagonalize simultaneously the magnetic translations T̂ along
the new lattice and the Hamiltonian. It is easy to see that the eigenvalues of
T̂qa and of T̂b are respectively ekiqa and eik2b where ki are quasi-momenta
with range 0 ≤ k1 ≤ 2π

qa and with eigenfunctions which can be written (in
Bloch form)

ψk1,k2(x, y) = ei(k1x+k2y)uαk1,k2
(x, y) (5.47)

Here α is a band index and the uαk1,k2
(x, y) have the property

uαk1,k2
(x+ qa, y) = e−i

πpy
b uαk1,k2

(x, y) uαk1,k2
(x, y + b) = eiπ

px
qa uαk1,k2

(x, y)
(5.48)

(the eigenvalues E(k1, k2) vary continuously and the set of values that they
take when k1, k2 vary in a magnetic Brillouin zone for a magnetic sub-band).

Since by a gauge transformation A→ A+∇φ one has ψ → e−i
eψ
h̄ only the

change of phase of the wave function after a complete contour of the magnetic
unit cell is meaningful. This change of phase in 2πp. Writing
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uαk1,k2
(x, y) = |uαk1,k2

(x, y)|eiθk1,k2 (x,y) (5.49)

one has

p =
1

2π

∫
dl
dθk1,k2(x, y)

dl
(5.50)

where the integral is over a clock-wise contour of the unit magnetic cell. The
number p is a topological property of the Bloch wave function

There is another topological property of the wave-functions in the magnetic
(Brillouin) zone. It is related to the Hall conductance, but we shall not treat
this connection here.

We have considered the Bloch wave uk1,k2(x, y), but the waves are defined
by states only modulo a phase. Therefore it is convenient to consider a prin-
cipal U(1)-bundle over the magnetic zone which has the topology of a torus
T 2.

A principal U(1) bundle over T 2 is defined by the transition functions
between overlapping patches that are topologically trivial (contractible). The
two dimensional torus can be covered by four such patches, corresponding e.g.
to neighborhoods Wj , j = 1, ...4 of the four quadrants in the representation
of the torus as a square (neglecting identifications at the boundary).

In each patch the Bloch functions can be chosen to be continuous (in fact
C∞). We assume that the Bloch functions do not vanish in the overlap regions
(this can always be achieved, since the zeroes are isolated points). The prin-
cipal U(1) bundle is trivial (isomorphic to Wj ×U(1)) in each neighborhood.

Since the Wj are contractible, it is possible to choose a phase convention
such that

eiθj(k1,k2) ≡ uk1,k2(x, y)
|uk1,k2(x, y)|

(5.51)

is smooth in each Wj (except possibly in the zeroes of uk1,k2(x, y)) . But in
general it is not possible to have global continuity for θj , i.e. a global phase
convention that holds in all Wj . We will have a transition function Ui,j in the
overlap Wj ∩Wj

Ui,j ≡ ei(θj(k1,k2)−θi(k1,k2) ≡ eiFj,i(k1,k2) (5.52)

The principal bundle in completely characterized by these transition func-
tions. In order to connect with differential forms, recall that one can write the
connection one-form ω (which gives the transition functions) as

ω = g−1Ag+g−1dg = A+idξ, A ≡ aµ(k1, k2)dkµ a(k1, k2) = (uk1,k2 ,
∂

∂kµ
uk1,k2)

(5.53)
with g ≡ eiξ ∈ U(1).

It easy to prove that this choice gives a connection form. Indeed ω is
invariant under the gauge transformation

u′k1,k2
(x, y) = eif(k1,k2)uk1,k2(x, y) (5.54)
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where f(k1, k2) is an arbitrary smooth function. The curvature of this con-
nection is

F = dA =
∂aµ
∂kν

dkν ∧ dkµ (5.55)

By definition i
2πF is the first Chern form and its integral over T 2 is called

first Chern number

c1 =
i

2π

∫
T 2
F =

i

2π

∫
T 2

∂aµ
∂dkν

dkν ∧ dkµ (5.56)

This number is always an integer and depends only on the topology of
the principal bundle that we have constructed from the Bloch vectors in each
patch. It represents the obstruction to the construction of Bloch vectors which
are continuous (in fact C∞) over T 2.

5.6 Algebraic-geometric formulation

We have so far considered the formulation of the geometrical aspects of phase
in the Quantum Mechanics for Solid State Physics (theory of cristalline bod-
ies) form the point of view of Schreodinger’s Quantum Mechanics. This de-
scription, as remarked before, makes use of the visual features of the wave
function and therefore describes the different phases as geometrical objects.

We have mentioned several times that the wave function (rather its modulo
square) represents a probability density and locally the phase has no physical
reality. We have however seen, when we have considered the Berry phase that
the modification to which is subjected the phase when the systems is periodic
and depends on a cyclic parameter (maybe time) are expressible by means of
observable quantities.

This berryology is at the base of most researches of different phases of mat-
ter (the meaning of phase is not the same as in the case of the wave functions).
From the analytic point of view that we have followed so far these researches
are aimed to analytic (and geometric) properties of the Bloch bundle.

For this purpose they employ methods of classical geometry, mainly con-
nections and curvature, that rely on the visual aspects of the wave function.
The geometric complexity of this visual bundle determine physical proper-
ties of the material considered, e.g. conductivity, polarizability (electric and
magnetic).

This analysis, by its very structure, depends on the regularity of the crystal
and regards the crystal as infinitely extended.

In case some (infinite) edges are present, it relies on the sharpness of the
edges and their periodicity in the transversal direction so the the edge currents
are defined within Bloch theory.

Slight deformations of this structure can be studied, relying on smooth
perturbation theory, but major perturbations are outside the scope of this
theory.
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Since there are two formulations of Quantum Mechanics, one may wonder
how the algebraic (Heisenberg) formulation is able to attack these problems.
The resulting theory should have the same relation with the topological aspect
of Bloch theory as modular theory has with K.M.S. (Gibb’s) theory.

The algebraic approach to Solid State theory was initiated by J.Bellissard
[10] and it has not been fully developed yet. It covers partially random struc-
ture, e.g. the relevant case of crystal with random defects.

The observables are described by a C∗ algebra on which there is an action
of a continuous group (or grupoid) taking the place of lattice translations.

The group acts ergodically and therefore there is an invariant regular mea-
sure. Other groups of transformations reflect other symmetries and properties
of the system, such as invariance under space and time reflection, gauge in-
variance if the material is electrically charged or has an intrinsic magnetism.

One can consider also deformations of the algebraic structure (correspond-
ing in case of a Weyl system to deformation of the Weyl structure) and the
corresponding Piezoelectricity (electric effect due to deformation). Currents
are defined relative to the continuous group.

The algebraic-geometrical structure that takes the place of the Chern num-
ber and of other topological quantum numbers (topological indices) is the
non-commutative index [12][13] and Kasparov classes and spectral triples in
algebraic topology [14][15]. As a consequence these systems have symmetries
and invariants, typically Z2 invariants, that are protected by these symmetries.

They are protected because one cannot pass from one value to another
without violating the symmetry. In particular, in the models in which the
particles are not interaction among themselves (but only with an external
field) when there is a coupling between the spin and the angular momentum
and the sample is two-dimensional an occupies a half-space, there is a {0, 1}
invariant which is interpreted as a current flowing along the edge of the sample
in the up or down direction.

The two points of view, that of Schrödinger with topological invariants
seen through the geometrical properties of the wave function and the alge-
braic (Heisenberg) in which the invariants are seen through the algebraic-
geometrical properties of the representation of the observable, are connected
through the Atiyah-Bott index theorem [16]. We will not expand here on the
algebro-geometrical point of view, and refer to [14] for a clear exposition.

5.7 Determination of a topological index

In the final part of this Lecture we treat concrete examples of determination
of a topological index. For the first we follow [21] using a model hamiltonian
suggested by Kane and Mele defined on a honeycomb lattice.

The substitution of the Scrhrödinger equation with a matrix equation on
a lattice (in the present case a honeycomb lattice) is an instance of a strategy,
frequently used, to substitute a P.D.E. problem with a problem with an O.D.E.
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one ( tight-binding model). The matrix equation is an integrated form of the
Schrödinger equation.

The matrix elements ( hopping terms) should be considered as a result of
two reductions: first the reduction of the system to the border of the cell (it is
the topology of the wave function at the border that determines the properties
of the system) and then substitution of the Schrödinger equation on the border
with is integrated version the hopping matrix elements at each vertex. This is
legitimate since the topological analysis should be model independent.

Our purpose is to relate the Chern number of the system to the Bott-
Singer index of the projection onto the Fermi sea and to the magnetic flux
operator (a non-commutative index according to [13][17].

Consider a tight-binding model of spin 1
2 fermions on the two-dimensional

square lattice Z2. We denote by ± the spin indices. The wave function φ
is an element of l2(Z2,±) and the action of the Hamiltonian H is given by
(α, β = ±)

(Hφ)α(n) =
∑

n ∈ Z2
∑
β∈±

tα.βn,mφ
m
β (5.57)

Introduce an antiunitary time-reversal map Θ under which

φΘ = UΘφ̄ (5.58)

where UΘ is a unitary operator invariant under some finite (may be random)
translation of the lattice. We assume

Θ2φ = −φ (5.59)

Let A be an operator on l2(Z,±) odd under time reversal:

Θ(Aφ) = −AφΘ ∀φ ∈ l2(Z,±) (5.60)

Introduce another unitary operator Ua for a ∈ (Z2)∗ where Z∗ is the dual
lattice

(Uaφ)n,α=Ua(n)φ(n,α, Ua((u) =
u1 + iu2 − (a1 + ia2

|u1 + iu2 − (a1 + ia2)|
(5.61)

U is simultaneous rotation of the wave function on lattice and of the dual
lattice and therefore it does not chance the physical structure. We assume
now that the Fermi level EF lies in a spectral gap of the Hamiltonian H and
let PF be the projection on energies below EF .

We restrict now transformation Ua to PF l2(Z,±). We choose A to be

A = PF − UaPfU∗a (5.62)

The operator A is the difference of two projections. One can verify that A3 is
of trace class and the relative index is
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Ind(PF , UaPFU∗a ) = dimKer(A− 1)− dimKer(A+ 1) = TrA3 (5.63)

Recall that UΘ is invariant under some finite (may be random) translation
in the lattice. The index written above is therefore finite but depends on these
finite translations.

We define the Z2 index for the Hamiltonian H as [19]

Ind2(PF , U − aPFU∗a ) = dimker(PF − UaPFU∗a − 1) mod2 (5.64)

Consider a lattice Hamiltonian H which is odd under time reversal sym-
metry.

Lemma 5.3
The Z2 index so defined is robust under any perturbation of H (in partic-

ular under any modification of the choice of the finite translations described
above), provided it has the same odd time-reversal symmetry as the unper-
turbed Hamiltonian.

♦

The proof is a standard supersymmetry argument. Write

B = 1− Pf − UaPFU∗a (5.65)

and then
AB +BA = 0, A2 +B2 = 1 (5.66)

Note that the spectrum of A is discrete with finite multiplicity; we prove
that the non-zero eigenvalues come in pairs related by the operator B. Let
Aφλ = λφλ λ ∈ (0, 1] One has

ABφλ = −BAφλ = −λφλ (5.67)

Moreover
B2φλ = (1−A2)φλ = (1− λ2)φλ (5.68)

It follows that B is invertible on the subspace spanned by the eigenvalues in
(0, 1) and these eigenvalues come in pairs.

We remark now that the time-reversal transformation Θ shares with B
this property. Let Aφ = λφ, λ > 0. From the definition of the operator A one
has

Θ(PF − UaPFU∗a )φ = λφ (5.69)

Choose now that the unitary operator UΘ to satisfy

UΘUaU
∗
Θ = Ua (5.70)

These relations can be written

(PF − U∗aPFUa)φΘ = λφΘ (5.71)
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It follows
A(UaφΘ) = −λφΘ (5.72)

Lemma 5.4
Let φ be an eigenvector of A with eigenvalue 0 < λ < 1. Then

Ua(Bφ)Θ = B(UaφΘ) (5.73)

Proof
One has

Θ(Bφ) = (1− PF − U∗aPFUa)φΘ = U∗aBUaΦ
Θ (5.74)

Therefore in the localization regime

Ua(Bφ)Θ = B(UaφΘ) (5.75)

We now prove that the eigenvectors φ and Ua(Bφ)Θ are independent.

Lemma 5.5
Let φ be an eigenvector ofA with eigenvalue 0 < λ < 1 Then (φ,Ua(Bφ)Θ) =

0

Proof
Set ψ = Ua(Bφ)Θ.
One has

(Θψ,Θφ) = (φ,Ua(Bφ)Θ (5.76)

By the previous Lemma, and using Θ2φ = −φ

−(U∗aBφ,Θφ) = (φ,Ua(Bφ)Θ (5.77)

¿From this one derives
(φ,Ua(Bφ)Θ = 0 (5.78)

♥

It is now possible to prove that the Z2 index is invariant under pertur-
bations ∂H of H that are odd under the same time-reversal transformation
under which H is odd. Assume that the range of hopping of ∂H is finite and
that ‖∂H‖ <∞We assume that the Fermi level lies in the spectral gap of H.
Let H ′ = H + ∂H. Let

P ′F =
1

2πi

∮
dz

1
z −H ′

(5.79)

Consider the operator

A′ = P ′F − UaP ′FU∗a (5.80)

We have
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A′ −A = (P ′F − Pf )− Ua(P ′F − PF )U∗a (5.81)

and
P ′F − Pf =

1
2πi

∮
dz

1
z −H ′

∂H
1

z −H
(5.82)

The operator is continuous with respect to the norm of ∂H By the min-
max principle the non zero eigenvalues of A are continuous with respect to
the norm of the perturbation ∂H. Notice that the proof we have presented is
valid in the localization regime.

It can be proven that the same is true when the Fermi level lies in the
regime in which invariance of the Hamiltonian under finite (may be random)
translation holds. When one assumes only that the Fermi level lies in the local-
ization regime the result still holds but one must prove localization separately.
For this, one needs estimates on the resolvent 1

z−H z ∈ C −R.

5.8 Gauge transformation, relative index and Quantum
pumps

The algebraic analysis of the last part of the lecture has a counterpart in the
theory of quantum pumps, i.e. periodic structures that make one electron per
cycle pass over the Fermi level. One may say the in one cycle an index varies
by one unit.

The problem is again the determination of a relative index of two projec-
tions on infinite dimensional spaces, the projection operators on the Fermi
level of an infinitely extended crystal. We review briefly this issue [20].

Recall again that if P and Q are orthogonal such that PQ is compact, then
by definition the relative index is defined as follows

Ind(P,Q) ≡ dim(Ker(P −Q− I)− dim(Q− P − I) (5.83)

It is easy to verify

Ind(P,Q) = −Ind(Q,P ) = −Ind(P⊥, Q⊥) (5.84)

and that the index is invariant under unitary transformations. Moreover of
(P −Q)2n+1 is trace class for some integer n then

Ind(P.Q) = Tr(P −Q)2n+1 (5.85)

Indeed one verifies without difficulties that if (P −Q)2n+1 trace class then

Tr(P −Q)2n+1 = TR(P −Q)2n+3m∀m > 0 (5.86)

and (84) follows by taking m → ∞. If there exist a unitary U such that
Q = UPU∗ then

Ind(P,Q) = −Ind(PUP ) (5.87)



5.8 Gauge transformation, relative index and Quantum pumps 141

and for any three projection operators P Q R

Ind(P,Q) = Ind(P,R) + Ind(R,Q) (5.88)

Recall that the unitary U exists always in case P and Q are infinite di-
mensional projections (as in the case if they project onto the states below a
Fermi surface in an infinite-dimensional translation invariant system.

In [20] the unitary that relates the orthogonal projections P and Q is
associated to the (singular) gauge transformation which is obtained by pierc-
ing a two-dimensional quantum system with a flux tube carrying an integral
number of flux quanta ( Bohm-Aharanov effect) .

The unitary U is in this case a unitary multiplication of the wave function
by a phase corresponding to the number of flux quanta carried by the flux
tube.

This is called quantum pump because the change in phase is related to the
number of electrons passing in the tube while the system undergoes on cycle.
We will show that in order to have Ind(P.Q) 6= 0 time- reversal invariance
must be broken in the process.

To have a simple example, consider in R2 the map

Uα(z) =
zα

|z|α
z ∈ R2/[0,∞) Uα(z) = 1 z ∈ [0,∞) (5.89)

In this case the projection P has an integral kernel p(x, y) that satisfies

|p(x, y)| ≤ C

1 + dist(x, y)
(5.90)

This assumption is used in the general case and it is precisely the as-
sumption of this bound restricts in the previous system to the case in which
translation invariance of the Hamiltonian under finite (may be random) trans-
lation holds.

In the remaining part of this analysis we will assume that the following is
true for the trace class operator K: the kernel K(x, y) of K is jointly contin-
uous away form a finite set of point so that K(x, x) ∈ L1. is

Under this assumption TrK = K(x, x)dx. One can see that if P − Q is
trace-class, Q = UPU∗ in the previous example one has

Ind(P,Q) = Tr(P −Q) = 0 (5.91)

Therefore to obtain a non trivial result one must have

dimP = dimQ = +∞ (5.92)

In the Aharanov-Bohm example above, (P − Q)2 is trace class, Tr(P −
Q)3 ∈ Z and
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Ind(PUP ) =
∫
Ω

dxdydzp(x, y)p(y, z)p(z, x)(1− u(x)
u(y)

)(1− u(y)
u(z)

)(1− u(z)
u(x)

)

(5.93)
It can also be proved that the index is invariant under translations or

deformations of the provided one keeps the flux constant. Finally we notices
that Ind(PUP ) = 0 if P is time reversal invariant. Indeed since the index is
real, Ind(PUP ) is real and even under conjugation. On the other hand it is
odd under time-reversal.

To clarify the concept of charge transfer for the pair of projections P, Q
in [21] one considers a canonical interpolation (time dependent hamiltonian)

H(t) = (−i∇− φ(t))∇(argz)−A0)2 + V t ∈ [0, 1] (5.94)

where φ(t) interpolates smoothly between zero and one. Here ∇(argz) is re-
garded as a vector field in the plane. H(t) has a time-dependent domain and
therefore it is not equivalent to H. In addition to the magnetic field there
is an electric field, hence a charge experiences a Lorentz force and is pushed
radially ( Hall effect).

The force is quantized by the number of units of flux quanta ( quantum
Hall effect) [20].
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Lecture 6
Lie-Trotter Formula, Wiener Process,
Feynmann-Kac formula

We begin recalling the Lie-Trotter formula. Let A and B be N ×N matrices.
Lie’s formula for product of exponentials asserts that

eA+B = limn→∞(e
A
n e

B
n )n (6.1)

This formula can be easily verified expanding the exponentials in power
series. A more elegant proof is obtained substituting A with tA and B with tB
and noticing that the identity holds for t = 0 and the derivative with respect
to t of the two sides coincide.

The formula is attributed to S. Lie, who discussed it in the context of Lie
algebras; it had already used in implicit form by Euler in his treatment of the
symmetric top. The formula extends, with the same proof, for A and B closed
and bounded operators in a Hilbert space. We will see presently that it can
be extended without much difficulty to the case when A and B are selfadjoint
and the domain D(A+B) = D(A) ∩D(B).

Trotter has given an extension to the case in which A, B and the closure
of A+B all are generators of C0 semigroups. Here we consider two cases, in
increasing order of difficulty.

Theorem 6.1
Let A and B be self-adjoint operators on a Hilbert space H and suppose that
A+B is self-adjoint with dense domain D(A+B) = D(A) ∩D(B).

Then uniformly over compact sets,
i)

e−it(A+B) = s− limn→∞(e−i
tA
n e−i

tB
n )n t ∈ R (6.2)

Moreover if A and B are bounded below then, uniformly over compact sets in
R+,
ii)

e−t(A+B) = s− limn→∞[e−
tA
n e−

tB
n ]n t ∈ R+ (6.3)
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♦

Proof
We give a proof of i); the proof of ii) follows the same lines keeping into

account that for t ∈ R+ the operators e−tA, e−tB , e−t(A+B) are bounded
uniformly in t.

Since the operators e−itA and e−itB are bounded, it suffices to to prove (2)
on a dense set, which we choose to be D(A) ∩D(B). A simple computation
shows, for any s > 0 and φ ∈ H

1
s

(e−isAe−isB − I)φ =
1
s

(e−isA − I)φ+ e−isA
1
s

(e−isB − I)φ] (6.4)

If φ ∈ D(A) ∩D(B) the right hand side converges when s→ 0 to −i(A+
B)φ. Moreover

lims→0
1
s

(e−i(A+B)s − I)φ = −i(A+B)φ2 (6.5)

Therefore
1
s

(e−isAe−isB − e−is(A+B))φ→ 0 (6.6)

On the other hand one has

[e−iAt/ne−itB/n]n − e−it(A+B)φ =∑
k

.[e−iAt/ne−itB/n]k[e−iAt/ne−itB/n − e−it(A+B)/n]e−it(n−k−1)(A+B)/nφ

(6.7)
¿From this one derives

|[e−itA/n.e−itB/n]nφ− e−it(A+B)φ|2 ≤

|t| maxk=1,..(n−1).tn
−1|[e−itA/ne−itB/n−e−i tn (A+B)]φ((n−k−1)s/n)|2 (6.8)

where φ(r) ≡ e−ir(A+B)φ and we have denoted by |φ|2 the norm of φas element
of H.

Each term of the series converges to zero due to (2) and φ(r) is continuous
in r. For fixed t the set {φ(r) : |r| < |t|} is closed in the closed set D(A+B).
Since φ(r) is continuous and the convergence is uniform over compact sets in
t by the Ascoli-Arzelá theorem and

lims→0sup|r|≤t s
−1|(e−isAe−isB − e−is(A+B))φ(r)|2 = 0 (6.9)

♥
Remark that since the proof is given by compactness there is no estimate

of the error one makes in truncating the series to order N . In the proof of
theorem 6.1 we have made essential use of the assumption that D(A)∩D(B)
is closed (as domain of a self-adjoint operator).
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In general if the operators are unbounded the set D(A) ∩D(B) is only a
open subset of D(A+B). Therefore {φ(r)||r| < |t|} is in general an open set
and the compactness argument cannot be used.

Still the conclusions of Theorem 6.1 hold also if the operator A + B is
essentially self-adjoint in D(A) ∩D(B) but the proof becomes less simple.

Theorem 6.2
Let A and B self-adjoint operators. Let A + B be essentially self-adjoint on
D(A) ∩D(B).

Then
i)

e−it(A+B) = s− lim(e−i
tA
n e−i

tB
n )n t ∈ R, (6.10)

uniformly over compact sets in R.
ii) If moreover A and B are bounded below

e−t(A+B) = s− lim(e−
tA
n e−

tB
n )n t ∈ R+ (6.11)

uniformly over compact set in R+.
♦

Proof
Also in this case we will prove only i). The proof is completed in several

steps.
Step 1
Let {C1, C2, ..Cn} be a sequence of bounded operators with Im Cn ≡

Cn−C∗n
2i < 0.
Let C be a self-adjoint operator such that limn→∞Cnφ = Cφ if φ be-

longs to a domain D̃ which is dense in D(C) in the graph norm. Under these
conditions

s− limn→∞(Cn − z)−1 = (C − z)−1 (6.12)

for Imz > 0
♦

Proof
If Imz > 0 the operator Cn − z has an inverse bounded uniformly in n;

therefore it is sufficient to prove limn→∞(Cn−z)−1φ = (C−z)−1φ if φ is in a
dense subset of H. We shall choose it to be (C−z)D(C). Setting ψ = (C−z)φ
one has

|(Cn − z)−1φ− (C − z)−1| = |(Cn − z)−1(Cn − z)ψ + (C − Cn)ψ|

= |(Cn − z)−1(C − Cn)ψ| ≤ (Imz)−1|(C − Cn)ψ| →n→∞ 0 (6.13)

♥
Step 2
Under the hypothesis of step 1 one has, uniformly on the compacts in R+
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s− limn→∞e
−itCn = e−itC (6.14)

♦

Proof
Fix ψ ∈ H. The subspace spanned by the action of bounded functions Cn

and by C on ψ is separable. Hence we can assume that H be separable. One
has

d

dt
|e−itCnφ|2 = (e−itCnφ,

t

i
(Cn−C∗n)e−itCnφ) == |t| (e−itCnφ, Im(Cn)e−itCnφ) ≤ 0

(6.15)
and therefore |e−itCn | ≤ 1 for t ≥ 0. It is then sufficient to prove step 2 when
φ ∈ D̃.

We prove the thesis arguing by contradiction. Suppose that for some φ ∈ D̃
the equality

limn→∞e
−itCnφ = e−itCφ (6.16)

does not hold. There ∃{n′}, t(n′) > 0 such that |e−it(n′)Cn′φ − e−it(n′)Cφ| ≥
δ > 0. This implies ∃ln′ ∈ H, |ln′ | = 1 such that

|(l′n′ , e−it(n
′)Cn′φ)− (l′n, e

−it(n′)Cφ)| ≥ δ (6.17)

Since the unit ball in H is weakly compact there exist a sub-sequence, still
named {n′} which converges to I, |l| ≤ 1 and for n large enough

|(ln′ , e−it(n
′)Cn′φ)− (l, e−it(n

′)Cφ)| ≥ δ (6.18)

On the other hand the sequence {(ln′ , |e−itCn′φ)} is equibounded in t ≥ 0.
By the Ascoli-Arzelá lemma one can choose a sub-sequence such that

(ln̄, e−it(n̄)Cφ)→ F (t) (6.19)

uniformly on the compact sets in R+, where F (t) is a continuous function of
t. Therefore |F (t(n̄)) − (l, e−it(n̄)Cφ)| ≥ δ Since the functions are continuous
the relation is true in a neighborhood of t(n′).

Consider now the Laplace transform of F (t). From step 1 and Lebesgue
dominated convergence theorem∫ ∞

0

F (z)eitzdt = limk→∞

∫ ∞
0

(ln′ , e−it(n
′)Cn′φ)eiztdz

= (−i)limn→∞(ln′ , (Cn′ − z)−1φ) = −i(l, (C − z)φ) Imz > 0 (6.20)

Therefore the Laplace transforms of F (t) and of (l, e−itCφ) coincide,
against the assumption made. ♥

Step 3
Let T be a contraction operator (|T | ≤ 1). Then t→ et(T−1) is a contrac-

tion semigroup. Moreover
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|(en(T−I) − Tn)φ| ≤
√
n|(T − I)φ|, n ≥ 1 ∀φ ∈ H (6.21)

♦
Proof

Since T is bounded the function et(T−1) is continuous operator. It is a
contraction because

|et(T−I)| = e−t|
∑
n

tnTn

n!
| ≤ e−tet|T | ≤ 1 (6.22)

Moreover en(T−1) − Tn = en
∑∞

0
nk
k! (T k − Tn). Using the inequality

|(T j − I)φ| = |
∑

T k(T − I)φ| ≤ j|(T − I)φ| (6.23)

one has

|(en(T−1) − Tn)φ| ≤ e−n[
∞∑
0

nk

k!
|n− k|]|(T − I)φ| (6.24)

On the other hand

e−n
∑ nk

k!
|n−k| ≤ e−n(

∑ nk

k!
)

1
2 = e−n/2(n2ek−(2n−1)nen+n2en)

1
2 =
√
n

(6.25)
♥

With these steps we can complete the proof of theorem 6.2. Let

F (t) = e−itAe−itB , t > 0 Cn = i(
t

n
)−1(F (

t

n
)−I), C = A+B (6.26)

If φ ∈ D(A) ∩D(B) one has then

Cnφ = i(
t

n
)−1[e−i

tA
n e−i

tB
n −I]φ = ie−i

tA
n [(

t

n
)−1(e−i

tB
n −I)φ+i(

t

n
)−1e−i

tA
n −I)φ

(6.27)
limn→∞(A+B)φ = Cφ, n→∞ (6.28)

¿From steps 1 e 2 one derives s−limn→∞e
n(F (( tn )−1) = s−limn→∞e

−itCn =
e−itC . ¿From Step 3

|en(F t
n−I) − F (

t

n
)n]φ| ≤

√
n|(F (

t

n
)− I)φ| = t√

n
|Cnφ| (6.29)

Combining these result

|e−it(A+B)φ−e−itAn e−itBn φ| = |e−itCφ−F (
t

n
)nφ| ≤ |(e−itC−e−itCn)φ|+ t√

n
|Cnφ|

(6.30)
This expression tends to zero as n → ∞. This concludes the proof of

Theorem 6.2
♥

Remark that since in Steps 1 and 2 we used compactness, we cannot esti-
mate of the error made if we terminate the expansion at the nth order.
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6.1 The Feynmann-Kac formula

We shall now use the Trotter-Kato formula to obtain formally the Feynman
formula of integration over path space. This formula has only formal meaning
because there is no regular measure supported on those paths for which the
integrand is meaningful. We shall see later how to define a convenient measure
space and a measure on it.

Consider first bounded continuous potentials V (x) and set H0 ≡ − 1
2∆.

H0 +V (x) is self-adjoint with domain D(H0). Taking into account the explicit
form of the kernel of e−itH0 i.e.

G0(x− y; t) = (4iπt)−d/2e−
|x−y|2

4it (6.31)

It follows from theorem 6.2 that for each φ ∈ L2(Rd)

(e−itHφ)(x) = s.l.N→∞(
N

iπt
)
Nd
2

∫
e−iSN (x,x1,...xN ,t)φ0(xN )dx1...dxN (6.32)

where

SN (x1, ..xN ) =
t

N

N∑
i,j=1

|xi − xj |2

2 t
N

+
∑
i

V (xi)
t

N
(6.33)

In (32) the integral is understood in the following sense:∫
Rd
f(x)dNx = limR→∞

∫
|x|≤R

f(x)dNx (6.34)

and the limit is in the topology of L2(RN ). We would like to interpret the
limit on the right hand side of (32) as integral over a space of paths. Let Γ 1

be the class of absolutely continuous functions of time with values in Rd.
Following a well established tradition we call such function paths and we

call position of the path at time t the value of the function at the value t of
the parameter. We study first the case d = 1.

We identify the variable xk with the value that the coordinate takes at
time t k

N on the path γx,x′;T ∈ Γ 1. For each path γx,x′;T ∈ Γ 1 with γ(T ) =
x , γ(0) = x′ we have

lim
N→∞

SN (x′, x1, ..xk, ....xN−1, x, t)dx1..dxk..dxN−1 = S(γx,x′,t)

S(γx,x′;t) =
∫ t

0

[
1
2
|ẋ(s)|2 + V (x(s)]x(.)∈γds (6.35)

Remark that S(γx,x′;t) is the integral of the classical Action along the
trajectory γx,x′;t.

If one takes formally the limit N → ∞ in the right hand side of the
equation, one writes the integral kernel (eitH)(x, x′) as formal integral over
absolutely continuous trajectories γ in the interval [0, t]
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(e−itH)(x, x′) = ( lim
N→∞

CN )
∫
γ∈Γ1,γ(0)=x′, γ(t)=x

e−iS(γx,x′;t)Πtdγt (6.36)

where CN is a normalization constant and
∫
Πtdγt represents is (formally)

the integration over a continuous product of Lebesgue’s measures. But the
right hand side is only formal: the constant CN = ( iπtN )−

N
2 in (36) diverges as

N → ∞ and the measure dγ remains undefined (Lebesgue measure is not a
probability measure and the classical construction of product measures does
not apply).

Remark that the same procedure can be followed if one considers the
Schroedinger equation in the domain |xi| < C∀I = 1 . . . d (defining the Lapla-
cian with suitable boundary conditions). In this case the limit measure exists
( Lebesgue measure on [−C,+C] can be made with a suitable normalization
into a probability measure) but is can be seen, following a procedure similar to
the one which we shall outline for Gauss’s measure, that the set of absolutely
continuous functions is contained in a set of measure zero.

We conclude that, while the limit in (32) certainly exists as integral kernel,
its interpretation as integral over a class of trajectories is ill defined and, if not
taken with a suitable care, may be the source of error. It should be remarked
that for some class of potential,s e.g. if the potential is the Fourier transform
of a measure, it is possible to give meaning to the limit to the right in (35) as
limit of oscillating integrals and to interpret it in the framework of a stationary
phase analysis in an infinite dimensional space [1].

The approach in [1] is not within the framework of measure theory and
one cannot make use of standard tools, e.g. of Lebesgue comparison principle.
Therefore it is difficult to compare results for different choices of V without
making reference to the expression in terms of integral kernels. We shall not
discuss further this very interesting and difficult problem.

6.2 Stationary Action; the Fujiwara’s approach

For completeness we reproduce here, with some further details, the remarks
we have made in Volume I of these Lecture Notes.

If t− s is sufficiently small (depending on x e y) the classical Action

S(t, s;x, y) =
∫ t

s

L(τ, x(τ),
dx(τ)
dτ

)dτ

is stationary on the classical orbits (absolutely continuous functions solutions
of Lagrange’s equations with end points x and y) and is the generating func-
tion of the family of canonical transformations that define motion in phase
space. One can expect , in the semiclassical limit, to be able to make use of the
fact that the Action is stationary on the trajectories of the system associated
to the Lagrangian L.
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In this case it may be reasonable to approximate the full propagator by
stationary point techniques with a careful estimate of the remainder terms
rather than by the Trotter formula. Introducing Planck’s constant h̄ one con-
siders in the approximation finite time intervals of order h̄α with α < 1 and
seeks an approximation to order h̄

1
2 .

One can prove in this way [2] [3] that if the potential V (t, x) is sufficiently
regular the propagator ( fundamental solution) U(t, s) satisfies for any func-
tion φ ∈ L2(Rd)

U(t, s)φ(x) = exp(i
∫
Rd
limδ→0I(δ; t, s;x, y)φ(y)dy) (6.37)

where the limit is understood in distributional sense.
We have denoted by {tj} a partition of the interval [s, t] in equal intervals

of length δ = t−s
N , N = h̄α and we have set

I(δ; t, s;x, y) = ΠN−1
j=2 [

1
h̄

−i
2π(tj − tj−1))

]
d
2∫

Rd
. . .

∫
Rd
ΠN−1
j=2 ah̄(tj , tj−1;xj , xj−1)exp{− i

h̄
S(tj , tj−1;xj , xj−1)}ΠN−1

1 dxj

(6.38)
The function ah̄ is defined by

ah̄(tj , tj−1;xj , xj−1) = exp{− 1
2h̄

∫ t

s

(τ − s)∆xω(τ, s;x(τ), y)dτ (6.39)

where ω is defined by S(t, s;x, y) = 1
2
|x−y|2
t−s + (t− s)ω(t, s;x, y) and S is the

classical Action for the Hamiltonian Hclass = p2 + V (q), q, p ∈ Rd evaluated
on the classical trajectory that joins x to y in time t− s.

This formula is derived for small values of t − s using in the Stationary
Phase Theorem together with an estimate of the residual terms without using
a Trotter product formula. Remark that on each interval the Action S is the
integral of the Lagrangian over the classical trajectory but the trajectories we
have used over consecutive intervals do not join smoothly because we have
used Dirichlet boundary conditions at the extremal points.

Therefore we are considering trajectories which are continuous but not
everywhere differentiable. The set of point where they are not differentiable
becomes dense as N →∞ (i.e. h̄→ 0). At the same time the limit ”Lebesgue-
like” measure does not exist. Still for N finite ( i.e. h̄ 6= 0) this expression has
the advantage, as compared to (32), that on each interval one considers the
solution of the classical equation of motion with potential V rather than free
motion as in (32).

For this reason, Fujiwara’s approach has been successfully used in the
study of the semiclassical approximation to Quantum Mechanics in particular
in the scattering regime where in a suitable sense the evolution of the wave
function in Quantum Mechanics has stricter links with evolution in Classical
Mechanics (resembles more the free evolution) at large times.
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6.3 Generalizations of Fresnel integral

In [4] the Authors have introduced a version of oscillatory integrals that can
be interpreted as Feynman integrals for a suitable class of potentials (those
which are the sum of a positive quadratic term and a function which is the
Fourier transform of a measure of bounded variation).

The integral introduced in [4] generalized Fresnel’s integral
∫
R
e
i
2x

2
dx.

Fresnel’s integral is an oscillatory integral that cannot be interpreted as a
Lebesgue integral with respect to a regular complex measure (the total vari-
ation of the measure would be infinite). It is rather interpreted as improper
Riemann integral, and the convergence is a result of the oscillatory behavior
of the integrand, with the result∫

R

e
i
2x

2
dx =

√
2π (6.40)

In [4] a generalization of this procedure is given for an infinite dimen-
sional separable Hilbert space providing, under suitable conditions, an infinite-
dimensional Fresnel integral. Let f be the Fourier transform of complex val-
ued regular measure of bounded variation on a separable Hilbert space H.
The definition of the integral of f is given in [4] by duality∫

H
f(x)e

i
2h̄‖x‖

2
dx ≡

∫
H
e
ih̄
2 ‖x‖

2
dµf (6.41)

The integral on the right is absolutely convergent and well defined as
Lebesgue integral. It is proved in [4] that this procedure that, for potential
which are the Fourier transform of a regular measure of bounded variation, the
Feynman integral can be interpreted as infinite-dimensional Fresnel integral
over the Hilbert space of trajectories ( Cameron space) with scalar product

< γ1, γ2 >=
∫ t

0

(γ̇1(s), γ̇2(s))ds (6.42)

where γ̇ is the distributional derivative of the trajectory γ. In [4] there also
an application of this formalism to the semiclassical limit.

We shall not discuss further this very interesting and difficult approach.
For more details we refer to [4] and [5].

6.4 Relation with stochastic processes

A study of scattering in the semiclassical limit can be done also through the
study of the representation of e−tHφ through an integral over the trajectories
of Brownian motion. This requires a similar representation for the resolvent

1
H−z , Imz 6= 0. This can be done ( Gutzwiller trace formula) but the subject
is outside of the scope of this Lecture.
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We will see that a formulation which introduces a bona-fide measure on a
space of trajectories (and that under suitable conditions can be extended to
the infinite dimensional case ) can be obtained for the Trotter-Kato formula
relative to semigroups.

This is due to the fact that the integral kernel of e−tH0 is of positive
type, (maps positive functions to positive functions) and can be interpreted as
transition function for a stochastic process ( Brownian motion). Recall that
the solution u(t, x), x ∈ Rd of the heat equation

∂u

∂t
= ∆u, ut=0 = u0 (6.43)

is given by

u(t, x) = (2πt)−
d
2

∫
e−

(x−y)2

2t u(0, y)dy (6.44)

For positive initial data u(t, x) is strictly positive for t > 0, and N.Wiener
has shown that it can be represented as the mean value of the initial datum
under a measure ( Wiener measure) defined on continuous trajectories which
start in y at time 0 and are in x a time t.

This measure characterizes Brownian motion, is a stochastic process that
we shall describe presently. Changing in a suitable way the process one can
equally well represent in a similar way the solutions of ∂u

∂t = ∆u− V u under
some hypothesis on V (x).

¿From this representation in term of a stochastic process one can derive
regularity properties of the resolvent of −∆ + V . We remark that there ex-
ists a generalization of the integral that makes it possible, for a large class
of potentials, the construction of generalized Feynmann integrals. This gen-
eralization is sometimes called White Noise Process and in a suitable sense
the process which is obtained may be regarded as the (weak) derivative of
Brownian motion.

One proves that the measure µ associated to white noise is a measure on
S ′ that is introduced by duality from the characteristic function

Φ(f) = e−
1
2‖f‖

2
2 , f ∈ S (6.45)

This means that µ is a Gaussian measure for which Φ(f) =
∫
S′ e

i(ω,f)dµ(ω).
For comparison recall that in the case of Brownian motion the characteristic
function is

ΦB(f) = e−
1
2‖f‖

2
−1 , f ∈ S (6.46)

where ‖f‖−1 =
∫
||f̂(p|)2(1 + |p|2)−

1
2 dp. It follows that the space of functions

that may be used to give a description of the White Noise Process is larger
then the space of continuous function.

For example one may use the space L2(S ′, µ) for a suitable (Gaussian)
measure µ. In this way one obtains a version of the White Noise Process as
weak derivative of Brownian motion (recall that continuous functions can be
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regarded as differentiable functions in the distributional sense) and therefore
also a realization of Brownian motion (different from the one introduced by
Wiener) .

A rigorous definition leads to the introduction of Hida distributions which
become the natural candidates for describing generalized Feynmann integrals.

It is in this way possible to study the possibility to write eit(−∆+V ) as
Feynmann-like integral for a rather large class of potentials. We shall not
discuss further this approach. Further details can be found in [6][7][8].

We shall come back later to the problem of the construction of measures
on space of trajectories in R∞ (or on the space of trajectories in the space of
distributions if one considers Quantum Field Theory) associated to positivity
preserving semigroups.

Before discussing the Feynman-Kac formula we digress to make a brief
introduction to the theory of stochastic processes; we need some notions from
this theory to give a basic treatment of the Feynman-Kac formula.

In Lecture 7 we provide the reader with some elements of probability
theory, in particular some a-priori estimates that are frequently used. We will
also describe there two alternative derivations of Brownian motion. The first is
the original construction N.Wiener, the second is a construction of Brownian
motion as limit of a random walk, in the spirit of the analysis of Brownian
motion made by A.Einstein.

6.5 Random variables. Independence

Recall that a random variable is a measurable function f on a regular measure
space (Ω,M, µ) (M are the measurable sets and µ is the measure). We shall
call probability law (or distribution) of the random variable f the distribution
defined by

µf (B) = µ{ω : f(ω) ∈ B)} (6.47)

for any Borel B set in R. We shall always identify two random variables
which have the same probability law, independently from the probability space
(Ω,M, µ) in which they are concretely realized.

A random variable is called gaussian if the (measurable) sets {ω|f(ω) ≤ a}
are distributed according to a gaussian probability law, i.e. the distribution
density of f belongs to the class of gaussian distributions

µ{f ≤ C} =
∫ C

−∞
(
√
bπ)−1/2e−

(x−a)2

b dx, a ∈ R, b > 0 (6.48)

The mean (expectation) and the variance of f are then

E(f) = (
√
bπ)−1/2

∫
xe−

(x−a)2

b dx = a V arf = E(f2)− E(f)2 = b.

(6.49)
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Notice that the distribution density of a random gaussian variable, and there-
fore the random variable itself is completely determined by the two real pa-
rameters a and b.

Two measurable functions on a measure space (Ω,M, µ) represent inde-
pendent random variables if for every pair of measurable sets I and J one
has

µ{f(ω) ∈ I, g(ω) ∈ J} = µ{f(ω) ∈ I}µ{g(ω) ∈ J} (6.50)

In the same way, considering N-ples of measurable functions, one defines
the independence of N random variables. Two gaussian random variables f, g
with zero mean (on can always reduce to this case by subtraction a constant
function) are independent iff

E(fg) = 0 (6.51)

6.6 Stochastic processes, Markov processes

We recall here briefly the definition of Stochastic Processes. .

Definition 6.1 (stochastic process in Rd)
The family of random variables ξt, t ≥ 0 is called stochastic process with
values in Rd living in the time interval [0, T ] if there exists a measure space
Ω with measurable sets M and measure µ such that
a) for all t ∈ [0, T ] the function ξt : Ω → Rd is µ-measurable (i.e. it is a
random variable)
b) ∀ω ∈ Ω, ∀t ∈ [0, T ] ξt(ω) ∈ Rd (i.e. one can define the evaluation map)
c) the map (t, ω) → ξt(ω) is jointly measurable in ω and t if t ∈ [0, T ] with
the Borel sets as measurable sets.

Point b) defines the evaluation map (giving the value of the random vari-
able ξ at time t). Remark that a stochastic process can be defined on any
topological space X, e.g. a space of distributions. This is important in treat-
ing systems with infinitely many degrees of freedom.

The natural σ-algebra of measurable sets are the Borel sets of X. One
often requires the measure µ to be a Radon measure i.e. to be locally finite
(for each x ∈ X there exists a neighborhood Ux with µ(Ux) < ∞) and tight
(for each Borel set B , µ(B) = sup{µ(K), K ⊂ B}, K compact. In particular
the Gauss measure in Rd is a Radon measure.

The processes we shall analyze are Markov processes ( stochastic processes
which have no memory. The precise definition is as follows

Let the family ξt be defined for each t ≤ T. Denote by F≤t the σ-algebra
generated by the random variables ξs, s ≤ t and with F≥t1 , t1 ≥ t, the
σ-algebra generated by the random variables ξs, t1 ≤ s ≤ T . We will call
this structure a filtration.

Recall that, given a σ-algebra F of measurable functions in a probability
space (Ω, M µ), a sub-sigma algebra G and a function f on Ω which is
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measurable with respect to µ, the conditioning of f with respect to G (denoted
CG(f)) is the unique function f1 ∈ G such that for all bounded g ∈ G∫

Ω

f1 g dµ =
∫
Ω

f g dµ (6.52)

Definition 7.2. Markov processes
The process {ξt}, t ∈ [0, T ]) is a Markov process iff for any pair t, τ < t the
following relation holds

F≤τ (ξt) = CFτ (ξt), CFt(ξt) = ξ(t) (6.53)

In other words, the dependence of ξt from F≤τ can be expressed as dependence
only from the σ-algebra generated by ξτ (the future depends on the past only
via the present)

If the family {ξt} is associated to an evolution in a Banach space has
the Markov property the expectations have a semigroup property, i.e. for any
measurable integrable real function f one has E(f(ξt) = e−tLE(f(ξ(0)) where
L is a positivity preserving operator on the space L1(Ω, dµ). Remark that the
evolution described by a Hamiltonian system has the Markov property.

A stochastic process is fully described by the joint distributions of all
finite collections of the random variables in the process. Different realizations
differ only by the choice of the space Ω and of the measurable sets. A specific
choice may be dictated by the convenience of enlarging the set of measurable
functions to include also weak limits of measurable functions of the ξt.

The possibility of this extension depends in general from the specific prob-
ability space chosen in the realization. For example in the case of Brownian
motion, the existence as measurable function of

limt→s
ξt − ξs
|t− s|p

, p <
1
2

(6.54)

holds only in a representation in which the Hölder-continuous functions of
order p are a set of full measure.

6.7 Construction of Markov processes

We shall now introduce a general procedure to construct Markov processes;
this links them to positivity preserving semigroups. For the moment our in-
terest lies in the connection between stochastic processes and Schroedinger
operators. We begin from a particular case, Brownian motion. Denote by

K0
t (q, q′) = (4πt)−

d
2 e−

|q−q′|2
4t q, q′ ∈ Rd (6.55)

the integral kernel of the operator et∆. The solution of the heat equation
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∂u

∂t
=

1
2

3∑
1

∂2
ku

∂q2
k

(6.56)

is
ut(q) =

∫
K0
t (q, q′)u0(q′)dq′ (6.57)

It is easy to verify that Kt has the following properties
a)

K0
t (q, q′) > 0 ∀q, q′ (6.58)

b) ∫
K0
t (q, q′)dq′ = 1 ∀t (6.59)

c)

K0
t+s(q, q

′) =
∫
K0
t (q, r)K0

s (r, q′)dr (6.60)

Property c) reflects the fact that the equation is autonomous and therefore
the solutions define a semigroup.

We shall now define a measure on continuous functions ( paths) x(t) t ∈
[0, T ] such that x(0) = q, x(T ) = q′, q, q′ ∈ Rd. We shall denote by Wq,q′,T

this measure and call it Wiener measure conditioned to (q, q′, [0, T ]). From this
measure we will construct Wiener measure on continuous paths in [0, T ] with
x(0) = 0 by translation and integration over the final point of the trajectory

Notice that since the points ω of the measure space are Rd-valued contin-
uous functions of time, we can define the evaluation map that for each value
of t assigns to the point ω the value of the corresponding function at time t.
The total mass of Wq,q′,T is K0

T (q, q′).
By definition a generating family of measurable sets are the cylinder sets

of continuous functions defined by

{x(s) : x(0) = q0, x(T ) = q, x(tk) ∈ Ik, k = 1, ..N} ≡M({tk}, Ik) (6.61)

where tk are arbitrary in (0,T) with tk < tk+1 and Ik are measurable sets
in R3. The term cylindrical is used to stress that the indicator function of
M({tk}, Ik) belongs to the σ-algebra of measurable functions of the ξt1 , ...ξtN .

This σ-algebra depends only from a subset of the coordinates and therefore
has the structure of a cylinder. The measure of the set M({tk}, Ik) is by
definition

µWq,q′,T (M({tk}, Ik) =
∫
I1

dq1...

∫
IN

dqNK
0
t1(q0, q1)K0

t2−t1(q1, q2)....K0
t−tN (qN , q)

(6.62)

Theorem 6.3 (Wiener) [4]
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The measure we have defined is countably additive on the collection of cylin-
drical sets and has a unique extension to a completely additive measure on the
Borel sets of the space of continuous functions q(s), [0 ≤ s ≤ T ] for which
q(0) = q0, q(T ) = q.

♦
The proof of Wiener theorem has been given by Kolmogorov as a special

case of a general theorem. We will give in Lecture 7 the proof of Kolmogorov
theorem. Wiener’s own proof is more constructive; we shall sketch it in Lecture
7 .

There we will also sketch the construction of Brownian motion given by
Einstein as limit of a random walk. Uniqueness in distribution follows from
uniqueness on cylindrical sets.

Theorem 6.4 (Kolmogorov) [4][10]
Let I be an infinite (may be not denumerable) collection of indices, and for
each α ∈ I let Xα be a separable locally compact metric space. Let F be a
finite subset of I and define

XF ≡ ⊗α∈FXα (6.63)

with the product topology. Denote by BF the Borel sets of XF and denote by
F the collection of finite subsets of I.

For F , G ∈ F and F ⊂ G, consider the natural projection of XG on XF ,
denoted with πGF . Then (πGF )−1 maps Borel sets in F to cylindrical Borel sets
in G and provides a conditional probability.

Suppose that on each XF there exists a completely additive measure of
mass one ( probability measure), denoted by µF , that satisfies the following
compatibility property

µF (A) = µG((πGF )−1(A)) (6.64)

Under this hypothesis there exist a finite measure space {X,B, µ}, with
completely additive finite measure µX and a natural projection πF of X on
XF such that µF = µ(π−1

F ).
♦

In the specific case of Wiener measure, I is the interval [0, T ]. We remark
that the space X with the properties we have described is not unique: differ-
ent choices of the maps π−1

F lead to different spaces. In the case of Brownian
motion, Wiener has shown that is possible to choose X as the space of con-
tinuous functions in [0, T ] with prescribed value at t = 0 and t = T. Another
choice may lead to a Sobolev space.

6.8 Measurability

According to Kolmogorov theorem, a given subset of X which is not in XF

need not be measurable. For example in the previous case the measurabil-
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ity of the set of functions orthogonal to a fixed continuous function is not
guaranteed.

In order to be sure that a pre-assigned set be measurable one must choose
π−1
F properly. If Xα = R and I = [0, T ] one can e.g. make use of compactness

a and convergence results to prove the following criterion
Wiener’s criterion [4]
Let

Ω ≡ {C([0, T ], Rd, x(0) = x0, x(T ) = x} (6.65)

The set Ω has µ−measure one if for every denumerable collection of points
N ∈ [0, T ] the set of those functions whose evaluation in N is uniformly
continuous has measure one (but this set may depend on the choice ofN ).

♦
In particular a sufficient condition is given by the following theorem

Theorem 6.5
If a stochastic process ξ(s) with values in R satisfies for some α β > 0 and
0 < C <∞

E(|ξs − ξt|β) ≤ C|t− s|1+α (6.66)

for all 0 ≤ s ≤ t ≤ 1 , then there is measure on C[0, 1] with the same finite-
dimensional distributions for ξs.

♦

Proof
The proof consists in constructing successive approximations of evaluation

processes at fixed times and then prove almost surely uniform convergence.
Notice that almost sure convergence means that the set of trajectories on
which one does not have uniform converges is a set of measure zero, while
convergence in measure means that the set of points for which one does not
have convergence has measure which tends to zero; but this set may depend
on n and the union over n of these sets may have finite measure.

At all times ξt(ω) ≡ x(t) ∈ Rd is defined for each ω since the process is
defined on Rd; the question is whether there is a realization of the process for
which x(t) can be chosen to be continuous in t with probability one. At step
n for each ω let xn(t) be equal to x(t) for t = j

2n . At the other times define
x(t) by linear interpolation

xn(t) = 2n(t− j

2n
)x(

j + 1
2n

) + 2n(
j + 1

2n
− t)x(

j

2n
) (6.67)

for t ∈ [ j2n ,
j+1
2n ). We can estimate the difference

sup0≤t≤1|xn+1(t)− xn(t)| = sup1≤j≤2n sup j−1
2n ≤t≤

1
2n
|xn+1(t)− x(t)|

= sup1≤j≤2n |xn+1(
2j − 1
2n+1

)− xn(
2j − 1
2n+1

)|
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≤ sup1≤j≤2nmax[x(
j − 1

2n
)− x(

2j − 1
2n+1

)|, |x(
2j − 1
2n+1

)− xn(
j

2n
)| (6.68)

Therefore for any positive γ

P [sup0≤t≤1|xn+1(t)− xn(t)| ≥ 2−γn] ≤ 2n+1supjP [|x(
j

2j+1
)− x(

j + 1
2j+1

)

≤ C2n+12−(n+1)(1+α)2nγ(1+β) (6.69)
In the last inequality we made use of the assumption on E(|ξs−ξt|β). Choosing
γ such that 1 + (1 + β)γ < 1 + α one obtains∑

n

P [sup0≤t≤1|xn+1(t)− xn(t)| ≥ 2−nγ ] <∞ (6.70)

We now make use of the Borel-Cantelli lemma (see next Lecture) to con-
clude that with probability one the limit

limn→∞xn(t) ≡ x∗(t) (6.71)

exists uniformly.
By the Ascoli-Arzelá compactness lemma x∗(t) is a continuous function of

t. By construction x(t) = x∗(t) with probability one at diadic points. Since
both processes ξ and ξ∗ are continuous in probability it follows that they have
the same finite dimensional distributions and in fact P [ξ(t) = ξ∗(t)] = 1 for
all 0 ≤ t ≤ 1.

♥
Using Hölder norms instead of the sup norm one can prove that there is

a realization of the process ξ∗ supported on functions that satisfy a Hölder
condition with exponent δ if δ < α

β . In this way one can prove that γ may be
any positive number smaller then 1

4 .
Considering higher moments one can obtain realizations in spaces of func-

tions that satisfy higher order Hölder conditions. For example in the case of
Brownian motion one has

E[|ξ(t)− ξ(s)|2n] = cn([ξ(t)− ξ(s)2])n = cn|t− s|n (6.72)

and by the procedure outlined above one can obtain any Hölder exponent
smaller that n−1

2n . . It follows that Brownian motion can be realized in spaces
of functions that are Hölder continuous of exponent γ for any γ < 1

2 . It is
worth remarking that γ = 1

2 cannot be reached.
Suppose that there is a positive constant A such that for ant s, t

P [x(.) : |x(t)− x(s)| ≤ A|t− s| 12 = 0 (6.73)

But one has

A ≥ sup0≤s≤t
|x(t)− x(s)|√
|t− s|

≥ supj

√
|x(

j + 1
n

)− x(
j

n
)| (6.74)

The constant A must therefore be larger that the maximum of the absolute
value of N independent gaussian variables. Since N is arbitrarily large and a
gaussian variable is unbounded, A must be infinite.
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6.9 Wiener measure

In the following we will consider only the realization of Brownian motion on
the space of continuous functions. We remark explicitly that for the construc-
tion of the process we could have use the positivity preserving contraction
semigroup associated to any operator ∆− V with V Kato-small with respect
to ∆.

In doing so we would construct a process in which ξt are not gaussian
random variables, and it would be more difficult to find the the joint distri-
butions. The only potentials that lead to gaussian random variables are zero
and the harmonic potential which we shall use presently.

It is of interest for us the find a measure on the continuous paths in the
time interval [0, T ] with the only condition x(0) = 0 and no conditions on
x(T ). We do this by distributing the location of the end point x(T ) according
to a uniform distribution. Since Lebesgue measure is a limit form of gaus-
sian measures what we obtain is still a gaussian measure this time on the
continuous path in the interval [0, T ] starting at zero.

To compute expectation and variance of this new measure one has to do
a further integration over the endpoint x(T ). One verifies by explicit compu-
tation that for the new gaussian measure

∀t E(ξt) = 0 E(ξ2
t ) = (2πt)−3/2

∫
q2e−

q2

2t dq = t (6.75)

E(ξtξs) = (2πt)−
3
2

∫
q′e−

(q−q′)2
2(t−s) qe−

q2

2s dq′dq = s s ≤ t (6.76)

E(ξt, ξs) = min(t, s) E((ξt − ξs)2) = t− s (6.77)

E((ξt − ξτ )(ξσ − ξs)) = 0, s < σ < τ < t (6.78)

E((ξt − ξτ ))2(ξσ − ξs)2) = (t− τ)(σ − s) s < σ < τ < t (6.79)

¿From the last equation it follows that the random variables (ξt− ξτ ) and
(ξσ − ξs) are independent gaussian random variables if the segments (a, , b)
and (c , d) are disjoint. Therefore Wiener process has independent increments
over disjoint intervals.

For comparison, notice that the Wiener process conditioned by fixing the
starting and end points ( Brownian bridge) does not have independent in-
crements. Notice the following: Let Ak(x) k = 1, ...N measurable functions.
Denote by Ex0,x;T the expectation with respect to Wiener measure condi-
tioned to q(0) = x0, q(T ) = x. Then if tk+1 ≥ tk

Ex0,x;T (ΠN
1 Ak(ξtk)) = (e−t1H0A1e

−(t2−t1)H0A2....e
tn−tn−1)H0ANe

−(T−tn)H0)(x, x0)
(6.80)

where Ak is the operator that acts as multiplication by Ak(x) and H0 is
the generator of the heat semigroup. It will be convenient in what follows to
consider measures on paths defined in the interval [−T, T ] with x(−T ) = q
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e x(T ) = q′. In analogy with what we have done so far one has, denoting
Wq,q′,[−T,T ] Wiener measure conditioned by x(−T ) = q and x(T ) = q′

EWq,q′,[−T,T ]
(ΠkA(ξtk)) =

= (e−(t1−T )H0A1e
−(t2−t1)H0A2...e

−(tN1−tN )H0ANe
−(T−tN )H0)(q, q′) (6.81)

If we choose Ak = 1, ∀k we obtain for every integer N

eTH0(q, q′) = (
N

2π
)3/2

∫
...

∫
e
−1/2

∑
(
∆qi
∆ti

)2∆tiΠidqi (6.82)

Remark that if the function x(t) were absolutely continuous, the last sum
would converge to

∫ T
0
e−

1
2 ẋ(t)2

dt. But we have seen that Wiener measure gives
weight zero to the set of absolutely continuous trajectories.

We have considered up to now mainly processes in [0, T ] with value in
R1. The same considerations and formulae are valid for processes which take
value in Rd for arbitrary finite value of d. Since we have made extensive use of
compactness arguments, the case d =∞ is not covered by the simple analysis
presented here.

6.10 The Feynman-Kac formula I: bounded continuous
potentials

According to the Trotter-Kato theorem, if A = H0 and B = V

e−2T (H0+V ) = s− lim(e−
2TH0
n e−

2TV
n )n t ∈ R (6.83)

The convergence is understood in the weak sense, as integral kernel of an
operator, and the limit is the nucleus of the operator e−2T (H0+V ). Therefore,
if we choose At = V (ξt) where V (the potential) is suitably regular potential,
we have proved

(e−2T (H0+V ))(q, q′) = lim
N→∞

∫
dWq,q′;[−T,T ]e

−
∑2N

k=1
t
N V (q(−T+ kT

2N ) q, q′ ∈ Rd

(6.84)
(we have chosen to divide the interval [-T,T] in 2(N − 1) disjoint intervals of
equal length).The limit is understood in distributional sense.

Choose now a realization of Brownian motion in which the measure is
supported by continuous functions ω(.) with value in Rd and such that

ξ(t)(ω) = ω(t) (6.85)

If V (x) is Riemann integrable the exponent in (84) converges to
∫ +T

−T V (ω(t))dt
for each path ω point-wise as a function of q, q′, If V is bounded below, the
integrand in (84) is bounded above by a constant C. Therefore the dominated
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convergence theorem of Lebesgue applies ( Wiener measure is finite and com-
pletely additive). The right hand side of (84) converges therefore to∫

e

∫ +T

−T
V (ξ(s))ds

dWq,q′;[−T,T ] (6.86)

Since V (x) is bounded below the sequence of integral kernels is uniformly
bounded and therefore it converges in L1

loc(R
d × Rd) and in distributional

sense. Since the limit is unique we have proved that, in the case of potential
which are bounded below and integrable

(e−2THφ)(x) =
∫
dq′φ(q′)(

∫
Ω

∫
e
−

∫ +T

−T
V (ξ(s))ds

dWq′,x;[−T,T ]) x ∈ Rd

(6.87)
This equation is known with the name Feynman-Kac formula. It has been

obtained formally by R.Feynmann in the case of the one -parameter group
e−itH and proved rigorously, by the use of Wiener measure, by V.Kac for
the semigroup e−tH , H = − 1

2∆ + V under suitable assumptions on V, in
particular if V is small with respect to the Laplacian.

6.11 The Feynman-Kac formula II: more general
potentials

We shall now prove the Feynman-Kac formula under less restrictive assump-
tions on V.

Theorem 14.5 (Feynman-Kac formula, general case)
Let

V = V+ − V− , V+ ≥ 0 V+ ∈ L2
loc(R

d), V− ∈ Sd (6.88)

where Sd stands for Stummel class.
Let H = H0 + V , H0 = −∆. For every φ ∈ L2(Rd), for every x ∈ Rd and

every t ∈ R+

(e−2tHφ)(x) =
∫
dy

∫
Ω

e

∫ +t

−t
V (w(s))ds

φ(y)dWx,y;[−t,t] (6.89)

(the second integral is over the paths are located in y at time −t).
♦

Proof
We have already seen that the formula holds if V ∈ L∞(Rd). Recall that

V ∈ Sd if

d = 3 : supx∈R3

∫
|x−y|<1

|V (y)|2 <∞ (6.90)
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d = 4 limα→0supx∈R4

∫
|x−y|≤α

log|x− y|−1V (y)2dy ≤ ∞ (6.91)

d ≥ 5 : limα→0supx∈R4

∫
|x−y|≤α

|x− y|4−dV (y)2dy ≤ ∞ (6.92)

Let Vn ≡ max(V,−n). Then Vn ∈ L∞ and Vn(x) → V (x) ∀x. By monotone
convergence ∫ t

0

Vm(ω(s))ds→
∫ t

0

V (ω(s))ds (6.93)

and therefore, again by monotone convergence, for each φ ∈ L1(Rd)∫
φ(y)dy

∫
Ω

e

∫ +t

−t
Vn(w(s))ds

dWx,y;[−T,T ] →
∫
dy

∫
Ω

∫
e

∫ +t

−t
V (w(s))ds

φ(y)dWx,y;[−T,T ]

(6.94)
Assume now that V satisfies the assumptions of the Theorem. Defining

Vn(x) = min(V (x), n) one has limn→∞Vn(x) = V (x). Recall that C∞0 is a
core for H and therefore

e−t(H0+Vn)φ→s e
−tHφ φ ∈ L1 (6.95)

The Feynman-Kac formula holds for H0 +Vn; passing to the limit m→∞
one proves it for φ ∈ L1 ∩L2 using the dominated convergence theorem. One
makes use next of the regularity of Wx,y,(−t,t) to extend the result to φ ∈ L2.

♥
Remark that, strictly speaking, we have not proved that under our assump-

tions V (ω(t)) is measurable with respect to dWx,y;[−T,T ]. But it is certainly
measurable if V (x) is continuous since the integrand is limit of regular func-
tions on Ω.

Since the measure dWx,y;[−T,T ] is regular and the integral is equi-bounded
with respect to N we can make use of Lebesgue criterion, substituting on a set
of measure zero V (ω(t) with a measurable function Ṽ without modifying the
integral. After this rewriting, the integral

∫
Ṽ (ω(t)dt is rigorously defined and

is measurable with respect to dWx,y;[−T,T ]. Notice that from the Feynman-Kac
formula one sees that for every t the operator e−tH is positivity preserving.This
property plays an important role in the study of Markov processes.

We have associated to the Laplacian in Rd the Wiener process on the
interval [0, T ]. From the construction it is apparent that we can associate a
stochastic process with continuous trajectories to any positivity preserving
contraction markovian semigroup with a suitably regular generator, i.e. for
which the procedure we followed for the Laplacian can be repeated.

We will return in Lecture 14 to the problem of the properties that operators
and quadratic forms must have to define a stochastic process. In the Lecture 8
we will use the hamiltonian of the harmonic oscillator to construct a stochastic
process (the Ornstein-Uhlenbeck process).

As remarked above, to construct a Feyman-Kac formula we can use any
Schrödinger hamiltonian associated to a self-adjoint operator given by the
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Laplacian plus a potential of a suitable class, but only for the Laplacian and
the harmonic oscillator one has simple expression for the kernel of the associ-
ated semigroup. One may also use as generator the Laplacian in [0,K] with
Neumann boundary conditions, denoted ∆N

[0,K].
This would give a process with continuous trajectories with values in the

interval [0.K] but the kernel of e−t∆
N
[0,K] has a complicated expression which

makes it inconvenient for explicit estimates.
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7

Lecture 7
Elements of probabiity theory. Construction of
Brownian motion. Diffusions

We return briefly in this Lecture to the realization of the Wiener process; we
study here its realization from the point of view of semigroup theory, using
transition functions. The same approach will be used in the next Lecture to
study the Ornstein-Uhlenbeck process.
We begin with some more elements of Probability Theory, giving in particular
some useful a-priori estimates.

Definition 7.1 (measure spaces)
A measure space is a triple {Ω,F , P} where Ω is a set, F is a σ− algebra of
subsets Ci (the measurable subsets) and P is a probability measure on F i.e.
a function on F with the following properties
1) ∀C ∈ F P (C) ≥ 0
2) P (Ω) = 1
3) Ci ∈ Fi = 1, 2, .., Ci ∩ Cj = ∅,⇒ P (∪∞i=1Ci) =

∑∞
i=1 P (Ci)

The positive number P (C) is the probability of C.
♦

Definition 7.2. ( σ-algebras)
A collection F of subsets of Ω is a σ-algebra if C1, C2, ..Ck.. ∈ F implies
∪iCi ∈ F and Ω − Ci ∈ F . It is easy to see that if C1, C2, ...Ck... ∈ F then
∩iCi ∈ F .

Equivalent conditions on a σ-algebra are as follows
a) If Ci ∈ F , Ci ⊂ Ci+1 then P (∪iCi) = limi→∞P (Ci)
b) If Ci ∈ F , Ci+1 ⊂ Ci then P (∩iCi) = limi→∞P (Ci)

Notice that without σ-additivity one has only P (∪iCi) ≤
∑
i P (Ci).

♦

Definition 7.3
LetA be a family of subsets of Ω. The σ-algebra generated byA is the smallest
σ−algebra of subsets of Ω which contains A; it is denoted by F(A).

♦
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Often in the applications Ω is a metric space. We will consider only this
case. We denote by ω a generic point and we choose as σ−algebra the Borel
algebra (the σ−algebra generated by the open sets in Ω).

Definition 7.4 (probability distribution)
Let ξ be a random variable, i.e. a real valued function ξ(ω) which is P -

measurable. If there exists a positive measurable function ρ(t) such that for
every interval [a, b]

P ({a ≤ f(ω) ≤ b}) =
∫ b

a

ρ(t)dt (7.1)

we say that the random variable ξ has a probability distribution with density
ρ(t). More generally one can define a probability distribution in case the exists
a positive Borel measure µ such that for each Borel set B and each continuous
function f one has P (f(ω) ∈ B) = µ(B).

♦

Definition 7.5 (Expectation. Variance)
The mathematical expectation ( mean value) EP (ξ) of the random variable

ξ is

EP (ξ) =
∫
ξ(ω)dP (ω) (7.2)

where ( ξ(ω) is the evaluation map, a measurable function.
The variance Var is defined as

V ar(ξ) ≡ E(ξ − E(ξ))2 = E(ξ2)− E2(ξ) (7.3)

♦
It is easy to see that if a ≤ ξ(ω) ≤ b then V ar(ξ) ≤ ( b−a2 )2.

Definition 7.6 (independence)
Two random variables ξ1 and ξ2 defined on the same probability space are

said to be independent if

P [ξ1(ω) ∈ B1, ξ2(ω) ∈ B2] = P (ξ1(ω) ∈ B1).P (ξ2(ω) ∈ B2) (7.4)

In the same way one defines the independence of a finite collection of random
variables. In the case of an infinite collection, independence holds if it holds
for any finite subset.

♦

7.1 Inequalities

The following inequalities hold

Tchebychev inequality I
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If ξ ≥ 0 and E(ξ) <∞ then for each t > 0

P{ω : ξ(ω) ≥ t)} ≤ E(ξ)
t

(7.5)

♦

Proof

P{ω : ξ(ω) ≥ t} ≤
∫
ω:ξ(ω)≥t

ξ(ω)
t
dP (ω) ≤ 1

t
E(ξ) (7.6)

♥

Tchebychev inequality II
If V ar(ξ) <∞ then

[P (ω : ξ(ω)− E(ξ)] ≥ t} ≤ V ar(ξ)
t2

(7.7)

♦

Proof
¿From Tchebychev inequality I applied to the random variable η ≡ (ξ −

E(ξ))2 one has

{ω : |ξ − E(ξ)| ≥ t} = {ω : η(ω) ≥ t2} (7.8)

Therefore P (ω||ξ(ω)− E(ξ)| ≥ t} ≤ E(η)
t2 = V arξ

t2 .
♥

An important result is described by the two limit theorems of De Moivre-
Laplace that we will state without proof. Consider the binomial distribution
with probabilities p, q i.e. on N objects

PNk =
N

k
pk(1− p)N−k (7.9)

We seek the asymptotic distribution in k for large values of N.

De Moivre-Laplace local limit theorem [1]
Let Np+ a

√
N ≤ k ≤ Np+ b

√
N. Then

Pk =
1

2πNp(1− p)
e
− (k−Np2

2Np(1−p))2 (1 +RN (k)) (7.10)

where the remaining term RN (k) converges to zero N →∞ uniformly in k in
bounded intervals

limN→∞ maxNp+a
√
N≤k≤Np+b

√
N |RN (k)| = 0 (7.11)
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♦

De Moivre-Laplace integral limit theorem [1]
Let a < b be real numbers. Then

limN→∞
∑

Np+a
√
Np(1−p)≤k≤Np+b

√
Np(1−p)

=
1

2π

∫ b

a

e−
x2
2 dx (7.12)

♦

7.2 Independent random variables

We now give some inequalities which refer to a sequences of independent
random variables.

Kolmogorov inequality
Let ξ1, ξ2, ..ξn be a sequence of independent random variables. Suppose that
E(ξi) = 0, V ar(ξi) <∞ i = 1, ..n. Then

P ({ω : max1,..n|ξ1 + ..+ ξk| ≥ c}) ≤
1
c2

n∑
k=1

V ar (ξk) (7.13)

♦

Proof
Denote by Ak the set of points ω for which

max{|ξ1|, |ξ1 + ξ2|, ....|ξ1 + ..ξk−1|} < c, |ξ1 + ...ξk| ≥ c 1 ≤ k ≤ n (7.14)

Denote by ηk its indicator function, which is by construction measurable
with respect to ξj , 1 ≤ j ≤ n. The sets Ak are pairwise disjoint and

P (max{|ξ1|, |ξ1+ξ2|, ....|ξ1+..ξk−1|} < c) = P (A1∪A2∪...∪An) =
n∑
k=1

P (Ak)

(7.15)
¿From E(ξk) = 0 ∀k and

∑n
k=1Ξk ≤ 1 it follows

V ar (ξ1 + ...+ ξn) = E((ξ1 + ...ξn)2) ≥
n∑
k=1

E(ηAk(ξ1 + ...ξn)2) (7.16)

Consider now the identity

E(ηAk(ξ1 + ..+ ξn)2) = E(ηAk(ξ1 + ..+ ξk)2)+

+2E(ηAk(ξ1 + .+ ξk)ηAk(ξk+1 + ..+ ξn) +E(ηAk(ξ1k + 1 + ..+ ξn)2) (7.17)
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By definition the measure of Ak is not smaller than c2P (Ak). The second term
is zero since it is the expectation of the product of two independent mean zero
random variables. The third term is positive. Therefore

V ar (ξ1 + ..+ ξn) ≥ c2
n∑
k=1

P (Ak) (7.18)

Since ξk are independent variables the left hand side is
∑n
k=1 V ar (ξk).

♥

Kolmogorov zero-one law
Let (Ω,F , µ) be a probability space and let ξ1, ξ2, ... a collection of indepen-
dent random variables equally distributed (permutable).

Suppose that a set A is measurable with respect to ξn for all values of the
index n.

Then either µ(A) = 0 or µ(A) = 1 where µ(A)is the measure of A (the
integral of its indicator function).

♦

Proof
By definition of product measure there exists an integer N sufficiently large

and a set Aε measurable with respect to the collection ξ1, ..ξN (a cylinder set)
such that |µ(A) − µ(Aε)| < ε. By the substitution ξi → ξi+N we construct
another measurable set A′ with the properties that µ(A) = µ(A′) and that A′

and Aε are mutually independent.
Therefore, denoting by Ξ(A) the indicator function of the set A and with

P (A) its expectation

P (A′ ∩Aε) = P (A′)P (Aε) = P (A)P (Aε) (7.19)

But limε→0P (A′ ∩ Aε) = P (A′) and therefore P (A)2 = P (A) i.e. either
P (A) = 0 or P (A) = 1.

♥

7.3 Criteria of convergence

We turn now to convergence criteria for sequences of random variables.

Definition 7.7
Let ξi be a sequence of (real valued) random variables. We say that the

sequence converges to the random variable ξ
i) in probability (in measure) if

∀ε > 0 limn→∞P (|ξn − ξ > ε) = 0 (7.20)

ii) almost surely (a.s.) if for almost all ω (i.e. except for a set of zero measure)
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limn→∞ξ(ω) = ξ(ω) (7.21)

♦

Notice that a.s. convergence implies convergence in probability but the
converse is not true. Let {ξn} be a sequence of random variables with finite
mean. Denote by ζn = 1

n (ξ1 + ..+ ξn) its arithmetic mean.
We will use Kolmogorov zero-one law to prove the very useful Borel-

Cantelli lemma which states, roughly speaking, that if ξ1, ξ2, ..... s a sequence
of independent equally distributed random variables in a probability space Ω,
then the sets of ω’s such that the series

∑
n ξn(ω) converges have measure

either zero or one. Similarly, under the same assumptions, the measure of a
set of ω such that

limn→∞
1
n

n∑
k=1

ξk(ω) = 0 (7.22)

is either zero or one.

Borel-Cantelli lemma I [2][3]
Let An be a sequence of measurable sets (a sequence of events ) in a probability
space {Ω,F , P} and assume

∑
n P (An) <∞.

Let η(A) be the indicator function of the set A of those ω’s for which there
is an infinite sequence {ni(ω)} such that ω ∈ Ai i = 1, 2, .... Then P (A) = 0
(i.e.A occurs with zero probability).

♦

Proof
We can write A as A = ∪∞k=1 ∪∞n=k An. Then

P (A) ≤ P (∪∞n=kAn) ≤
∞∑
n=k

P (An)→ 0, k →∞ (7.23)

Since
∑∞

1 P (Ak) <∞ one has limn→∞
∑∞
n P (Ak) = 0. Therefore P (A) = 0.

♥

Borel-Cantelli lemma II [2][3]
Let {An} be a sequence of mutually independent events in a probability

space {Ω,F , P} and suppose
∑
n P (An) =∞.

Let A be the collection of points ω for which there exists an infinite se-
quence {ni(ω)} such that ω ∈ Ak k ∈ ni(ω). Then the measure of A is one.

♦

Proof
Write A as Ac = ∪∞k=1 ∩∞n=k A

c
n and therefore for each value of n one has

P (Ac) ≤
∞∑
k=1

P (∩∞k=nA
c
n) (7.24)
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We have denoted by Bc the complement of B in Ω. Since the An are mutually
independent also the Acn are mutually independent

P (∩n=kA
c
n) = Π∞n=k(1− P (An)) = 0 (7.25)

¿From
∑∞
n=1 P (An) = ∞ it follows limn→∞Π

∞
n=k(1 − P (An)) = 0 and

therefore P (Ac) = 0.
♥

7.4 Laws of large numbers; Kolmogorov theorems

We shall now briefly mention one of the theorems in probability theory which is
more frequently used in applications, the laws of large numbers ( Kolmogorov
theorems)

Definition 7.7
We say that the sequence of random variables ξn

1) satisfies the weak law of large numbers if ζn − E(ζn) converges to zero in
probability as n→∞ (i.e. for every ε > 0 one has limn→∞P (|ζn−E(ζn)| = 0.
2) satisfies the strong law of large numbers if ζn − E(ζn) converges to zero
almost surely (i.e. for almost all ω one has limn→∞(ζn−E(ζn)) = 0). Remark
that in the weak form of the law the sets considered may depend on n.

♦
Kolmogorov theorem I

A sequence of mutually independent random variables {ξn} with
∑∞
n=1

1
n2V ar(ξi) <

∞ satisfies the strong law of large numbers.
♦

Kolmogorov theorem II
A sequence {ξn} of mutually independent and identically distributed random
variables such that E(ξn)2 <∞ satisfies the strong law of large numbers.

♦
Remark that both laws of large numbers imply that for a sequence of

random variables which satisfy the assumptions of Kolmogorov, for N large
enough the random variable arithmetic mean mN = 1

N

∑N
n=1 ξn differs little

from its expectation.
Therefore asymptotically the mean does not depend on ω, i.e. it tends to

be not random. This property can be expressed in the following way: in a
long chain of random equally distributed variables there appear almost surely
regular sequences (which are not random). The statement that a gas occupies
almost surely the entire available space can be considered as an empirical
version of the the strong law of large numbers.

We shall give a proof of Kolmogorov theorem I. For the proof of Kol-
mogorov theorem II one must show that if one assumes that

∑∞
i=1

1
i2V arξi <

∞, then the ξk are equally distributed with finite mean of the squares.



174 7 Lecture 7Elements of probabiity theory. Construction of Brownian motion. Diffusions

For this one uses the properties of product measures and Kolmogorov
inequality that we recall here

P ({max1≤k≤n|(ξ1 + ..ξk)− (E(ξ1) + ...E(ξk))| ≥ t} ≤ 1
t2

n∑
i=1

V ar(ξi) (7.26)

Proof of Kolmogorov theorem I
Replacing the random variables ξk with ξk − E(ξk) we can assume E(ξk) =
0 ∀k. We must show that ζN ≡ 1

N

∑N
1 ξi converges to zero a.s. when N →∞.

Choose ε > 0 and consider the event (measurable subset) B(ε) of the points
ω ∈ Ω such that there exists N = N(ω) such that for all n ≥ N(ω) one has
|ζn(ω)| < ε. By definition

B(ε) = ∪∞N=1 ∩n>N(ω) {ω| |ζn(ω)| < ε} (7.27)

Define Bm(ε) ≡ {ω : max2m−1≤n≤2m |ζn| ≥ ε}. ¿From Kolmogorov
inequality

P (Bm(ε)) = P (max2m−1≤n≤2m |
n∑
i=1

ξi| ≥ ε n) ≤ max2m−1≤n≤2m(P (|
n∑
i=1

ξi| ≥ ε2m−1)

≤ 1
ε2

22m−2
n∑
i=1

max1≤n≤2mP (|
n∑
i=1

ξi| ≥ ε2m−1)
∑

V ar(ξi) (7.28)

Therefore
∞∑
m=1

P (Bm(ε)) ≤ 1
ε2

∞∑
i=1

V ar(ξi)
∑

n≥mi, 2mi−1≤i≤2m
i

1
22n−2

≤ 16
ε2

∞∑
i=1

V ar(ξi)
i2

(7.29)
and this sum is finite by assumption. It follows from the Borel-Cantelli lemma
that for a.a. ω there exists an integer M(ω) such that for m ≥M

max2m−1≤n≤2m |ζn| < ε (7.30)

Therefore P (B(ε)) = 1 for each ε > 0. In particular P (∩kB( 1
k )) = 1. If

ω ∈ ∩kB( 1
k ) there exists N(ω, k) such that for every n ≥ N(ω, k) one has

|ζn| < 1
k . It follows that for almost all ω, limn→∞ζn = 0.

♥

7.5 Central limit theorem

Using the law of large numbers one can derive the important Central Limit
Theorem. In its most commonly used version this theorem is about the sum of
independent identically distributed random variables. This theorem plays an
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important role in Statistical Mechanics and provides a link between Statistical
Mechanics and Thermodynamics.

According to the strong law of large numbers the difference between the
arithmetic mean of N independent identically distributed random variables
and the arithmetic mean of their expectation values E(ξk) converges to zero
as N →∞. It is natural to enquire about the rate of convergence.

¿From Tchebychev inequality one derives that the order of magnitude of
the error is

√
N . Therefore it is of interest to study the convergence of the

sequence

ζN ≡
1√
N

N∑
k=1

ξn E(ξk) = 0 (7.31)

,
The Central Limit Theorem states that the random variables ζN do not in

general converge strongly but, under suitable assumptions, their distributions
have a limit that does not depend on the details of the distribution of the ξi.

Let is recall the definition of characteristic function of a random variable.

Definition 7.9 (characteristic function)
The characteristic function φξ of the random variable ξ is by definition

φξ(λ) ≡ E(eiλξ) λ ∈ R (7.32)

♦
It is easy to see that the characteristic function determines the distribution

of the random variable ξ and that convergence of a sequence of characteristic
functions is equivalent to convergence in distribution (not in probability) of
the corresponding sequence of random variables.

The use of the characteristic function simplifies the study of the sum of
independent random variables. Let ζN =

∑N
k=1 ξk. It is easy to see that

φζN (λ) = ΠN
k=1φξk(λ).

We can now state the Central Limit Theorem.

Central Limit Theorem
Let {ξ1, ..ξn..} be a sequence of independent identically distributed random
variables and let their common distribution f(x) have finite second moment.
Denote by m the (common) expectation and with v the common variance v =
m2 −m2. Then for N →∞ the distribution of their average

ηN ≡
1√
Nv

N∑
n=1

(ξn −m) (7.33)

converges weakly to a gaussian normal distribution with density 1√
2π
e−

x2
2 ).
♦

Proof
The characteristic function of the gaussian distribution is



176 7 Lecture 7Elements of probabiity theory. Construction of Brownian motion. Diffusions

φ(λ) = E(
1√
2π
eiλx−

x2
2 ) = e−

λ2
2 (7.34)

while the characteristic function of the random variables ηN is

φηN = φ(
λ√
Nv

)e−iN
λ m√
Nv (7.35)

where φ is the common characteristic function of the ξk. It is sufficient there-
fore to prove that for each value of λ

limN→∞φηN (λ) = e−
λ2
2 (7.36)

Because m2 <∞ the function φ(λ) is twice differentiable with continuous
second derivative. Therefore for λ small

φ(λ) = 1 + imλ− λ2

2
m2 + o(λ2) (7.37)

It follows for each value of λ

φηN = (1− λ2

2N
+ o(

λ2

N
)N →N→∞ e−

λ2
2 (7.38)

(remark that the linear terms vanish by symmetry).
♥

There are generalizations of the Central Limit Theorem, e.g. to the case
in which the random variables are not identically distributed or are only ap-
proximately independent or if one considers other averages. instead of the
mean. In particular it can be shown that if the random variables are iden-
tically distributed with distribution function p(x) such that p(x) = p(−x)
and p(x) ' c

|x|α+1 for α ∈ (0, 2), then the distribution of the random variable

ηN (α) = N−
1
α (ξ1 + ...ξN ) converges when N →∞ to a limit distribution with

characteristic function Ce−b|λ|
α

, b > 0.

7.6 Construction of probability spaces

We end this description of results about collections of identically distributed
random variables presenting theorems about the construction of probability
spaces in which one can realize collections of random variables (given through
their characteristic functions) preserving their joint distributions. These con-
structions are analogous to the construction of of product measures. It should
be stressed that the construction is not unique.

We begin with a theorem of Kolmogorov on the existence of a measure
space in which can be realized a collection (not necessarily denumerable) of
random variables preserving joint distributions.
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Theorem 7.4 (Kolmogorov)
Let I a set. Let F be the collection of the finite subsets of I and assume that
for each F ∈ F there exists a completely additive measure µF of total mass
one on the Borel sets B(RN(F )) (we have denoted by N(F ) the number of ele-
ments in F ). Assume that this collection of measures satisfies the compatibility
requirements for the inclusion of the subsets.

Then there exists a (not unique) probability space (X,M,µ) and functions
{fα, α ∈ I} such that µI be the joint probability of {fα α ∈ I}. Moreover if
F is the smallest σ-algebra that contains all measurables fα, the measure µ is
unique modulo homeomorphisms.

♦

Proof
Let Ṙ ≡ R∪∞ be the one-point compactification of R and set X ≡ (Ṙ)I .

Let Cfin the set of function which depend only on a finite number ξI of α. If
f ∈ Cfin define l(f) =

∫
f(xI)dµI(xI) By construction X is compact in the

product topology.
By the Stone-Weierstrass theorem Cfin in dense in C(X). Indeed the poly-

nomials in Cfin coincide with those in C(X). Therefore the functional l ex-
tends to C(X). By the Riesz-Markov representation theorem, there exists a
Baire measure µ on X such that l(f) =

∫
f(x)dµ(x).

Let fα be equal to ξα if |xα| <∞, 0 otherwise. Then, if the set J is finite
, dµI is the joint probability of fα, α ∈ J. This proves existence.

To prove uniqueness it is sufficient to prove that Cfin is dense in L2(X, dµ).
Let H be the closure of Cfin in L2(X, dµ). For any Borel set A ⊂ X the indi-
cator function η(A) can be approximated in L2(X, dµ) by linear combinations
of η(An), An ⊂ Bfin ( the cylindrical Borel sets with finite dimensional
basis). Therefore the collection of An is closed for finite intersections.

Since the complement of a cylinder set is itself cylindrical it follows that
the collection of An is also closed under complementation and denumerable
union. Therefore

{A : η(A) ∈ H} (7.39)

is a σ-algebra. But by assumption F is the smallest σ-algebra that contains
all Borel sets. Hence

{A : η(A) ∈ H} = H (7.40)

and therefore H = L2(X, dµ).
♥

Remark that one can use RI as a model because µ{x : ∃α, |xα| <
∞} = 1 ∀α and, for every finite J

µ{x : |xα| =∞ ∀α ∈ J} = 0 (7.41)

¿From the σ-additivity of the measure one derives then µ(ṘI −RI) = 0.
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7.7 Construction of Brownian motion (Wiener measure)

We give now two constructions of Brownian motion. One is the original con-
struction of Wiener as measure on continuous functions [2][4]. The other is
the construction, due to Einstein, of Wiener measure as limit of measures on
random walks on a lattice. We also give a modification of Brownian motion
which is obtained through a modification of its paths.

Wiener construction
Using Kolmogorov estimates to bound the measure of the part of the measure
space in which a given random variable exceeds a prefixed value, and elemen-
tary probabilistic estimates , in particular on product measure, it is possible
to prove that if c0, c1, c2, ... are independent gaussian variables the series

XN (t) ≡ c0t+
N∑
n=1

2n∑
k=2n−1

cn

√
2senπkt
πk

(7.42)

converges in distribution when N → ∞ uniformly over compact sets with
probability one. This means that, a part a set of measure zero, one has -
uniform convergence in L1(R) of the distribution of the sequence

XN (t, ω) ≡ c0t+
N∑
n=1

2n∑
k=2n−1

cn(ω)
√

2 senπkt
πk

(7.43)

The limit function is continuous and is zero for t = 0 because each term is
zero. We have thus defined for each value of T ∈ R+ a correspondence ΦT
between a set of full measure Y of points ω in the probability space (Ω,M,µ)
and continuous functions vanishing at the origin.

We define now a probability measure µ′ on continuous functions XT on
[0, T ]) vanishing at the origin by setting

µ′(Φ−1
T (Y )) = µ(Y ), µ′(XT − Φ−1

T (Y )) = 0 (7.44)

This is Wiener measure. Wiener has proved that Y is dense in XT in the
C0 topology.

For each value of t the Xn(t) are independent gaussian variables, (being
sum of independent gaussian random variables) and therefore also their limit
in distribution is a gaussian

ξt(ω) = limN→∞XN (t) (7.45)

Due to the correspondence between a set of measure one in Ω and a dense
subset of continuous functions, the random variable ξt can be seen as an
element of the dual of continuous functions. It follows from the definitions
that ξt0 assigns to the function x(t) the number x(t0).

¿From the definition one verifies E(ξt) = 0.Using the trigonometric rela-
tions and the independence of ck(ω) and performing the limit that defines ξt
one has
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E(ξtξs) =
∫
ξt(x(.))ξs(x(.))dµ′ = min(t, s) (7.46)

Since the ξt are random gaussian variables this determines completely their
distribution and we see that the random variables ξs and ξt are not mutually
independent. Remark that we have assumed that the random variables we
consider take value in R.

An identical construction can be made under the assumption that the
random variables ck take value in Rd and that the components are gaussian
independent random variables with mean zero and variance one. One obtains
in this way the Wiener process in Rd.

We have used the fact that the class of continuous functions is closed
under uniform convergence (the convergence we have proved is in the uniform
topology outside a set of measure zero). This follows because closed sets in
Rd are compact.

This is not true for an infinite dimensional Banach space X. Still we shall
see, in Lecture 15, through the theory of Dirichlet forms, processes that play
the role of Wiener processes in infinite dimensional Banach spaces.

Remark that using Kolmogorov inequality one proves that the set of ω
for which the limit is an absolutely continuous function has measure zero.
The representation we have given of Wiener process is particularly convenient
to determine the regularity of the trajectories making use of theorems about
Fourier transforms. Further analyses of this problem are e.g. in [4].

7.8 Brownian motion as limit of random walks.

We now construct the Wiener process as limit of random walks on a lattice.
Our exposition follows closely the construction given by Einstein. We will
consider only the case of one space dimension and we will study the motion
of a heavy particle which moves due to elastic collisions with very many light
particles which move independently from each other.

This is the model introduced by Einstein to give a mathematical treatment
the phenomenon described by R.Brown in 1927 [5] of the erratic movement of
pollen particles suspended in water. Einstein [6] described the motion of pollen
as due to the (random) collisions with the molecules of water. Einstein’s theory
was verified experimentally by J.Perrin [7] who used it to give a (precise)
estimate of Avogadro’s number. Perrin’s experiments constituted at that time
the best evidence for the existence of atoms and molecules.

Consider the motion in one space dimension. The light particles come at
random form the right or the left; in each unit of time the heavy particle is
hit by a light particles and moves to left or to the right of one unit of space.
Since the direction of the light particle is random, if at time 0 the heavy
particle is at the origin at (microscopic) time n it will be in position given by∑n
i=1 ξi where ξi are independent random variables with common distribution

P (ξi = ±1) = 1
2 .
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On a macroscopic scale of space and time there are ε−2 collisions in each
unit of time, and the absolute displacement in each collision is ε. Therefore af-
ter the macroscopic time t the heavy particle will be in (macroscopic) position
Xε(t) = ε

∑ε−2t
i=1 ξi. We will construct Brownian motion as limit in distribu-

tion of the random variable Xε(t). More generally, consider a probability space
{R,B(R), µ} such that∫

R

x4dµ(x) <∞
∫
xdµ(x) = 0

∫
x2dµ(x) = 1 (7.47)

and let ξ a random variable.
Consider now a product space and for ε > 0 define by linear interpolation

for each realization of ξ a continuous path t→ ψε(ξ; t) through

ψε(ξ; t) = ε

[ε−2t]∑
i=1

ξi + ε(ε−2t− [ε−2t])ξ[ε−2t]+1 (7.48)

where [y] is the integer part of y. Define Pε(A) = P (ψ−1
ε (A) for any cylindrical

set of paths.

Theorem 7.5
When ε→ 0 the sequence Pε converges weakly to Wiener measure.

♦

Proof
We give the proof in three steps

i) At each time 0 ≤ t ≤ T the distribution converges to the distribution of
Brownian motion.
ii) The finite dimensional distributions converge to those of Brownian motion
iii) The family Pε is tight

Step i)
This is a consequence of the central limit theorem. Introduce the characteristic
function φε(λ), which is the Fourier transform of the distribution of ξε(t) under
Pε. It is easy to prove that convergence in distribution is equivalent to the
convergence of the characteristic function and that the characteristic function
of the sum of independent random variable is the product of the characteristic
functions

φε(λ) = φε(λε)
t
ε2 = [1− 1

2
λ2ε2 + +o(ε2)]

t
ε2 → e−

1
2λ

2t (7.49)

Step ii)
¿From step i) one sees that adding the terms

ε(ε−2t− [ε−2t])ξ[ε−2t] (7.50)
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one obtains a continuous path. This term goes to zero uniformly as ε → 0.
The proof of step ii) follows then because P is a product measure.

Step iii)
To prove relative compactness we make use of Prohorov criterion (see e.g. [3];
this book is a basic reference for weak convergence and compactness criteria).

7.9 Relative compactness

Let S be a metric space and B(S) its Borel sets. Denote by C(S) the continuous
function on S.

Recall that a family of probability measures Πα on (S, d) is relatively
compact iff for any bounded sequence Pnit is possible to extract a weakly
convergent subsequence (i.e. there exists a probability measure P such that
limn→∞

∫
fdPn =

∫
fdP for every bounded f ∈ C(S)).

We shall denote weak convergence by Pn →w P. In case S = R we can
characterize weak convergence by means of the characteristic function φ(λ) ≡∫
eiλxµ(dx) Weak convergence is equivalent to point-wise convergence of the

characteristic function.
A collection Πα of probability measures is tight iff for each ε > 0 there

exists a compact set K such that P (K) > 1− ε for each P ∈ Π. We now use
Prohorov criterion

Prohorov criterion [3]
If the collection Πα is tight, then it is relatively compact. If S is complete

and separable, the condition is also necessary.
♦

This criterion is particularly useful if S is the set C of continuous functions
on RN , N < ∞. In this case the compact sets are characterized by the
Ascoli-Arzelá theorem. Let the continuity modulus if x(t) ∈ C be ωx(δ) ≡
sup|t−s|<δ|x(t)−x(s). The Ascoli-Arzelá theorem states that a set A ∈ C has
compact closure iff

supx∈A|x(0)| <∞, limδ→0supx∈Aωx(δ) = 0 (7.51)

It follows from the definition that if A has compact closure, then its el-
ements are equi-bounded and equi-continuous. It is then easy to see that in
this case the sequence Pn is tight iff
i) for each η > 0 there exists a > 0 such that Pn(x : |x(0)| > a) ≤ δ ∀n ≥
1.
ii) For every i η > 0, ε > 0 there exist δ ∈ (0, 1) and n0 ∈ N such that

Pn(x : ωx(δ) ≥ ε) ≤ η ∀n ≥ n0 (7.52)
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Returning now to the construction of Wiener measure, notice that if s and
t, 0 ≤ s < t ≤ T are such that ε.2t and ε−2s are integers one has

∫
dPε|x(t)− x(s)|4 = E(ε

ε−2t∑
i=ε−2s+1

ξi)4

= ε4
ε−2t∑

i=ε−2s+1

E(ξ4
i )+6ε4

∑
ε−2s+1≤i≤j≤ε−2t

E(ξ2
i ξ

2
j ) ≤ C(ε2(t−s)+(t−s)2 ≤ 2C(t−s)2

(7.53)
By interpolation this inequality is valid for 0 ≤ s ≤ t ≤ T. Remark now that
if ∃ α, β C <∞ such that

E(|x(t)− x(r)|β) ≤ C|t− s|1+α (7.54)

then ∃ c1, c2 <∞ such that

P [sup0≤s≤t≤T
|x(t)− x(s)|β

|t− s|1+α
≥ c1λ] ≤ c2

1
λ

(7.55)

This inequality, a version of Tchebychev inequality called also Garcia’s
inequality, can be found in [2]. With the choice α = 1 and β = 4 it follows

Pε(x,
ωx
δ

) ≥ η) ≤ Pε(δβsup|t−s|≤δ
|x(t)− x(s)|
|t− s|β

≥ η) ≤ c2(c1
δβ

η
)4 (7.56)

and then limδ→0supε>0Pε(x : ωx(δ) ≥ η) = 0. This implies relative compact-
ness.

7.10 Modification of Wiener paths. Martingales.

We consider now the process obtained modifying the Laplacian by a drift
b(x) (which need not be a gradient). We want to interpret the modification of
Brownian motion as modification of the Brownian trajectories. This will give
us a version of the modified process which has continuous trajectories defined
in any finite interval of time. The generator of the semigroup is now

L =
1
2
d2

d2
+ b(x)

d

dx
(7.57)

We assume that the vector field b(x) is Lipshitz continuous. Consider the
modification of the Brownian trajectories under the following rule, for each
t ≥ 0

β → ξ(t) ≡ Φb(t), ξ(t) = x+ β(t) +
∫ t

0

b(ξ(s))ds x(t) ∈ Rd (7.58)
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where ξ(t) is the trajectory corresponding to the Brownian path β(t) is a
trajectory of Brownian motion (we make use of the evaluation map for all
trajectories in the support of Brownian motion).

Consider the dual action of this modification on the measures on contin-
uous trajectories in any finite interval of time, and call µb(t) the resulting
measure. Since we have assumed that b(x) is Lipshitz continuous one can use
the Picard iteration scheme to prove that the map µ0 → µb(t) is well defined.
We recall some definitions

Definition 7.9 (martingale) [2][3][4]
Given a probability space {Ω,F , P} and a filtration Ft ∈ F (a family

of sub-sigma fields such that Fs ⊂ Ft for s < t) a family Mt(ω) of random
variables is called a martingale if
(1) For almost all ω ,Mt(ω) has left and right limits and is continuous to the
right.
(2) For each t ≥ 0 Mt(ω) is measurable and integrable
(3) For 0 ≤ s ≤ t E(Mt,Fs)t = Ms almost surely, where E(X,Fs) denotes
conditional expectation of X with respect to the σ algebra Fs ( a subalgebra
of F≤t.

♦
The role of this definition of martingale can be seen from the following

theorem

Theorem 7.7 ( Girsanov’s formula)
Denote by P 0

x the measure that Brownian motion defines on the space Ω of
continuous trajectories starting from x at time 0. Let b(x) be a Lipshitz con-
tinuous vector field and by P bx the measure of the stochastic process with drift
b(x). Then P bx is absolutely continuous with respect to P 0

x .
The Radon-Nikodym derivative is given by

Rbt(ω) = e

∫ t

0
b(ξs(ω))ds− 1

2

∫ t

0
b2(ξs(ω))ds

b2 =
d∑
k=1

b2k (7.59)

The process defined by P bx is a Markov process because Rt is a martingale with
respect to {Ω,Ft, Px}. As usual we have denoted by ξs(ω) is the evaluation
map.

♦

Proof
We shall give the proof only in the case when the vector field is bounded.

The proof in the general case will follow by approximation and a limit proce-
dure.

Define a new measure Q̂x by

dQ̂x
dPx

= Rbt (7.60)
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where Rbt is given by equation (64). We prove first that Rbt is a martingale.
By inspection, this is true when b is a piecewise constant function bn.

Denote by Rbnt the corresponding martingale. One can verify that (Rbt)
2 ≤

Rb2te
tC2

where C(ω) is chosen such that C(ω) ≥ |bs(ω)| for 0 ≤ s ≤ t.
A bounded progressively measurable function b can be approximated by

piece-wise constant functions bn which are uniformly bounded. Therefore when
bn → b the martingales Rbnt are uniformly bounded in L2(P0) and the limit
Rbt exists and is again a martingale.

Since the distributions are consistent for different times, it follows that

Rt(θ, ω) = e

∫ t

0
(θ−b(x(s))dx(s)− 1

2

∫ t

0
(b(x(s))−θ)2ds (7.61)

is a martingale for every θ. This implies that

St(θ) = e

∫ t

0
θdx(s)− tθ22 −

1
2

∫ t

0
θb(x(s))ds

= e
θ(x(t)−x−

∫ t

0
b(x(s))ds)− tθ22 (7.62)

is a martingale with respect to Q̂x. Therefore

y(t) ≡ x(t)− x−
∫ t

0

b(x(s))ds (7.63)

is distributed as the Brownian motion. Since Φx(y(.)) = x(.) one has Q̂x = Qx.
♥

We call attention to the second term in the exponential in Girsanov’s
formula, which has its origin in the fact that Brownian motion is a process
with increments in time which are independent for disjoint intervals of time.
For closed intervals which have a point in common the increment is not equal
to the sum of increments in the the two parts ( Wiener measure is not a
product measure)

The difference is encoded in the quadratic term b2(x(s)). Recall that
Wiener’s paths are nowhere differentiable and therefore this term is not related
to jumps in the derivative

So far we have studied Brownian motion, a Markov process that has the
Laplacian as generator. We have also studied modifications obtained by adding
a potential and/or a drift. The same analysis can be done for Markov processes
which have a generator of the form

HA,b = −
∑ ∂

∂xk
ak,h(x)

∂

∂xh
+bk(x)

∂

∂xk
ah,k = Ak,h A > 0 k, h = 1 . . . d

(7.64)
provided the coefficients ah,k and b(x) are sufficiently regular. All these pro-
cesses are defined for 0 ≤ t ≤ T (for some T > 0) , have continuous trajectories
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in Rd, are recurrent for d < 3 and have a measure equivalent to Wiener mea-
sure on path in 0 ≤ t ≤ T .

They are a special class of diffusion processes (or for short diffusions),
stochastic processes that behave locally as a Brownian motion. We restrict
ourselves here to the one-dimensional case. The idea is to realize a process
with increments which satisfy

[x(t+ ε)− x(t)|F(t) = εb(t, x(t)) + o(ε), E[x(t+ ε)− x(t)]2F(t) = o(ε) (7.65)

where the expectation E is with respect to the (Markov) σ-field F(t) generated
by x(t)

Let Ω be Wiener space on [0, T ] i.e. the space of continuous trajectories
ω(t), t ∈ [0, T ]) . Let ξ(t) be a function on this space on this space, continu-
ously progressively measurable. We are looking for a continuous progressively
measurable function x(t, ω) that satisfies for almost all Brownian paths,

x(t+ ε, ω)− x(t, ω) =
√
a(t, x(t)[β(t+ ε)− β(t)] + εb(t, x(t)) + o(ε) (7.66)

Notice that now both the drift and the covariance depend on the path A
shorthand (formal) notation commonly used is

dx(t) =
√
a(t, x(t)dβ(t) + b(t, x(t))dt (7.67)

where β(t, x(t)) is Brownian motion.

7.11 Ito integral

More precisely we are looking for a progressively measurable (i.e. measurable
with respect the the the σ-algebra generated in time by Brownian motion)
function x(t, ω), t ≥ s that satisfies for each ω ∈ Ω the integral relation

x(t, ω) = β(ω) +
∫ t

0

√
a(τ, x(τ, ω))dβ(τ) +

∫ t

0

b(τ, x(τ, ω))dτ 0 ≤ t ≤ T

(7.68)
The first integral, Ito stochastic integral, is defined for a special class of

function F (that we describe now) by convergence in measure of the cor-
responding Riemann integral for approximating functions that are piecewise
constant on (almost all) paths. The class F is made of functions f mapping
[0, T ]×Ω → R which satisfy
i) ∀t > 0 the function f is jointly measurable with respect to the σ-field of
the Brownian motion
ii) ∀t > 0 E

∫ t
0
|f(s, ω)|ds <∞ where E is expectation with respect to Wiener

measure µ0.

One has then [1][2][4]
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Theorem 7.7
For F ∈ F one defines the stochastic Ito integral

Xf (t) =
∫ t

0

f(s, ω)dx(s) (7.69)

with the following properties that characterize it completely
1) the map f → Xf (t) is linear
2) Xf (t) is progressibly measurable, continuous as a function of t and a mar-
tingale with respect to (Ω,Ft, P0 where P0 is Wiener measure on paths stating
at the origin.
3) X2

f −
∫ t

0
(f(s, ω)2ds is a martingale with respect to Ω,Ft, P0.

♦

Recall that a process M(t) is a martingale with respect to (Ω,Ft, P0) if
the following are true
1) for almost all ω,M(t, ω) has right and left limits and is continuous from
the right
2) for each t ≥ 0, M(t) is measurable and integrable
3) For 0 ≤ s ≤ t one has E[M(t)F (s)] = M(s) almost everywhere

Sketch of the proof of Theorem 7.7
One start as usual with simple functions (piece-wise constant for every Ω) Let
0 = t0(ω) < t1(ω) . . . < tn(ω) < ∞ be n times, let tn(ω) be measurable and
let the function f(ω, t) be constant in these intervals. For these function one
can define the integral as Riemann sums.

Xf (t) =
k−1∑
i=1

fi−1(ω)[x(ti)− x(ti−1)] + fk−1(ω)[x(t)− x(tk−1)] (7.70)

It is easy to check that properties 1) to 2) are satisfied. To verify 3) we
have to prove

E[X2
f (t)−X2(s)−

∫ t

s

f(τ, ω)dτ |Fs ] = 0 (7.71)

where E is the expectation with the probability measure of the Brownian
motion starting at the origin. This can be verified by using the properties

E[Xf (s)[Xf (t)−Xf (s)]]|F(s)] = 0 (7.72)

E[fj−1(ω)(x(t)− x(s)2|]Fs = E[fj−1(ω)(t− s)]|Fs (7.73)

which follow from the properties of Brownian motion. As a consequence of
Doob’s inequality for Brownian motion [1][2] one has also

E[sup0≤s≤t(Xf (s)|2] ≤ 4E
∫ t

0

f2(s, ω)ds] (7.74)
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These estimates lead to the definition of the Ito integral for a large class
F of functions. The class F is made of function f(s, ω) ∈ F which can be
approximated in measure with a sequence of simple functions such that

E[
∫ t

0

|fn(s, ω)− f(s, ω)|2ds]→ 0 (7.75)

Then the limit Xf of Xfn exists in the sense that

limn→∞E[sup0≤s≤t|Xfn(s)−Xf (s)|2] = 0 (7.76)

It is easy to see that the approximation can be done if one shows [1][2][4]
that every bounded progressively measurable (i.e measurable with respect to
Fs for 0 ≤ s ≤ t) can be approximated by bounded progressively measurable
almost surely continuous functions.

♥
As a consequence of the definition of Ito integral one has the Ito formula, an

importat result in the theory of stochastic integrals. Let f(t, x) be a bounded
continuous function of t and x with a bounded continuous derivatives in t and
two bounded continuous derivatives in x. Then

f(t, x(t)) = f(0, x(0))+
∫ t

0

fs(s, x(s))ds+
1
2
fxx(s, x(s))+

∫ t

0

fx(s, x(s))dx(s) 0 ≤ t ≤ T

(7.77)
One can verify that if g(s, x) = fs(s, x) + 1

2fxx(s, x) is a bounded contin-
uous function , then

f(t, x(t))− f(0, x(0))−
∫
g(s, x(s)ds (7.78)

is a martingale.
In particular if a(x, ω) ≡ 1 and for almost all paths b(t, ω) = b(ω(t) this

procedure leads to the construction of the process which corresponds to the
Brownian motion with a drift b(x) (the process has generator 1

2
d2

dx2 + b(x) d
dx )

If b(x, ω) for almost all ω is locally Lipschitz but depends on the path we still
have a Markov process with paths given by

x(t), ω) = x+ b(t, ω) +
∫ t

0

b(x(s), ω)ds (7.79)

In this case Wiener measure on paths induces a distribution Qx on the
paths of this process on [0, T ] starting in x at time zero. This measure is
absolutely continuous with respect to Wiener measure. The Radon-Nikodym
derivative on the σ-field Ft is given by

RDt(ω) = exp[
∫ t

0

b(x(s))dx(s)− 1
2

∫ t

0

b2(s, x(s))ds] (7.80)
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Lecture 8
Ornstein-Uhlenbeck process. Markov structure
. Semigroup property. Paths over function
spaces

The structures we have analyzed so far describe random processes in the
time interval [0, T ] with T arbitrary but finite. One can equivalently consider
processes in the time interval [−T, T ].

We have associated to the Laplacian in Rd the Wiener process on the
interval [0, T ]. It is easy to see that the procedure followed in the case of the
Laplacian ∆ can be repeated for the generator L of any positivity preserving
contraction markovian semigroup. Therefore we can associate to L a stochastic
process on [-T,T] ..

We will return in Lecture 11 to the properties that operators and quadratic
forms must have to define a stochastic process. We want now to construct a
process for which the paths are defined for all times. Moreover we want that
the process has an invariant measure and that the group of time-translations
acts as measure-preserving transformations.

We can do this if the generator L has a unique (positive) ground state.
For example we can take L = HV = −∆ + V (x) where V (x), x ∈ Rd is a
potential of a suitable class and H a unique ground state with eigenfunction
φ0(x) which is strictly positive

Or one can choose L = ∆N
[0,1] , the Laplacian in [0, 1] with Neumann

boundary conditons. The invariant measure would in this case have constant
density in [0, 1].

These choices would give a process with trajectories in −∞ ≤ t ≤ +∞ but
the kernel of e−tL has a complicated expression which makes it inconvenient
for explicit estimates. We choose the Hamiltonian of the harmonic oscillator

H0 = −∆
2

+
x2

2
− d

2
x ∈ Rd (8.1)

8.1 Mehler kernel

For the Hamiltonian of the harmonic oscillator the kernel of the associated
semigroup has a simple form. Moreover it possible in a simple way to extend
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the construction to the infinite-dimensiona case, and construct processes with
paths in Sobolev spaces. The integral kernel of the corresponding semigroup
is known explicitly ( Mehler kernel)

K0
t (x, y) = (1− e−2t)−1/2exp{−y2 +

(e−ty − x)2

1− e−2t
} (8.2)

We briefly indicate a derivation of Mehler formula for d = 1. Using the
creation and destruction operators

a∗ =
1√
2

(x− d

dx
), a =

1√
2

(x+
d

dx
) (8.3)

one has
H0(a∗)nΩ0 = n(a∗)nΩ0 Ω0 =

1√
π
e−

x2
2 (8.4)

Therefore
e−tH0e

iν a
∗
√

2Ω0 = e
iν e
−t
√

2
a∗
Ω0 (8.5)

(both sides are analytic in t because a∗ (H0 + 1)−
1
2 is a bounded operator).

From the commutation relations between a and a∗∫
e−tH0(x, y)eiνye−

y2

2 = e
−ν e−t√

2
eiνx

e−
x2
2 (8.6)

¿From this one derives Mehler’s formula. A similar construction can be
done for generators of the form

HA,b =
d∑

k,h=1

∂

∂xk
Ak,h

∂

∂xh
+ bk

∂

∂xk
x ∈ Rd (8.7)

where A is a positive definite matrix. The Mehler kernel can be derived with
the same procedure as above by using a suitable representation of the canon-
ical commutation relations.

Formally the same is true in infinite dimensions but one must pay attention
to the fact that not all the representations are equivalent and the choice of A
and b fixes the representation in which the process is defined. Notice that

limt→∞K
0
t (x, y) =

1
π
e−

x2
2 −

y2

2 = P0(x, y) (8.8)

This is the kernel of the projection operator on the ground state of the har-
monic oscillator. The ground state is unique, because H0 is strictly positive
on the complement of the ground state.
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8.2 Ornstein-Uhlenbeck measure

Proceeding as in the case of the heat kernel, one can verify that K0
t defines

for any finite T a process in [−T, T ] and fixed q, q′ ∈ Rd , called Ornstein-
Uhlenbeck bridge. The paths start in q at time −T and end in q′ at time
T .

There is a corresponding measure on these paths (the Ornstein-Uhlenbeck
bridge measure) WOU

q,q′;T . This measure is supported on continuous paths for
t ∈ [−T, T ] conditioned to be in q′ at time −T and in q at time T.

We want now to describe processes that are defined for all times. Time
translation will act as measure-preserving group of transformations and there
will be an invariant measure (state) . We start with the Ornstein-Uhlenbeck
bridge.

Let MT be the space of continuous functions in the interval [−T, T ]
with values in Rd. Define a measure Φ0(T ) on MT as product measure of
dµOUy,y′;[−T,T ] times the measure on Rd × Rd having for each factor as density
the (positive) eigenfunction Ω0 of the ground state of the harmonic oscillator

dΦ0(T ) = dµOUy,y′;[−T,T ]Ω0(y)dyΩ0(y′)dy′ (8.9)

Denote by Ak the operator which act as multiplication by Ak(x), k = 1, ..n

(Ω0, A1e
−(t2−t1)H0A2...e

−(tn−tn−1H0AnΩ0) =
∫
ΠkAk(ξ(ti))dΦ0(t). (8.10)

¿From the invariance of Ω0 under eisH0 (which implies e−tH0Ω = Ω ) it
follows that for S > T the measure Φ0(T ) can be regarded as the conditioning
of Φ0(S) to the paths in [−T, T ].

Moreover for |S| ≤ T the random variables ξT (s) have a the same distri-
bution as ξS for S > T and can be realized in the same probability space.
Therefore we are justified in identifying them.

This compatibility property allows, by Kolmogorov theorem, the construc-
tion (in several ways) a common probability space. But since Kolmogorov the-
orem is very general, in principle in a representation the measure is carried
by the continuous product of Rt, t ∈ R and a priori it is not obvious that
the process can be realized in a smaller function space, e.g. the continuous
functions of t with values in Rd (the space of continuous trajectories in Rd.

It is therefore convenient to describe the limit Ornstein-Uhlenbeck measure
µ0 as a measure on a set of measurable functions onR and of their expectations
instead of a measure on measurable sets of paths.

The measurable sets are then recovered using characteristic functions. No-
tice that the same procedure was followed by Wiener and the conclusion that
there is a realization in the space of continuous function was derived from the
smoothness properties of the covariance.

Therefore the process is indexed now by a set of functions of time. For any
continuous function f(t) with values in Rd and support in [−T, T ] define the
function on path space
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φ(f) =
∫
f(t, ξt)dt (8.11)

which measurable with respect to tho measure dWOU
y,y′;[−T,T ] It is also measur-

able with respect to the measure dWOU
y,y′;[−S,S] with the same expectation.

Therefore we have defined a measure on continuous functions f(t) with
values in Rd and ξt is the evaluation map for the Ornstein-Uhlenbeck process
defined in bounded time interval that contain the support of the function f.

Remark that since both the ground state of the harmonic oscillator and
the measure of the Ornstein-Uhlenbeck bridges are gaussian, also the the limit
measure µ0 is gaussian (as limit in measure of gaussian measures).

The invariant measure of the Ornstein-Uhlenbeck process is gaussian and
therefore completely determined by its mean and its covariance. Formally the
limit measure can be written

dφ0 =
∫
Rd×Rd

Ω0(q)Ω0(q′)dUq,q′ (8.12)

and defined on continuous paths in any bounded interval. For any collection
fi of bounded function of q ∈ Rd and for any polynomial P and for any value
of T one has∫

Πfidω = (Ω0, f1e
−(t1−t2)f2 . . . fn−1e

−(tn−1−tnfnΩ) (8.13)

for |ti| < T, ∀i. This measure is constructed by a weak limit procedure for
T →∞.

Therefore the support of the limit measure can in principle be any mea-
surable subset of the continuous product of Rd. It is therefore advisable, as
we did, to consider first the measure on measurable functions and then, if
needed, enquire about a space of paths on which the measure can be realized.
This space will be not unique. We shall denote by Ω any of the measure space
we can choose and by ω its ”points”.

The most natural functions in Euclidian space are the coordinates. By the
explicit form of the Mehler kernel one derives∫

qk(t)dω = 0∀t (8.14)

∫
qk(t)qh(τ)dω = e−|t−τ |(Ω, q2Ω) = Ck,he

−|t−τ | (8.15)

where Ck,h is a covariance matrix (the measure is a Gaussian measure) Denote
by φ(f) the random variable associated to the function f . One has

E(φ(f)) = 0 E(φ(f)φ(g) = (f, g)−1 (f, g)1 ≡
∫

(f̂)∗(k)ĝ(k)(k2 +1)−1dk

(8.16)
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E(φ(f)2n) = (2n− 1)!!f2n
1 , E(φ(fi)2n+1) = 0, E(eiφ(f)) = e−

1
2 (f,f)−1

(8.17)
Notice that the process is defined for all times and has a positive invariant

measure. As a stochastic process it has a generator L = −H′ where H0 is the
Hamiltonian of the harmonic oscillator in Rd and the invariant measure is the
ground state of the harmonic oscillator.

Consider now the hamiltonian

H = H0 + V (x) (8.18)

where the potential V is such that H is self-adjoint, positive and has 0 as
isolated eigenvalue. Without loss of generality we the corresponding eigen-
function Ω(x) to be positive.

Therefore
∫
Ω(x)Ω0(x)dx is positive and .

(Ω,Ω0)Ω = limt→∞e
−tHΩ0 (8.19)

Define

dµT = Z−1
T e

∫ T

−T
V (ξ(s))ds

dµ0 (8.20)

where Zt is a numerical constant chosen so that dµ is a probability measure.
By construction

|e2tHΩ0|−1 (e−(t1−t)HΩ0, f1e
−(t2−t1)Hf2...e

−(t−tn)HΩ0) =
∫
Πkfk(ξk(tk))dµt

(8.21)
It follows from our assumptions that the left hand side converges when

t→∞. Therefore also the right hand side converges and

(Ω, f1e
−(t2−t1)Hf2...e

−(tn−1−tn)HΩ) == limt→∞

∫
Πkfk(ξk)dµt (8.22)

Recall that, before taking the limit, the measure µT is defined on con-
tinuous functions supported in (−T.T ). With a procedure similar to that we
used in the case of the Ornstein-Uhlenbeck process one can now define a mea-
sure on D′ (or even in a smaller space of distributions) But now this measure
is no longer gaussian and it is more difficult to compute the momenta and
correlations of the random variables φ(f). .

This limit measure is defined by

µ(Πkfk(ξk)) = limt→∞

∫
Πkfk(ξk)dµt (8.23)

8.3 Markov processes on function spaces

We must prove that there is a Markov process over some function space as-
sociated to the semigroup with generator ∆ − V and that this process has
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an invariant measure (given by (40)). As remarked above, this abstract pro-
cedure does not guarantee a-priori that there is realization of this process in
a space of continuous paths, since the proof relies on convergence in distri-
bution: To find the support we must return to the meaning of convergence
for the measures µT . Define for f ∈ D, supp(f) ⊂ [−T, T ] the characteristic
function

ΦT (f) ≡
∫
eiφ(f)dµT (8.24)

It is easy to verify:
1)

fn → f in D ↔ ΦT (fn)→ ΦT (f) (8.25)

2)
N∑

i,j=1

c̄jciΦT ((fi − f̄j) ≥ 0 (8.26)

for every choice of functions fi and complex numbers ci.
3)

ΦT (0) = 1 (8.27)

Notice that ΦT (f) = ΦS(f) if the support of f is contained in [−T, T ] ∩
[−S, S]. Setting Φ(f) = limT→∞ΦT (f) one obtain in this way a functional on
D with the properties 1),2),3) above.

This properties are shared by the limit. We must take f ∈ D since we are
dealing with functions which have arbitrary but finite support. We are now
in condition to apply the following theorem [2][3][7]

Theorem 8.1 (Minlos)
Let Φ(f) be a functional on D with the properties 1),2),3) described above.

Then there exists a unique probability measure µ on D′ such that Φµ(f) =∫
eiξ(f)dµ(ξ). We shall call Φµ characteristic functional of the measure µ.

♦
Minlos’ theorem is a generalization of a theorem of Bochner that we will

now state and prove. Recall that a function f on Rn is of positive type if it is
bounded, continuous and for any choice of λ1, ..λn ∈ Rn the matrix

Fi,j ≡ f(λi − λj) (8.28)

is positive

Theorem 8.2 (Bochner)
The cone of functions of positive type coincides with the Fourier transforms
of the finite positive measures on Rn.

♦

Proof
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1) If µ is a finite positive measure one has

∑
i,j

µ̂(λi − λj)f̄i fi =
∫
dµ(x)|

N∑
1

eiλkxfk|2 ≥ 0 (8.29)

2) Let f be a continuous function of positive type. Let H0 be the pre-Hilbert
space of complex-valued functions that are different from zero only in finite
number of points (this is a vector space for point-wise addition) endowed with
the scalar product

(φ, ψ)f =
∑

x,y∈RN
φ̄(x)f(x− y)ψ(y) = (Utφ,Utψ)f ∀t ∈ R (8.30)

where Utφ(x) = φ(x − t). Let H be the closure of H0 under the topology of
the scalar product (47). Let Ξ be the ideal of functions for which (φ, φ)f = 0.
Then Ut is well defined on the quotient H/Ξ.

Since Ut is strongly continuous (since f is continuous) one can use the
spectral theorem and Stone’s theorem to prove that there exists a family of
projection operators Pλ on Rn such that

(φ,Utφ)f =
∫
eitλd(φ, Pλφ)f (8.31)

Let now φ̃0 be the equivalence class in H/Ξ of the function φ0 defined by
:

x = 0⇒ φ0 ≡ 1 x 6= 0⇒ φ0 ≡ 0 (8.32)

so that
x = t⇒ Utφ̃0 = 1 x 6= t⇒ Utφ̃0 = 0 (8.33)

Then
f(t) = (Utφ̃0, φ̃0) =

∫
e−itλd(φ̃0, Pλφ̃0) (8.34)

Therefore f(t) is the Fourier transform of a positive measure.
♥

The process can be realized with paths in a space smaller than D′(R)
(recall that Brownian motion in [0, T ] can realized on continuous paths).

As in the case of Brownian motion there is no optimal regularity, but
only an upper bound. This bound depends on the regularity properties of the
measure µ(Πkfk(ξk)) as a function of the fk for which the integral is defined
and this in turn depends on the regularity of the potential V . In general one
can find a Sobolev space on which the process is realized.
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8.4 Processes with (continuous) paths on space of
distributions. The free-field process

The construction we have given of a Markov process using the harmonic oscil-
lator semigroup can be repeated for any self-adjoint operator on L2(R) pro-
vided it has a positivity preserving kernel. If the kernel is positivity improving
there is a unique ground state.

When one seeks a generalization to paths in function spaces (e.g. the space
of distributions) one should require that the ground state measure be mean-
ingful on the space one considers.

By the theorem of Kolmorogov this is certainly the case if the ground state
can be represented as a product measure i.e. the state must be a (infinite)
product state in suitable coordinates.

This is the case for gaussian measures which are ground states for positive
Hamiltonians which are quadratic in the position-momentum variables. Since
we want to have a measure on continuous paths in some distribution space we
must require that in the dual space (the space of linear function on the paths)
be present also the functions f(ξ)δ(t − T ), where ξ belong to some function
space, e .g. some Sobolev space on Rd

The space X is conventionally called test function space; it is in duality
with path space.

If both the path space and the test function space are spaces of functions
that admit Fourier transform one can describe both spaces using Fourier trans-
form.

The Fourier transform in Rd+1 (with coordinates x0 = t, x1, . . . xd) of
the function f(x)δ(t− τ) is f̂(p)eiτp0 in ”generalized” momentum space with
coordinates k0, k1, . . . kd.

Therefore we can take the covariance for the process (a positive bilinear
form over functions of space and time) can be taken to be

(F,G)1 ≡
∫

(F̂ )∗(k0, k)Ĝ(k0, k)
1

k2
0 + k2 +m

dk0dk (8.35)

where the parameter m represents the ”mass” of the particle associated to
the field. We have chosen capital letters to denote function on space-time.

Recalling that δ(t − τ) ∈ H−1 is continuous in τ in this topology, we see
that the definition is consistent with the previous setting if we have ξ(δ(t)) =
ξt. This infinite-dimensional Ornstein-Uhlenbeck process is gaussian and has
expectation and covariance given as follows

E(φ(F ) = 0 E(φ(F )φ(G)) = (F,G)−1 (8.36)

The Ornstein-Uhlenbeck on distributions can be constructed as an infinite
product of one-dimensional Ornstein-Uhlenbeck processes.

For N finite the generator is
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H = − 1
2m

∆+
1
2

(x,Ax)− I A > 0 (8.37)

Since A can be diagonalized, with eigenvalues ai the resulting process is
made of N independent copies of the Ornstein-Uhlenbeck process. Take now
N functions f1, . . . fN in S and a measure µ on Rd under which they are
orthonormal. Call KN this Hilbert space.

Every element in f ∈ KN can be written as f(x) =
∑
ckfk(x) where ck are

random variables which define a Markov process with continuous trajectories
in time (in R1.) We have therefore constructed a gaussian random process on
the space of function KN .

By Kolmogorov’s theorem we have constructed a process on the infinite
tensor product of copies of L2(R1) But the covariances of the component
processes decrease to zero (the eigenvalues of the harmonic oscillator increase
as N2) and therefore the densities tend to the function identically equal to
zero and the measure of any finite interval tends to zero.

The convergence is in measure and the limit measure of the process may
have support ”at infinity” [3][4]

We shall start with the constriction of a gaussian measure on the (nuclear)
space H−∞(Rd) (recall that H−n is defined like the Sobolev space Hn but
using the hamiltonian of the harmonic oscillator instead of the Laplacian).

Each f ∈ S defines a linear functional (a coordinate) on H−∞(Rd)

θ → f(θ) ≡ θ(f) =< f, θ >0 (8.38)

where the suffix 0 indicates that the duality is made with respect toL2(Rd).
If T is measurable and B is a Borel in Rd the subset of H−∞(Rd) defined by

{θ : (f1(θ), . . . fn(θ) ∈ B} (8.39)

where B is a (Borel) cylinder set and

θ → F (f1(θ) . . . fn(θ)) (8.40)

is a Borel cylinder function. In the usual way cylinder sets and functions define
the class of measurable sets and functions. For any measure dµ in H−∞(Rd)
the bilinear form (f, Cg) on S(Rd) defined by

H∞ 3 f, g → (f, C, g)
∫
f̄(θ)g(θ)dν(θ) (8.41)

is called covariance of µ.
We suppose that C is not degenerate (i.e (f, Cf)) = 0 implies f = 0 a.e.

We will say that the measure ν on H∞(Rd) is gaussian if the restriction to
every finite-dimensional space is gaussian.

Let C be a covariance defined on the nuclear space H∞(Rd). Kolmogorov
theorem implies that there is a unique gaussian measure having Cas covari-
ance.
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In the case d = 0 (processes over a finite dimensional space) we have seen
that one can chose the representation in such a way that the measure be
carried by continuous functions.

If C = (−∆+I)−1 acting on L2(Rd) then the Ornstein-Uhlenbeck process
can be defined on D′(Rd).

We seek conditions under which the process can be defined on a smaller
space. A first step in this direction is a generalization of Bochner theorem.
We shall state it without proof.

A distribution T ∈ D′(Rn) is of positive type if for each ψ ∈ D(Rn) such
that ψ̄(−x) = ψ(x) one has

T (ψ̄ ψ) ≥ 0 (8.42)

Theorem 8.3 (Bochner-Schwartz)
A distribution T ∈ D′(Rn) is of positive type if and only if T ∈ S ′(Rn) and
moreover is the Fourier transform of a positive measure of at most exponential
growth.

♦

Notice that the nontrivial part of the theorem is the statement that if
the measure is of positive type then there is an equivalent measure which is
supported by the smaller set S ′(Rn).

Theorem 8.4 (Minlos)
Let d > 1 and let φ be a function on S(Rd). . Necessary and sufficient con-
dition for the existence of a measure dµ on S ′(Rd) that satisfies φ(f) =
eiF (f)dµ(F ) is that
1) φ(0) = 1
2) F → φ(F ) is continuous in the strong topology
3) For any {f1, . . . fn ∈ S} and {z1, . . . zn ∈ C} one has

n∑
i,j=1

zjziφ(f1 − fj) ≥ 0 (8.43)

♦

There is in general no canonical measure space. A refinement [7][11] of the
theorem of Minlos proves that if the covariance C can be extended continu-
ously to a Sobolev space Hd the gaussian measure with covariance C can be
realized the space of continuous functions of t with values in a Sobolev space
Hn(m,d−1) for a suitable (negative) function n(m, d)

8.5 Osterwalder path spaces

We introduce now, in the infinite dimensional setting, a Markov process which
has a relevant role in the Weyl quantization of classical fields. Recall that a
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Markov process is defined by a family of random variables that depend on a
parameter t ∈ R and take value in a (possibly infinite-dimensional) space X.

We start with a somewhat more abstract presentation [4] .

Definition 8.1
A (generalized) path space consists of

1) a probability space {Q,Σ, µ},
2) a distinguished sub-σ-algebra Σ0

3) a one-parameter group U(t) of measure-preserving automorphisms of
L∞(Q,Σ, µ) which are strongly continuous in measure.
4) a measure-preserving automorphism R ( time-reflection) of L∞(Q,Σ, µ)
such that

R2 = I RU(t) = U(−t)R RE0 = E0R (8.44)

where E0 is the conditional expectation with respect to Σ0

5) Σ is generated by ∪t∈RΣt, where Σt = U(t)Σ0

♦

We will denote with E+ the conditional expectation with respect to ∪t≥0Σt
We have used the notation generalized because we will be interested in the

case in which the space in which the path occurs is a space of distributions.
We will later introduce the dual space, the space of fields at a fixed time

(linear functionals on the generalized space) and see under which conditions
the semigroup structure of the Markov process is reflected in automorphisms
of the algebra generated by the fields. In order to prove this connection, we
restrict the class of Markov processes and the class of path spaces.

Definiton 8.2
A Markov path space is a space of paths which satisfies the further property

1) RE0 = E0 (called reflection invariance or also reflection positivity
2)

E+E− = E+E0E− (8.45)

♦

We will be interested in path space that satisfy further conditions. We
call them Osterwalder-Schrader (O.S) path spaces. O.S. are the initials of
K.Osterwlder and R.Schrader that have established [5] the correspondence
between a class of Markov Fields (that were analyzed by Symanzik [6] and
Nelson [7]) and the relativistic local free field (Wightman) [8]

Definition 8.3
An O.S. path space in a path space satisfying the following (positivity)

condition : E0RE0 ≥ 0 i.e. (Rf, f) ≥ 0 ∀f ∈ L2(Q,Σ, µ)
♦

The O.S. positivity condition plays a major role One proves [9] (Nelson)
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Proposition 8.5
Every Markov path space is a O.S. path space

♦
The proof is as follows:

E+RE+ = E+RE+E+ = E+E−RE+ = E+E0E−RE+ = E+E0E− = E0 ≥ 0
(8.46)
♥

Notice that the converse is not true.

8.6 Strong Markov property

We shall see that O.S.. path spaces have the strong Markov property i.e. the
Markov property with respect to all time (and not only with respect to time
zero). We begin by proving

Proposition 8.6
An O.S. path satisfies reflection positivity i.e. RE0 ≥ 0

♦
Proof:
One has indeed

RE0 = E0RE0 = E0RE0 = E0E+RE+E0 ≥ 0 (8.47)

♥
We now prove that to every O.S. path space is associated a semigroup

structure.

Theorem 8.7 [7][10][12]
Let ({Q,Σ, µ}, Σ0, U(t), R) be an O.S. path space.

There is a Hilbert space H and a contraction K : L2(Q, σ, µ) → H such
that
1) the range of K is dense in H
2) S(t)K(F ) = K((Ut)F ), F ∈ L2(Q,Σ, µ) defines a strongly continuous
self-adjoint contraction semigroup on H
3) If we define Ω = K(I) then ‖Ω‖ = 1, P (t)Ω = Ω∀t ≥ 0.

♦

Proof
The proof is essentially a G.N.S. construction.
Define the scalar product < f, g >= (Rf, g) f, g ∈ L2(Q,Σ, µ). By O.S.

positivity this defined a positive semi-definite inner product. Let N be the
ideal defined by N = {f ∈ L2(Q,Σ∗, µ) (< f, f >= 0}.

The ideal N is invariant under U(t). This is seen as follows:
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< U(t)f, U(t)f >) = (RU(t)f, U(t)f) = (U(−t)Rf,U(t)f) = (Rf,U(2t)f)

=< f,U(2t)f > ≤ < f, f >
1
2< U(2t)f, U(2t)f >

1
2 (8.48)

Define H to be the Hilbert space completion of L2(Q,Σ∗, µ) N in <,>
and let K(f) be the canonical projection of f in H.The range of K is dense
in H and ‖K(f)‖H ≤ ‖f‖L2 .

Define StK(f) = K(U(t)f). Since U(t)N ∈ N and the product < . > is
invariant under U(t) one has

StSsK(f) = StK(Usf) = K(UtUsf) = K(Ut+sf) = St+sK(f) (8.49)

Therefore the Sst form a semigroup which clearly strongly continuous contrac-
tion and therefore has a generator.

♥

8.7 Positive semigroup structure

Definition 8.4
A positive semigroup structure{H, T (t),A, Ω} consist of

1) A Hilbert space H
2) A strongly continuous self-adjoint contraction semigroup T (t) on H with
generator H.
3) A commutative von Neumann algebra A ∈ B(H) (the algebra generated
by the fields at time 0)
4) a privileged vector Ω ∈ H such that T (t)Ω = Ω, ∀t ≥ 0 such that
a) The vector Ω is cyclic for the algebra generated by A ∪ T (t), t ≥ 0
b) for all f1, . . . fn ∈ A+ and t1, . . . tn ≥ 0 one has

(Ω, T (t1)f1T (t2) . . . T (tn)fnΩ) ≥ 0 (8.50)

We have denoted by A+ the set of positive elements in A
♦

Condition 1) means that the union of the subsets

T (ti)f1T (t2)f2 . . . T (tn)fnΩ, t1 . . . tn ≥ 0, fi ∈ A (8.51)

is dense in H. One can think of A as the algebra generated by eiαx and
Tt = eiH0t where H0 is the Hamiltonian .

Condition a) and b) are certainly satisfied in a theory in which [H0, xk] =
Ck,hph (on a suitable domain) and the representation of the Weyl algebra is
irreducible.

We begin with a Lemma

Lemma 8.8
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Let {Ω,Σ, µ), Σ0, U(t), R} be a R.P. path space and let H,K, TtΩ be as
in theorem 8.7. Then
1) if f ∈ L∞(Q,Σ0, µ) define f̂K(F ) = K(fF ).Then f̂ is a bounded operator
on H and ‖f̂‖ = ‖f‖∞
2) {f̂} defines a commutative von Neumann algebra of operators on H with
Ω cyclic and separating vector.
3) For any 0 ≤ t1 ≤ t2..... ≤ tn and for ft = U(t)fi one has∫

ft1ft2 . . . dµ = (Ω, f̂t1P (t1 − t2) . . . P ((tn)− tn−1, f̂tnΩ) (8.52)

♦

Proof
Notice first that ∀n, ‖f̂n‖ ≤ ‖fn‖∞. Point 1) follows because R is an au-

tomorphism of L∞(Q, Σ, µ) and E is the conditional expectation with respect
to Σ0 .

Point 2) follows because the the restriction K0 of K to L2(Q, Σ0, µ) is
unitary onto its range since < f, g >= (f, g) for f, g ∈ L2(Q), Σ0, µ) and
f̂ = K∗0fK0 so that ‖f̂‖1 = ‖f‖∞.

The restriction of A to the range of K0 is therefore a von Neumann algebra
with Ω as separating vector, and then A is a commutative von Neumann
algebra of operators on H.

To prove point 3) let for i = 1, . . . n

t1 ≤ t2 ≤ . . . ≤ tn fti = U(ti)fi fi ∈ L2(Q, Σ0, µ) (8.53)

It follows that

ft1ft2 . . . ftn = U(t1)f1U(t2 − t1)f2 . . . U(tn − tn−1)ftn (8.54)

Statement 3) follows then from the fact that

K(U(s1)g1U(t2 − t1)g2 . . . gnı = Ts1g1Ts2 . . . gnΩ (8.55)

for g1, g2 . . . gn ∈ L2(Q, Σ0, µ) and s1, s2 . . . sn ≥ 0
♥

In what follows the von Neumann algebra A is taken to be an algebra of
functions on path space and therefore we will use the symbol f instead of the
symbol a to indicate a generic element.

We prove now that a R.P. path corresponds to a positive semigroup struc-
tures We use the same strategy that we used in Book I to show that in Quan-
tum Mechanics conditioning of a one parameter group of unitary operators to
a sub- σ algebra leads to a positivity preserving semigroup.

One can recover the group by the Stinespring construction ( reconstruction
formula). Let H, Tt,A, Ω be the semigroup structure defined in Lemma 8.8

Theorem 8.9
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Let {Ω,Σ, µ,Σ,U(t), R} be an O.S. path space and let {H, T (t),A, Ω} be the
associated semigroup structure.

Then {H, Tt,A, Ω} is a positive semi-group structure. .
♦

Proof
Let {Q, Σ, µΣ0, U(t), R} be an O.S. path space and H, T (t),AΩ the as-

sociated semigroup structure. Conditions 1) to 5) of definition 8.4 are clearly
satisfied.

Condition 6) follows because 1 is a cyclic vector in L2(Q, Σ+, µ) for
L∞(Q, Σ0, µ) ∪ {U(t), t ≥ 0} since σ+ is generated by ∪t≥0U(t)Σ0.

Condition 7) follows from (74)
♥

Notice the role that the O.S. positivity condition has in the proof.
It can be proven that the converse of the statement of Theorem 8.7 also

holds. For this one remarks that A is isomorphic to C(Q0) where Q0 is the
spectrum of A. Therefore the proof is similar to the proof of the same state-
ment for the Ornstein-Uhlenbeck process. Define Q = ⊗t∈RU(t)Q0 and the
action of U(t) and R on Q by

U(t)q(s) = q(t− s) Rq(s) = q(−s) (8.56)

Define F (q) = f(q(0) for f ∈ C(Q0). The difficult point, which we don’t
discuss here, is to construct a measure on the σ under which algebra generated
by C(Q) under which {Ω,Σ, µ,Σ,U(t), R} is a path space. We do not give
here the details.

Proposition 8.8
Let T (t) be a positivity preserving semigroup on L2(M,µ) .
Then {L2(M,µ), T (t), L∞(M), I} form a positive semigroup structure

with I as cyclic vector. Conversely let {H, T (t)A, Ω} be a semigroup structure
, with Ω cyclic for A.

There exists a probability space {M,µ} and a positivity preserving semi-
group T̂ (t) on L2(M,µ) such that

{H, T (t),AΩ} ' {L2(M,µ), T̂ (t), L∞M, I} (8.57)

♦

Proof
The first part follows form the definitions. We prove the converse. Let Ω

be a cyclic vector for A. It follows that A is maximally abelian and therefore
there is a Baire measure ν on the spectrum Q0 of A such that

H ' L2(Q0, ν), A ' L∞(Q0, ν) Ω ' 1 (8.58)
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Let T̂ (t) correspond to T (t) under this isomorphism. Then T̂ (t) is a posi-
tivity preserving semigroup on L2(Q, ν) The proof is the same as in the case
of the O.U. process

♥

Theorem 8.11
Let {Ω,Σ, µ, U(t), R} a O.S.path space, and let {H, Tt,A, Ω} be the associated
semigroup structure. Then {Ω,Σ, µ, U(t), R} is Markov if and only of Ω is
cyclic for A.

♦
Proof

One has E+RE+ = E0 since the path space is Markov. Therefore forall
f ∈ L2(Q,Σ+, µ) one has (Rf, f) = (E0f,E0f). and therefore

H ' L2(Q)σ0), µ Tt ' E0U(t)E0, Ω ' 1 (8.59)

Conversely if Ω is cyclic for A and Tt is a positivity preserving semigroup, it
follows TtA+Ω ⊂ A+ for all t ≥ 0 and then by polarization TtAΩ ⊂ A. The
Markov property follows then considering

F (q) = fn(q(tn)) . . . f1(q(t1)), fk ∈ L∞(Q.Σ : 0, µ), t1 ≤ t2 . . . ≤ tn
(8.60)

then E+E−F = E+F and therefore it is measurable with respect to Σ0. It
follows E+E− = E+E0E−

♥
Remark that Theorems 8.10 and 8.11 imply that Markov path spaces cor-

respond to semigroup structures in which Ω is cyclic for A. As a consequence
for all f, g ∈ A+ and T ≥ 0 one has (fΩ, T (t)gΩ) ≥ 0

Definition 8.8
Let M be a probability space. A strongly continuous self-adjoint contrac-

tion semigroup T (t) on L2(M,dµ) is positivity preserving if
1) T (t)I = I∀t ≥ 0
2) f ≥ 0→ T (t)f ≥ 0

♦

Theorem 8.12
Let {H, T (t),A, } be a semigroup structure, and Ω be a cyclic vector. There
exist a probability space M, µ and a positivity preserving semigroup T̂ (t) on
L2(M, µ) such that

{H, T (t)A, Ω} ≡ {L2(M, µ)}, T̂ (t), L∞(M, ι)} (8.61)

as positive semigroup structure.
♦
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8.8 Markov Fields . Euclidian invariance. Local Markov
property

We have seen the construction of O.S. and Markov processes with trajectories
continuous in time with values in function spaces over Rd. One may try to
have a structure that is more symmetric in space and time and construct
Markov fields over Rd+1

One may ask that for these fields the Markov property be valid in a gen-
eralized sense: given any domain Ω ∈ Rd+1 with interior Ω0 and smooth
boundary ∂Ω the random field in the complement Ωc of Ω is completely
determined (in law) by a field on the boundary .

Recall that a stochastic process indexed by a set X is a function from
X to a probability space {Ω,S, µ} where S are the measurable sets and µ
is the measure. If X is a topological space, a linear process f → φ(f) over
X is a stochastic process indexed by X and such that fn → f in X implies
φ(fn)→ φ(f) in measure where defines the process.

Denote by S the σ-algebra generated by {φ(f), f ∈ S} (S is Schwarz
space) If Λ is open in Ed+1 define Θ(Λ) the sigma-algebra generated by func-
tions with support in Λ.
Hd is the harmonic space of order −1 constructed similarly to the Sobolev

space but with the operator −∆ + x2 in place of ∆ If Λ is a subset of Ed

define
Θ(Λ) = ∩Λ⊂Λ′, Λ′open|ΘΛ′ (8.62)

Denote by E{.;Θ(Λ) the conditional expectation. Then a Markov field over
Ed+1 is a linear process such that for every measurable f and regular Λ one
has

E(f |Θ(Λc) = E(f |Θ(∂Λ) (8.63)

where ∂Λ is the border of Λ. In particular denote by D(Rd) the space of C∞

function on Rn with compact support. A linear process over D(Rd) is called
random field.

In the case of the Ornstein-Uhlenbeck process, we have a random process
over H−1(Rd).

Since the injection of D in H−1 is continuous, a random process over
H−1(Rd) defines a random field over H−1(Rd+1).

By construction functions (distributions) of the type f(x)δ(t − t0 with
f ∈ S are defined on the process (are test functions i.e random variables).

We now require that our random field euclidian invariant i.e. invariant
under the natural action of the inhomogeneous Euclidian group in Rd+1. This
implies that it has the Markov property with respect with respect to any
choice of a d-dimensional hyperplane.

Recall that the Euclidian group Ed+1 of Rd+1 is the inhomogeneous or-
thogonal group (including reflections) i.e the group of linear transformations
which preserve |x−y|. A representation of the Euclidian group on a probability
space is a homeomorphism η → Tη of Ed into the group of measure preserving
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transformations Tη which continuous in the sense that if ηn → η ∈ E implies
Tηn → Tη in measure.

On Rd+1 , d ≥ 1 introduce coordinates (t, x), x ∈ Rd, t ∈ R and let Ys
the hyperplane t = t0. Let Ys be the half-space t ≤ s and let ρ(s) the reflection
with respect to Ys. We call η(s) be the translation (x, t)→ (x, t+ s)

An Euclidean field over H−1(Rd+1 is by definition a Markov field over
H−1(Rd+1 and a representation T of the Euclidean group on the underlying
probability space of φ such that, for f ∈ H−1 and η ∈ Ed the following holds

Tηφ(f) = φ(f · η−1) (8.64)

This property is called Euclidian covariance.
Any convex bounded domain in Rd+1 with regular boundary can be seen

as the envelope of hyper-planes and therefore we require that the Markov field
has the local Markov property i..e for any convex bounded domain Ω ⊂ Rd+1

with regular boundary ∂Ω the field in the interior Ω̇ and the field in the
exterior Ω̄c is determined (as a probability space) by the restriction of the
field to ∂Ω.

We define therefore a local Markov field [6][7][9] as follows. If E is a set in
Rd+1 let O(E) be the sigma algebra generated by the φ(f) with f ∈ H−1(Rd)
and support (f) ⊂ E.

Let U ⊂ Rd+1 with smooth boundary ∂U and denote by U ′ the comple-
ment of U . A Markov field over H−1(Rd+1) is a random field over H−1(Rd+1

with the property that for all open sets U ⊂ Rd+1 if u is a positive random
variable in O(U) then the following Markov property holds

E[u|O(U ′)] = E[u|O(∂U)] (8.65)

A Markov field is real if φ(f) = φ∗(f) Notice that if O ≡ {x|x1 = t} (the
first coordinate is time) this property corresponds to the Markov property of
diffusions.

This condition may be too restrictive; a weaker condition is

∀ε > 0 E[u|O(U ′)] = E[u|O(∂Uε)] (8.66)

where ∂Uε is an ε-neighborhood of ∂U .
This allows to consider also derivatives of the random field; it allows to

describe the observable momentum and it implies that the random fields are
in the domain of the Hamiltionian.

8.9 Quantum Field

We associate a Euclidean Quantum Field θ to the Euclidean field φ. The
quantum field leaves in a Hilbert space H = O(Rd) ∩ L2(Rd) which is much
smaller than the Hilbert space K ≡ O(Rd+1) ∩ L2(Ω,S, µ) in which the
Euclidian field is defined.
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Let E0 be the orthogonal projection of K onto H. Define T (t)u, 0 ≤ t <∞
for u ∈ calH as

T (t)u = E0T (η(t))u (8.67)

Then

Theorem 8.13 (Nelson) [7] [12][13]
Let φ be the Euclidian field over H−1 and let T (t) and H defined as above.
There is a unique self-adjoint positive operator H on H such that

Ptu = e−tH 0 ≤ t <∞ (8.68)

♦

Proof
One has Y0 = Rd−1

PtPs = E{Tη(s)Ptu|O(Y0)} =

E{Tη(s)[E{Tη(t)u|O(Y0)]|O(Y0)} = E{[E{Ts+tu|Ys)]|O((Ys)}]|O(Y0)} =

E{[E{Ts+tu|Ys)]|O((Ys)}]|O(Z0)} = E{[E{Ts+tu|Ys)]|O((Zs)}]|O(Z0)} =

E{Tη(s+ t)u}|O(Z0) = E{Tη(s+ t)u}|O(Y0) = Ps+tu (8.69)

The first and second identities are the definition of the operators Ps and
Pt, the third is Euclidian covariance.The fourth is Markov property, the fifth
is inclusion, the sixth is again Markov property and the last is the definition
of the operator Pt+s. Let u ∈ H . Then as t → 0 we have T (η(t))u → u in
measure and since T (η(t)) are unitary, |T (η(t))u| = |u|. Therefore Ptu → u
as t → 0 and since ‖Pt‖ ≤ 1 the family P (t) forms a continuous contraction
semigroup on H.

To conclude the proof we show that each Pt is a self-adjoint operator on
H. Let ρ the reflection in the hyperplane Rd−1. We will prove that Tρ is the
identity on H.

We call this property reflection property. Assuming the reflection property
we conclude the proof that Pt is self-adjoint. For u, v ∈ H one has

(v, Ptu) = (v,E0T (η)(t))u) = (v, T (η(t))u) = E(v̄, T (ηt)u) = (Pt, v, u)
(8.70)

Notice that T t
2
RT t

2
= id Since η(t)−1ρ( t2 ) = ρ (the refection in Rd) the

reflection property implies

Tρ( t2 )v̄ = v̄ (Tρ( t2 )Tη(t)u = u (8.71)

Using euclidian covariance it follows

(v, Ptu) = ETρ( t2 )v, Tη(t)u) = (Tη(t)v, u) = (E0Tη(t)v, u) = (Ptv, u) (8.72)
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We prove now the reflection property i.e that Tρ is the identity in H et f
have support in Rd. Since the kernel of the operator −∆ + 1)−1 is positive
the potential

(−∆+ 1)−1δ(x) x ∈ Rd (8.73)

can be approximated arbitrary well by a positive element inH−1(Rd). But this
positive element is a measure and therefore is invariant under Tρ. It follows
that T (ρ) leaves Φ(f) fixed and consequently T (ρ) is the identity on H.

We remark that this procedure allows the construction of fields at any
time t and the Hamiltonian, generator of the semigroup.

Notice that the hamiltonian is not a function of the fields at fixed time .
Moreover e−tH ∪ A0 generate the algebra of fields at all times.

It follows also that in a field theory in Rd+1 in which field at a fixed time
cannot be defined (i.e. the distribution δ(x0 − a)f(x) x ∈ Rd, f ∈ S is not a
test function) cannot be obtained from an Eucidian Markov field. This is the
case for the models of relativistic field theory that have so far been constructed
in space dimension d ≥ 2.

♥

Let Ed+1 be the inhomogeneous euclidian group. A representation T (ξ), ξ ∈
Ed+1 is a homeomorphism of Ed on the group of measure-preserving of
the measure algebra associated to {Ω,S, µ}. An Euclidean (random) field
is a Markov field together with a representation of Ed such that for every
f ∈ S(Ed) and ξ one has (covariance)

T (ξ)φ(f) = φ(f ◦ ξ−1) (8.74)

and moreover (reflection positivity)

T (θ)α = α, α ∈ Θ(Ed−1) (8.75)

where Θ(Ed−1) is reflection with respect to a co-dimension one hyperplane.
We assume moreover

1) ∀f ∈ S(Ed+1) φ(f) ∈ Lp(Ω, µ)
2) the map Sn(f1, . . . fn)→ E(π(f1) . . . φ(fn)) is continuous

Then one has

Theorem 8. 14
Let φ(f) be an euclidian field. The the distributions Sn
a) are tempered distributions i.e Sn ∈ S ′(Rd) with S0 = 1
b) are covariant under the Euclidean group Sn(f) = Sn(f ◦ ξ−1)
c) ∑

n,m

Sn+m(Θf∗m.fn) ≥ 0 ∀fn ∈ S0,∞(Rdn) (8.76)

where
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S0,∞(Rdn) ≡ f ∈ S(Rdn | f((x1, . . . xn) = 0 unless0 < x1,d < . . . xn.d <∞

(temporally well ordered)
d) Sn(f) = Sn(Π(f) where Π is a permutation.

♦

We shall not give here the proof of this theorem [11]

8.10 Euclidian Free Field

We give now an example of euclidian field, the Euclidian free field in Rd Let
m > 0 and let H the Hilbert space completion of SR(Ed) in the scalar product
(g, (−∆+m2)f). Denote by φ the real gaussian process onH . When restricted
to S this is a random process on S(Ed)
Theorem 8. 15

φ is an euclidian field that satisfies assumptions 1 and 2 above.
♦

Proof
Let Λ be open in Ed with regular boundary. Define
U ≡ {f ∈ H, suppf ⊂ Λ}
M ≡ {f ∈ H suppf ⊂ Λc}
N ≡ {f ∈ H suppf ∈ ∂Λ}
L ≡M∩M′

Let f ∈ U and let h the orthogonal projection of f on M We prove that
h ∈ N Since ∆ is a local operator we have

(g, (−∆+m2)h) = (g, (−∆+m2)f) (8.77)

and this implies (−∆+m2)h = (∆+m2)f as distributions on Λc0. It follows
that h = f as distributions on Λc0. But f = 0 on Λc0 Therefore supph ⊂
Λc − Λc0 = ∂Λ

Let K be a closed subspace of H and let K̃ be the sigma-algebra generated
by φ(f), f ∈ K. If Kn ↓ K it follows that K̃n ↓ K̃.

Considering a sequence of open sets Λn such that Λn ↓ Λc one derives that
Θ(Λc) = tildeM . In the same way one establishes

Θ(∂Λ) = Ñ Θ(Λ) = Ũ (8.78)

Since U ⊥ L the sigma-algebras Ũ and L̃ are independent (as random
variables) and M̃ is the sigma algebra generated by Ñ and L̃. It follows that
for any function α positive, measurable and integrable in Ũ one has

E(α |M̃) = E(α |Ñ (8.79)
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Therefore φ is a Markov field. To verify Euclidian covariance, notice that defin-
ing an action of the euclidian group on H as U(ξ)f = fξ−1 and then an action
on (Ω,S, µ as ξ → Γ (U(ξ)) (here Γ is the functor of second quantization) one
has

T (ξ)φ(f) = φ(f ◦ ξ−1) (8.80)

The integrability conditions are satisfied because (φ(f))n is integrable for
every n ∈ N . It remains to prove that reflection with respect to the hyper-
plane Ed−1 is implemented by unitary operators that leave Θ(Ed−1) invariant.

Let as before
H0 ≡ {f ∈ H, suppf ∈ Ed−1} (8.81)

If f ∈ H0 its Fourier transform f̂ is in L2(Rd−1, dk
k2+m2 ) and has the form

f̂(k) = f0(k) k = k1, . . . kd−1 It follows T (Θ)α = α for α ∈ Θ(Ed−1)
♥

The Markov field we have described corresponds to the solutions of the
Klein-Gordon equation for a scalar particle of mass m. Indeed the evolution
of this field is characterized in Fourier transform by

φ(t, p) =
1√
2

[ei(p
2+m2)ta(p) + e−i(p

2+m2)ta∗(p)] (8.82)

One has therefore∫
φ(t, p)φ(0, p)dp =

∫
|φ(0, p)|2ei(p

2+m2)tdp (8.83)

Following the unitary evolution up to time T and conditioning to time zero
one obtains a semigroup which corresponds to a gaussian stochastic process
with covariance 1

k2+m2 .

8.11 Connection with a local field in Minkowski space

There is a connection () between a Markov field in Ed which satisfies euclidian
covariance and reflection positivity and a local field in Minkowski space-time
Rd−1 × R with positive energy. The connection is by analytic continuation
through a wedge in the product of the complexified euclidian space and the
complex euclidian group.

This wedge has as edges on one side the product of Ed and the euclidian
group and on the other side the product of Minkowski space and the Lorenz
group. The euclidian correlation function of the Markov field are defined on
the Euclidian edge.

Using covariance, reflection positivity and regularity they can be continued
through the wedge and their image on the Minkowski edge are the Wightman
functions of a relativistic field with energy-momentum spectrum contained in
the forward light cone.
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Positivity of the energy, space-like commutativity and analyticity of the
representation of the Poincaré group are sufficient to prove that this contin-
uation is reversible (edge-of -the-wedge Theorem) [6][8][11] . Notice that the
wedge has not in general a simple structure [11] and therefore the continuation
is not simply a rotation in the complex plane.

Things simplify in the case of the Euclidian free field. Since the underlying
process is gaussian the covariance (two-point function) determines completely
the process.

It is therefore sufficient to prove the strong Markov property for the covari-
ance. The claim now follows form the explicit form E(φ,Cφ) = (φ, 1

−∆+mφ).
Notice that in this case the connection with the Minkowski free field (of

mass m) is particularly simple since the function has an analytic extension
to the full Minkowsky plane and therefore the continuation is made simply a
linear transformation (t→= it).

We stress that this is not the case when an euclidian invariant interaction is
introduced. In fact to the present time in a relativistic theory only two types of
interactions have been described that have a Markov counterpart, the positive
polynomial one and the quadratic negative exponential one ]11][12][13][14].

In both case the Markov process has the strong local Markov property (in
particular the fields at fixed time exists). Here we do not discuss this point.

8.12 Modifications of the O.U. process. Modification of
euclidian fields

For the O.U. measure one has∫
eiq(f)dφ0 = e−

1
2 (f,f)1 (8.84)

(the full Gaussian property) where

(f, f)1 =
∫
|f̂ |2(p)

1
|p|2 +m

dp (8.85)

m is a positive parameter.
Also in this infinite dimensional setting one may try to modify the O.U.

process adding to the Hamiltonian a ”potential” ( a function of the fields)
and to obtain a corresponding ” Feynman-Kac formula”. This can be done
as in the finite-dimensional case , by adding to the measure a multiplicative
functional that plays the role of e−tV .

This procedure present difficulties if one insists that the functional be a
local function of the Markov field since the points of the measure space are
distributions and it is in general not possible to take their point-wise product
(the singular sets may overlap). Remark that the terminology: Φ(x) is the field
at the point x is descriptive but incorrect.
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Only in two space-time dimensions the product of fields at the same point
can be reasonably defined an even then after an accurate procedure ( renor-
malization).

So far this attempt has had success for polynomial and exponential inter-
actions and only in the case of space dimension one. In the Lectures we shall
not describe this theory.

Definition 8.9
A real random variable is additive with respect to the euclidian field Θ if for
any open covering Λi of Ed there exist random variables αi ∈ Θ(Λi) such
that α =

∑
i αi A random variable is multiplicative with respect to Θ if for

every open covering there exist random variables βi such that β = Πiβi. The
random variable α is additive if and only if β ≡ eα.

Theorem 8.16
Let φ be a Markov field on S(Ed) with probability space {Ω,S, µ}. Let β a
multiplicative random variable with expectation one. Then φ is also a Markov
field on S(Ed) with probability space {ω, S, βdµ}.

♦
Proof
We prove the Markov property with respect to the new probability space. Re-
mark that if if A and Bn are complete measure sigma algebras on a probability
space, with Bn monotonically decreasing, the following relation holds

∩n(A ∪ Bn = A ∪ (∩nBn) (8.86)

We notice also that if φ is a Markov field on S(Ed), Λ is an open subset of
Ed ad Λ′ is a closed subset of Λc which contains ∂Λ then

E(Θ(Λ ∪ Λ′) | Λ′) = Θ(Λ′) (8.87)

Define now a new measure β defining for every µ-measurable function α

Eβ(α) = Eµ(βα) (8.88)

Let Λ be open in Ed and let α ∈ Θ(Λ) be positive and µ-measurable. We
must prove

Eβ{α | Θ(Λc} = Eα{α | Θ(∂Λ)} (8.89)
Notice that by the Radon-Nikodym theorem there is a unique random variable
α̃ in Θ(Λc) such that

Eβ(γα) = Eβγα̃ (8.90)
There exist random variables β1 ∈ O(Λ) β : 2 ∈ O(Λ0), β3 ∈ O(Λc0) such

that
E(αγβ1β2β3)E(α̃γβ1β2β3) (8.91)

of γ ∈ O(Λc0) . Since γ is arbitrary

E(αβ1β2 | Θ(Λc)) = α̃E(β1β2 | Θ(λc)) (8.92)

One has Λ′ = Λ0 ∩Λc and therefore α̃ ∈ Θ(Λ̄0) Since Λ0 is an arbitrary open
set which contains ∂Λ we conclude α̃ ∈ O(∂Λ)
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Lecture 9
Modular Operator. Tomita-Takesaki theory
Non-commutative integration

We review in this Lecture some basic elements of the modular theory and its
connections with the theory of Tomita- Takesaki which we treated very briefly
in Volume I of these Lecture Notes.

There the theory was discussed in the context of the theory of C∗ algebras
and its one-parameter groups of automorphisms.

In this Lecture we take a slightly different approach, which has some con-
nection with Friedrichs extension of a symmetric positive form on a separable
Hilbert space and in general with transforming a Hermitian matrix to diagonal
form.

Recall that a complex Hilbert space H with an involution J is said to be
in standard form if

Hreal ∩HIm = 0 Hreal ∪HIm = H

An example of a Hilbert space that is not in standard form is the domain
(with the graph norm) of a symmetric positive operator A which is not essen-
tially self-adjoint. In this case the missing space is the deficiency space of A.
The domain of the Friedrichs extension is in standard form. In this context,
the Tomita-Takesaki theorem says that is in standard form the Hilbert space
generated by a von Neumann factor with a cyclic and separating vector Ω.

We shall give a presentation of this theory [4][5] which takes advantage
from this point of view. Notice that proving that a closed positive quadratic
form is associated to a self-adjoint operator (and therefore to its spectral
decomposition) is the infinite dimensional analogue of finding a base in which
the matrix which represents the quadratic form is diagonal.

We recall that modular theory, and the corresponding theory of the mod-
ular operator, has deep connections with the K.M.S. condition (at finite tem-
perature). It plays a major role in Quantum Statistical Mechanics and in
relativistic (algebraic) Quantum Field Theory. It has also relevance in the
theory of non-cummutative integration.
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We will recall later the basic facts about the K.M.S. condition. We shall
also give some elements of an extension to the non-commutative setting of the
classic Radon-Nikodym theorem about equivalence of measures.

In Quantum Mechanics and in Algebraic Field Theory the role of positive
(normalized) measures is taken by the states of a von Neumann algebra (or of
a C∗ algebra) and the problem will be the equivalence of the representations
associated to the states via the G.N.S. construction. If a von Neumann factor
M (M ∩M′ ≡ {cI}) admits a tracial state (a normal state φ such that
φ(a b) = φ(b a) ∀a, b ∈M) then there exists a natural isomorphism between
M eM′ that can be put at the basis of non-commutative integration theory.

We have seen in Volume I that in a representation of on a von Neumann
algebra which satisfies the K.M.S condition with respect to a one-parameter
group of automorphisms σt there exists t0 for which φ(aαt0(b)) = φ(ba) for a
dense setM. If this relation holds with t = 0, one has a tracial state invariant
for the dual action of the automorphism group. In this case the cone of positive
states corresponds to the cone of positive measures in the commutative case.

In this lecture we shall also mention briefly the theory of dual cones which
is strictly connected to the Tomita-Takesaki theory but has an independent
interest since it is an extension to the non-commutative setting of the classic
Radon-Nikodym theorem about equivalence of measures.

If for a von Neumann algebra M which is a factor (M ∩M′ ≡ {cI})
admits a tracial state (a normal state σ such that σ(ab) = σφ(ba)) then there
exists a natural isomorphism between M and M′ that can be used to set up
a non-commutative integration theory.

For a von Neumann factor that admits a trace one can construct a non-
commutative version of the classical integration theory for spaces of finite
measure. The foundation of this theory was given by I. Segal [1] and E.Nelson
[3] with relevant contribution by D.Gross. [2]

9.1 The trace. Regular measure (gage) spaces

In this non-commutative case we define non-commutative space with finite
regular gage a triple {H,M, µ} where H is a complex Hilbert space,A s a von
Neumann algebra and µ a non-negative function defined on the projections of
A and such that
(i) µ is completely additive: if S is a collection of mutually orthogonal projec-
tion in A with upper bound P , then µ(P ) =

∑
Q∈S µ(Q).

(ii) µ is invariant under unitary transformations
(iii) µ is finite (µ(I) <∞)
(iv) µ is regular (if P is not zero µ(P ) is strictly positive).

Under these assumption one can extend linearly µ to the entire M as a
norm-continuous function. The function so extended is called trace; we shall
use the symbol Tr(A), A ∈ A.
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If A ∈ A as operator on H has spectral decomposition A =
∫
λdE(λ)

then Tr(A) =
∫
λdµ(λ). If A ≥ 0 then Tr(A) ≥ 0. The trace is central if

(Tr(AB) = Tr(BA)).
If A ∈ A is a closed operator we define |A| = (A∗A)

1
2 . For 1 ≤ p < ∞

define ‖A‖p = (Tr(|A|p)
1
p and ‖A‖∞ = |A|. With this definition ‖A‖p is a

norm for each p in [1,∞].
We denote by Lp(A) the completion of A in B(H) in the ‖.‖p norm. It is

easy to see that L∞(A) ≡ A as normed spaces. In [1] (see also [2] [3] ) one
proves that for 1 ≤ p ≤ ∞ one can identify Lp(A) with a suitable space of
bounded operators on H. In particular one can identify a positive element in
Lp(A) with a self-adjoint operator.

Remark that if A is a type I factor, in particular if A = B(H) ,the space
L1(A) is the space of trace-class operators and Lp(A) is the space of operators
of Schatten class p. With this notation the Lp non-commutative theory is
developed in complete parallelism with that of Lebesgue integration spaces.

If A ∈ L1(A) the function Tr(A) defines a linear continuous functional
on L1(A) and Hölder’s inequalities hold as well as interpolation formulas. In
particular if {H,A,m} is a non-commutative measure space and a, b ∈ A one
has

‖ab‖p ≤ ‖a‖∞‖b‖p ‖ba‖p ≤ ‖a‖∞‖b‖p (9.1)

It follows that right and left multiplication by a ∈ A extends to a bounded op-
erator on Lp(A). We shall denote Ra and La these operators. By construction
Rb and La commute for any choice of a, b.

The relevance for Physics of the regular measure spaces is due to the fact
that for these space one has theorems similar to the theorems of Frobenius
for matrices which give existence and uniqueness of the lowest eigenvalue
of a positive matrix. They are also relevant to establish a theory of non-
commutative Markov processes.

A bounded operator A on L2(A) is said to preserve positivity if AB is a
non-negative element of L2(A) when B is non-negative. Let {H,A, µ} be a
non commutative space with regular gage and let π be a projection in A. We
shall call Pierce subspace associated to π the range of Pπ ≡ LπRπ as operator
on L2(A).

The role of the support of a function is now taken by the Pierce subpaces.
We shall not give here a treatment of the general aspects of this non

commutative integration theory. We only notice that it has an important role
in the theory of fields of spins and and of fermions on a lattice and elements
of this application are given in Lecture 16.

We quote an important theorem [1][2][3].

Theorem 9.1
Let H,A, µ be a space with a finite regular gage and let A be an hermitian
bounded operator on L2(A) which is positivity preserving. If ‖A‖ is an eigen-
value of A and if A does not leave invariant any proper Pierce subspace, then
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the eigenvalue ‖A‖ has multiplicity one and one can choose the associated
eigenvalue to be non-negative and cyclic for A.

♦

The theory of Takesaki-Tomita extends this non-commutative integration
theory to normal states which do not define a trace but satisfy, for some
value t0 6= 0 of the parameter, the K.M.S. condition relative to a modular
group of automorphisms associated to the state. In a sense this represents
the non-commutative version of the integration theory in a compact Ω ⊂ Rd

with respect to a finite measure which is absolutely continuous with respect
to Lebesgue measure.

An important feature of the Tomita-Takesaki theory is that it connects
an analytic property (to be analytic in a strip with a suitable relation of the
values at the boundary) with a one-parameter group of automorphisms that
leave invariant the algebra of observables. The group of automorphisms may
be the group of time-translations, the sub-group of boosts in the Lorenz group,
...

We now recall some basic elements about the K.M.S. condition).

9.2 Brief review of the K-M-S. condition

As we saw in Volume one of these Lecture Notes, the K.M.S. condition is
a generalization of the Gibbs condition for the equilibrium of a system in
Classical Statistical Mechanics. In this theory a state of a classical hamiltonian
system with hamiltonian H ≥ 0 at temperature T is represented by a Liouville
distribution in phase space that can be written modulo normalization as e−

H
T

so that at temperature 0 the system in phase space is localized on the minima
of H.

The same is assumed to be true in Quantum Statistical Mechanics but
the observables are operators and the integration over phase space is sub-
stituted with a non-commutative integration given by taking the trace. The
expectation value of the observable A at equilibrium at temperature T is now

Tr(Ae−
H
T ) (9.2)

If one considers the evolution of the correlations under the hamiltonian H
one must study the function

ΦA,B(t) ≡ Tr(AB(t)e−
H
T ) = Tr(AeitHBe−itHe−

H
T )

Since the operators A and B in general do not commute with H this expression
is not invariant under interchange of A with B. But the right-hand side can
be written as

Tr(AeitHBe−i[t+i
1
T ]H) (9.3)
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Since H is positive, the function ΦA,B(t) can be continued for T > 0 as
analytic function in the strip 0 < Imt < 1

T continuous at the boundary. The
same is true for the function ΦB,A(t).

One verifies easily, by the cyclic property of the trace, that the analytic
function ΦA,B(z), 0 < Imz < 1

T can be continued as a continuous function to
the boundary of the strip and satisfies at the boundary

ΦA.B(x+ i0) = ΦB,A(0 + i
1
T

)

In the case of an infinite-dimensional thermodynamic system the operation
trace is not defined in phase space, but in an algebraic formulation one may
have a function with the property of the trace. Therefore it is natural to state
the condition of being in equilibrium at temperature T as the condition that
for all element A, B (which are now elements of a C∗ algebra, the function
TrT (AB(t)) has the same property as in the finite-dimensional case.

This was the proposal of the physicists Kubo, Martin and Schwinger and
since than this condition is known under the acronym K-M-S.

Given a dynamical system {A, αt} one says that the state ρβ satisfies
the K.M.S. condition for the group αt at the value β of the parameter (
0 < β < ∞) (in short, φ is a β-K.M.S. state) if for every x ∈ A and every
y ∈ A the following holds

ρβ(y αξ+iβ(x) = ρβ(αξ(x) y), ξ ∈ R (9.4)

We extend this definition to cover also the cases β = 0 and β = ∞. We will
say that ρ0 satisfies the K.M.S. condition for the group αt at β = 0 if

ρ0(y αζ(x)) = ρ0(αζ(x) y) ∀x ∈ A y ∈ A (9.5)

We will say that ρ∞ satisfies the K.M.S. condition for the group αt at
infinity if for any x ∈ Aa and every y ∈ A the analytic function f(ζ) ≡
ρ∞(y αζ(x)) satisfies

|f(ζ)| ≤ ‖x‖ ‖y‖ if Imζ ≥ 0. (9.6)

In this case the state ρ∞ is said to be ground state relative to the automor-
phisms group αt. The origin of this name is clear from the finite -dimensional
case (in that case it is the state with minimum energy) and for the general
case it will be clearer later. An important result is the following, that we have
described in Volume I of these Lecture Notes

Let A, αt be a C∗ dynamical system and let 0 ≤ β ≤ ∞. The following
conditions on a state ρ are equivalent
1) ρ is β-K.M.S. state
2) ρ satisfies the αt K.M.S. condition for a dense set of elements x ∈ Aa.
3) For any pair x, y ∈ A there exists a function fρ(ζ) bounded continuous in
the strip
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Ωβ ≡ {ζ ∈ C, 0 ≤ Imζ ≤ β} (9.7)

holomorphic in the interior of Ω and satisfying the boundary conditions

fρ(t) = ρ(y αt(x)), fρ(t+ iβ) = ρ(αt(x) y) (9.8)

If β =∞ the last condition takes the form

fρ(t) = ρ(y αt (x)) t ∈ R ‖fρ‖ ≤ ‖x‖ ‖y‖ (9.9)

For the proof we refer to Vol. I Lecture 9

9.3 The Tomita-Takesaki theory

We recall now briefly the main points of this theory . If the von Neumann
algebra M on a Hilbert H has a cyclic and separating vector Ω, one can
associate to this vector a positive operator ∆ (called modular operator) and
an anti-linear isometry j such that

jΩ = Ω, j∆
1
2 a Ω = a∗ Ω MΩ ⊂ D(∆

1
2 ) (9.10)

jMj =M′ ∆itM∆−it =M ∀t (9.11)

The modular group associated to the state Ω is the group of inner au-
tomorphisms with generator log∆. The state satisfies the K.M.S. condition
with respect to this group. The case ∆ = I corresponds to a tracial state
and in this case the existence of the anti-linear isometry j follows from
(Ω, a∗bΩ) = (Ω, ba∗Ω))..

We begin with some preliminary result and the connection to the Friedrichs
extension of symmetric strictly positive operators.

Remark that the Friedrichs extension can be interpreted in the following
way: given a closed strictly positive quadratic form q in a complex Hilbert
space H consider the subspace X for which q(φ, ψ) takes real values for every
φ, ψ ∈ X. It is a real vector space closed in the topology induced by the
quadratic form.

On the other hand, every positive self-adjoint operator A determines a
real subspace Y, closed in the graph topology of A, which has the property
that for any pair of vectors φ, ψ ∈ D(A) the number (φ,Aψ) is real. This
defines Y as a real subspace. The construction of the Friedrichs extension (an
operator) can be interpreted as construction of Y starting with the subspace
X i.e. as a natural closed map X → Y..

If H is finite dimensional, therefore isomorphic to Cn ≡ Rn ⊕ Rn the op-
erator A is represented by a strictly positive matrix with eigenvalues λ1, ..λn.
In this case it is possible to transform A into diagonal form (in fact into the
identity) in the real Hilbert space Rn⊕Rn by means of complex linear trans-
formation in Cn consisting in a rotation followed by a dilation by a factor
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√
λk in the direction of the eigenvectors. For compact operators there is a

similar procedure but the proof of closure is more demanding.
The construction of the Friedrichs extension can be seen as an extension of

this construction to the case of quadratic forms which correspond to operators
with (partly) continuous spectrum. This clarifies the important role of the
following structure.

Let H be a complex Hilbert space, and define

< ψ, φ >= Re(ψ, φ) φ, ψ ∈ H (9.12)

With this definition H acquires the structure of a real Hilbert space, that we
denote by Hr, with scalar product

(ψ, φ) =< ψ, φ > +i < iψ, φ > (9.13)

(in our notations, (ψ, φ) is linear in φ and anti-linear in ψ.).
Let us assume that there exists a closed real subspace K ∈ H with the

following properties
a)

K ∩ iK⊥ = ∅, (K + iK)⊥ = ∅ (9.14)

If this is the case,we say that the space K is in standard form. A large part of
the Tomita-Takesaki theory is related to the fact that if a representation of a
von Neumann algebra A has a cyclic and separating vector Ω, then ArΩ and
A′Ω compose a standard form [4][5].

The following construction defines uniquely a self-adjoint operator ∆
(called modular operator associated to the subspace K) and an anti-linear
isometry j. If K is the real subspace X associated to a strictly positive
quadratic form q the operator we obtain is the Friedrichs extension of q.

The case of interest for us is that in which K is generated by the self-
adjoint elements of a von NeumannM acting on a cyclic and separating vector
Ω. In this case we will prove that the modular operator has the properties
indicated above. Notice that in this case K is generated by the convex cone
which is obtained by applying to Ω the positive elements of M. This will
lead to the Tomita-Takesaki duality theory and to the equivalence theory for
representations of C∗ algebras.

We shall use later the following result

Lemma 0
Let ρ be a state of a von Neumann algebra M and let τ be a linear positive
functional on M satisfying τ ≤ ρ. There exist h ∈M+

1 and λ, Reλ ≥ 1
2 such

that for any a ∈M
τ(a) = λ ρ(h a) + λ̄ ρ(a h) (9.15)

If the representation induced by ρ is irreducible, there is a unique operator h
with this property.

♦
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Proof
We could reduce ourselves to the case M ⊂ B(H), and ρ defined by a pro-
jection operator πφ, |φ| = 1 , and a = b∗b. In this case ρ(a) = Tr(πφ a) =
(bφ, bφ), and τ(b∗b) = Tr(σb∗b) for a suitable density matrix σ. Lemma 0
follows then the from elementary inequalities.

A more algebraic proof is as follows. Let Ξ the convex compact set in
(M∗)s.a defined by

τ ∈ Ξρ ⇔ ∃λ, Reλ ≥ 1
2
, ∃h ∈M1

+ : τ(a) = λρ(ha) + λ̄ρ(ah) ∀a ∈M
(9.16)

We must prove that if 0 ≤ τ ≤ ρ then τ ∈ Ξρ. Suppose this is false. By
the Hahn-Banach separation theorem there exist a ∈ Ms.a. and t ∈ R+ such
that τ(a) > t, ρ(a) ≤ t. Set a = a+ − a−, h = [a+] (the projection on the
support of a+). Then

τ(a+) ≥ [τ(a+)− τ(a−)] > t ≥ 2Reλτ(a+) ≥ τ(a+) (9.17)

a contradiction.
♥

Corollary
If τ is faithful and

τ(a) = λρ(k a) + λ̄ρ(a k) k ∈Ms.a. (9.18)

then k = [a+].
♦

Proof
It is easy to verify that (18) holds for [a+]. Suppose it be true for h. One

has

(λ+λ̄)((h−[a+])2) = λh(h−[a+])+λ̄(h−[a+])h−λ[a+]((h−[a+])−λ̄(h−[a+])[a+]
(9.19)

If (19) holds for h, then

2Reλρ((h− [a+])2) = τ(h− [a+])− τ(h− [a+]) = 0 (9.20)

Therefore h = [a+].
♥

Let nowM be a von Neumann algebra on H with a cyclic and separating
vector Ω. It is easy to verify that Ω is cyclic and separating also for M′.
Remark that if ρ is a normal faithful state the representation associated to
ρ through the G.N.S. construction provides an isomorphism and therefore we
can identify M with Πτ (M). Let K be the closure of Ms.a. Ω. Define

< φ,ψ >= Re(φ, ψ) φ, ψ ∈ H (φ, ψ) =< φ,ψ > +i < iφ, ψ > (9.21)
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With the scalar product < ., . > the space H becomes a real Hilbert space
Hr and K can be regarded a subspace of Hr.

Proposition 9.2
K is in standard form (i.e. has the properties in (14)).

♦

Proof
Property a) follows from the fact that Ω is cyclic. To prove b) notice that

M′s.a.Ω is orthogonal in Hr toMs.a.Ω. Indeed if a′ ∈M′s.a.Ω and a ∈Ms.a.

one has
(a′Ω, iaΩ) = −(iaΩ, a′Ω) ⇒< a′Ω, iaΩ >= 0 (9.22)

It follows M′s.a.Ω ⊂ (iK)⊥; similarly iM′s.a.Ω ⊂ (K)⊥. Therefore

M′Ω ⊂ (K ∩ iK)⊥ = K⊥ + (iK))⊥ (9.23)

and from the density of M′Ω it follows K ∩ iK = ∅.
♥

Before giving the general construction of the modular operator associated
to a subspace K in standard form, we give the proof [4] of a property that will
be useful in what follows.

Proposition 9.3
Let A0 be a closed symmetric operator with domain dense in H and sup-

pose (x,A0x) ≥ 0 for every x ∈ D(A0). Let A0 be affiliated to a von Neumann
algebraM∈ B(H) in the sense that for every b ∈M′ and for every x ∈ D(A0)

(bx,A0x) = (A0x, bx) (9.24)

holds (notice that A0 is only symmetric and we have not a spectral represen-
tation).

Let A the Friedrichs extension of A0. Then A is affiliated to M.
♦

Proof
The statement is trivial ifM′ consists only of multiples of the identity. Let

V be unitary inM′. Then V AV ∗ is a positive extension of V A0V
∗. Denoting

by D′ the closure of D(A0) with respect to the scalar product defined by

< u, v >≡ ((A0 + I)u, v)) (9.25)

¿From the construction of the Friedrichs extension the identity map on
D(A0) has a unique self-adjoint extension ι which satisfies D(V AV ∗) ⊂
V.ι(D′). Since A0 is affiliated to M one has V A0V

∗ = A0. It remains to
prove that V (ι(D′) ⊂ ι(D′).

Let z ∈ ι(D′) such that ι(z′) = z with z′ ∈ D′. There exists a sequence
{xn} ∈ D(A0) which converges to z′. Since A0 is affiliated to M one has
V xn ∈ D(A0). The sequence {xn} converges in D′ and therefore
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limn,m→∞‖V xn − V xm‖2 = limn,m→∞((A0 + I)V (xn − xm), V (xn − xm))

= limn,m→∞ < xn − xm, xn − xm >= 0 (9.26)

It follows that {V xn} converges in D′ to an element u′ and {V xn} con-
verges in H to ι(u′). Since {xn} converges to z in H one has that {V xn}
converges to V z. Therefore V z = ι(u′) ∈ ι(D′) and V ι(D′) ⊂ ι(D′).

♥

9.4 Modular structure, Modular operator, Modular
group

Given K in standard form we construct now an invertible anti-isometry j and
a self-adjoint operator ∆ (modular operator ). In the case in which K is con-
structed from a von Neumann algebra that has a cyclic and separating vector
we shall see that the isometry intertwines the algebra and its commutant
(which are therefore equivalent) and the modular operator is the generator
of a group of inner automorphisms which satisfies the K.M.S. condition for
β = 1.

The construction we give shows that the modular operator is defined,
independently from the theory of von Neumann algebras, starting from a real
subspace of a complex Hilbert space with a procedure which is similar to the
one followed in the construction of the Friedrichs extension of a closed positive
quadratic form. Assume that the subspace K of the real Hilbert space Hr
satisfies condition (14). Let P and Q the orthogonal projectors of Hr on K
and iK. Define

A = P +Q, jB = P −Q (9.27)

where jB is the polar decomposition of P −Q in Hr.

Proposition 9.4 [4]
The operators A, B, P, Q, j satisfy

i) A and B are linear complex and 0 ≤ A ≤ 2I 0 ≤ B ≤ 2I
ii) A , (2I - A) e B are injective and B =

√
A(2I −A)

iii) j is an anti-linear isometry, j2 = I. If φ, ψ ∈ H then (jφ, ψ) = ¯(φ, jψ)
iv) B commutes with A,P,Q , j
v) jP = (I −Q)j, jQ = (I − P )j jA = (2I −A)j

♦
Proof

i) It is easy to show that iP = Qi. It follows that a ≡ P +Q is linear over
the complex field and B ≡ P − Q is anti-linear. From B2 = (P − Q)2 one
derives that B2 and therefore also B is linear. Therefore j is anti-linear. The
operators A and B are positive in Hr and from (27) it follows that they are
self-adjoint and positive also in H. he bounds ‖A‖ ≤ 2, ‖B‖ ≤ 2 are obvious
from the definition.
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ii) If Aφ = 0 one has

‖Pφ‖2 + ‖Qφ‖2 =< Pφ, φ > + < Qφ, φ >=< Aφ, φ >= 0 (9.28)

It follows φ ∈ K⊥∩(iK)⊥ and therefore φ = 0. This proves that A is injective.
Similarly one shows, analyzing I −P e I −Q, that 2I −A is injective since P
e Q are idempotents and B2 = A(A− 2I).

iii) j is self -adjoint inHr and it is an injective isometry since B is injective.
Therefore j2 = I. One has

(jψ, φ) =< jψ, ψ > +i < ijψ, φ >=< ψ, jφ > −i < iψ, jφ >= ¯(ψ, jφ)
(9.29)

iv) B commutes with A, P ,Q. Since P −Q is self-adjoint in Hr it follows
thaat it commutes with j.

v) We have BjP = (P −Q)P = (I−Q)(P −Q) = (I−Q)Bj = B(I−Q)j
Since j is injective, jP = (I −Q)j. Taking adjoints and summing one obtains
jA = (2I −A)j.

♥

We can now introduce the modular operator.

Definition 9.1 ( modular operator)
We call the operator ∆ ≡ 2I−A

A modular operator associated to the sub-
space K in standard form

♦

Proposition 9.5
The operator ∆ is self-adjoint, positive, and ∆−1 = j∆j. Moreover K +

iK ⊂ D(
√
∆) and for any pair φ, ψ ∈ K one has

j
√
∆(φ+ iψ) = φ− iψ (9.30)

♦

Proof
Since 0 < A < 2I both A and 2I − A are injective and therefore ∆

is positive and injective. The equality ∆−1 = j∆j follows from point v) of
proposition 9.4.

If φ and ψ are in K one has

(2I − P −Q)φ = (P −Q)φ, (2I − P −Q)(iψ) = −(P −Q)(iψ) (9.31)

and therefore (2I −A)(φ+ iψ) = jB(φ− iψ) and for every ξ ∈ D(A−1)

(φ+iψ,∆ξ) = ((2I−A)(φ+iψ), A−1ξ) = (jB(φ−iψ), A−1ξ) = (j(φ−iψ),
√
∆ξ)

(9.32)
In the last equality we have used point ii) of Proposition 3) and D(∆) ⊂

D(
√
∆). In particular one has
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|(φ+ iψ,
√
∆ (
√
∆ξ)) ≤ ‖φ− iψ‖‖

√
∆ξ‖ (9.33)

A density argument shows that φ + iψ ∈ D(
√
∆) and

√
∆(φ + iψ) =

j(φ− iψ).
♥

We have seen that if a von Neumann algebraM has a cyclic and separating
Ω, then the subspace generated by the action on Ω of the self-adjoint elements
ofM satisfies the condition for the existence of a modular operator ∆, which
in general depends on the subspace and therefore on Ω.

Definiton 9.2 ( modular group)
The unitary group generated by ∆ is called modular group

Proposition 9.6
The unitary group t → ∆it (modular group associated to the subspace K

) commutes with j and leaves K invariant.
♦

Proof
Proposition 9.6 follows from Proposition 2, but can also be seen as follows.

From the definition of ∆ one has

∆it = (2I −A)it A−it (9.34)

It follows from proposition 3 that j Ait = (2I −A)−itj (keeping into account
that j is anti-linear). From this one concludes j∆it = ∆itj. Therefore ∆it

commutes with A,B, j and in particular

∆itK = ∆itPHr = P∆itHr = PHr = K (9.35)

♥

It is easy to see that the analytic vectors for the group of automorphisms
generated by ∆it are dense in K.

We return now to the case of a modular group associated to a cyclic and
separating vector state of a von Neumann algebra M.

Proposition 9.7
If the modular group is associated to a cyclic and separating vector Ω of

a von Neumann algebra M over a Hilbert space H (and therefore K is the
closure of Ms.a.Ω ), then the closed operator j

√
∆ extends the map

aΩ → a∗Ω, a ∈M (9.36)

which is densely defined in H.
♦

Proof
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We have seen that the closure of (a + a∗)Ω; a ∈ M has the properties
required for the space K. From proposition 4 applied to aΩ one sees that for
all a ∈ A one has j

√
∆ aΩ = a∗ Ω.

♥

We remark that one can prove in a simpler way the existence of the modu-
lar operator , but not the property to generate a one-parameter group that in-
tertwinesM withM′. Indeed the anti-linear operator S0 : aΩ → a∗Ω, a ∈
M is densely defined (since Ω is cyclic for M) and closable since S0 ⊂ F0

where F0 is defined by

F0 : bΩ → b∗Ω, b ∈M′ (9.37)

It is easy to verify that S0 ⊂ F ∗0 and since F0 is densely defined S0 is
closable. Denote by S the closure of S0; the polar decomposition gives S =
J ∆

1
2 where ∆ = S∗S is self-adjoint and J is anti-unitary. From J2∆

1
2 =

J∆−
1
2 J one derives J2 = I ∆

1
2 = J∆−

1
2 J.

As a further remark notice that in general if a , b are self-adjoint in M
the operator ba is not self-adjoint. Therefore in general a self-adjoint element
of M leaves K invariant but its action does not commute in general with
the conjugation. The role of the modular operator is to quantify this non-
commutativity. If the state Ω is tracial, the modular operator is the identity.

♣

9.5 Intertwining properties

We now prove that the isometry j intertwines A and A′ ( jAj = A′). This
relation will also be at the basis of the duality theory for positive cones.

In view of its independent interest, we give first the proof when there is a
faithful tracial state (τ(ab) = τ(ba))∀a, b ∈M).

Denote by ΠτM the G.N.S. representation associated to τ ; we shall iden-
tify it with M. Any normal state ω of M can be written as ω(a) = τ(ρ a) =
τ(
√
ρa
√
ρ) where ρ ∈M is a positive operator.

Suppose ρ invertible. Then
√
ρ regarded as element of H is cyclic for the

algebra of left multiplication N

N = {La , a ∈M} (9.38)

It is easy to see that N ′ is the algebra of right multiplication Ra. One has

S : a
√
ρ→ a∗

√
ρ, Ja = a∗ ∆ = Lρ Rρ−1 (9.39)

An easy calculation leads to

∆itLa∆
−itb = Lρitaρ−itb a , b ∈ N ∆itN δ−it ⊂ N (9.40)
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On the other hand JLaJb = ba+ = Ra∗b and therefore jMj ∈ M′. We
shall now treat the general case.

Proposition 9.8
One has

QΩ = PΩ = AΩ = BΩ = jΩ = ∆Ω = jΩ = Ω (9.41)

Moreover for every a′ ∈M′s.a. there exists a ∈Ms.a. such that

jba′Ω = aΩ (9.42)

♦

Proof
By definition Ω ∈ K and sinceM′Ω ∈ (iK)⊥ one has also Ω ∈ K⊥. Therefore
PΩ = QΩ = Ω and jΩ = ∆Ω = Ω.

To prove (42) assume first that b is a positive element ofM′ which satisfies
0 ≤ b ≤ I. Then the functional ψ ∈M∗ defined by

ψ(a) = (bΩ, aΩ) (9.43)

is positive and dominated by φΩ (notice that b∗a = (b∗)
1
2 a b∗)

1
2 ). Using this

property and restricting ψ to the self-adjoint elements of M one can show
that there exists a positive c ∈ M such that ψ(a) = (aΩ, cΩ). Therefore
aΩ = P (bΩ). The identity (42) follows then from QΩ = 0.

♥

We shall extend now Proposition 8 to obtain a relation between elements
M and those of M′. We shall do this viewing (42) as a relation between a
and a′ that contains the modular group ∆it and later use the invariance of
M under the modular group.

Proposition 9.9
For each a′ ∈ M′ and complex number λ, Re λ > 0 there exists a ∈ M

such that
bja′jb = λ(2I −A)aA+ λ̄Aa(2I −A) (9.44)

♦

Proof
By linearity we can assume a′ positive and a < I The functional b →

(bΩ, x′ω), b ∈ M is positive and dominated by φΩ ; there exists therefore
a ∈ eM+ such that

(bΩ, a′Ω) = ((λab+ λ̄baΩ,Ω), ∀b ∈M (9.45)

Substituting c∗b for b , c ∈M one obtains

(bΩ, a′Ω) = λ(bΩ, caΩ) + λ̄(b aΩ, cΩ) (9.46)
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Given b′, c′ ∈M′ choose b, c ∈M satisfying Proposition 9.6. Substituting
bΩ with jBb′Ω and cΩ with jBc′Ω one has

(Bja′jBc′Ω, b′Ω) = λ(jBb′Ω, caΩ) + λ̄(baΩ, jBc′Ω) (9.47)

Using aΩ = j∆
1
2 a∗Ω which holds for every a ∈ M (48) can be rewritten

as
(Bja′jBc′Ω, b′Ω) = λ(jBb′Ω, j∆

1
2 acΩ) + λ̄(j∆

1
2 bc′Ω,Bc′Ω)

= λ(ajBc′Ω, (2I − a)b′Ω) + λ̄((2I −A)c′Ω, a j Bb′Ω) (9.48)

We now recall that A− jB = 2Q and QM′Ω = 0; it follows

(Bja′jBc′Ω, b′Ω) = [(λ(2I −A)aA+ λ̄Aa(2I −A)]c′Ω, b′Ω) (9.49)

The elements b′ and c′ are generic elements inM′ and Ω is cyclic forM′. We
have therefore obtained the identity

bja′jb = λ(2I −A)aA+ λ̄Aa(2I −A) (9.50)

♥

We will now transform (51) in a relation that contains a, a′ j and the
modular group. We do so using the following lemma; the proof is obtained [4]
e.g. considering the function g(z) = π eiθz

sen(πz)f(z) and applying the formula
that gives the residue at z = 0 as an integral along a suitable boundary.

Lemma 9.10
If Reλ > 0 and f(z) is bounded and analytic in the strip {z ∈ C, |Rez| ≤

1
2} then setting λ = ei

θ
2 , |θ| < π one has

f(0) =
1
2

∫
e−θt

1
cosh(πt)

[λf(it+
1
2

) + λ̄f(it− 1
2

)]dt (9.51)

♦

Using the previous Lemma we can prove

Proposition 9.11
If a, a′ λ satisfy Proposition 6 and λ = ei

θ
2 , |θ| < π one has

a =
1
2

∫
∆itja′j∆−it

e−θ t

cosh (πt)
dt (9.52)

♦

Proof
Let φ, ψ ∈ K be analytic vectors of δit. Consider the analytic function
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f(z) = (BaB ∆−z̄φ,∆zψ) (9.53)

It is bounded in every strip and therefore we can use Lemma 9.8. ¿From
(51)

f(it+
1
2

) = (∆−it(2I−A)aA∆itφ, ψ); f(it− 1
2

) = (∆−itAa(2I−A)∆itφ, ψ)

(9.54)
Making use of proposition 9.7

λ f(it+
1
2

) + λ̄ f(it− 1
2

) = (∆−itBja′jB∆itφ, ψ) (9.55)

An application of Lemma 8 provides

(BxBφ,ψ) =
1
2

∫
e−θ t

cosh(π t)
(∆−itBja′jB∆itφ, ψ)dt =

1
2

∫
e−θt

cosh(πt)
(∆−itja′j∆itBφ, bφ)dt

(9.56)
Proposition 9.11 follows because K generates H and the range of B is dense.

♥

We prove now

Proposition 9.12
For every t ∈ R and a′ ∈M′ one has ∆itja′j∆−it ∈M.

♦
Proof

Let b′ ∈M′ and φ, ψ ∈ H. Define

g(t) = ([∆−itja′j∆it b′ − b′ ∆−itja′j∆it]φ, ψ) (9.57)

¿From proposition 9.10 for |θ| < π∫
g(t)

e−θt

cosh(πt)
dt = 0 (9.58)

The function h(z) =
∫
g(t) e−zt

cosh(πt)dt is holomorphic in the upper half plane
and is zero for z real. Therefore

∫
g(t)e−ist 1

cosh(πt)dt = 0. Uniqueness of
Fourier transform implies g ≡ 0. Hence ∆−itja′j∆it ∈M′′ =M.

♥

Theorem 9.13
Let M be a von Neumann algebra on a Hilbert space H and let the vector
Ω ∈ H be cyclic and separating. There exists a positive self-adjoint operator
∆ (called modular operator with respect to Ω) and an anti-linear isometry j
such that jMj = M′ and ∆itM∆−it = M for every real t. One has j Ω =
Ω, MΩ ∈ D(

√
∆) and
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j
√
∆ a Ω = a∗Ω ∀a ∈M (9.59)

♦

Proof
Equation (59 ) follows from the definition of j. To prove the remaining

part of the theorem, let K be the closure of Ms.a.Ω.
We have seen that this linear space satisfies the conditions which allow

the construction of the modular operator. From proposition 10 (for t = 0) we
know that jM′j ∈ M. The thesis of theorem 9.13 could then be obtained
by proving that the modular operator ∆′ associated to the real subspace K′
which is the closure of M′s.a.Ω satisfies ∆′ ∆ = I ( the conjugations satisfy
j′ = j).

This provides the inclusion jMj ∈ M′. A direct proof is as follows. Let
a, b self-adjoint in M. Since jΩ = Ω one has

(bjajΩ,Ω) = (Ω, ajbjΩ) (9.60)

This linear relation extends to all elements of M. Choose b′ ∈ M′ and
remark that e bjb′j ∈M. Substituting bjb′j in place of b one obtains

(b(jb′j(jaj)Ω,Ω) = (Ω, aj(bjb′)j)jΩ) (9.61)

¿From this one derives (ajbjΩ, b′Ω) = (jbjaΩ, b′Ω). Since M′Ω is dense in
H it follows ajbjΩ = jbjaΩ.This is a linear equation valid for every a ∈ M.
Substituting a with ac a, c ∈M one obtains

jbjacΩ = acjbjΩ = ajbjcΩ (9.62)

and therefore jbja = ajbj because of the density of MΩ in H. Hence jbj ∈
M′.

♥

9.6 Modular condition. Non-commutative
Radon-Nikodym derivative

Given a Hilbert space H and a closed real subspace K of Hr we shall say that
the unitary group {Ut}, t ∈ R satisfies the modular condition with respect
to K if for any pair of vectors φ, ψ ∈ K there exists a bounded continuous
function fφ,ψ defined on the strip

S−1 = {z ∈ C : −1 ≤ Imz ≤ 0} (9.63)

holomorphic in the interior and satisfying the boundary conditions

f(t) = (Utφ, ψ) f(t− i) = (ψ,Utφ) t ∈ R (9.64)
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♦

Proposition 9.14 [4] [5]
Let M be a von Neumann algebra with cyclic and separating vector Ω.
The unitary group t → ∆it satisfies the modular condition with respect

to the closure of MΩ and is the unique unitary representation with these
properties . ♦

We shall now give the the relation between the modular group and the
K.M.S. condition. Consider a C∗ dynamical system which we will denote by
{A, αt}. An element x ∈ A is analytic for αt if the map t → αt(x) has an
extension to an entire analytic function ζ → αζ(x) ζ ∈ C.

If x ∈ A define

xn ≡
√
n√
π

∫
αt(x)e−n

2tdt (9.65)

For any integer n the element xn is analytic for αt and that limn→∞|xn−
x| = 0. Therefore the set Aa of analytic vectors in norm-dense in A and in
fact it is a ∗-subalgebra of A.

The same conclusions are reached if one considers a W ∗-dynamical system
or a dynamical system with values in a von Neumann algebra. An important
property of the K.M.S. condition the following that we have already noted in
Volume 1 of this Lecture notes.

Let {A, αt} be a C∗ dynamical system and let ρβ be a state which satisfies
the αt-K.M.S. condition for a value β of the parameter (0 ≤ β ≤ ∞). Then
ρβ is invariant for the automorphisms group αt.

Proposition 9.15
Let A, R, {αt} be a C∗ dynamical system. Suppose that a state ρ satisfy

the K.M.S. condition at β = 1. Let (Πρ, U
ρ
t ,HρΩρ) the cyclic covariant rep-

resentation associated to ρ by the G.N.S. construction and let K the closure
of Πρ(Ms.a Ωρ). Then Uρt satisfies the modular condition with respect to K.

♦

Proof
Since the state is α− invariant, the representation is covariant. It is also

easy to see that Uρt leaves for every t invariant the subspace K. For every
ψ ∈ K we can choose a sequence an bn ∈ Ms.a. such that Πρ(an)Ωρ
converges to φ and Πρ(bn)Ωρ converges to ψ.

By assumption, there exists functions fn bounded and continuous in the
strip

S1 = {z : 0 ≤ Im z ≤ 1} (9.66)

holomorphic in the interior and which satisfy the boundary conditions

fn(t) = (Uρt Πρ(an)Ωρ, Πρ (bn)Ωρ), fn(t+ i) = ( Πρ(bn)Ωρ, UρΠρ (an)Ωρ)
(9.67)
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Since the fn are uniformly bounded and uniformly convergent by the
Phragmen-Lindelhof theorem the functions fn converge to a function f which
is holomorphic in the interior of the strip and satisfies the boundary conditions

f(t) = (Uρt φ, ψ) f(t+ i) = (ψ,Uρt φ) (9.68)

Setting g(z) = f̄(z̄) one sees that g satisfies the modular condition with
respect to K.

In order to show that to K corresponds a modular structure we must show
that the conditions in (67) are satisfied. The second condition is trivially
satisfied since Ωρ is cyclic. Let us prove that K ∩ iK = ∅.

Let φ ∈ K∩ iK and ψ ∈ K. Since Uρ satisfies the modular condition there
exist functions f1 and f2 holomorphic in the strip {z : −1 ≤ Im z ≤ 0} which
satisfy the boundary conditions

f1(t) = (Uρt φ, ψ), f1(t−i) = (ψ,Uρt φ) f2(t) = (Uρt iφ, ψ) f1(t−i) = (ψ, iUρt φ)
(9.69)

One has if1(t) = f2(t), −if1(t − i) = f2(t − i); this implies if1(z) =
f2(z), −if1(z) = f2(z) in the interior of the strip, and therefore f1 = f2 ≡ 0.
This holds for every ψ ∈ K; since K generates H over the complex field, it
follows φ = 0.

♥

As a consequence of Proposition 9.15 we can prove

Theorem 9.16
For every normal faithful state ρ of a von Neumann algebra M there exists
a unique W ∗ dynamical system ( which will be denoted by (M, αt, ρ)) such
that ρ satisfies the K.M.S. condition with respect to αt. We shall call modular
group associated to ρ (denoted by σρt ) the group of automorphisms of this
dynamical system.

♦

Proof
Consider the cyclic representation associated to ρ by the G.N.S. construc-

tion. Since ρ is normal and cyclic, we can identify M with its image in Πρ.
Since Ωρ is separating we can construct the modular operator and define

σt(a) = ∆ita∆−it a ∈M t ∈ R (9.70)

By construction the map t→ ∆it satisfies the modular condition with respect
to the closure of Ms.a.Ωρ. It is easy to see that the modularity condition
implies the K.M.S. condition with respect to {σt} at the value 1.

To prove the converse, let (M, R, α) satisfy the K.M.S. at the value one of
the parameter and let U(t) be the family of unitary operators that implements
αt in the Hilbert space Hρ. Using proposition 9.15 for the dynamical system
(M, R, α) it is easy to see that for every t ∈ nR and a ∈M one has
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αt(a) = Uρt aU
ρ
−t = ∆ita∆−it = σt(a) (9.71)

♥

As immediate consequence of theorem 9.16 one has

Lemma 9.17
If σρt is the modular group associated to the normal faithful state ρ of a

von Neumann algebra M and α is an automorphism of M then {α−1.σρt .α}
is the modular group associated to the state ρ.α.

♦

Proof
Choose a , b ∈ M. Using condition K.M.S. for α(a) , α(b) one can

construct two function holomorphic in the interior of the strip S1 which at
the boundary coincide with

ρ(α(b) σρt (α(x))) ≡ (ρ.α)(b(α−1.σρt .α(a))) (9.72)

and with
ρ(σρt (α(a) α(b)) = (ρ.α)(α−1.σρt .α(a))b) (9.73)

Lemma 9.17 follows then from Proposizion 9.16.
♥

We shall now briefly study the relation among faithful normal states in
term of their modular operators. We begin by constructing the analog of a
Radon-Nikodym derivative in the commutative case.

Proposizion 9.18
Let ρ be a normal faithful state of a von Neumann algebra M and let σρt be
the corresponding modular group. If ρ′ ∈ M∗ satisfies 0 ≤ ρ′ ≤ ρ and ρ′ is
invariant under the dual action of {σρt } then there exists unique an element
h ∈ Ms.a. such that ρ′(a) = ρ(ha) = ρ(ah). Moreover h is invariant under
σρ.

♦
Proof

Lemma 0 guarantees the existence of a unique h ∈M for which

ρ′ =
1
2

[ρ(h .) + ρ(. h)] (9.74)

The element h is invariant because both ρ and ρ′ are invariant and h is unique.
We show that this implies ρ(a h) = ρ(h a) for all a ∈ M (in fact one can
show that the two statement are equivalent). For each a h ∈ M there exists
a function f holomorphic in Ω1 and such that

f(t) = ρ(a h), f(t+ i) = ρ(h b) (9.75)
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If h is invariant, f is a constant. Therefore σ(a h) = f(0) = f(i) = σ(h a).
From (74) one derives ρ(.) = ρ′(h .) = ρ(. h).

♥

We study now the properties of states that have the same modular operator.
Proposition 9.19 ( non-commutative Radon-Nikodym derivative)

Let ρ and ρ′ be faithful normal states of the von Neumann algebra M. If
they have the same modular operator there exists a unique positive injective
operator h affiliated to M∩M′ such that ρ′(a) = ρ(ha) for every a ∈ M.
The element h plays therefore the role of non-commutative Radon-Nikodym
derivative of ρ′ with respect ρ.

♦

Proof
Consider first the case ρ′ ≤ ρ. From the previous lemma ρ′(.) = ρ(h .)

where h is invariant under σρt .
Let u be unitary and a arbitrary in M. Using the K.M.S. condition for ρ

we obtain two functions f , g continuous in Ω1 and holomorphic in the interior
which satisfy

f(t) = ρ′(u∗σρt )h u a), f(t+ i) = ρ′(σρt )h u a) u∗)

g(t) = ρ′(u∗ σρt (u a) g(t+ i) = ρ′(σρt (u a)u∗) (9.76)

¿From h ∈ Ms.a. it follows f(t + i) = f(t + i) and therefore f = g.
Evaluating this function at zero

ρ(u∗ h u a) = ρ(h a) (9.77)

¿From the uniqueness of h follows u∗hu = h. This must be true for every
unitary in Mand therefore h ∈ M ∩ M′. In the general case, we remark
that σ is also the modular group for ρ + ρ′; therefore there exist operators
h, h′ ∈M∩M′ such that

ρ(a) = (ρ+ ρ′)(ha), ρ′(a) = (ρ+ ρ′)(h′a) (9.78)

Since ρ and ρ′ are faithful both h and h′ are injective. Hence k = h (h′)−1 is
affiliated to M and satisfies ρ′(a) = ρ(ka).

♥

We turn now to the case of two states ρ and ρ′ whose modular groups
commute.

Proposition 9.20
Let ρ and τ be two normal faithful states ofM and let σρt and στt be their

modular groups. The following conditions are equivalent
1) ρ is invariant under the action of στ
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2) τ is invariant under the action of σρ

3) στ and σρ commute
4) there exists a unique positive injective operator h affiliated toM∩M′ such
that τ(a) = σ(h a) ∀a ∈M.
5) there exists a unique positive injective operator k affiliated to M∩M′
such that σ(a) = τ(k a) ∀a ∈M.

♦

Proof
1) ↔ 3) and 2) ↔ 3)

According to proposition 9.18 the modular group for ρ.στt is ρ[στ−s..σ
ρ
t .σ

τ
s ].

If ρ is invariant under στ one has

ρ.στs = {στ−s..σ
ρ
t .σ

τ
s = σρt (9.79)

and therefore στ and σρ commute.
Conversely if the modular groups commute one derives ρ.σtau(a) = ρ(ha)

where h is a positive operator affiliated to aM∩M′. Uniqueness of h implies
hns = hns for every integer n and thus hs = I for every s and ρ is στt invariant.
2) ↔ 4) e 1) ↔ 5)

Straightforward
1)↔ 4)

Consider the state ξ = 1
2 (ρ+ τ) and denote σξ its modular group. Since ξ

is στ invariant, from 1)↔ 2) follows that τ is σξ invariant.
¿From τ ≤ 2ξ there exists 0 ≤ k ≤ 2I, σξ invariant, such that τ(a) = ξ(ha).
Uniqueness and invariance of ρ and τ imply that also k is invariant.
Since ρ(a) = ξ((2I − k)a) and both k and 2I − k are injective (both ρ and

τ are faithful) one concludes that h ≡ k
2I−k is a positive injective operator

affiliated to M∩M′. And ρ(a) = τ(ha).
♥

Proposition 9.20 is a non-commutative Radom-Nykodim theorem and the
operator h plays the role of Radon-Nikodym derivative. To see this analogy
notice that, by a theorem of Gelfand e Neumark, every abelian von Neumann
algebra can be faithfully represented by the algebra A ≡ L∞(X) of multipli-
cation by complex valued essentially bounded functions on a locally compact
space X. In this case A′ = A.

If X = L∞(T d) the normal states are represented by positive measur-
able functions f(x) on T d with integral one (more precisely by the measures
f(x)dx). The cyclic and separating states are represented by strictly positive
functions. The state φf on L∞(T d) is defined by

φf (a) =
∫
a(x)f(x)dx, a ∈ L∞ (9.80)

In this case the operator j is complex conjugation and ∆ is the identity.
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9.7 Positive cones

The positive cone Cf defined by f coincides the positive cone C′f and is repre-
sented by the positive integrable functions. Given an element g ∈ A the func-
tional φg is positive iff g is positive and is such that φg(a) =

∫
a(x) g(x)

f(x)f(x)dx.

Therefore g(x)
f(x) is the Radon-Nikodym derivative of the state φg (i.e. of the

measure g(x)dx) with respect to the state φf (i.e. of the measure f(x)dx.
♣

Remark that in the commutative case, if the total measure is one, the func-
tion one is a cyclic and separating vector, and equation (80) can be interpreted
as follows: given an element of L∞ ≡ A′ the linear functional a → φb(a) is
positive iff b belongs to the positive cone of A.

There exists therefore a duality, originated by the state Ω, between the
positive cone in A′ and the positive cone in A. This duality is elementary
in the commutative case and holds for any cyclic and separating state. The
formalism described here allows for an extension of this duality to the non-
commutative case ( Tomita duality)

Let be a von Neumann algebraM (on a Hilbert space H) with a cyclic and
separating vector Ω. , with corresponding modular operator ∆ and invertible
anti-linear isometry j. Denote by S0 ∈ MΩ the densely defined operator
S0 aΩ = a∗Ω a ∈ M and by F0 ∈ M′Ω the densely defined operator
F0 aΩ = a∗Ω, a ∈M′.

Denote by S and F their closures. One has the polar decomposition S =
j
√
∆ con ∆ = S∗S. If x ∈ H denote by φx onM the linear functional defined

by
φx(a) = (aΩ, x) (9.81)

Similarly denote by φ′x on M′ the linear functional

φx(a′) = (a′Ω, x) (9.82)

Definition 9.3
We will say that x is MΩ-positive if the functional φx is positive.

♦

Denote by CΩ the cone of MΩ-positive vectors. Similarly denote by C′Ω
the cone of M′Ω-positive vectors.

Theorem 9.21 [4]
The functional φx′ on M′ is positive iff there exists a self-adjoint operator h
affiliated to M such that x′ = hΩ. This is also the condition under which the
G.N.S. representation ΠxM of M generated by the state φx is equivalent to
to the representation ΠΩ(M) ≡M.

Conversely the functional φx on M is positive iff there exists a positive
self-adjoint operator h affiliated to M′ such that x = hΩ.
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♦

We remark that this theorem poses a duality between the cone CΩ and the
cone of positive elements in M′ and also between the cone C′Ω and the cone
of positive elements in M. We do not give the proof of Theorem 21.

The results we have described must be placed in the context of the theory
of positive dual cones by Tomita and Takesaki. A rather detailed analysis can
be found e.g. in [5]
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Lecture 10
Scattering theory. Time-dependent formalism.
Wave Operators

Scattering theory, in Quantum as in Classical Mechanics, describes those ef-
fects of the interaction of a system of N particles which can be measured when
the components of the system have become spatially separated so that they
can be uniquely identified and the mutual interactions have become negligible.

In this Lecture we shall limit ourselves to a system of two quantum par-
ticles which interact through a potential force that is invariant under trans-
lation. In this case the problem can be reduced to that of one particle in
interaction with a potential force.

This problem is by far simpler than the corresponding N -body problem in
which several channels may be present and the final state may contain bound
states of some of the particles. In this Lecture we shall analyze the time-
dependent formalism in which the motion in time is explicitly considered.

In the next Lecture we shall study the same problem through a study
of the relation between the eigenfunction of the interacting system and of
a reference system, which we take to be free. The latter procedure is called
time independent scattering theory to stress that only the relation between
eigenfunction is considered.

In the time-dependent formulation scattering theory in the one-body prob-
lem with forces due a potential V is essentially the comparison of the asymp-
totic behavior in time of the system under two dynamics given by two self-
adjoint operators H1 e H2.

We shall treat in some detail the case in which the ambient space is R3,
both systems are described in cartesian coordinates, and the reference hamil-
tonian is the free hamiltonian; in this way the reference motion has a simple
description. We have

H1 = − h̄2

2m
∆ H2 = − h̄2

2m
∆+ V (x) (10.1)

where m is the mass of the particle and V (x) is the interaction potential. In the
formulation of the general results we leave open the choice of the reference
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hamiltonian so that the formalism can be applied more generally (e..g in
presence of an electromagnetic field we can use as reference the hamiltonian

H1 = − 1
2m

(∇−A(x))2 (10.2)

In general we shall choose units in which 2m = h̄ = 1. We shall make
stringent assumptions on V (x), and in particular that the potential V (x) is
time-independent and Kato small so that − h̄2

2m∆ + V is (essentially) self-
adjoint. We will assume also that V (x) vanishes sufficiently fast at infinity ,
e.g. lim|x|→∞|x|p V (x) = 0 for a suitable value of p > 1).

The theory can also be applied when H1 is periodic in space; this is the
case if one describes scattering of a particle by a crystal.

Notice that the same comparison problem can be posed when the potential
depends on time and in particular if it is periodic in time with period T (and
sufficiently regular as a function of the space variables).

We shall not treat this case.

10.1 Scattering Theory

We shall formulate scattering theory as comparison between the asymptotic
behavior for t → ±∞ of a generic element φ ∈ H that evolves according the
dynamics given H2, i.e. φ(t) = e−itH2φ, and the behavior of two elements
φ±(t) which evolve according to H1 and differ very little from φ(t) when
t→ ±∞. In general we will consider only the case H ≡ L2(Rd), d = 3.

The cases d = 2 can be treated along the same lines with an extra care
due to the weaker decay in space-time of the solution of the free Schrödinger
equation.

We assume

limt→±∞|φ(t)− φ±(t)| = limt→±∞|e−iH2tφ− e−iH1tφ±|2 = 0 (10.3)

Remark that in this equation it is required only that the limit of the
difference exists, while in general the limit of each term does not exist in the
topology of H. For example if

H1 = ∆, H2 = ∆+ V (x), V ∈ C∞0 V (x) > 0 (10.4)

each of the two dynamics has a dispersive property in the following sense: for
t→ ±∞ one has, for φ in the orthogonal complement of the discrete spectrum
of Hk, k = 1, 2

limt→±∞ supx|φ(x, t)| ≡ limt→±∞ supx|(eitHkφ±)(x)| = 0 (10.5)

and therefore we would compare functions which for t → ±∞ tend to be
infinitesimal everywhere. Of course the rate of vanishing will be in general
different in different directions, but the comparison would become difficult.
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One way to overcome this problem could be (and this is the approach
of Enss, that we shall discuss later) to use time-dependent scales in space
which increase suitably with time so that on the new scales the functions
have little dispersion. In this way one can compare the asymptotic effects of
the interaction in different directions.

Another method consists in noticing that both dynamics are unitary, and
therefore equation (4) is equivalent to

limt→±∞e
−itH1 eitH2φ = φ± limt→±∞e

itH2 e−itH1φ± = φ (10.6)

In the domain of existence we will define the wave operators

W±(H2, H1) = limt→±∞e
itH2 e−itH1 (10.7)

Let us remark that, whenever defined, the wave operator satisfies

W±(H2, H1)eitH1 = eitH2W±(H2, H1) (10.8)

The wave operators on their domain of definition intertwine the two dy-
namics. In particular the domain of W±(H2, H1) is invariant under the flow
of H1.

Let us exemplify (3) e (4) in the case of main interest for us, namely H1 =
−∆ e H2 = −∆+ V where V has suitable regularity and decay properties.

The existence of W±(−∆ + V,−∆) answers the question whether a state
which evolves almost freely at t ' −∞ after the interaction with the potential
V(x) will have an almost free evolution at t→ +∞.

The existence of W±(−∆,−∆ + V ) answers the question whether for a
given initial datum the evolution −∆ + V is asymptotic for t → +∞ or
t→ −∞ to free evolution.

It is evident that if the initial datum corresponds to a bound state the
answer to this second question will be negative. Therefore the domain of the
operator W±(−∆,−∆+V ) is contained in the orthogonal complement of the
bound states of the hamiltonian −∆+ V. The purpose of the analysis in this
Lecture is find conditions under which this is the only subspace excluded, and
any free asymptotic behavior can be approximated by choosing the initial
datum in the complementary subspace.

This implies that the range of W±(−∆+V,−∆) is the entire Hilbert space.
[1][2] Notice, for comparison, that in Classical Dynamics there are bounded
regular potentials which have no bound states and for which the limit does
not exists for some initial datum, or it exists only in one direction of time.

10.2 Wave operator, Scattering operator

Definition 10.1 (Wave Operator)
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If the spectrum of the operator H1 is absolutely continuous (as is for
H1 = −∆) we shall define Wave Operator relative to the pair H2, H1 the
operator

W±(H2, H1) = s− limt→±∞e
itH2 e−itH1 (10.9)

If the spectrum of H1 is not absolutely continuous the definition of wave
operator is suitably generalized. Denote by H1,ac ⊂ H the (closed) subspace
of absolute continuity for H1 defined by

H1,ac ≡ {φ ∈ H : (E1(λ)φ, φ) ∈ Ca.c.} (10.10)

where E1(λ) is the spectral family of H1 and Ca.c. is the space of absolutely
continuous functions. We define Generalized Wave Operators the limit (if it
exists)

W±(H2, H1) ≡ s− limt→±∞e
itH2 e−itH1 Π1 (10.11)

where Π1 is the orthogonal projection on H1,ac.
♦

Remark that if H1 = ∆ the spectrum is absolutely continuous; in this case
Π1 = I and definition coincides with that in (11).

If H1 = −∆ + V the spectrum of the operator H1 can have a singular
continuous part as well as a discrete one; in this case we must refer to (13)
for the definition of wave operator. It follows from the definition that

W ∗±(H2, H1)W±(H2, H1) = Π1 (10.12)

where Π1 is the orthogonal projection on the absolutely continuous part of
the spectrum of H1.

Definition 10.2 Scattering Operator
On the elements in φ− ∈ D(W−(H1, H2)) such that W−(H1, H2)φ− ∈

D(W+(H1, H2)) we define the Scattering Operator the map (H2, H1) defined
by

φ− → φ+ ≡ S φ− (10.13)

In the case H1 = − h̄2

2m , H2 = − h̄2

2m +V the operator S(H2, H1) is usually
called Scattering Matrix .

¿From the definition one has eitH2S = SeitH2 Notice that the operator S is
the map φ− → φ+ and represents the probability amplitude that a given free
motion at t = −∞ gives to a definite free motion at +∞. The adjoint S∗ is
defined on the domain of W+(H1, H2) and on suitable domains the following
identities hold

S = W ∗+ W− S∗ = W ∗− W+ (10.14)

For the physical interpretation (which we will give later by the introduction
of a flux across surfaces) the operatos S must be unitary. This implies that it
must have as domain and range the entire Hilbert space
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RangeW+(H1, H2) = H = RangeW−(H1, H2) (10.15)

In the case of scattering by a potential the assumptions we shall make on
V (x) have the purpose to guarantee the existence of the Wave Operators and
the validity of (17). Notice that it is convenient to formulate the scattering
problem with reference to two Hamiltonians H1 and H2 rather than to a free
and interacting ones.

This underlines the symmetric role of the two Hamiltonians and allows
the formulation of the chain rule which permits to deduce the existence
of the wave operator W±(H3, H1) from the existence of W±(H3, H2) and
W±(H2, H1).

We have now formulated the two fundamental problem of scattering theory
in Quantum Mechanics:
i) Existence of the Wave Operator
ii) Asymptotic completeness : RangeW− = RangeW+

Another interesting question refers to the inverse scattering problem.
Given the unitary operator S and the operator H1 prove existence and unique-
ness of an operator H2 which satisfies (8). For a general introduction to this
class of problems one can consult [3] .

A simple example, due to G.Schmidt, show that the dispersive properties
of the dynamics are important for uniqueness. Let

H1 = i
d

dx
, H2 = i

d

dx
+ V (x), H = L2(−∞, +∞) (10.16)

Then

(e−itH1φ)(x) = φ(x− t) H2 = U−1 H1 U, U = e
i
∫ x

0
V (y)dy (10.17)

It follows

(eitH2 e−itH1)φ(x) = ei[V (x+t)−V (x)]φ(x) = e
i
∫ x+t

x
V (y)dy

φ(x) (10.18)

In this example W± are multiplication operators

W±(H2, H1) = e
i
∫ ±∞
x

V (y)dy (10.19)

(they exist if V ∈ L1) and S is the operator of multiplication by the phase

factor S = e
−i

∫∞
−∞

V (x)dx
In this case the inverse scattering problem does not

have a unique solution.
On the contrary for the Schrödinger equation (a dispersive one) one can

prove that for short range potentials the potential is uniquely determined by
the S matrix. We shall give an outline of the proof of this statement in the
next lecture.
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10.3 Cook- Kuroda theorem

A first result in scattering theory is the following theorem, first proved by
Cook and then improved by Kuroda [4]

Theorem 10.1 (Cook, Kuroda)
Suppose that there exists a dense set D ∈ H1,ac on which the following prop-
erties are satisfied
a) for φ ∈ D there exists t0 (which may depend on φ) such that

e−itH1φ ∈ D(H1) ∩D(H2), t0 ≤ t < +∞ (10.20)

b) (H2 −H1)e−itH1φ is continuous in as a function of t for t ∈ (t0,∞)
c) ∫ ∞

t0

|(H2 −H1)e−itH1φ|2dt <∞ (10.21)

Under these assumptions W+(H2, H1) exists. The same is true for W−(H2, H1).
♦

Proof
For φ ∈ D t, s ≥ t0

d

dt
(eitH2 e−itH1φ) = ieitH2 (H2 −H1) eitH2 (10.22)

Therefore for t > t0

eitH2e−itH1φ = eit0H2e−it0H1φ+ i

∫ t

t0

eiτH2 (H2 −H1) e−iτH1φdτ (10.23)

If φ ∈ D under assumptions b), c) the integral on the right hand side
converges when t→∞. Therefore the limit limt→+∞e

itH2 e−itH1φ exists for
φ ∈ H1,ac.

♥

If H ≡ L2(R3) H1 ≡ −∆ H2 ≡ −∆+ V ( 17.8 ) reads∫ ∞
t0

|V (x)eit∆φ|2dt <∞ (10.24)

In this case D can be chosen to be the collection of functions with Fourier
transform in C∞0 . For sufficiently regular potentials equation (26) follows from
dispersive estimates for the functions eik

2tφ̂(k). For t 6= 0 the integral kernel
of e−itH1 is

(e−itH1φ)(x) = (
1

4πit
)

3
2

∫
R3
e
|x−y|2

4it φ((y) dy (10.25)



10.3 Cook- Kuroda theorem 245

Therefore
|(e−itH1 φ)(x)| ≤ (

1
4πt

)
3
2

∫
|φ(y)|dy10 (10.26)

and then∫ ∞
1

|(H2 −H1)e−itH1φ|2dt ≤
∫ ∞

1

‖φ‖1‖V ‖2
(4πt)

3
2

dt = C

∫ ∞
1

dt

t
3
2
<∞ (10.27)

Therefore condition c) is satisfied if V ∈ L2(R3) by taking as dense domain
L2(R3)∩L1(R3). It is easy to show that also conditions i) and ii) are satisfied
if V ∈ L2(R3) and therefore in this case the wave operators exist. Making
use of Hölder inequality in (29) instead of Schwartz inequality and because
t−α ∈ L1(1,∞) one verifies that if α > 1 the condition on V can be weakened
to ∫

R3

|V (x)|
(1 + |x|)1−ε dx <∞ ε > 0 (10.28)

Remark that from (27) one derives that, as a function of x, (eit∆φ)(x) goes
to zero when t→∞. One refers to this fact by saying that the Schroedinger
equation with hamiltonian H0 has a dispersive property (contrary e.g. to the
wave equation). Under very mild assumption on V (x) one can prove that
also the solutions of the Schroedinger equation with potential V (x) have a
dispersive property.

¿From the proof of the Cook-Kuroda theorem one sees that the dispersive
property plays an important role in the proof of the existence of the scattering
operator. For scattering theory in dimension 3 it is also important to prove
that, a part from the common factor t−

3
2 , the rate of decay to zero is not

uniform in different spacial directions so that a trace remains of the initial
datum.

In particular one can show that if φ ∈ L2(R3) is sufficiently regular one
has

limt→∞t
3
2 |eit∆φ− φasint(t)|2 = 0 (10.29)

where
φasint(t) ≡ m

(it)
3
2
ei
mx2
2t φ̂(

mx

t
) (10.30)

(φ̂ is the Fourier transform of φ).
If φ̂ has support in a very small neighborhood of k0 and one multiplies

e−itH0φ by a factor t
3
2 one obtains a function which has essential support in

a very narrow cone with vertex in the origin and axis k̂0 ≡ k0
|k0| . Therefore at

this scale the asymptotic state describes a particle which moves freely in the
direction k0.

We shall come back to this point when we shall discuss the method of
V.Enss [5]
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10.4 Existence of the Wave operators. Chain rule

In what follows we shall use the symbol W± for the operator W±(H2, H1).

Lemma 10.2
Set H2 −H1 ≡ A ∈ B(H) and W (t) ≡ eitH2e−itH1 .
If W+ exists one has, for every φ ∈ H1,ac

|W+φ−W (t)φ|2 = −2 Im
∫ ∞
t

(eisH1 W ∗+ Ae−isH1φ, φ)ds (10.31)

♦

Proof
By definition

(W+ −W (t))φ = i

∫ ∞
t

eisH1 A e−isH1φ ds (10.32)

By unitarity |(W+ − W (t))φ|2 = 2Re ((W+ − W (t)) φ,W+φ). Eq (33)
follows from this together with (34) .

♥

¿From the existence of the wave operators one derives some unitary equiv-
alences. In particular

Theorem 10.3 (Dollard, Kato) [6]
If the operator W+(H2, H1) exists, it is a partial isometry with domain H1,ac

and range M+ ≡W+ H ⊂ H2,ac.
The orthogonal projection E+ on W+ H commutes with H2. The restriction

of H1 to H1,ac is unitary equivalent to the restriction of H2 to W+H.
In particular the absolutely continuous spectrum of H1 is contained in the

absolutely continuous spectrum H2. Analogous results hold for W−.
If both W+ and W− exist, then S ≡W ∗+ W− commutes with H1.

♦

Proof
¿From the definition one has W ∗+ W+ = Π1 amd W+ W ∗+ = E+.
On the other hand

eisH2 W+ = s− limt→∞W (t+ s)eisH1 = W+e
isH1 (10.33)

Multiplying both terms by e−izs, Imz < 0 and integrating over s from 0 to
+∞ (i.e. taking Laplace transform) one obtains

(H2 − z)−1 W+ = W+ (H1 − z)−1 (10.34)

¿From this follows W+ H1 ⊂ H2 W+ and by duality W ∗+ H2 ⊂ H1 W
∗
+.
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E+ H2 = W+ W ∗+ H2 ⊂W+ H1 W
∗
+ = H2 E+ (10.35)

This proves that E+ commutes with H2 and thereforeM+ reduces H2.And
also that E+ H2 E+ = H2 E+. Therefore equality holds in (37).

Multiplying with E+ on the right

H2 W+ = E+ H2 E+W+ = W+ H1 Π115 (10.36)

¿From (38) one sees that H1,a.c. is unitarily equivalent to the part H2,a.c;

that acts on M+ and in particular that σa.c.(H1) ⊂ σa.c.(H2).
Analogous results hold for W− when this operator exists..

♥

Corollary
If W+(H2, H1) exists, one has the following strong convergence properties

when t±∞

eitH2 e−itH1Π1 →s W+, eitH1 e−itH2E+ →s W
∗
+ (10.37)

e−itH2 W+ − e−itH1 Π1 →s 0, eitH1 e−itH2 W+ →s Π1 (10.38)

(W+ − 1)e−itH1 Π1 →s 0, (W ∗+ − 1)e−itH1 Π1 →s 0 (10.39)

eitH1 W+ e−itH1 →s Π1, eitH1 W ∗+ e−itH1 →s Π1 (10.40)

(1− E+) e−itH1 Π1 →s 0, (1−Π2) e−itH1 Π1 →s 0 (10.41)

♦

We now prove the chain rule.

Theorem 10.4 (chain rule)
If both W+(H2, H1) and W+(H3, H2) exist then the operator W (H3, H1) exists
and one has the chain rule

W+(H3, H1) = W+(H3, H2).W+(H2, H1) (10.42)

♦

Proof
The strong limit of a sequence of products of bounded closed operators

coincides with the strong limit of the sequence of the factors. Therefore

W+(H3, H2).W+(H2, H1) = s− limt→∞e
itH3e−itH2 Π2e

itH2e−itH1Π1

(10.43)
Since Π2 commutes with H2 it follows from (45) that

W+(H3, H2).W+(H2, H1) = s− limt→∞e
itH3 Π2e

−itH1Π1 (10.44)
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On the other hand

W+(H2, H1) = s− limt→+∞e
−itH3eitH1Π1. (10.45)

It is therefore sufficient to prove

s− limt→∞e
itH3 (I −Π2) e−itH1 Π1 = 0 (10.46)

Due to unitarity of eitH3e−itH2 it is equivalent to prove (H2 and Π2 com-
mute)

s− limt→∞(I −Π2) eitH2 e−itH1 Π1 = 0 (10.47)

But RangeW+(H2, H1) ⊂ H2,ac. Therefore (I −Π2)W+(H2, H1) = 0
♥

10.5 Completeness

Definition 10.5
The wave operator W+(H2, H1) is complete if

range W+(H2, H1) = H2,ac (10.48)

♦

If both W+ and W− exist and are complete, then

Range W+(H2, H1) = Range W−(H2, H1) = H2,ac (10.49)

Therefore
S(H2, H1) ≡W ∗+(H2, H1) W−(H2, H1) (10.50)

is a unitary operator from H1,ac to H1,ac A simple corollary of the chain rule
is the following

Proposition 10.6
If both W+(H2, H1) and W+(H1, H2) exist, then they are complete. The

same is true for W−.
♦

Notice that in the analysis of the example we have given we have used the
explicit form of the integral kernel of eitH1 , or equivalently of the generalized
eigenfunctions of H1 i.e the solution of HψE = EψE which do not belong
the the Hilbert space H. To prove the existence of W±(H1, H2) it is therefore
convenient to have a good control of the generalized eigenfunctions of H =
−∆+ V.
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A result which can be proved without a detailed analysis of the generalized
functions, and at the same time is general enough to cover many physically
interesting cases is the following

Theorem 10.6 (Birman, de Branges, Kato) [1][7]
The generalized wave operators W±(H2, H1) exists and are complete if (H2 −
z)−1 − (H1 − z)−1 ≡ A is of trace class for Imz 6= 0.

♦
Proof

Let us recall that a trace class operator A con be written as

Aφ =
∞∑
n=1

cn(fn, φ)fn,
∑
n

|cn| <∞ (10.51)

where {fn} is an orthonormal complete basis. Denote by AN the sum of the
first N terms and let HN ≡ H0 + AN so that HN − HN−1 is a rank one
projection. The chain rule suggests to give first the proof when A is a rank
N operator and then consider the limit N →∞.

In Proposition 10.8 we shall give the proof for the case of rank one. The
chain rule shows then that operator WN,± = W±(HN , H0) exists for every N.

Recall that by Weyl theorem the absolutely continuous spectrum of HN

does not depend on N. From (47) one derives

(Wn,±− eitH
n

e−itH
n−1

)φ = i

∫ ∞
t

eisH
n−1

(Hn−Hn−1)e−isH
n−1

φ ds (10.52)

where Hn −Hn−1 = |fn >< fn|, fn ∈ H.
Therefore, with gn ≡ (W+

n )∗ fn

|(Wn,+ −Wn(t))φ|2 ≤
∫ ∞
t

|(e−isH
n−1

φ, fn)|2ds]1/2
∫ ∞
t

|(e−isH1φ, gn)|2ds]1/2

(10.53)
By iteration one has

|[W±(H2, H1)− eitH2e−itH1 ]φ|22

≤ 2[
∞∑
n=1

|cn|
∫ ∞
t

|(e−isH
n−1

φ, fn)|2ds]1/2[
∞∑
k=1

|ck|
∫ ∞
t

|(e−isH
n−1

φ, gn)|2ds]1/2

(10.54)
For φ in a dense subset of Π1H the right-hand side of (56) is bounded;

indeed for any self-adjoint operator H∫ ∞
−∞
|(e−isH1φ, f)|2ds ≤ 2π |φ|22 |f |22 (10.55)

where ||φ||2 = ess.supλ
d (E(λ)φ,φ)

dλ This follows Parseval’s theorem because∫∞
−∞ e−itλ(d(E(λ)φ, f)dt is the Fourier transform of d

dλ (E(λ)φ, f). If |φ|2 <∞
it follows from (57)
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|(Wn,+ −Wn(t))φ|2 ≤ |φ|1/22 (8π‖A‖1)1/4 η(t, φ)1/223 (10.56)

where we have set

η(t, φ) ≡
∞∑
k=1

|ck|
∫ ∞
t

|(e−isH1φ, fk)ds ≤ 2π||φ|| ‖A‖1 (10.57)

¿From (58) and the triangular inequality it follows

|(Wn(τ)−Wn(t′))φ|2 ≤ ||φ||1/2(2π‖A‖)1/4[η(t′, φ)1/2 + η(τφ)1/2] (10.58)

We can now to the limit N → ∞. Since ‖A − An‖ → 0 one has norm
convergence of eitH

n

to eitH2 and from (60) it follows

|(W (t)−W (τ))φ|2 ≤ |φ|
1
2 (8π|A|1)1/4 [η(t, φ)1/2 + η(τ, φ)1/2] (10.59)

This inequality proves that the limt→∞ exists if ||φ|| < ∞. Notice now that
the set of φ ∈ Π1H1 for which ||φ|| <∞ is dense in H1;a.c..

Since the collection W (t) is uniformly bounded it follows that the limit
exists for φ ∈ H1,ac. We conclude that the limit limt→∞W (t) Π1 ≡W+ exists.
In the same way one proves the existence of W−(H2, H1). Exchanging the role
of H1 e H2 one proves the existence of W±(H1, H2).

This concludes the proof of Theorem 10.6 under the condition that the
following Proposition 10.7 holds.

♥

Proposition 10.7
The generalized wave operators W±(H2, H1) and W±(H1, H2) exists and are
complete if (H2− z)−1− (H1− z)−1 ≡ A is a rank-one operator for Imz 6= 0.

♦

Proof
We shall give the proof in several steps.
Step a)

As first step we shall give the proof in the case H is identified with L2(R, dx),
H1 is multiplication by x and the operator A ≡ H2 − H1 is the rank-one
operator (A u)(x) = (u, f) f(x) where f(x) is regular and fast decreasing at
±∞. In this case one has

|A e−itH1u|2 = |f | |
∫ ∞
−∞

e−itxu(x)f̄(x)dx| (10.60)

If u(x) is regular and decreases fast enough the integral in (62) is finite. Since
the functions with the required properties are dense in L2(R, dx), the sufficient
conditions in Theorem 10.1 are satisfied. This proves existence.

Step b)
To extend the proof to the case f ∈ L2(R, dx) remark that by (62) and
Schwartz’s inequality one has
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|W+ u−W (t) u|2 ≤ 2[
∫ ∞
t

|(e−isH1u, f)|2ds]1/2 [
∫ ∞
t

|(eisH1W ∗+f, u)|2ds]1/2

(10.61)
This integrals are finite, as one sees using Parseval’s inequality∫ ∞

−∞
|(eisH1W ∗+ f, u)|2ds ≤ 2π|f |2|u|2∞ (10.62)

(by assumption |u|∞ is finite). Since W ∗+ is an isometry we can bound by this

term by C |u|∞. ¿From (63) we obtain

|W (τ)u−W (t)u| ≤ (8π)1/4|u|1/2∞ ([
∫ ∞
t

|(e−isH1u, f)|2ds]1/4+[
∫ ∞
τ

|(e−isH1u, f)|2ds]1/4)

(10.63)
Inequality (65) depends only on the L2 norm of f and therefore extends to
all functions in L2(R, dx).

Step c)
Proposition 10.7 holds true if H1 is a self-adjoint operator in a Hilbert spaceH
and H2 = H1+(., f)f with f ∈ H. To see this, Π1 be the orthogonal projection
on the absolutely continuous part of the spectrum of H1. Set f = g + h,
g = Π1f . By assumption g ∈ H1,a.c. and therefore g can be represented by a
function g(x) on the spectrum.

Consider first the case in which g(x) is regular and rapidly decreasing
at infinity. In this case, we can proceed as in case a), substituting g to f.
If g(x) is not regular and/or does not have fast decrease one can proceed
by approximation , as in case b) above since the convergence extends by
continuity to H1,a.c..

Step d)
Consider next the case H2 = H1 + A with A of rank one. We treat first the
case H ≡ L2(S, dx) where S is a Borel set in R1 and H1 is multiplication by
x.

Let H ′1 be the maximal extension of the operator defined as multiplication
by x. Then the subspace H reduces H ′ and this reduction coincides H.

Let H ′2 = H ′1 + (., f)f . Also H ′2 is reduced by H and the reductions of
e−itH

′
2 and of e−itH

′
1 coincide respectively e−itH2 and e−itH1 .

¿From the existence of W ′+ = s − limt→∞e
−itH′2eitH

′
1 the existence of

W+(H2, H1) follows by reduction. In the case in which the spectrum of H1

is not absolutely, consider as before the projection of f on the absolutely
continuous part of the spectrum of H1.

Step e)
Let us consider the general case, without assumptions on the structure of H.
Let H1 be self-adjoint and let

H2 = H1 + (., f)f, f ∈ H (10.64)
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Denote by H0 the smallest subspace of H which contains f and reduces H1.
Let Π0 be the orthogonal projection on H0.

The subspace H0 can be characterized as the closure of the set of elements
in H that have the form E1(λ)f for all real λ (E1(λ) is the spectral set of H1).

It follows that also H2 is reduced by H0 and

H2 Π0 u = H1 Π0 u+ (Π0u, f), f ∈ H0 (10.65)

Denote by H⊥0 the subspace of H which is orthogonal to H0. The subspace
H⊥0 reduces both H1 and H2; if u ∈ H⊥0 one has H2 u = H1 u. To prove
existence of W+(H2, H1) it is therefore sufficient to consider only vectors in
H0 and therefore to the case in which H0 ≡ H.

Let
f = g + h g = Π1f, h = (I −Π1)f (10.66)

where as before Π1 is the projection on the absolutely continuous part of the
spectrumé of H1. From the construction we have made we deduce that H1,a.c.

is spanned by vectors of the form E(λ) g.
Therefore H1,a.c. is the closure of vectors of the form

φ(H1)g = [
∫ ∞
−∞

φ(λ) dE(λ)] g (10.67)

But
(φ1(H1), φ2(H1)) =

∫
S

(ψ1(λ), ψ2(λ))dλ (10.68)

where k = 1, 2

ψk(λ) ≡ φk(λ) ρ(λ)1/2, ρ(λ) =
d((E1(λ) g, g)

dλ
(10.69)

and we have denoted with S the Borel set of all λ for which d((E1(λ) g,g)
dλ exists

and is positive (recall that g ∈ H1,a.c.). If φ spans all measurable bounded
functions, then ψ(λ) spans a dense subset of L2(S).

Therefore we can identify H1,a.c. with L2(S) through the map φ(H1) :
g → ψ. In this representation of H1,a.c. the operator H1 is multiplication by
x.

We have therefore reduced the problem to the particular cases which we
have considered before. This concludes the proof of Proposition 10.7.

♥

Theorem 10.6 is important because can be used also in the case of potential
scattering with localized impurities. It is enough to choose

H1 ≡ −∆+ Vper, H2 = H1 +W (x) (10.70)

with Vper ∈ L2
loc and W such that |W (x)|1/2(1−∆)−1 is of trace class.
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The spectrum of H1 is absolutely continuous (and composed in general
by bands). Therefore the wave operators W±(H2, H1) exist and are complete.
Their domain is the entire Hilbert space and the range is the subspace of
absolute continuity of H2.

The wave operators are unitary.
♣

10.6 Generalizations. Invariance principle

When we will analyze the time-independent scattering theory we shall see that
the assumption H2−H1 ∈ J1 can be replaced by the weaker one H2−H1 ∈ J2

( Hilbert-Schmidt class). For this it will be enough e.g. V (x) ∈ L1 ∩ L2.
It is convenient to generalize the previous results and study the existence

of the wave operators W± for hamiltonian that are suitable functions H1 and
H2. This will lead to weaker conditions for the existence of the wave operators.
A class of allowed functions can be obtained by using the following Lemma.

Lemma 10.8
Let φ(λ) be a function on R of locally bounded variation with the property

that it is possible to subdivide R in a finite number of open sub-intervals Ik
(excluding therefore a locally finite number of points) such that in each of
these intervals the function φ is differentiable with continuous derivative.

Under this assumption for every w ∈ L2(R, dx) one has

2 π |w|2 ≥
∫ ∞

0

|l.i.m.
∫ ∞
−∞

e−itλ−isφ(λ)w(λ)dλ|2dt (10.71)

where l.i.m. denotes limit in the mean. Moreover the right hand side converges
to 0 when s→∞.

♦

Proof
Let H u(x) = x u(x) and let F denote Fourier transform. The right hand

side of (73) is
(2 π)1/2|ηt≥0 Fe−isφ(H)w|2 (10.72)

(ηt≥0 is the indicator function of the negative semi-axis). Inequality in (73) fol-
lows immediately and convergence to zero is equivalent to s−limt→∞Θt≥0 U e−isφ(H) =
0.

We can limit therefore to prove convergence to zero for functions that
belong to a domain on which H is essentially self-adjoint, for example to
indicator functions of finite interval. We can moreover restrict attention to
intervals (a, b) in which the function φ is continuously differentiable. One has

v(t, s) ≡
∫ b

a

e−itλ−isφ(λ)dλ = i

∫ b

a

(t+ s φ′(λ))−1 d

dλ
e−itλ−isφ(λ)dλ (10.73)
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Under the assumption we have made on φ if t, s > 0 the function ψ(λ) ≡
(t+s φ′(λ))−1 is positive and of bounded variation. Its total variation in [a, b]
is such that ∫ b

a

|d ψ(λ)| ≤M s

(t+ c s)2
≤ M

c((t+ c s)
(10.74)

where M is the total variation of φ′(λ) in [a, b] and c is the minimum value
of φ′(λ) in the same interval. Integrating by parts the right hand side in (75)
one obtains

|v(t, s)| ≤ ψ(a) + ψ(b) +
∫
|dψ(λ)| ≤ 2 c+M

c(t+ c s)
(10.75)

It follows ∫ ∞
0

|v(t, s)|2dt ≤ 2c+M)2

c3 s
(10.76)

♥

Using Lemma 10.8 we shall now prove the following invariance principle.

Theorem 10.9
Let H2, H1 be self-adjoint operators such that H2−H1 ∈ J1. Let φ be a func-
tion on R with the properties described in Lemma 10.8. Then the generalized
wave operators W±(φ(H2), φ(H1)) exist, are complete and are independent of
φ.

In particular they are equal to W±(H2, H1) as one sees choosing φ(λ) = λ.
♦

Proof
We have previously shown that

|W+ u−W (t) u| ≤ ||u||(8 π ‖A‖1) (10.77)

if u is in the subspace of absolute continuity of H2 ( ‖A‖1 is the trace norm
of A) and

||u||2 = ess.sup.λ
d(E(λu, u)

dλ
(10.78)

With v ≡ e−isφ(H1) u one has ||v|| = ||u||. Setting t = 0 from (79) we
obtain

|(W+ − 1)e−isφ(H1) u| ≤ ||u||(8 π ‖A‖1)1/4 η(0, e−isφ(H1) u)1/4 (10.79)

with

η(0, e−isφ(H1) u) =
∑
k

|ck|
∫
|(e−itH1−isφ(H1) u, fk)|2dt (10.80)

The integrals in (80) and (81) have the same structure as the integrals
(73) of the previous Lemma if we substitute d(E1(λ,u,fk)

dλ with w(λ)
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Remark that this function belongs to L2 and its L2 norm is not larger than
||u||. Due to lemma 10.8 each term in the sum (81) converges to zero when
s→∞. Since the series is dominated uniformly in s by the convergent series∑
k |ck|||u||2 ≡ |A|1 ||u|| it follows that the entire series converges to zero.
The set of u with ||u|| <∞ is dense in Π1H and therefore

s− lims→∞(W+ − 1)e−isφ(H1) Π1 = 0 39 (10.81)

¿From eisφ(H1) =
∫∞
−∞ e−isφ(λ) dλ it follows

W+ e−isφ(H1) = e−isφ(H2)W+ (10.82)

Multiplying to the left (81) by eisφ(H2) one obtains

s− lims→∞e
isφ(H2) e−isφ(H1) Π1 = W+ Π1 = W+ (10.83)

Therefore we prove that W+(φ(H2), φ(H1)) exists coincides with W+(H2, H1)
if we prove that the space of absolute continuity of φ(H1) and of H1 coincide.
For the proof we make use of the properties of the function φ(λ).

Let {F1(λ)} be the spectral family of φ(H1). For any Borel set S ∈ R one
has F1(S) = E1(φ−1(S))

If |S| = 0 the properties of φ imply |φ−1(S)| = 0 and therefore F1(S)u = 0
if u ∈ H1,a.c.. On the other hand F1(φ(S)) = E1(φ−1 [φ(S)]) ≥ E1(S).

If |S| = 0 then |φ(S)| = 0 and therefore if u is absolutely continuous with
respect to φ(H1) one has —E1(S) u| ≤ |F1(φ(S)) u| = 0. This shows that the
absolutely continuous spectrums of H1 and of φ(H1) coincide and concludes
the proof of Theorem 10.9.

♥

Specializing the function φ one obtains useful criteria for the existence of
the wave operators and for asymptotic completeness. In particular

Theorem 10.10
Let H2 and H1 be strictly positive operators on a Hilbert space H.

If for some α > 0 the difference H−α2 −H−α1 is trace-class, then the wave
operators W±(H2, H1) exist, are complete and coincide with W∓(H−α2 , H−α1 ).

♦

Proof
Let γ be the smallest between the lower bound of the spectra of H2 and

H1. Consider the function defined as φ(λ) ≡ −λ− 1
α for λ ≥ γ and by φ(λ) = λ

for λ < γ. It is easy to verify that this function satisfies the requirements of
Lemma 10.9.

♥

We shall use now Theorem 10.10 to prove asymptotic completeness of the
wave operator for the system
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H = L2(R3), H1 = −∆, H2 = H1 + V (10.84)

where V is the operator of multiplication by V (x) ∈ L1 ∩ L2. We shall use a
particular case of the following theorem

Theorem 10.11 (Kato)
Let H1 be self-adjoint and bounded below. Let V a symmetric operator rela-
tively bounded wit respect to H1 with bound less then one. Assume that V can
be written as V = V1 V2 with Vk (H1 +z)−1 , k = 1, 2 of Hilbert-Schmidt class
when z is negative and smaller than the lower bound of the spectrum of H1.
Then the wave operators W (H2, H1) and W (H1, H2) exist and are complete.

♦

Proof
There is no loss of generality in assuming that H1 and H2 are strictly

positive; therefore one can choose z = 0. By assumption Vk H
−1
1 ∈ J2, k =

1, 2. To this class belongs also Vk H−1
2 since J2 is a bilateral and (H1 +

c I) (H2 + c I)−1 is bounded. One has

1
H2
− 1
H1

=
1
H2

V
1
H1

=
1
H2

V1 V2
1
H1
∈ J1 (10.85)

and the thesis of the theorem follows from Theorem 10.10.
♥

Theorem 10.11 can be used to prove asymptotic completeness when V (x) ∈
L1 ∩ L2. Notice that V ∈ L2(R3) implies that V is infinitesimal relative to
−∆.

Therefore in order to apply Theorem 10.12 it suffices to prove V (−∆ +
c)−1 ∈ J2 per c > 0.

The integral kernel of this operator is

|V (x)|1/2 e
−c|y−x|

4π|x− y|
(10.86)

and this is of Hilbert-Schmidt class because∫ ∫
|V (x)|e−2c|x−y| |x− y|−2dx dy ≤

∫
|V (x)|dx

∫
e−2|y| |y|−2dy <∞

(10.87)
Let us consider now the continuity of the dependence of W±(H2, H1) on

H2 e H1. We shall prove continuity at least for perturbations of trace class.

Theorem 10.12
Let H2 and H1 be self-adjoint and such that W±(H2, H1) exist. Then for each
A ∈ J1 the wave operator W±(H2 + A,H1) and W±(H2, H1 + A) exist, and
when A converges to zero in J1 one has, in the strong operator topology

W±(H2 +A,H1)→W±(H2, H1), W±(H2, H1 +A)→W±(H2, H1)
(10.88)
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♦

Proof
Existence follows from Theorem 10.7. Moreover from the chain rule

W±(H2 +A,H1) = W±(H2 +A,H2) W±(H2, H1) (10.89)

It is therefore sufficient to consider the case H2 = H1. ¿From the estimates
obtained in the proof of Theorem 10.7 one has

|W±(H1 +A,H1)u − u| ≤ ||u||(4π||A||1)1/2 (10.90)

The thesis of the theorem follows then from the density of {u, : ||u|| <∞}
in Π1H.

♥

Stronger continuity results can be obtained from Theorem 10.11. It can
be proved e.g. that if An is a sequence of operators which converge to zero in
strong resolvent sense, i.e. if for any z0 /∈ R one has

limn→∞|(H2 +An − z0)−1 − (H2 − z0)−1| = 0 (10.91)

then s− limW±(H2 +An, H1) = W±(H2, H1)
For a detailed analysis of asymptotic completeness in quantum scattering

theory one can usefully consult [6]
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Lecture 11
Time independent formalisms. Flux-across
surfaces. Enss method. Inverse scattering

At the beginning of Lecture 10 we have remarked that scattering Theory in
Quantum as in Classical Mechanics, describes those effects of the interaction
of a system of N particles which can be measured when the components of
the system have become spatially separated so that the mutual interactions
have become negligible.

As in Lecture 10, we limit ourselves here to a system of two quantum
particles which interact through potential forces which are invariant under
translation. In this case the problem can be reduced to the problem of one
particle in interaction with a potential force. We remarked that scattering
theory in the one-body problem with forces due a potential V is essentially
the comparison of the asymptotic behavior in time of the system under two
dynamics given by two self-adjoint operators H1 e H2.

We shall treat in some detail the case in which the ambient space is R3,
both systems are described in cartesian coordinates, and the Hamiltonians
describing the free (asymptotic) motion and the motion during interaction
are respectively

H1 = − h̄2

2m
∆ H2 = − h̄2

2m
∆+ V (x) (11.1)

where m is the mass of the particle and V (x) is the interaction potential.In
general we shall choose units in which 2m = h̄ = 1.

We shall make stringent assumptions on the potential V (x), and in partic-
ular that it be Kato-small with respect to the laplacian so that the operator
− h̄2

2m∆ + V is (essentially) self-adjoint. As in Lecture 10 we will assume also
that V (x) vanishes sufficiently fast at infinity (e.g. lim|x|→∞|x|p V (x) = 0 for
a suitable value of p > 1).

The theory can also be applied when H1 is periodic in space; this is the
case if one describes scattering of a particle by a crystal.

In Lecture 10 we have formulated scattering theory as the comparison
between the asymptotic behavior for t→ ±∞ of a generic element in H that
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evolves according the dynamics given H2, φ(t) ≡ e−itH2φ, and the behavior
of two elements φ±(t) which evolve according to HI and differ very little from
φ(t) when t→ ±∞.

The theory presented in Lecture 10 is the time dependent formulation
of scattering theory because all definitions and theorems refer explicitly to
temporal evolution. In this Lecture we shall analyze a formulation called time-
independent (or stationary) scattering theory centered on the analysis of the
generalized eigenfunctions of the operators H2 and H1.

This formulation predates the time-dependent one and, although less intu-
itive, in the case H2 = −∆+ V, H1 = −∆ provides existence and complete-
ness of the wave operators (or rather of their generalization) under weaker
conditions on the potential V. Since the time-indipendent version is less intu-
itive, it is convenient to give first the connection between the two approaches
. This will also clarify the role of the resolvents of (Hk − λ)−1, k = 1, 2 in
the proof of existence of the wave operators.

In time-independent scattering theory the wave operators are found as so-
lutions of suitable functional equations. To find these equations it is convenient
to go back to the time-dependent formulation.

We now extend the previous definition of wave operator W+(H2, H1) by
requiring convergence of e−itHeitH0 for t → ±∞ only in the sense of Abel.
We shall define therefore

W ′+ ≡ limε→02ε limT→∞

∫ T

0

e−2εteitH2 e−itH1 Π1 dt

= limε→02ε limT→∞

∫ T

0

e−εt+itH2 [e−εt−itH1 ]Π1dt (11.2)

where the limit is understood in an abelian sense.
If W+ exists, also W ′+ exists (and the two operators coincide). The converse

is not true. It is convenient to recall the relation between the group of unitary
operators eitH and the resolvent of the self-adjoint operator H.

Under the assumption that H be bounded below by mI one has , for λ
real and strictly less than m

i(H − λ+ iε)−1 =
∫ ∞

0

e−ε teit(H−λ)dt (11.3)

for any ε > 0 (make use of the spectral representation ofH.) Parseval’s relation
between Fourier transforms leads to

W ′+ = limε→0
2ε
2π

∫ 0

−∞
(H2 − λ− iε)−1 (H1 − λ+ iε)−1Π1dλ (11.4)

It is convenient to write (4) in a different form before taking the limit
ε→ 0. Let R(z) ≡ (H − z)−1 be the resolvent of the operator H and E(λ) be
its spectral family. By definition with z = λ+ iε, λ ∈ R
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R(z̄)R(z) =
∫ ∞
−∞

dE(µ)
(µ− z̄)(µ− z)

=
∫ ∞
−∞

dE(µ)
(µ− λ)2 + ε2

=
∫ ∞
−∞

1
ε
δε(µ− λ)dE(µ) (11.5)

with
δε(µ− λ)) ≡ ε

(λ− µ)2 + ε2
(11.6)

The difficulty in taking the limit ε→ 0 in (4) lies in the fact that the limits
must be taken from different half-planes in the resolvent of H2 and in that of
H1. To overcome this problem one proceeds as follows. On suitable domains
one has

(H2 − λ− iε)−1(H2 − λ+ iε)−1(H2 − λ+ iε)(H1 − λ+ iε)−1

= (H2 − λ− iε)−1(H1 − λ+ iε)−1 (11.7)

¿From (4),(5) one has then

W ′+ = limε→0

∫ ∞
−∞

δε(H2 − λ) G(λ+ iε)dλ Π1 (11.8)

where we have defined for Imz 6= 0

G(z) = (H2 − z)(H1 − z)−1 (11.9)

When ε→ 0 the function δε convergence (in the sense of measures) to the
distribution δ at the origin. Therefore, in the weak sense

W ′+ =
∫ ∞
−∞

dE2(λ)
dλ

G(λ+ i0) dλ Π1 (11.10)

In the corresponding formula for W ′− the factor G(λ + i0) is replaced by
G(λ− i0). Hence, at least formally,

W ′± =
∫ ∞
−∞

dE2(λ)
dλ

G(λ± i0) dλ Π1 (11.11)

Remark that the boundary value G(z) may not be a continuous function,
and the derivative of the spectral measure may only exist in distributional
sense. Therefore without further assumptions the definition of W ′± is ill-posed.

We will prove that under suitable assumption on the potential V one can
prove that the limit exists as a continuous map between different function
spaces. This result goes under the name of limit absorption principle.

In stationary scattering theory whenever (11) is well posed it is the def-
inition of (generalized) wave operator. One proves then that the operator
so defined has all the properties of the wave operator defined in the time-
dependent theory.
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Indeed under general assumptions one the pair H2 , H1 one proves that
W ′± are isometries with domainH1,ac and rangeH2,ac and that W ′± intertwine
the groups eitH2 amd eitH1 .

Under more restrictive assumptions one proves thatW±(H2, H1) = W ′±(H2, H1)
(without these further assumptions one proves only existence of W ′±(H2, H1)).
Let H2 = H1 +A. One has

W (τ)−W (t) = i

∫ τ

t

eisH2 A e−isH1 ds (11.12)

Similarly exchanging H1 and H2

W (τ)−1 −W (t)−1 = −i
∫ τ

t

eisH1 A e−isH2 ds (11.13)

If A is unbounded (12) , (13) are valid in a suitable domain.
Let us assume that W+(H2, H1) ≡ s− lim W (t) Π1 exists. Multiply (12)

to the left by −W+, choose t = 0, take the limit τ →∞ and use e−itH2W+ =
W+e

−itH1 to obtain

W+ −Π1 = i limτ→∞

∫ τ

0

eitH1 A W+e
−itH1ds (11.14)

where the limit is understood in the strong sense if A is bounded, in the weak
sense otherwise.

To simplify notations it is convenient to introduce the following map
Γ±H1

(A), A ∈ B(H)

Γ±H1
(A) = i limτ→∞

∫ ±τ
0

eitH1 A e−itH1dt A ∈ B(H) (11.15)

if the limit exists in a weak or strong sense. With this notation (14) reads (for
the sake of simplicity we omit the dependence on H2 and H1 and we write Γ1

for ΓH1).
W+ = Π1 + Γ+

1 (A W+) (11.16)

and similarly
W− = Π1 + Γ−1 (A W−) (11.17)

11.1 Functional equations

Operators W ′±(H2, H1) which satisfy (8) are found as solutions of functional
equations (16)(17). This construction has the virtue to allow iterative and ap-
proximate methods of solutions. In this scheme, the operator W± corresponds
to a strong solution while W ′± corresponds to a weak solution.If the solution
W± exists and is unique, then W ′± = W±..
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As remarked above, the stationary formulation of scattering theory takes
(16)(17) as fundamental equations and determines W± as their (weak or
strong) solutions. We must now show that the solutions have all the prop-
erties of the wave operators introduced in the time-dependent formulation.

In the caseH = L2(R3),H1 = −∆ andAmultiplication by a function V (x)
the equations (16)(17) are an operator-theoretical version of the Lippmann-
Schwinger equation for the generalized eigenfunctions of −∆+ V.

Notice that while in the time dependent formalism the definition of
Wave operator is based on the large time behavior of the solutions of the
Schroedinger equation with hamiltonian H, in the time-independent formal-
ism it is based on the properties of the resolvent operator (H − z)−1 for
Imz → 0.

The relation between the two strategies is given by Paley-Wiener type
theorems.

We return now to the time-independent approach. We will show that the
solutions W ′± of (16)(17) coincides with the wave W± when both are defined.
Remark that B ∈ B(H) commutes with H then A ∈ D(Γ±) implies that both
BA and AB belong to D(Γ±) and

Γ±(B A) = B (Γ±(A)), Γ±(A B) = (Γ±A) B (11.18)

We will consider only Γ+ : analogous results are valid for Γ−.

Lemma 11.1
Let A ∈ D(Γ+) and define R ≡ Γ+(A) . Then R D(H) ⊂ D(H) and for

every u ∈ D(H) the following identity holds

A u = R H u−H R u (11.19)

Moreover s− limt→∞R e−itH = 0.
♦

Proof
Multiplying (16) from the left by eitH and form the right by e−itH

R(t) ≡ eitH R e−itH = i

∫ ∞
t

eisH A e−isHds (11.20)

Moreover dR(t)
dt = −ieitH A e−itH . Therefore if u ∈ D(H) then

d

dt
eitH R u = −ieitHAu+ iR(t)eitHHu (11.21)

This shows that eitHRu is strongly differentiable in t; therefore Ru ∈ D(H)
and

d

dt
eitH R u = ieitH H R u (11.22)

For t = 0 on obtains
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H R u = −A u+R H u (11.23)

and the first part of the lemma is proved. The second part follows from (15).
♥

Using Lemma 11.1 we now prove that the solution W ′+ of (16) coincides
with the wave operator W+ if the latter exists. In the proof we limit ourselves
to the case in which the perturbation is a bounded operator. In this case both
operators are defined.

Theorem 11.2
Let H1 be self-adjoint and A bounded and symmetric. Assume that W± ∈ B(H)
is a solution of (16) Then the generalized wave operators exist and W ′± ≡
W±(H1 + A,H1) where W+(H2, H1) is defined in time-dependent scattering
theory.

♦

Proof
Since W ′+ −Π1 = Γ+

1 (A W ′+) it follows form Lemma 11.1 that

(W ′+ −Π1) H1 u = −H1 (W ′+ −Π1) u = W ′+ H1 u (11.24)

and therefore W ′+ H1 ⊂ H2 W
′
+ and for any z /∈ R

(H2 − z)−1 W ′+ = W ′ + (H1 − z)−1 eitH2 W ′+ = W ′+ eitH1 t ∈ R (11.25)

¿From lemma (11.1) one derives s − limt→∞(W ′+ − Π1)e−itH1 = 0 and
therefore, multiplying to the left by eitH2

W ′+ = s− limeitH2 e−itH1 Π1 (11.26)

An analogous result holds for W ′−. This concludes the proof of Theorem 11.2
♥

We have seen that for scattering by a potential V (x) in stationary scat-
tering theory the wave operators are the solutions of the equation

W ′± = I + Γ±(VW ′±) (11.27)

where Γ± is defined on a suitable class of functions as

Γ±(A) ≡
∫ ±∞

0

eitH0Ae−itH0dt , H0 = −∆ (11.28)

These equations can be solved using different strategies. One can e.g. iter-
ate equation X = I−εΓ±(V X) for sufficiently small values of the parameter ε
and prove that the resulting solution can be continued to ε = 1. Alternatively
one can use fixed point techniques, either by contraction or by compactness
(in the latter case one must prove uniqueness by other means).
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11.2 Friedrich’s approach. comparison of generalized
eigenfunctions

We shall give some details of still another technique, which makes use of
the properties of the operators Γ± . This approach, often employed in the
textbooks in Theoretical Physics, goes back to K.Friedrichs and consists in a
comparison between the generalized eigenfunctions of H = − 1

2m∆ + V and
the ones of H0 = − 1

2m∆ The starting point is again (27) , which must be
satisfied by W ′+; in our case it reads

W ′+ = I + i

∫ ∞
0

e−itH0VW ′+e
itH0dt (11.29)

The same holds for W ′−. Since the operator Γ must have in its domain the
generalized eigenfunctions of H0 it is convenient to interpret (28) in distribu-
tional sense, or equivalently to consider the limit as ε→ 0 of the solutions of
equation

W ′+ = I + i

∫ ∞
0

e−itH0VW ′+e
itH0−εtdt (11.30)

The functions φ0
k(x) ≡ 1

(2π)3/2 e
ik.x are the generalized eigenfunctions of H0

relative to the eigenvalue k2

2m . The corresponding generalized eigenfunctions
of H are then

φk = W ′+φ
0
k (11.31)

The map φ0
k → φk given by the solution of (31) (with W ′+ solution of (24))

for ε > 0 can be extended to a map between bounded differentiable func-
tions. This extended map can be continued to ε→ 0 under suitable regularity
assumptions on the potential V. From (30)

φk(x) = φ0
k(x) + limε→0i

∫ ∞
0

(e−itH0+i k
2

2m t−εtV φk)(x)dt (11.32)

and therefore

φk(x) = φ0
k(x)− limε→0(H0 −

k2

2m
− iε)−1V φk(x) (11.33)

Equation (33) takes the name of Lippmann-Schwinger equation. I f the
integral on the right-hand side exists one can write as an integral equation

φk(x) =
1

(2π)3/2
eik.x − m

2π

∫
ei|k||x−y|

|x− y|
V (y)φk(y)d3y (11.34)

If the potential is of short range (e.g. |V (x)| ≤ C|1+|x|)−α where 2α > d+1
(d is space dimension) one verifies that the solution φλ(x) of the stationary
equation

−∆φ(x) + V (x)φ(x) = λφ(x) (11.35)
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has the following asymptotic form when |x| → ∞

φk(|x|, ω) =
1

(2π)3/2
eiλ

1
2 (x,ω)+

1
(2π3/2

a(φ, ω, ;λ)|x|−
(d−1)

2
eiλ

1
2 |x|

|x|
+o(|x|−

(d−1)
2 )

(11.36)
with ω = x

|x| .

11.3 Scattering amplitude

Notice that the right hand side of (36) is, modulo higher order terms, the sum
of a plane wave and of a spherical wave multiplied by a factor a(φ, ω;λ) that
depends on ω (the direction of the incoming wave) and on the direction of x̂.
This factor takes the name of scattering amplitude.

In the Physical Literature the scattering amplitude is defined decomposing
the solution of the Schroedinger equation in incoming and outgoing spherical
waves

φ(x) = r−
d−1
d [γb+(ω)eiλ

1
2 |x| − γ̄b−(−ω)e−iλ

1
2 |x|] + o(|x|−

d−1
2 ) (11.37)

where γ = eiπ
d−3

4 . Notice that the notation incoming and outgoing comes from
a time-dependent analysis. This decomposition can be proven by stationary
phase techniques under suitable assumptions, e.g. the existence of a constant
ρ such that

∫
|x|<ρ |φ(x)|2dx < Cρ. In this notation the S-matrix S is defined

as the operator that satisfies b+(ω) = (Sb−)(ω). Notice that the S-matrix is
for d ≥ 2 a unitary operator on L2(Sd−1).

¿From stationary scattering theory one derives

S(λ) = I − 2πiΓ0(λ)(V − V R(λ+ i0)V Γ ∗0 (11.38)

with R(λ+ i0) = (H − λ− i0)−1 and

(Γ0(λ)φ)(ω) =
1√
2
λ
d−2

4 (2π)−2

∫
Rd
e−iλ

1
2 (x,ω)φ(x)dx (11.39)

We shall see in the next Lectures that the Limit Absorption Principle
, valid for short range potentials, guarantees that (H − λ − z)−1, Imz 6= 0
can be continued, for Im z → ±0 to a bounded continuous operator R(z) on
Hβ , β > 1

2 with values in H−β where

Hβ ≡ {f :
∫
Rd

(x2 + 1)β |f(x)|2dx ≡ ‖f‖β <∞} (11.40)

In time-independent (sometime called stationary) scattering theory the S
matrix S is defined by

S(λ) = I − 2πiΓ0(λ)(V − V R(λ+ i0)V )Γ ∗0 (λ) (11.41)
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Remark that the product can be regarded to be the product of bounded
operators between different spaces and that, using the resolvent identity, the
operator S can be rewritten as

S = I − 2πiΓ0(λ)V Γ ∗0 (λ) (11.42)

¿From this one sees that the two definition of S-matrix coincide. We don’t
give here the details of the proof and refer to [1] see also [2] [8]

11.4 Total and differential cross sections; flux across
surfaces

Starting with this definition of S-matrix, with partly heuristic considerations
one defines the total cross section and the differential cross section. The latter
determines, for a beam of particles of momentum approximately equal to k0

which cross the region where the gradient of the potential is localized, the
percentage of those outgoing particles which have momentum approximately
equal to k.

To concude this brief description of the time-indepedent method in Scat-
tering Theory we mention the flux across surfaces theorem that connects the
more mathematical aspect of time-independent scattering theory with the
presentation on textbooks more oriented to Theoretical Physics.

In these textbooks in discussing quantum scattering theory from a poten-
tial V one considers the probability density of the following event: a particle
enters with momentum k0 6= 0 the region Ω in which the force ∇V is different
from zero and exits from Ω with momentum contained in a solid angle Σ.

Of course since the incoming particle is represented by a function in
L2(R3), it cannot have momentum precisely equal to k0. In this formulation
of the scattering process a limiting process in implied implicitly .

One can imagine a beam of N particles which do not interacting among
themselves and are scattered by a potential. Each particle in a remote (but
not too remote) time and at very large distance from the support of the po-
tential has distribution in momentum space approximately equal to δ(k0) and
distribution almost uniform on a plane perpendicular to k̂0. Only a fraction
of these particles reaches the region Ω and the probability to exit in the solid
angle Σ refers only to this fraction of the particles (i.e. it is a conditional
probability).

In most text of Theoretical Physics this leads to substitute the wave func-
tion of the incoming particles by the plane wave eik0x and let the number of
incoming particles go to infinity. This balances the fact that the percentage
of particles which reach the interaction region goes to zero if one takes a uni-
form distribution in a plane perpendicular ot k0.) We are interested only in
the particles that have interacted.
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If S is the scattering matrix, one considers therefore the operator T ≡ S−I.
A heuristic argument shows that the operator T has integral kernel (in Fourier
transform)

πiδ(k2 − p2)T (k, p) (11.43)

where T (k, p) is a smooth function.
The presence of the delta function reflects the conservation of energy for

the asymptotic motion, due to the intertwining property of the wave operators.
By formal manipulations one shows that the probability density that a

particle which enters with momentum k0 and undergoes scattering is emitted
in a solid angle Σ is

σk0
diff (Σ) = 16π4

∫
Σ

|T (ω |k|0, k0)2dω (11.44)

The function σk0
diff is called the differential cross section. To find a heuris-

tic connection between (43) and the scattering operator a defined in this
Lecture recall that in the time independent scattering theory the generalized
eigenfunction corresponding to momentum k is obtained as solution of the
Lippmann-Schwinger equation

φ(x, k) = e−ik.x − 1
2π

∫
e−i|k||x−y|

|xy|
V (y)φ(y, k)d3y (11.45)

and its asymptotic behavior for large |x| is

φ(x, k) ' e−ik0.x + fk0(ω)
e−i|k||x|

|x|
(11.46)

¿From (45) the integral kernel of T can be expressed as function of φ(x, t)
as follows

T (k, p) =
1

2π

∫
e−ikxV (x)φ(x, p)d3x (11.47)

Comparing terms of order |x|−1 in (45) and (46) one sees that

fk0(ω) = (2π)−1

∫
ei|k0|ω.yV (y)φ(y, k0)d3y (11.48)

and therefore fk0(ω) = 4π2T (ω|k0|, k0). One arrives in this way to (44). This
connection of (44) with the formalism of scattering theory does not clarify the
connection with the measurements that one performs to measure the cross
section.

We shall therefore mention briefly the relation between (44) and the scat-
tering process based on the theorem of flux across surfaces.

A description of the scattering process closer to the experimental realiza-
tion is the following.
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In a scattering experiment the particles, after interaction, are recorded
when they cross an array of counters situated at a large distance R from the
region in which the scattering takes place. The distance must be large enough
to consider the outcoming particles as free particles.

What is measured is the number of particles exiting in a given direction.
In general one measures quantities that integrated over time, i.e. one does
not determine the precise exit time. In other words, the scattering process is
quantified by measuring the flux of particles which cross, between time T and
T ′ a portion Σ of the area of a sphere placed at distance R from the origin.

If the radius R is large enough this quantity can be considered as inde-
pendent of the precise localization of the interaction region. Recall that in
Quantum Mechanics the flux is defined as follows

jφt ≡ Im φ∗t∇φt (11.49)

It satisfies the continuity equation

∂ ρt
∂t

+ divjφt , ρt(x) = |φt(x)|2 (11.50)

One is tempted to assume that the probability for the particle to cross the
portionΣ of spherical surface in the interval of timeT ≤ t ≤ T +∆ is∫

Σ

dσ

∫ T+∆

T

(n.jφt)(σ, t) dt (11.51)

where n(σ, t) is the outward normal to the surface of the sphere in the point
of coordinates σ.

This cannot be true in a strict sense, since (n.jφt)(σ, t) may be negative
(and even not well defined since the function may be non-differentiable). But
we expect that it becomes non negative when R → ∞ since we expect that
the incoming portion of the wave vanish in that limit.

A more appropriate definition of cross section may be then

σφflux(Σ) = limR→∞

∫ ∞
T

dt

∫
RΣ

(n.jφt) dω (11.52)

where RΣ is the intersection of the sphere of radius R with the cone generated
by Σ and a point P in the support of ∇V. When R → ∞ this quantity is
independent from P.

Remark that the definition (52) does not depend on T since se have as-
sumed that φ be a scattering state. Therefore we expect that the following
theorem holds

Flux-across-surfaces theorem
One has

limR→∞

∫ ∞
T

∫
R Σ

jφtdΣ =
∫
CΣ

|Ω−1
+ φ(k)|2d3k (11.53)
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♦

This theorem has been proved under various assumptions on the potential.
One can consult e.g. [4] or [5] . It is worth noticing that in the course of the
proof it also shown that in the limit R→∞ the measure (n.jφt) dω converges
to a positive measure and one has

limR→∞

∫ ∞
T

dt

∫
RΣ

(n.jφt)dω = limR→∞

∫ ∞
T

dt

∫
RΣ

|(n.jφt)|dω (11.54)

Condition for this to be true are given by the limit absorption principle
that we shall discuss in the next Lectures. The physical intuition which suggest
the analysis of the flux across surfaces is also at the basis of the alternative
approach to Quantum Scattering Theory initiated to V.Enss, based on a geo-
metric analysis of the behavior for t→ ±∞ of the solutions of Schroedinger’s
equation for initial data in the subspace of absolute continuity for the hamil-
tonian H.

11.5 The approach of Enss

We have seen in Book I that the structure of free propagation is such that
the behavior for t → ±∞ of the solutions of the free Schroedinger equation
differs little from free propagation along the direction of momentum. We recall
briefly this analysis. Define for t 6= 0 the operators M(t) and D(t) through

M(t)(φx) = e−
x2
2t φ(x) D(t)f(x) = |t|− d2 φ(

x

t
) (11.55)

One has
a) For |t| 6= 0 M(t) and D(t) are isomorphisms of S ′ and of S and are unitary
in L2(Rd).
b)

U0(t) = e∓i
dπ
4 M(t)D(t)FM(t) (11.56)

(F denotes Fourier transform). Defining for t > 0

(T (t)φ)(x) = e∓γ(d)ei
x2
2t (

1
t
)
d
2 φ̂(

x

t
) (11.57)

the operators T (t) are unitary in L2(Rd) and one has, for every φ ∈ L2(Rd)

limt→∞‖[U0(t)− T (t))]φ‖2 = 0 (11.58)

The probability distribution in configuration space tends asymptotically to

1
td
|φ̃(

x

t
)|2dx = |φ̂(ξ)|2dξ, ξ =

x

t
(11.59)
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Remark that this is the distribution in position of a classical free particle
which is at the origin at time zero with |φ̂(ξ)|2 as distribution if momentum. If

the initial state is a gaussian ψ(0, x) = Cei
|x−x0|

2

2 +i(x,p0) (which has as Fourier
transform a gaussian centered in p0) the solution of the free equation at time
t is still a gaussian centered in tp0 and with variance in x of order t

1
2 .

If we choose a new (time dependent) coordinate system in which the space
variables are scaled by a factor tα, 0 < α < 1

2 ( and therefore momenta are
scaled by t−α) in the new variables the variance tends to zero for t→∞ while
the distance between the centers of two gaussians corresponding to different
values of the momenta grows like t

1
2−α.

On this scale the two wave packets are far apart in the far future. At the
same time the range of the potential increases under dilation. The generator
of this change of variables is the (dilation) operator D = 1

2 (x.p + p.x). This
suggests that the comparison with free motion will be successful only if the
potential decays sufficiently rapidly at infinity.

We shall see later that a sufficient decay is lim|x|→∞|x|
3
2V (x) = 0 (as

suggested by dimensional analysis) and we shall give a more precise definition
of short range potentials. Under free motion the observable x2 satisfies

d2

dt2
x̂2 = −[H0, [H0, x̂

2]] H0 = −1
2
∆ (11.60)

Let D = 1
2 (x̂.p̂+ p̂.x̂) be the generator of the group f space dilation. Then

[H0, x̂
2] = 2D, [H0, D] = H0, [H0, [H0, x̂

2] = 2H0 > 0 (11.61)

Therefore for every φ setting φ(t) = eitH0φ one derives

d2

dt2
(φ(t), x2φ) = 2(φ(t), Hφ(t)) = 2(φ,Hφ) (11.62)

As a consequence if (φ,Hφ) > 0

x̄2(t)φ
t2

' Ct2 (11.63)

Of course in the free case we can obtain more detailed information from
the explicit knowledge of the solution. From this brief analysis of the case
V = 0 we draw the following simple conclusions: the dilation group plays an
important role, the asymptotic motion is linear in time (ballistic) and the
double commutator [H0, [H0, X]] is positive and strictly positive above the
onset of the continuum spectrum .

11.6 Geometrical Scattering Theory

The considerations, trivial if referred to free motion, have inspired a method
elaborated by V. Enss [5[6][7] Geometric Scattering Theory a procedure that
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defines the wave operators placing emphasis on the asymptotic properties of
the solutions. This method provides relevant information for potential scat-
tering and can extended to the N body problem. [6]

Later the method was generalized and put in more abstract form by
Mourre [8] and it has acquired a central role in the modern scattering theory
in Quantum Mechanics. The method of Mourre has been further generalized
and applied to the N -body problem in [9]

We introduce now briefly Geometric scattering theory; it will be discussed
more in detail in the next Lecture.

Definition 11.3 (space of scattering states)
Let ξBR the indicator function of the ball of radius R centered at the origin.

Define space of scattering states relative to the hamiltonian H the set

M∞(H) ≡ {φ ∈ H : limt→±∞|ξBRe−itHφ|2 = 0 ∀R > 0} (11.64)

♦

This definition captures our expectation that if a particle is in a scattering
state the probability to find it in a bounded region of space tends to zero as
t→ +∞.

Definition 11.4 (space of bound states)
Define space of bound states the set

M0(H) ≡ {φ ∈ H : limR→∞supt|(I − ξBR)e−itHφ|2 = 0} (11.65)

♦

This definition captures our expectation if a particle is in a bound state
the probability to find it outside a ball of radius R vanishes when R→∞.

With these definitions existence and completeness of the wave operators
W±(H,H0) (with H0 = −∆ and H = H0 +V ) may be stated in the following
way

Proposition 11.3 (Enss) [5]
Let V ∈ L2(R3) + L∞(R3) and assume that Hsing = ∅. Then

M∞(H) = Ha.c. M0(H) = Hp (11.66)

♦

Notice that the spectrum of the hamiltonian H is continuous but not ab-
solutely continuous, for every element φ ∈ Hcon the following weaker property
holds

limT→∞
1

2T

∫ T

−T
‖ξBRe−itHφ‖dt = 0 (11.67)

Moreover for every φ ∈ H
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1
T

∫ T

0

‖ξBRe−itHφ‖dt ≤ fR(T )‖(H + i I)φ‖ limT→∞fR(T ) = 0 (11.68)

This is an ergodicity property.
An important role in Geometric Scattering Theory is payed by the RAGE

theorem (from the names Ruelle, Amrein, Georgescu, Enss) which illustrates
the geometrical method we will describe presently.

We begin with a theorem of Wiener which has an independent interest.
Recall that a Baire measure is finite and charges at most a denumerable
collection of points.

Theorem (Wiener)
Let µ be a finite Baire measure on R and define F (t) =

∫
e−ixtdµ(x). Then

limT→∞
1

2T

∫ T

−T
|F (t)|2dt =

∑
x∈R
|µ({x})|2 (11.69)

♦

Proof
One has

1
2T

∫ T

−T
|F (t)|2dt =

∫
dµ(x)h(T, x) (11.70)

where h(T, x) ≡
∫
dµ(y)(T (x−y))−1sin((T (x−y)). The integrand is uniformly

bounded and when T →∞ the integral converges to zero if y 6= x and to one
if y = x. Therefore by the dominated convergence theorem

limT→∞
1

2T

∫ T

−T
|F (t)|2dt =

∑
x∈R
|µ({x})|2 (11.71)

♥

We now state and prove the RAGE theorem.

Theorem (RAGE)
Let H be a self-adjoint operator and C a bounded operator such that C(H +
iI)−1 be compact. Denote by Πcont(H) the orthogonal projection on the con-
tinuous spectrum of H. Then
(a) There exists a function ε(T ) such that limT→∞ε(T ) → 0 and for every
φ ∈ D(H)

1
2T

∫ T

−T
|Ce−itHΠcontφ|22dt ≤ ε(T )|(H + i)φ|22 (11.72)

(b)

limT→∞
1

2T

∫ T

−T
|Ce−itHΠcontφ|s2dt = 0, s = 1, 2 (11.73)
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(c)
1

2T

∫ T

−T
|Ce−itAΠcontφ|2dt ≤ ε(T )1/2|(H + i)φ|2 (11.74)

♦

Proof
Remark that (b) follows from (a) for a simple density argument and that

(c) follows form (a) and (b) by Schwartz’s inequality. Setting ψ = (H + i I)φ
one can assume that C is compact and substitute (H + i)φ with φ. Let

εC ≡ supφ 6=0‖φ‖−2
2

1
2T

∫ T

−T
|Ce−itHΠcont(H)φ|2dt (11.75)

Since ‖εC(T )‖ ≤ ‖C‖ it is sufficient to consider the case when C has rank
one. Πcont(H) commutes with H and therefore it suffices to prove that if
Πcont(H)ψ = ψ then

1
2T

∫ T

−T
|(ψ, e−itHφ)|2dt ≤ ε(T )‖φ‖2 (11.76)

where limT→∞ε(T ) = 0.
By the spectral representation ofH we have (ψ, e−itHφ) =

∫
e−itxh(x)dµ(x).

Making use once more of Schwartz’s inequality

1
2T

∫ T

−T
|(ψ, e−itHφ)|22dt ≤ ‖φ‖22δ(T ) (11.77)

where

δ(T ) = [
∫
dµ(x)dµ(y)|sen((x− y)T )

(x− y)T
|2]

1
2 (11.78)

The thesis of the RAGE theorem follows now from Wiener theorem.
♥

The RAGE theorem provides convergence in the mean; for the existence
of the wave operator strong convergence is required , and for this the essential
spectrum of H must be absolutely continuous.

11.7 Inverse scattering problem

The inverse scattering problem is the possibility to determine uniquely the po-
tential from the knowledge of the S matrix. We shall use a geometric method,
proposed also in this context by Enss. We shall study only the case of short
range potentials which are Kato small with respect to the Laplacian and such
that
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GV (R) ≡ ‖ξ(|y| ≥ R)V (y)(−∆+ I)−1‖ ∈ L1(R), y ∈ Rd (11.79)

We denote by VS the collection of these potentials. For them the wave
operators

Ω±,V = s− limt→±∞e
it(−∆+V e−itH0 (11.80)

exist and are complete and the operator S(V ) ≡ (Ω+,V )∗Ω−,V is unitary.
Define the scattering map

VS 3 V → S(V ) (11.81)

We shall prove that this map in injective: the knowledge of the the S matrix
determine the potential uniquely. Define long range the class of VL of such
that for a positive constant C

V L ∈ C4(Rd), |DαV L(y)| ≤ C(1 + |y|)−1−α(ε+ 1
2 ), 1 ≤ α ≤ 4, 0 < ε <

1
2

(11.82)
Then the wave operators are complete if the reference hamiltonian is cho-

sen to be
HD = H0 + V L(t

p

m
) (11.83)

Also in this case the scattering map is injective, but the proof of this state-
ment is more elaborated. It should also be noted that for short range potentials
the potential is completely determined by the knowledge of scattering data at
on fixed energy .

The proof of injectivity of the scattering map is based on some a-priori
estimates that we will state; for some of them we give complete proofs. More
details can be found in [7] We shall make use of the following lemma, which
is proved in the next Lecture.

Lemma 11.4 [9]
For each function f ∈ C∞0 (Rd) that has support in the ball Bη for each

choice of the integer k it is possible to find a positive constant Ck such that

‖ξ(x ∈M′) eitH0 ξ(p−mv)ξ(x ∈M)‖ ≤ Ck(1 + r + |t|)−k (11.84)

for every v ∈ Rd, t ∈ R and every pair of measurable sets M, M′ for which

r ≡ dist{M′, M} > 0 (11.85)

♦

To show injectivity we need separation estimates

Lemma 11.5 [9]
If the potential V satisfies for some ρ ∈ [0, 1] and ever function g ∈ C∞0

the estimate
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(1 +R)ρ‖v(x)g(p)ξ(|x| > R)‖ ∈ L1((0,∞), dR) (11.86)

then for every function f ∈ C∞0 (Bη) it is possible to find function h such
that (1 + τ)h(τ) ∈ L1((0,∞)) and, for every v ∈ Rd, |v| ≥ 4η the following
inequality holds

‖V (x+ tv)e−itH0f(p)(1 + x2)−
3
2 ‖ ≤ h(|vt|) (11.87)

♦

Proof (outline)
¿From lemma 11.3

M = {|x| ≤ c|vt|‖ M′ = {|x| ≥ C|vt|} c < C (11.88)

If C is chosen appropriately, for r large enough one has

‖V g(p−mv)‖‖ξ(|x−vt|) > C|vt|)) e−itH0 f(p−mv)(
1

(1 + |x|2)

3
2

ξ(|x| < c|vt|c)‖

≤ k(1 + c|vt|)−3 (11.89)

moreover

‖V g(p−mv)‖‖ξ(|x− vt|) > C|vt|) e−itH0f(p−mv)
1

(1 + |x|2)

3
2

ξ(|x| < c|vt|)

‖ ∈ h1(|vt|) (11.90)

where (1 + y)ρh1(y) ∈ L1((0,∞)) under our assumption on the potential.
Lemma 11.4 follows from (89) and (90).

♥

Notice the following corollary
Corollary

If φ̂0 ∈ C∞0 (B(η) then, uniformly in t ∈ R

‖(Ω± − I)e−itH0φv‖ = O(v−1), φ̂v(p) = φ̂0(p−mv) (11.91)

♦
Proof

Let φ0 be a wave function such that φ̂ has support in the ball of radius η
and let φv be defined by φ̂v(p) = φ̂(p−mv).

¿From Duhamel’s formula one derives

(Ω+ − I)e−itH0ψ = i

∫ ∞
0

dτeiτH0V e−i(t+τ)H0 (11.92)
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Using (87) one obtains (92) .
♥

To conclude we give a reconstruction formula that gives the potential once
the scattering matrix is known. This formula gives the potential by giving in
each point x ∈ Rd the integral of the potential along rays that originate from
x (tomography); a theorem of Radon guarantees existence and uniqueness.

Theorem 11.6 (reconstruction formula) [9]
If (86) holds, then for each pair of functions which satisfy (84) one has

((S − I)φv, ψv) =
i

v

∫ ∞
−∞

dτV (x+ τv)φ0, ψ0) + o(v−ρ+1) (11.93)

♦

Proof (outline)
By definition S−I = (Ω+−Ω−)Ω−. ¿From Duhamel’s formula one derives

i(S − I)φv =
∫ ∞
−∞

eitH0V Ω−e
−itH0φv, φ̂v(p) = φ̂(p−mv) (11.94)

Since Ω−D(H0) ⊂ D(H) one has

(ψv, i(S − I)φv) =
∫ ∞
−∞

Pv(vt)dt+R(v) (11.95)

where the principal term Pv and the residual term R(v) are given respectively
by

Pv(vt) = (e−itH0ψv, V (x)e−itH0φ) Rv =
∫ ∞
−∞

((Ω−−I)e−itH0ψv, V (x)e−itH0φ)dt

(11.96)
It follows from the preceding results that

|Rv| ≤ C
∫ ∞
−∞
|V e−itH0φv|2l ≤ C

∫ ∞
−∞

h(|vt)dt (11.97)

This term satisfies therefore the requirements of the theorem. The term
Pv can be rewritten as

Pv(t) = (V (x+ vt)e−itH0ψo, e
−itH0φ) (11.98)

Setting τ = vt one has, pointwise in τ

lim|v|→∞Pv(τ) = (V (x+ τ v̂)ψ0, φ0) (11.99)

and from
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|Pv(τ)| ≤ C‖V (x)e−i
τ
vH0

f(p−mv)
(1 + x2)

3
2
‖ ≤ C1h(|τ |) (11.100)

Write Pv(τ)− as P 1
v + P 2

v where

P 1
v = (V (x+vt)e−itH0ψ0, (e−itH0−I)φ0), P 2

v = ((e−itH0−I)ψ0, V (x+τ v̂)φ0)
(11.101)

Since φ̂0 is normalized to one and has compact support

|(e−i τv − I)φ0P
2
v | ≤ |H0φ0|2|

τ

|v|
|, |(e−i τv − I)φ0P

2
v | ≤ 2 (11.102)

¿From Lemma 11.4 one derives then

|P 1
v (τ)| ≤ C

vρ
|τ |ρh(|τ |) (11.103)

Since lim|v|→∞P 1
v (|v|ρ(τ) = 0 from the dominated convergence theorem

follows ∫ ∞
−∞

P 1
v = 0(v−ρ) 0 ≤ ρ ≤ 1 (11.104)

For ρ = 1 one obtains O(|v|−1.
As for the term P 2

v one obtains analogous estimates by making use of
(1− τ)ρ|ξ(|x| > τ

2 )φ0|2 ∈ L1((0,∞)).
♥

¿From Theorem 11.6 one derives

Corollary
The scattering map is injective.

♦

Proof
Suppose that V1 and V2 are short range potentials with the same scattering

matrix. Denote by V their difference. In what follows we consider only vectors
z which belong to a prefixed plane, which we choose to be {1, 2}.

Let φ and ψ be elements of L2(Rd), d ≥ 2, such that φ̂, ψ̂ ∈ C∞0 (Rd).
Define

φz = e−ipzφ, ψz = e−ipzψ f(z) ≡ (V φz, ψz) (11.105)

This function is bounded and continuous. Under the assumption stated,
we can choose g ∈ C∞0 and such that g(p)φ = φ. We have then g ∈ L2(R2, dz);
indeed

|f(z)| ≤ |V g(p)φz|2 ≤ ‖V g(p)ξ(|x| > |z|
2

)‖+ ‖V g(p)‖|ξ(|x| ≤ |z|
2

)φz|2
(11.106)

Choosing v in the {1, 2}plane, the Radon transform of f is by defnition
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f̃(v, x) =
∫ ∞
−∞

f(z + τv)dτ =
∫ ∞
−∞

(V (x+ τv)φz, ψz)dτ (11.107)

and by Theorem 11.6 this function is zero. Since f ∈ L2(R2, dz) it follows
f(z) = 0 due to the properties of the Radon transform. In particular f(0) = 0
and therefore (V φ, ψ) = 0 if φ̂, ψ̂ ∈ C∞0 ,a dense set. It follows V = 0 as an
operator, and therefore also as a function.

♥
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Lecture 12
The method of Enss. Propagation estimates.
Mourre method. Kato smoothness, Elements of
Algebraic Scattering Theory

In this Lecture we give more details of an alternative approach to quantum
scattering theory, initiated by V.Enss, This approach is based on a geometric
analysis of the behavior for t→ ±∞ of the solutions of Schroedinger’s equa-
tion for initial data in the subspace of absolute continuity for the hamiltonian
H.

As we have seen in the previous Lecture, by proving that the spectrum
of H has not a singular continuous part one gains a complete control of the
asymptotic properties for any initial data, and this corresponds to asymptotic
completeness.

We have seen in Book I that an interesting property of free propagation
is that the behavior for t → ±∞ of the solutions of the free Schroedinger
equation differs little from free propagation along the direction of momentum.
We recall briefly this analysis.

Define for t 6= 0 the operators M(t) and D(t) by M(t)(φx) = e−
x2
2t φ(x)

and D(t)f(x) = |t|− d2 φ(xt ) . One has (Lemma 3.10 in vol.I) )
a) For |t| 6= 0 M(t) and D(t) are isomorphisms of S ′ and of S and are unitary
in L2(Rd).
b)

U0(t) = e∓i
dπ
4 M(t)D(t)FM(t) (12.1)

(F denotes Fourier transform). Recall (Theorem 3.10 in Book I) that, defining
for t > 0

(T (t)φ)(x) = e∓γ(d)ei
x2
2t (

1
t
)
d
2 φ̂(

x

t
) (12.2)

the operators T (t) are unitary in L2(Rd) and one has, for every φ ∈ L2(Rd)

limt→∞‖[U0(t)− T (t))]φ‖2 = 0 (12.3)

This theorem states that the probability distribution in configuration space
tends asymptotically to
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1
td
|φ̃(

x

t
)|2dx = |φ̂(ξ)|2dξ, ξ =

x

t
(12.4)

Remark that this is the distribution in position of a classical free particle
which is at the origin at time zero with |φ̂(ξ)|2 as distribution if momentum.

If the initial state is a gaussian ψ(0, x) = Cei
|x−x0|

2

2 +i(x,p0) (which has as
Fourier transform a gaussian centered in p0) the solution at time t of the free
equation is still a gaussian centered in tp0 and with variance in x of order t

1
2 .

Since the equation of motion are linear from the knowledge of the Gaussian
case one derives the asymptotic structure of any (smooth) initial datum.

The method of Enss is a comparison, for a given initial datum, of the
asymptotic structure of the wave function the interaction dynamics with the
asymptotic structure corresponding to the free dynamics.

The geometric properties of these asymptotic propagations show that, for
a dense subset in the support of the absolutely continuous spectrum of −∆+
V and for a suitable class of potentials V, the asymptotic (in time) spacial
behavior of the wave function with the potential V differs little from that the
free case.

In particular, in the remote future and at large spatial distances most of the
states in the absolutely continuous part of the spectrum of H are represented
by outgoing waves from a sphere of radius sufficiently large so that that outside
the sphere the potential is very small. At the same time the component that
describes incoming waves becomes negligible t→ +∞.

We have seen that free propagation can approximated by a family of maps
which, a part for a phase factor, are isometric dilations φ(x)→ ( 1

t )
d
2 φ̂(xt ).

One can expect that, at least for short-range potential, the same be true
for a quantum particle interaction though a potential V . If this is the case, it
is useful to use a system of coordinates which dilate in time.

It is natural therefore to study the group generated by time translations
and dilations. The generators of these subgroups do not commute.Therefore it
is natural to study their commutator. In the free case one has [D,H0] = 2H0.

In the free case the method of stationary phase shows that the part of
the wave function that corresponds to the negative part of the spectrum of D
(which corresponds roughly speaking to incoming waves) has the property to
become negligible for large enough times.

One can expect that these considerations can be extended to the inter-
acting case and that also in that case the spectral properties of [D,H] =
2H0 + [D,V ] be important for the proof.

Notice that eiλDV (x)eiλD = V (xλ ) and therefore i[D,V ] = d
dλV (xλ ). The

property of having a negligible incoming part must hold for scattering states,
that correspond to the positive part of the spectrum of D. On the contrary
for bound states we expect that the outgoing part be negligible.

To turn these semi-heuristic remarks into a rigorous proof it is necessary
to have convenient a-priori estimates.
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In its original form Enss’ method makes use of a decomposition of the
Hilbert space that follows as closely as possible the behavior of classical tra-
jectories in phase space (we have seen that for free motion this is possible).

The purpose is to prove that any state that belongs to the continuum
spectrum of H can be approximated, in the far future and on a suitable scale
of space, by and outgoing state and in the remote past by an incoming state.
And to prove that this implies that on the states of the continuous spectrum
of H = H0 + V there is unitary equivalence between the dynamics due to the
hamiltonian H0 + V and to H0.

But then the continuous spectrum of H is absolutely continuous and this
implies asymptotic completeness.

12.1 Enss’ method

We give some details of the method of Enss. Choose a new (time dependent)
coordinate system in which the space variables are scaled by a factor tα, 0 <
α < 1

2 ( and therefore momenta are scaled by t−α).
In the new variables under free motion the variance of the wave function

tends to zero for t → ∞ while the distance between the centers of two gaus-
sians corresponding to different values of the momenta grows like t

1
2−α. On

this scale two wave packets are far apart in the far future.
In the presence of an interaction potential, one should keep in mind that

the range of the potential increases under dilation.
This suggests that the comparison with free motion will be effective only

if the potential decays sufficiently rapidly at infinity to compensate for this
increase. The role of the parameter α will be to quantify this compensation.

We shall see later that a sufficient decay is lim|x|→∞|x|
3
2V (x) = 0 (as

suggested by dimensional analysis) and we shall give a more precise definition
of short range potentials.

Under free motion the observable x̂ satisfies

d2

dt2
x̂2 = −[H0, [H0, x̂

2]] H0 = −1
2
∆ (12.5)

Recall that D = 1
2 (x̂.p̂+ p̂.x̂) and

[H0, x̂
2] = 2D, [H0, D] = H0, [H0, [H0, x̂

2] = 2H0 > 0 (12.6)

Therefore for every φ, denoting by φ(t) = eitH0φ the unitary propagation,
it follows

d2

dt2
(φ(t), x2φ) = 2(φ,Hφ) > 0 (12.7)

For the average < x2 >φ (t) of |x|2 over the state described by φ(t) one
has, asymptotically in t
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< x2 >φ (t)
t2

' C (12.8)

Of course in the free case we can obtain much more detailed information
from the explicit knowledge of the solution. Our purpose here is to find a
method that provides information also in the case V different from 0 and can
extended to the N body problem.

¿From this brief analysis of the case V = 0 we can draw the following
simple conclusions: the dilation group plays an important role, the asymptotic
motion is linear in time (ballistic) and the double commutator [H0, [H0, X]]
is positive and strictly positive above the onset of the continuum spectrum .
The considerations, trivial if referred to free motion, have inspired the method
elaborated by V. Enss [1]] , [2] [3]

Later the method was generalized and put in more abstract form by
Mourre [4] and it has acquired a central role in the modern scattering theory
in Quantum Mechanics. In this Lecture will describe also Mourre’s method.
The method has been further generalized and applied to the N -body problem
in [5]

The method of Enss relies on the intuitive nature of scattering theory by
comparing, for a given initial datum, the asymptotic structure of the wave
function for the free and for the interacting dynamics.

The geometric properties of these propagations show that, for a dense
subset in the support of the absolutely continuous spectrum of −∆ + V and
for a suitable class of potentials V, the asymptotic (in time) spacial behavior
of the wave function with the potential V differs little from the free case.

As remarked, in its original form Enss’ method makes use of a decompo-
sition of the Hilbert space that follows as closely as possible the behavior of
classical trajectories in phase space (we have seen that for free motion this is
possible). In this sense it may be considered as a semiclassical method.

This decomposition makes use of free motion and dilation group: neglecting
dispersion the support of the outgoing states is obtained by dilating the initial
support. We give here only an outline of the method of Enss; for a detailed
and clear exposition we refer to [1][2][3] [5]

Compared with the time-dependent and time-independent methods de-
scribed before the strength of Enss’ method is on the physical intuition that
for a system of two particles once the effect of the interaction has (almost) dis-
appeared the particles separate from each other and the vector that describes
their separation grows linearly in time and becomes parallel to the relative
velocity.

This can be seen as a localization of the state in phase space. The local-
ization becomes weaker in the course of time (due to dispersive effects) but
still sufficient to separate asymptotically states that correspond to different
momenta.

The separation will be less than in the classical case (classically these
states are asymptotically separated by a distance proportional to t).
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One of the advantage of Enss’ method is that it is close to the phenomeno-
logical description of the scattering process. This approach provides a closer
connection with the terminology employed in a large part of the Theoretical
Physics books in scattering theory, in particular in the definition of total cross
section and differential cross section. It leads therefore precise estimates (or
bounds) on the physically relevant quantities.

12.2 Estimates

We now provide some details. In order to turn these heuristic remarks into a
rigorous proof it is necessary to have convenient a-priori estimates.

In Lecture 10 we have studied the limit e−itHeitH0φ. Denoting with Πcont

the orthogonal projection onto the continuous part of the spectrum of H we
consider wave function such that Πcontφ = φ and we want to prove

limτ→∞supt≥0|(e−itH − e−itH0)e−iτHΠcontφ|2 = 0 (12.9)

This relation indicates that on the continuum part of the spectrum the
free dynamics and the interacting roughly coincide in the remote future.

On the potential, in addition to be Kato-small, we make the following
assumption

‖V (H0 + I)−1η(|x| > R)‖ ∈ L1(R+) (12.10)

( η(A) is the indicator function of the set A.) From (10) we derive

limR→∞(1 +R)‖η(|x| ≥ R)V (H − z)−1‖ = 0 (12.11)

Notice that condition (10 ) is weaker than

∃ε > 0 : ‖V (H0 + I)−1η(|x| > R)‖ ≤ c(1 +R)−1−ε (12.12)

Condition (10) implies that the difference between the resolvents is a com-
pact operator; indeed for Imz 6= 0 on has

1
H0 − z

− 1
H − z

=
1

H0 − z
(1 + |x|)− 1

2 (1 + |x| 12 )V
1

H − z
(12.13)

This is the product of a bounded operator times the operator 1
H0−z (1 +

|x|)− 1
2 which is compact since

(H0 − z)−
1
2 (1 + |x|)V (H − z)−1 = A< +A> (12.14)

A>R = (H0 − z)−
1
2 η(|x| > R)(1 + |x|)V (H − z)−1 (12.15)

The operator A<R has a corresponding definition. The operator A<R is
compact and the norm of the operator A>R tends to zero when R → ∞.
Therefore A is compact.
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¿From Ruelle theorem (see Lecture 10) we know that a wave function that
belongs to the continuous part of the spectrum of H exits in the mean in the
far future from any bounded domain of configuration space.

For very large times we introduce a partition in outgoing and incoming
states by means of the spectral decomposition of the generator D of the group
of dilations.

The outgoing part belongs to the positive part of the spectrum of D modulo
a term which vanish when t→∞.

We shall prove that the outgoing part for large enough times does not
any longer interact with the potential (because the potential is short-range)
Therefore on this states the operator Ω− differs little from the identity.

The remaining part (incoming) becomes asymptotically orthogonal to the
entire state space.

Therefore the state cannot be orthogonal to the range of Ω− and the range
of Ω− is the entire subspace of H corresponding to the continuous part of the
spectrum. It follows that the singular continuous spectrum of H is empty and
asymptotic completeness holds.

12.3 Asymptotic completeness

We shall now give some details of the proof of asymptotic completeness with
Enss’s metod. Recall that, by Ruelle’ theorem, if the operator ξ(|x| < R)(H+
iI)−1 is compact for every R and if φ is in the continuous spectrum of H then
one has

limT→∞
1
T

∫ T

0

dt‖ξ(|x| < R)eitHφ‖2 = 0 ∀R <∞ (12.16)

We shall prove that if (16) holds then φ is a scattering state, i.e. it belongs
to the range of Ω−. We make the crucial observation that using the definition
of resolvent and by a diagonal procedure one can derive from (16) that the
integral

‖
∫ R

−R
dt|η(|x| < R)e−i(t+τ)H(H + iI)φ‖2 (12.17)

goes to zero in the mean when τ →∞, R→∞. It follows that it is possible
to find a sequence of times τn in such a way that the quantity

φn = e−iτnHφ (12.18)

represents a sequence of states localized further and further away form the
essential support of the potential.

limn→∞|η(|x| < n)e−iτnHφ|2 = 0 (12.19)
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limn→∞

∫ n

−n
dt|η(|x| < n)e−i(t+τn)H(H + iI)−1φ|2 = 0 (12.20)

To convert these observations into a proof one needs accurate estimates of
the convergence in space and in time of the outgoing part of the wave func-
tion.The method of Enss shows that for a dense set of initial states (roughly
speaking those for which the absolute value of the velocity is bounded and sep-
arated away from zero) the wave function decays rapidly outside the classical
permitted domain.

The necessary estimates are given for for free motion, with methods akin
to those we have used in Chapter 3 of Book 1 .These estimates are valid for
short range potentials; the extension to long range potential requires more
elaborated techniques and a modification in the construction of the scattering
matrix.

All estimates exploit the fact that the states one consider have finite energy
support and that on functions localized far away from the origin the operator
H differs little from the free hamiltonian, which is a function of momenta
only. A typical estimate is the following

limR→∞

∫ ∞
0

dt‖η(|x| > (1 + a)(R+ vt))e−itHg(H)η(|x| < Rt)‖ = 0 (12.21)

where a > 0 and the function g ∈ C∞0 has support in (−∞, mv
2

2 ) (m is the
mass of the particle) and v ∈ Rd is arbitrary.

This estimate is obtained from a similar one valid for V = 0 by proving
that a suitable class of functions of the total energy can be well approximated
by the corresponding functions of the kinetic energy in domains where the
potential is small. If V = 0 the estimate (21) can be sharpened. It is sufficient
the consider the case of hyperplanes , e.g the hyperplane orthogonal to the
axis x1.

If g ∈ C∞0 (R) with supp g ∈ [0,∞], for each δ > 1
2 and each n ∈ N there

exists a constant Cn,g,δ such that , for r, t > 0 one has

‖ξ(x1 < −(t+ r))e−itH0g(p1)η(x1 > 0)‖ ≤ C(1 + t+ r)−k (12.22)

One proves (22) taking Fourier transform and noticing by integration by
parts, that a function which is in the domain of the pth power of the Laplacian
tends to zero at infinity with a power q(p) where q grows with p.

12.4 Time-dependent decomposition

The main part of Enss’ method is the introduction of a suitable time-
dependent decomposition of Rd as the union of a spherical region around
the origin (of increasing size) and in a finite number of truncated cones.
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Consider the set X of wave functions that belong to the continuous sub-
space of H and which have energy bounded and separated from zero. This set
is dense.

Our purpose is to show that no member of this set can be orthogonal to a
state which belongs to the absolutely continuous subspace of H and which has
energy bounded and separated away from zero. This shows that the subspace
of absolute continuity for H coincides with the subspace of continuity and
provides a proof of asymptotic completeness.

It is necessary to consider states with energy strictly larger than zero be-
cause otherwise ”the speed of separation” of the parts which belong to the
truncated cones may become zero.

We may notice that asymptotically the partition that is used by Enss can
be considered as a partition of classical phase space.

Choose a smooth function of the energy. Remark that for any function
f ∈ L1(R) (and in particular in S ) one has, for each φ ∈ Ω

limn→∞‖(φ̂(H)− φ̂(H0))φn‖2 = 0 (12.23)

where φn is defined in (18). Indeed

‖
∫ ∞
−∞

f(t)(e−itH−e−itH0)φn‖2 ≤
∫ ∞
−∞

dt|f(t)|‖(e−itHeitH0−I)‖2+2
∫
|t|>n

|f(t)|dt

(12.24)
Under the hypothesis on f , the second term to the left converges to zero

when n → ∞. The first term converges to zero since, by Duhamel’s formula,
it is bounded by∫ n

−n
dt|V e−itHφn|2 =

∫ n

−n
dt|V (H + iI)−1e−itH(H + iI)φn|2 (12.25)

Decomposing the function ι (identically equal to one) as follows ι = η(|x| <
n)+η(|x| ≥ n) one obtains two terms each of which goes to zero when n→∞,
one as a consequence of (21) and one due to the assumptions on the potential.
It follows that

ψn ≡ f̂(H0)φn (12.26)

is a good approximation to φn.
Decompose now Rd in a ball at the origin Bn of radius n and in a finite

number M of truncated cones Cnm with axes em ∈ Rd m = 1, ..M and defined
by |x| > n x.em ≥ |x|

2 . It is convenient to smoothen the corresponding
projection operators using convolution with a fixed ζ ∈ S chosen in such a
way that the support of the Fourier transform ζ̂(p) be contained in small ball
at the origin and ζ̂(0) = 1.

In this way we obtain a regular partition F0(Bn),∪mF0(Cnm) of Rd which
takes into account our requirement that the bound states have energy away
from zero. It follows from (20)
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limn→∞|F0(Bn)ψn|2 = 0 limn→∞|φn −
∑
m

F0(Cnm)ψn|2 = 0 (12.27)

The states F0(Cnm) are localized away from the origin. We decompose each
in an outgoing part and in an incoming one. If the support in energy of the
state φ is included in the interval [a, b], a > 0 b < ∞ we choose ζ ∈ D such
that ζm(p) = 0 for p− em < −a and ζ(p) + ζ(−p) = 1 for |p| < b.

We define outgoing and incoming states in the mth sector

ψoutn (m) = F0(Cmn )ζ(p) ψinn (m) = F0(Cmn )ζ(−p) (12.28)

(remark that ψn = [ζ(p) + ζ(−p)]ψn.)
We want to prove that the states ψoutn (m) evolve almost freely in the future

and the states ψinn (m) evolve almost freely in the past. The following estimates
are useful

limn→∞

∫ ∞
0

dt|ξ(|x| ≤ n+ at)e−itH0(H0 + I)ψoutn (m)|2 = 0 (12.29)

limn→∞

∫ 0

−∞
dt|ξ(|x| ≤ n− at)e−itH0(H0 + I)ψinn (m)|2 = 0 (12.30)

Recall that a is the lower bound, arbitrary but finite, we have chosen for
the energy (and therefore to the velocity). The speed which with the centers
of the sectors separate from each other will decrease with |a|.

Schrödinger’s equation is dispersive but in the low-energy region a greater
part of the wave function will be supported near the barycenter and this
gives sufficient separation between the wave function which belong to different
clusters.

Since the range of the potential is short this will lead to asymptotic inde-
pendence. We will take advantage from the fact that all operators which enter
the estimates are bounded and therefore it is sufficient to give estimates for a
dense subspace.

Estimates (29) e (30) are easy to interpret but have rather elaborated
proofs.

We shall in the following , give some elements of their proofs and use them
for the conclusion of the proof of asymptotic completeness. Let us remark
that, if one assumes the existence of the wave operators Ω± , from (29) , (30)
follows

Lemma 12.1
For every value of m

limn→∞‖(Ω− − I)ψout(m)‖2 = 0, limn→∞‖(Ω+ − I)ψin(m)‖2 = 0,
(12.31)

♦

Proof
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We prove only the first relation; the second is proved in the same way. On
each sector one has

|(Ω− − I)ψoutn (m)|2 ≤
∫ ∞

0

dt|V e−itH0ψoutn (m)|2

≤ ‖V (H0 + I)−1‖
∫ ∞

0

|ξ(|x| ≤ n+ at)e−itH0(H0 + I)ψoutn (m)+

‖(H0 + I)ψoutn (m)‖
∫ ∞

0

dt‖V (H0 + I)−1ξ(|x| > n+ at)‖ (12.32)

Estimate (29) implies that the first term goes to zero if n→∞; the second
term vanishes in this limit due to the fact that the potential is short range.

♥

Lemma 12.1 implies that ψinn (m) and φn tend to become orthogonal in the
limit n→∞. In fact

|(ψinn (m), φn)| ≤ |(I −Ω+)ψinn (m)|2 + |(eitH0τnψinn (m), Ω∗+φ)| (12.33)

The second summand to the right is bounded by

‖ξ(|x| ≤ n+ aτn)eiτnH0ψinn (m)‖2 + ‖ξ(|x| > n+ aτ)Ω∗+φ‖2 (12.34)

The second term decreases to zero, and so does the first as can be seen
using estimates analogous to those that lead to the proof of (29), (30).

We complete now the proof of asymptotic completeness by proving that
there are no states that belong to the continuous spectrum of H and are
orthogonal to the range of Ω−.

Since the range of Ω− contains every state that belongs to the absolutely
continuous spectrum of H this shows that the singular continuous spectrum
of H is empty.

Assume then that there exists φ which is in the continuous spectrum of H
and orthogonal to the range of Ω−. Then this is true for every φn.

On the one hand, every one of the φinn (m) belongs to the range of Ω−. On
the other hand, φn is well approximated by the sum of ψoutn (m), m = 1 . . .M.

Since these states belong to the range of Ω− we get a contradiction. In the
same one shows that φ belongs to the range of Ω+.

We now give an outline of the proof of (29) , (30). We shall reduce the
problem to the one-.dimensional case and then make use of the explicit form
of the free propagator. Remark that the ball |x| ≤ n+ at is contained in the
half-plane (u, x) ≤ (n+ at) for each unit vector u.

We write any function ζm(p) as sum of a finite number of functions
ξm,k(p) ∈ D each with support in a cone with axis wm,k and we choose the
axes in such a way that

supp ξm,k(p) ∈ {p ∈ Rd, (p, wm,k) ≥ 2a} (12.35)
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A simple but laborious geometric analysis shows that this can be achieved.
Estimate (29) follows then form the following simple estimate valid for each
value of the indices m and k

limn→∞

∫ ∞
0

dtη(x < n+ at)eitH0(H0 + I)F0(Cnm)ξm,k(p)ψn|2 = 0 (12.36)

To simplify notation, in each sector we call axis 1 the axis wm.k. This pro-
cedure allows us to do the estimate for a state well localized in a neighborhood
of the x1 = 0 plane and with Fourier transform supported in [a, b]. Remark
that

∑
s>1 p

2
s commutes with ξ(|x1| < n+ at); therefore we are reduced to an

estimate in one dimension. In this case we have the explicit form of the free
propagator

(e−itH0)φ(x) = (2πit)−
1
2 ei

x2
2t

∫
[1 + i

y2

2t
− 1

2
(
y2

2t
)2]e−i

xy
t φ(y)dy (12.37)

Using this information and other of similar nature (see, e.g. [8]), recalling
that by assumption the energy spectrum belongs to [a, b] and making separate
estimates for the regions corresponding to 2n + m < x1 < 2n + m + 1 it is
possible to prove

|ξ(x1 < n+ at)e−itH0(H0 + I)ηm,k(p)ψn|2 ≤ C[(1 + t)(n− 1 + at)]−1 (12.38)

This completes the proof of (29.) The proof of (30) is analogous .

12.5 The method of Mourre

We now outline a procedure followed by E.Mourre [4] to prove asymptotic
completeness for potential scattering. The origins of this methods are in Enss’
method and in the smoothness and dispersive estimates of T.Kato.

The method has been generalized [5] in particular to cover asymptotic com-
pleteness and spectral structure in the quantum mechanical N-body problem.
The generalizations have various names (double commutator method, [9][10]
, subordinate operators, weakly conjugate operators , ...) .

Mourre’s metod aims at providing estimates through which one can derive
the absence of singular continuous spectrum and the asymptotic behavior (in
time) of the states which belong to the absolutely continuous part of the
spectrum of the Hamiltonian.

The method of Mourre and its generalizations are now the standard tools
in the recent mathematical literature on scattering theory in Quantum Me-
chanics.

Mourre’s method is similar to Enss’ method, but it uses more effectively
the generator of dilations to produce a partition of the Hilbert space L2(R3)
that depends on two parameters: time and a dilation factor.
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This provides a convenient partition in outgoing and incoming states and
gives a link between geometric scattering theory and the more traditional
approach of time dependent scattering theory.

The aim is, as in Enss’ method, to prove that every state that belongs
to the continuous spectrum of the hamiltonian H is well approximated by an
outgoing state at times sufficiently remote in the future and by an ingoing
state at times sufficiently remote in the past.

In Mourre’s method the partition is given by the spectral decomposition
of the dilation operator D ≡ 1

2 (x.p̂ + p̂.x). One can notice that on a dense
subset of H (the domain of the operator ln|p̂|) the following relation holds

eiλDln |p̂|e−iλD = ln |p̂|+ λ I (12.39)

so that the operators ln |p̂| and D are a pair of canonical variables in the
sense Weyl. This simplifies the estimates.

Moreover, noting that eiλ ln |p| = |p|iλ one is led to introduce the Mellin
transform and therefore to describe the wave function φ as a function of |p|
and a direction ω ∈ S3 as follows

φ̃(λ, ω) =
1√
2π

∫
d|p|
|p|
|p| 32 |p|iλφ̂(|p|, ω) (12.40)

Remark that for any measurable function F on R

F (D)φ̃(λ, ω) = F (λ)φ̃(λ, ω) (12.41)

With this notation it is easy to construct the projection operators P+ and
P− one the positive (resp.negative) part of the spectrum of D.

One can see that this definition is not equivalent to the one in Enss’
method, Elements of the form ξj(x)ηj(p̂)φ are localized (in the spectral rep-
resentation of D) near the point (xi.pj) but their localization becomes weaker
when |pj | and |xi| increase.

The fact that D and H do not commute will imply that the flow of H
will conserve only approximately the decomposition of the Hilbert space in
incoming and outgoing states. A crucial role in this respect is played by the
commutators [H0, D] and [H.D].

12.6 Propagation estimates

Definition 12.1 (propagation estimates)
Let A be a self-adjoint operator in the Hilbert space H. We shall say that

H0 satisfies propagation estimates (or dispersive estimates) with respect to A
if there exists constants s > s′ > 1 such that for every function g ∈ C∞0 (R)
the following estimates hold

|(1 +A2)−s/2e−itH0 g(H0) (1 +A2)−s/2| ≤ c(1 + |t|)−s
′
∀t ∈ R (12.42)
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|(1 +A2)−s/2e−itH0 g(H0) P±A | ≤ c(1 + |t|)−s
′
∀ ± t > 0 (12.43)

where we have denoted by P+
A the projection on the positive part of the

spectrum of A and we have used the notation P−A ≡ I − P
+
A .

♦
Often it is convenient to use a local version. In the local version one requires

only that the estimate be satisfied for all functions g ∈ C∞0 (I0) where I0 is an
open interval. In this chapter we will use always the global version (42) and
(43).

Definition 12.2 (short range)
Let A be a self-adjoint operator. The potential V is said to be a short

range perturbation of H0 with respect to A if for H = H0 + V one has
i) The operator

(H + i)−1 − (H0 + i)−1 (12.44)

is compact.
ii) There exist a real number µ > 1 and integers k, j ≥ 0 such that the
operator

(H + i)−j V (H + i)−k (1 +A2)µ/2 (12.45)

extends to a bounded operator in H.
♦

The abstract theorem we will use is

Theorem 12.2
Assume that there exists a self-adjoint operator A such that H0 satisfies the
propagation estimate with respect to A and suppose that V is a short range
perturbation of H0 with respect to A. Let H = H0+V. Then the wave operators
W±(H,H0) exist and are asymptotically complete.

♦

Often in the application the operator A is the generator of the group of
dilations. This leads to identify the range of A+ with the outgoing states. In
other cases a different choice of A is useful. For example in the case of the
hamiltonian

H = −∆+ f.x1 f 6= 0

which is used to discuss the Stark effect, a useful choice is A = i
f

∂
∂x1

. This
Hamiltonian has an absolutely continuous spectrum which covers the entire
real axis. In this case one has i(HA−AH) = I on a dense set of vectors which
are analytic and invariant for both operators.

Proof of Theorem 12.2
We begin proving the existence of W+(H,H0). For W−(H,H0) the proce-

dure is similar. For the standard Cook-Kuroda argument it suffices to prove∫ ∞
0

|(H + i)−j V e−itH0 g(H0) ψ|2dt <∞ (12.46)
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Making use of (42) and (43) one has

|(H + i)−j V e−itH0 g(H0) ψ|2 ≤

‖(H+i)−j V (H+i)−k(1+A2)µ/2‖|(1+A2)−µ/2(H+i)ke−itH0 g(H0) (1+A2)−s/2ψ‖2
(12.47)

Remark that (H+ i)k (H0 + i)−k is a bounded operator which differs from
the identity by a compact operator and that one can substitute g(H0) with
f(H0) ≡ (H0 + i)jg(H0) since both belong to C∞0 .

The operator eitH0 g′(H0)ψ tends weakly to zero when t → ∞ and this
convergence is preserved under the action of a compact operator; therefore

|(H + i)−j V e−itH0 g(H0) ψ|2 ≤

‖(H+i)−j V (H+i)−k(1+A2)µ/2‖|(1+A2)−µ/2e−itH0 f(H0) (1+A2)−s/2ψ|2

≤ (1 + |t|)−s
′

(12.48)

This proves existence of W+(H,H0).
We begin the proof of asymptotic completeness by proving that the oper-

ators
g1(H) (W± − I) g2(H0)P±A (12.49)

are compact if g1, g2 ∈ C∞0 . This follows from

g1(H) (eitH e−itH0 − I) g2(H0)P±A =
∫ t

0

g1(H) eiτH V e−iτH0 g2(H0)P±A dτ

(12.50)
where the integrand is norm continuous and compact. Therefore also the in-
tegral is a compact operator. For τ > 0 we have the estimates

‖g1(H) eitH V e−itH0 g2(H0)P±A ‖ ≤

‖g1(h) V (H0 +i)−k(1+A2)s/2‖ ‖(1+A2)−s/2e−itH0 g′2(H0)P+
A ‖ ≤ (1+ |t|)−s

′

(12.51)
It follows that also the limit t→∞ exists and defines a compact operator.

Compactness of g(H) − g(H0) and the intertwining properties of the wave
operators imply that from the compactness of

g1(H) (W± − I) g2(H0)P±A (12.52)

one can derive the compactness of

(W± − I) g(H0)P±A , g(H) (W± − I) P±A (12.53)

To prove asymptotic completeness we first prove that σs(H) ∩ I0 is a
discrete set in every bounded open interval I0 ⊂ R. This implies the singular
continuous spectrum is empty and that there at most denumerably many
eigenvalues and they have finite multiplicity
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Let J ⊂ I0 be relatively compact and let g ∈ C∞0 , g(λ) = 1, λ ∈ J. Since
always Range(W±) ⊂ H⊥s , one has always Ps(H) W± = 0. Therefore

Ps(H)EH(J) = Ps(H)EH(J)g(H) = Ps(H)EH(J)g(H)(P+
A + P−A )

= Ps(H)EH(J)g(H)(I −W+)P+(A) + Ps(H)EH(J)g(H)(I −W−)P−(A)
(12.54)

¿From (54) it follows that Ps(H)EH(J) is compact, and then, being a
projection operator, is is of finite rank. We can now prove

Range(W±) = Ha.c.(H) (12.55)

For every open bounded interval we have shown that I0/σp(H) is an open
set. Let now g ∈ C∞0 (I0/σp(H)). We must prove

s− limt→±∞e
itH0e−itHφ = W ∗± φ φ ∈ Ha.c. (12.56)

The procedure we follow is a typical localization procedure in the spectrum
of H. Choose φ ∈ Ha.c. such that φ = g(H)φ and compute

‖etH0e−itHg(H)φ−W ∗+g(H)φ‖2 =

‖((P+
A + P−A )eitH0e−itHg(H)φ−W ∗+g(H)φ)‖2 ≤ A+(t) +A−(t) (12.57)

where A±(t) ≡ |P±A (I −W ∗+)g(H)e−itHφ|2. (we have made use of the inter-
twining properties of W±).

The operator P+
A (I − W ∗+) is compact and e−itHφ converges weakly to

zero. Therefore limt→∞A+(t) = 0. On the other hand one has

A−(t) ≤ ‖P−A e
−itHg(H)φ‖2 + ‖P−A e

−itH0W ∗+g(H)φ‖2 (12.58)

and the propagation estimates (43) and (44) imply

s− limt→∞P
−
A e
−itH0g(H0) = 0 (12.59)

¿From W ∗+g(H)φ = g(H0)W ∗+φ and from (54) we deduce that the second
term in (57) converges to zero in the limit t→∞. But

|P−A e
−itHg(H)φ| ≤ P−AW

∗
−e
−itHg(H)φ|+ |P−A e

−itH(I −W ∗−)g(H)φ| (12.60)

and by (56) both terms converge to zero in the limit t→∞. This completes
the proof of Theorem 12.2.

♥

We give now an indication of the procedure one may follow to prove the
propagation estimates (43) and (44) that we have used in the proof of asymp-
totic completeness. Consider first the case H0 = −∆ on H ≡ L2(Rn) and
choose for A the dilation operator A = i

2 (∇.x+ x.∇).
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Lemma 12.3
The operators H0 and A satisfy for every s > s′ > 0 the estimates (43)

and (44).
♦

Proof
By means of functional calculus define K0 ≡ logH0. Making use of Fourier

transform it is easy to prove that on a common domain of essential self-
adjointness which is invariant under the action of both operators one has
i(K0A−AK0) = 2I and therefore

eitH0Ae−itH0 = A+ 2tI (12.61)

This implies the desired propagation estimates (43), (44) . Moreover that
P∓A e

−itK0P±A = 0 ∀ ± t > 0. To see this, apply the uni-dimensional Mellin
transform that we now briefly recall.

In momentum space the term e−itH0g(H0) reads

e−itp
2
g(p2) ≡ (p2)−itg(p2) (12.62)

Let g ∈ C∞0 (R+). An easy application of the non-stationary phase theorem
(see lecture 8) proves that the function

Gt(λ) =
1

2π

∫ ∞
0

e−itρg(ρ)ρ−iλ−1dρ (12.63)

satisfies the following estimates, where CN are suitable constants

|Gt(λ)| ≤ CN |t|−N (1 + |λ|)N ∀t ∈ R, ∀N ≥ 1 (12.64)

|Gt(λ)| ≤ CN (1 + |t+ λ|)N ∀t, λ > 0 ∀N ≥ 1 (12.65)

¿From (64), (65) follows for s > 1

|(I+A2)−s/2e−itK0(I+A2)−s/2| ≤
∫ ∞
−∞

Gt(λ)(1+|t|)−sdλ ≤ CN,s|t|−N ∀t ∈ R

(12.66)
if N < s− 1. Moreover one has

(I +A2)−s/2e−itH0g(H0)P+
A = Gt(λ)(I +A2)−s/2Hiλ

0 P+
A dλ (12.67)

The contribution to the integral of the region λ < 0 is estimated with (67)
and provides the bound

‖
∫ 0

−∞
Gt(λ)(I +A2)−s/2Hiλ

0 P+
A dλ‖ ≤ CN,s|t|

−N (12.68)

The contribution to the integral for positive values of λ is estimated for
every m > 1 making use of (68)
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‖
∫ ∞

0

Gt(λ)((1 +A2)−s/2Hiλ
0 P+

A dλ‖ ≤ c
∫ ∞

0

(1 + t+ λ)−Ndλ ≤ ct−N+1

(12.69)
The proof of Lemma 12.3 is then completed for any value of 1 < s′ < s by

interpolation using the estimates (68) e (69).
♥

12.7 Conjugate operator; Kato-smooth perturbations

The procedure we have followed to prove asymptotic completeness in the
case of short range potentials is a particular case of the method of conjugate
operator [4][10][14].

The conjugate operator method is used to deduce the spectral properties
on an open part Ω ∈ R of the spectrum of a self-adjoint operator H from the
existence of another self-adjoint operator A with suitable properties. In the
applications to scattering theory the operator A is usually the generator of
the dilation group.

The method has its roots in T.Kato’s theory of smooth perturbations. We
shall briefly review this theory following [8]

Definition 12.3
Let H be a self-adjoint operator on a Hilbert space H with resolvent

R(µ) = 1
H−µI . Let A be a closed operator. The operator A is called H-

smooth iff for every ψ ∈ H and for every ε 6= 0 the vector R(λ+ iεψ belongs
to D(A) and

‖A‖H ≡ sup|ψ|2=1, ε>0
1

4π

∫ ∞
−∞
‖AR(λ+ iε)ψ2 +AR(λ− iε)ψ2‖2dλ <∞

(12.70)
♦

It is convenient for what follows to formulate H-smoothness in different
ways using the following generalization of Plancherel Lemma.

Lemma 12.4
Let ψ be a weakly measurable function from R to the separable Hilbert space
H such that

∫
|φ|2dx <∞.

Define ψ̂ : R→ H by

ψ̂ =
1√
2π

∫
e−ipxψ(x)dx (12.71)

Then ∫
|Aψ̂(p)|22dx =

∫
|Aψ(x)|22dx (12.72)
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where by convention the integrals are set to be ∞ if either ψ̂ or ψ are not in
the domain of H.

♦

Proof
We give only an outline of the proof. Given a family ψ(x) ∈ H x ∈ R let A

be a bounded operator. For any φ ∈ H we have that (φ,Aφ̂(p)) ≡ (A∗φ, ψ(p))
is the Fourier transform of the function (A∗φ, ψ(x)). Therefore by Plancherel
lemma ∫

|(φ,Aψ̂(p))|2dp =
∫
|(φ,Aψ(x))|2dx (12.73)

if either integral is finite. Summing over an orthonormal basis gives (72).
If A is self-adjoint consider first the operator E[−N,N ]A where EI is the

spectral projection on the interval I.
Then (72) ) applies to the bounded operator E[−N,N ]A and if both ψ̂(p)

and ψ(x) belong to the domain of A for all x, p ∈ R1. An easy limit procedure
gives (72) for A.

Finally, if A is unbounded and not self-adjoint, there is a self-adjoint oper-
ator |A| (formally |A| =

√
A∗A such that D(|A| = D(A) and ||A|φ|2 = |Aφ|2.

Thus (72) follows from the self-adjoint case.
♥

We can now reformulate H-smoothness in terms of the unitary group eitH .

Lemma 12.5
The operator A is H-smooth iff for all ψ ∈ H one has eitHψ ∈ D(A) and

for almost all t ∈ R ∫ ∞
−∞
|AeitHψ|22dt ≤ (2π)‖AH‖2|ψ|22 (12.74)

♦

Proof
Fix ε > 0. One has∫ ∞

0

e−εteiλte−itHφdt = −iR(λ− iε)ψ (12.75)

By Lemma 12.4∫ ∞
−∞
|AR(λ+ iε)ψ|22dλ = 2π

∫ ∞
0

e−2εt|Ae−itHψ|22dt (12.76)

Taking the limit ε→ 0 proves lemma 18.5
♥

The connection between A-smoothness and the spectral properties of H is
given by the following theorem.
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Theorem 12.6
If A is H-smooth then RangeA∗ ⊂ Hac(H).

♦

Proof
Let ψ ∈ D(A∗) set φ = A∗ψ and let dµφ be the spectral measure for H

associated to φ. Define

F (t) =
1√
2π

∫
e−itxdµφ(x) =

1√
2π

(A∗ψ, e−itHφ) (12.77)

Then |F (t)| ≤ 1√
2π
|ψ|2|Ae−itHφ|2. By Lemma 12.4 F̂ belongs to L2(R3)

and dµφ is absolutely continuous with respect to Lebesgue measure.
♥

We describe now briefly the Kato-Putnam theorem, which links Kato
smoothness with commutator estimates.

Theorem 12.7 (Kato-Putnam ) [4][10][15]
Let A and H be self-adjoint operators. Suppose C ≡ i[H,A] is positive.

Then C
1
2 is H-smooth. If Ker C = {0} then H has purely continuous spec-

trum.
♦

Proof
The second statement follows from the first and Theorem 12.6 by noting

that
Ker
√
C = (Range

√
C)⊥ = {0}. (12.78)

For the first statement , compute d
dt [e

itHAe−itH ] = eitHCe−itH and then
use∫ t

s

(φ, eiτHCe−iτHφ)dτ = (φ, eitHAe−itHφ)− (φ, eisHAe−isHφ) (12.79)

Therefore ∫ t

s

|
√
Ce−iτHφ|22dτ ≤ 2‖A‖|φ|22 (12.80)

Since t and s are arbitrary it follows that
√
C is H-smooth and ‖

√
C‖2H ≤

‖A‖
π .

♥

A generalization of this Theorem has been given by Putnam; his method,
that we shall call positive commutator method, allows to deduce various esti-
mate for the resolvent of H from the positivity of a commutator

PI(H)[H, iA]PI(H) ≥ aPI(H) a > 01 (12.81)

where I is an open finite set contained in the spectrum of H.
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12.8 Limit Absorption Principle

Among the conclusion one can draw which have relevance in scattering theory
is the limit absorption principle

supz∈J±‖(1 +A2)−s/2(H − z)−1(1 +A2)−s/2‖ <∞ (12.82)

for every closed interval J ⊂ I and every s > 1
2 .

One makes the following assumptions on the operator A
i) The map

s→ e−isAf(H)eisAφ (12.83)

is twice continuously differentiable for every f ∈ C∞0 (I) and every φ ∈ H. We
will use the notation H ∈ Ck(A) when the map (83) is k-times differentiable.
ii) For every λ ∈ I there exist a neighborhood ∆ strictly contained in I and
a positive constant a such that

E∆(H)[H, iA]E∆(H) ≥ aE∆(H) (12.84)

where E∆ is the spectral projection of H relative to the interval ∆.
Remark that due to i) the commutator [H,A] is well defined as quadratic

form on the union ∪KEK(H)H where the union is taken over all compact set
which are contained in ∆.

In [4][10] the following results are obtained.
a) For all s > 1

2 and every φ, ψ ∈ H, uniformly for λ in every compact subset
of I, the limit

limε→0+(ψ, (I +A2)−
s
2

1
H + λ± iε

(I +A2)−
s
2φ) (12.85)

exists. This implies in particular that the spectrum of His pure absolutely
continuous in I.
b) If 1

2 < s < 1 and f ∈ C∞0 then

‖ < A >−s e−itHf(H) < A >−s ‖ = O(t
1
2−s (12.86)

These decay estimates play an important role in the proof of asymptotic com-
pleteness.
c) Under the further assumption that H ∈ C4(A) for every closed interval
J ⊂ I

supz∈J±‖P±(A)(H − z)−1P∓(A)‖ <∞ (12.87)

where P±(A) is the spectral projection of A on its positive (resp. negative)
part. In case A is the dilation operator P±(A) is interpreted as projection over
the outgoing (resp.incoming) states.

For details and further results one can consult the references to this Lec-
ture.
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12.9 Algebraic Scattering Theory

We end this Lecture with a brief description of the analysis of scattering
processes which can be performed in the Heisenberg representation. The role
of the group of spacial dilations can be seen also in this representation by
studying the asymptotic behavior of the expectation values of the observables.

This possibility has been emphasized by K.Hepp [11] and others, especially
D.Ruelle [14 ] H-Araki [13] , and has been given a central role by V. Enss [12]

Algebraic Scattering has a less ambitious program than the scattering
theories we have analyzed so far. It does not aim at proving existence and
completeness of the Wave operators but considers only the asymptotic behav-
ior for t→ ±∞ of the expectation values of relevant observables in scattering
states which by definition are the the state in the continuous part of the
spectrum of the Hamiltonian H.

Recall the the Wave operators WH,H0 exist only if there are no singular
part in the continuous spectrum of H. One of the typical results of Algebraic
Scattering Theory is the proof that

ψ ∈ Hcont(H)→ limt→∞
mx

t
e−iHtψ = 0 (12.88)

It is shown [11][12][14] that under mild conditions on the potential V this
result holds; the conditions are not strong enough to prove the existence of
the wave Operators.

The potential V may contain a long range part Vl and a short range part
Vs The long range part must satisfy

lim|x|→∞Vl(x) = 0, lim|x|→∞x.∇Vl(x) = 0 (12.89)

The sort range part Vs of the potential may have a part Vs,1 that is Kato
small with respect to H0 but also another part Vs,2 which describes highly sin-
gular perturbations and that may be responsible for the presence of a singular
continuous part in the spectral measure of H. The theory requires that

D(H0) ∩D(Vs) ∩D(|x|2) (12.90)

be dense in H. For the short range part Vs(x) of the potential it is required
that

(H0 − z)−
1
2 (1 + |x|2)

1
2Vs(x)(H0 − z)−1 ∈ K (12.91)

where z is a sufficiently negative negative number which is in the resolvent set
of the three operators H, H0 , H0+Vl and K is the class of compact operators.

Notice that the decay conditions on Vl are weaker that the integrability
conditions under which the Wave operators exist. It allows e.g. the potential
Vl(x) = ξ(|x| ≥ 1)(|x|log|x|)−1 where ξ is the indicator function.

The proofs are much simplified if one makes the stronger assumption

(1 + |x|) 1
2Vs(H0 − z)−1 ∈ K (12.92)
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Let P cont be spectral projection on the continuous part of the spectrum of
H. Denote by D = 1

2 (p.x+ x.p) the generator of space dilations. Under these
assumptions one proves [11][12]

Theorem 12.8
Let H = H0 + V satisfy the assumptions above. Then in the sense of strong
resolvent convergence one has

lim|t|→∞
mx2(t)

2t2
= HP cont (12.93)

lim|t| → ∞D(t)
t

= 2HP cont (12.94)

♦

One has also

Theorem 12.9
Let f be Fourier transform of an integrable function. Then

lim|t|→∞‖[f(m
x

t
− f(p)]e−itHψ‖ = 0 (12.95)

if P contφ = φ.
♦

The evolution of the observables is given by the Heisenberg equation of mo-
tion This is the basis of the algebraic scattering theory [13] [14] extended later
to Quantized Field Theory and to the Algebraic Theory of Local Observables.

Algebraic scattering theory gives less information in the context of Quan-
tum Mechanics because some important tools are not directly available.

On the other hand, in an infinite-dimensional context (Quantum Field
Theory) , in absence of a Schroedinger representation, it is the only instrument
available. In this approach one studies asymptotic fields that acting on the
vacuum generate states that evolve according to the free hamiltonian.

One can find in [15] a general outline of the study of asymptotic complete-
ness in Quantum Mechanics through the study of the asymptotic behavior of
suitable class of observables.

It can be proven that the temporal evolution in the Heisenberg represen-
tation of a suitable class of observables under Hcont for very long times differs
little from the evolution under H0.

In the infinite dimensional case the observable fields can be asymptoti-
cally described in term of free fields. By studying the asymptotic behavior of
suitable observables one can show e..g.

Theorem 12.10
If D(H0) = D(H) for every f ∈ C∞(R) and every φ ∈ Hcont(H) one has
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i)

limt→∞f(
x(t)2

t2
)φ = f(2H)φ (12.96)

ii)

limt→∞f(
A(t)
t

)φ = f(2H)φ

limt→∞f(H0(t))φ = f(H)φ (12.97)

♦

V. Enss uses a similar method but, working as he does in the Schroedinger
representation, he obtains accurate asymptotic estimates for the asymptotic
behavior of the solutions. For example one can prove the following theorem

Theorem 12.11 [12]
Let H = H0 + V, H0 ≡ −∆ with V Kato small with respect to H0. If

(H0 − z)−
1
2 (1 + |x|2)

1
2V (Hz)−1 ∈ K (12.98)

one has, in strong resolvent sense

lim|t|→∞
x2(t)
t2

= HPcont lim|t|→∞
D(t)
t

= 2HPcont (12.99)

♦

We do not here give the proof of this Theorem, but remark the following
corollary:

Corollary
If φ belongs to the continuum subspace of H then

i)

lim|t|→∞|(I − ξ(v1t < x < v2t)e−itHξ(v2
1 < H < v2

2)φ|2 = 0 (12.100)

ii)
∀R lim|t|→∞|ξ(|x| < R)e−itHφ|2 = 0 (12.101)

♣
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Lecture 13
The N-body Quantum System: spectral
structure and scattering

We shall make use of the methods outlined above to study the quantum N -
body problem in its general aspects and in the asymptotic behavior. For a
more complete analysis and further references we refer to [1] [2] [3][4]

The quantum N -body system is a collection of N particles with masses
{mk} , mk > 0 interacting among themselves through potential forces. The
system is described by a wave function Φ(x), x = x1, ..xN xk ∈ R3.

Introducing in R3N the scalar product < x, y >≡
∑
kmk(xk, yk) the clas-

sic kinetic energy of the system is T = 1
2 < ẋ, ẋ >. With a suitable of units

we write the Schroedinger operator as

H = −1
2
∆+ V (x), x ∈ R3N (13.1)

and assume that V is invariant under translations of each argument in R3 .
In this case the motion of the center of mass is free and the Hilbert space has
a natural decomposition

H ≡ L2(R3)⊗ L2(X), X ≡ {x1, ..xn}, xk ∈ R3,
∑
k

mkxk = 0 (13.2)

This decomposition is invariant for the evolution generated by H. We shall
assume that the potential has the structure

V (x) =
∑
i<k

Vi,k(xi − xk), lim|y|→∞Vi,k(y) = 0 (13.3)

It important to notice that (3) does not imply lim|x|→∞V (x) = 0 because
there may exist directions in which xi − xk, xi 6= xj remains bounded for
some values of the indices.

This corresponds to our intuition that a N -particle system can be studied
mathematically only if one finds first a mechanism through which in corre-
spondence to some initial data the systems can be subdivided, asymptotically
in time, into isolated subsystems.
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It follows that to study mathematically the asymptotic behavior in time
of the system one must find directions which correspond to fragmentation
in subsystems. This requires to a description of the system not only with
functions on the configuration space (R3)N but with functions on subspaces
corresponding the the possible fragments.

13.1 Partition in Channels

This task can be accomplished by the introduction of N unit vectors ak ∈
R3, k = 1, ..N and by an analysis of the fragmentations that correspond to
the translation xk → xk + λak for λ very large.

Of course complete fragmentation is obtained only in the limit λ→∞ but
the assumptions we shall make on the potentials Vi,k will guarantee that the
error made is negligible if λ is taken sufficiently large.

Notice that if ak = ah the difference xk − xh is invariant under the given
translation. The clusters of particles are therefore described by closed sub-
spaces ΛIi,..Is of R3N defined by

ΛI1,..Is ≡ {a ∈ R3N , k = 1, ..s {i, j} ∈ Ik ↔ ai = aj} (13.4)

where Ik are disjoint collections of indeces.
Within one of these subspaces the translation considered are rigid trans-

lations of the set of points which correspond to the given partition. This
partition in channels will allow the study of the asymptotic behavior of the
entire system considering separately its projection on the different channels.

The subsets ΛΣ1,..Σn are a ortho-complemented lattice L′ closed under
intersection and such that ∅ ∈ L′. We shall always use the reference system in
which the center of mass is at rest in the origin and therefore we shall always
refer to the lattice L obtained by intersecting L′ with X. Notice that for every
P ∈ L one has a unique orthogonal decomposition

X = P ⊕ P⊥ (13.5)

and therefore every x ∈ X can be decomposed it in a unique way as

x = xP + xP , xP ∈ P, xP ∈ P⊥ (13.6)

The coordinates xP are relative coordinates within each cluster, the coor-
dinates xP are the coordinates of the center of mass of each cluster. Therefore
one will set

∑
kMkx

P
k = 0 where we have denoted by Mk the total mass of the

kth cluster. For example if N = 4, the cluster P is described by {1, 2}, {3, 4}
and the particles have equal mass m one has

xP = (η,−η), xP = (xi −
1
2
η, x2 −

1
2
η, x3 +

1
2
η, x4 +

1
2
η) (13.7)
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where we have denoted by η, −η the coordinates of the centers of mass of
the two clusters. Notice now that for each partition P one can write

V (x) = V P (xP ) +RP (x) |RP | ≤ f(|xP |), f(s)s→∞ → 0 (13.8)

The term RP is the sum of the potentials between pairs of bodies which do
not belong to the same cluster (and therefore by assumption lim|x|→∞RP (x) =
0) while the term V P is the sum of potentials between pairs of bodies which
belong to the same cluster. Define

HP ≡ H −RP = −1
2
∆+ V P (xP ) (13.9)

We expect that HP describes with fair approximation the motion of the
system when the distances between the clusters defined by the partition P
become very large.

Therefore we expect that almost every initial datum φ one can associate
functions φP , P ∈ L which depend only on the xP and are such that for times
t very large one has approximately

e−iHtφ '
∑
P

e−iHP tφP (13.10)

We therefore expect that for almost all initial data in the remote future
(and past) the system can be described as decomposed into aggregates (may
be not the same in the past as in the future) each of which describes the
motion of the cluster of material points which interact among themselves and
remain approximately localized in a finite region of space.

To prove that this is the case it will be necessary (see [3][4][5]
a) To provide propagation estimates in order to show that for each initial
datum φ the decomposition (4) becomes more and more accurate when t
increases.
b) To provide separation estimates in order to show at times remote in the
future the clusters at a large distance form each other.

In order to obtain these estimates one needs a regular decomposition (e.g.
by C∞ functions) of configuration space which at very large distance on a
suitable scale tends to coincide with the partition in the elements P of L.

This decomposition is achieved through functions of class FP ∈ C∞; these
are functions which sum up to one everywhere and are mollifiers of the indi-
cator functions associated to the given partition.

The functions FP may be time dependent and may converge for t→∞ in
a suitable sense to indicator functions.

The possibility to achieve these goals depends on the possibility to provide
accurate estimates on the spatial behavior of e−iHtφ for very large times This
estimates are linked to compactness estimates for the integral kernel of the
operator (H − z)−1, z ∈ C/R and are somewhat related to the uncertainty
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principle which provides, at each instant of time, a lower bound for the product
of the dispersions of e−iHtφ in position and momentum.

The partitions introduced above permit to extend to the N -body problem
the estimates typical of the methods of Enss and of Mourre. We remark that
the possibility to use these estimates makes the quantum N -body problem
much easier that the corresponding classical one. Indeed in the classical case
the decomposition along asymptotic directions is too fine and this makes a
measurable decomposition impossible.

13.2 Asymptotic analysis

In Quantum Mechanics the Hilbert space in which the system will be studied
is

K ≡ ⊕α1,..αK ⊗ L2((R3)nαk ) (13.11)

where K is the number of channels , αk denotes a generic channel and nαk is
the number of particles in channel αk.

It is clear that if at least two channels exist, the Hilbert space K is not
isomorphic in a natural way to L2((R3)N ) and rather contains this space as
proper subspace. Therefore the analysis we will make will be an asymptotic
analysis adapted to scattering theory.

For example in the case N = 3 the possible channels are labeled

{1, 2, 3}, {1, 2}{3}, {1}{2, 3}, {1, 3}{2}, {1, }{2}{3} (13.12)

In this case one has

K = L2(R3)⊕ [L2(R3)⊗ L2((R3)2)]3 ⊕ L2((R3)3) (13.13)

The first channel correspond to bound states of the system, the three next
channels correspond to the case in which two of the particles form a bound
state and a third particle is asymptotically free and the remaining channel
corresponds to asymptotic states in which the three particles do not interact
with each other. Of course for some system one or more of these channels may
not be present.

To fix ideas, we can think of the system composed of the Helium nucleus
and of two electrons. In this case the first channel will be composed of the
states the Helium atom, the second and third will be parametrized by the
states of singly ionized Helium atom and a free electron, the fourth cannel
will not be present (it would consist of a bound state of the two electron
a free Helium nucleus, and the fifth channel will be composed of two free
electrons and a free Helium nucleus.

These parametrizations (except for the first) refer to scattering states .
As a consequence there are two distinct parametrizations which refer to the
behavior in the remote past and in the distant future. They are both valid
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but, e.g. , a state which belongs to a channel composed on the remote past of
a free electron and a singly ionized He atom may in the remote future have a
components in the same channel and a component in a channel described by
two free electrons and a Helium nucleus.

This explains the greater difficulty in the treatment of the N -body prob-
lem, N ≥ 3 as compared to the case N = 2 and to potential scattering.

Before entering, even briefly, into the study of the N -body problem let us
recall some general properties of the Schroedinger operator.

13.3 Assumptions on the potential

We shall make always the assumption that V be locally in L2(X) and belongs
to Kato class, i.e. there are numbers 0 < α < 1 and β > 0 such that

|V φ|2 ≤ α|∆φ|2 + β|φ|2 ∀φ ∈ C∞0 (X) (13.14)

Let us recall that if V belongs to the Kato class then H ≡ −∆ + V
is (essentially) self-adjoint, bounded below and has the same domain as ∆.
Notice that V ≡

∑
i<j Vi,j(xi− xj) is in L2

loc if Vi,j are in L2(R3) and that V
is of Kato class if for all j, i the potentials Vi,j(y) are of Kato class.

In this case Kato theorem assures then that the quantum dynamics of the
N -body system is well posed . Through the spectral representation of H the
energy distribution of the state φ is well defined.

The Hilbert space is the direct sum of the subspace HB related to the
point spectrum of H and of the subspace HC in which the spectral measure
is continuous. This can be repeated for each of the Hilbert spaces and Hamil-
tonians for the different channels. Notice that corresponding to each channel
(partition) P one has

H = HP +RP , |RP | ≤ f(|xP |), lims→∞f(s) = 0 (13.15)

where HP is the hamiltonian of a N -body system in which one neglect all
forces between particles belonging to different clusters. Therefore the hamil-
tonian HP is the sum of operators Hk which act independently on the direct
product of the Hilbert spaces associated to each cluster.

Each operator Hk satisfied the condition for the applicability of Ruelle
theorem. This theorem implies that, under the assumptions made on V , if
f ∈ L∞, lim|x|→∞f(|x|) = 0 and for all z ∈ ρ(H) the operator f(x)(z−H)−1

is compact. Denoting by ξ(R) the indicator function of the ball of radius R in
Rd we have

i) φ ∈ HB ↔ limR→∞|(I − ξ(R))e−iHtφ| = 0 (13.16)

ii) φ ∈ HC ↔ limt→∞t
−1

∫ t

0

ds|ξ(R))e−iHtφ|2 = 0 ∀R <∞ (13.17)
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In order to apply Ruelle’s theorem let us remark that if V is Kato-small
with respect to H and if limt→∞V (x) = 0 then V (H + iI)−1 is a compact
operator. To prove this, notice that V can be approximated with a function
VR with compact support and in the same way one can replace the function
h(p) = (1 + p2)−1 with its restriction hR(p) to a ball of radius R up to an
error fR(p) ≤ 2(R2 + p2)−1.

An explicit computation proves that VR.h(i∇) is a Hilbert -Schmidt op-
erator and therefore V (H + iI)−1 differs from a Hilbert-Schmidt operator by
an operator with norm bounded by C1|p2fR(p)|+ |fR(p)|.

This term can be made arbitrary small by taking C1 small and R large and
therefore V (H + iI)−1 is norm limit of Hilbert-Schmidt operator and hence
compact. We conclude that for the N -body potentials we are considering
when analyzing the behaviour of the system under hamiltonian HP within
each cluster we can make use of Ruelle’s theorem .

The analysis of the different partition can be done by induction. Recall that
in Quantum Mechanics when considering identical particles the Hilbert space
is a subspace of L2(X) which corresponds to an irreducible representation of
the permutation group.

The formalism that we are describing is adapted to these cases simply
projection the estimates in this subspaces. It is necessary of course that the
operators we are considering be invariant under permutations.

13.4 Zhislin’s theorem

We shall now study the spectral properties of the Schroedinger operator for
the system we are discussing.

Recall that we denote by σdisc(H) the collection of the eigenvalues of finite
multiplicity of a self-adjoint operator H and with σess(H) the complement of
σdisc(H) in σ(H). One has

H = HP +HP +RP HP = −1
2
∆P ⊗ I + I ⊗HP , HP ≡ −1

2
∆P + V P

(13.18)
where ∆P (resp. ∆P ) are the Laplace operators in the coordinates xP (resp.
xP . If P is not empty one has σ(−∆P ) = [0,+∞) and therefore

σ(HP ) = [µP ,+∞), µP ≡ infσ(HP ) (13.19)

(µP is the minimal energy for a system composed of the clusters described by
P and not interacting among themselves). Notice that the lower bound of the
spectrum can be lower if one takes into account this inter-cluster interaction.
In fact we have

Lemma 13.1
If P < Q then σ(HQ) ⊂ σ(HP ).
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♦

Proof
By definition HP = HQ + RP,Q. Let Ts be the translation operator by

s ∈ Q∗ where Q∗ ≡ Q− ∪C⊂Q. Since Ts commutes with HQ one has

|(λI −HP )Tsφ| ≤ |(λI −HQ)ψ|+ |RP,QTsφ| (13.20)

Let λ ∈ HQ. The first term to the right in (20) can be made arbitrary
small with a suitable choice of φ and for the properties of RP,Q. The second
term can be made arbitrary small by choosing s suitably large. It follows that
for a suitable choice of φ the left hand side can be made arbitrary small and
this implies λ ∈ σ(HP ).

♥

Notice that for every choice of clusters the Hilbert space is always L2((R3)N

but the approximate Hamiltonians are different according to the structure
of the clusters. It follows form Lemma 13.2 that σ(H) ⊃ [µ,+∞) µ ≡
minP>∅µP .

Theorem 13.2 (Zhislin)

σess(H) = [µ,+∞) (13.21)

♦
Proof

We give this proof in detail, because it is the prototype of all the other
proofs.

The strategy is to approximate the decomposition into clusters by means
of a regular partition of unity in such a way that for large |x| we can use
the partition given by the lattice L with a good estimate of the error made.
Passing to the limit one obtains the proof of (21).

Recall that a regular partition of the unity in X is a collection of positive
and regular functions jα ∈ C∞ (we shall call elements of the partition)such
that ∑

α

j2
α = 1 (13.22)

(the choice of the square in (22) will be convenient in the following).
The partition in channels can instead be seen as choice of hyperplanes in

X and in this sense it associates to every channel (except ∅) a product of
distributions δ. In order to make partitions of unity adapted to L we shall
take the partitions A ∈ L as indices α.

Roughly speaking a regular partition corresponds to smoothening the δ
functions that describe P and substitute them with C∞ functions with sup-
port in a conical neighborhood of the support of the corresponding distribu-
tion. The solid angle of the cone must be finite but it may be made arbitrary
small if we are only interested in the asymptotic behavior for large times.
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According to Ruelle’s theorem in each channel the outgoing and incoming
states can be seen as localized at infinity. This will lead to the asymptotic
estimates we shall describe. The following identity holds in the domain of
definition of all terms

H =
∑
α

jαHjα +
1
2

∑
α

[jα, [jα, H]] (13.23)

Notice the double commutator in (23). The use of double commutators will
be important in what follows. Notice also that if the functions that implement
the partition were substituted by distributions, the error made would be a
distribution with support in the intersection of hyper-planes.

Recalling that
∑
α j2

α = 1 one can write (23) as

H =
∑
α

jαHjα −
1
2

∑
α

(|∇jα|2 (13.24)

We have made use of the fact that the term [jα, H] depends only of the po-
sition coordinates in P⊥. For every partition P we define the corresponding el-
ement jα(P ) as follows. If P ≡ {∅} (i.e. the partition considered is {x1}, ..{xN})
we set j2

α,∅ ≡ 1 −
∑
P 6=∅ j

2
P . If P 6= ∅ consider the open covering of the unit

sphere S1 ⊂ X obtained as

SP ≡ {x, : |x| = 1, |xP | 6= 0} (13.25)

and the corresponding partition of unity Jα(P ), supp(Jα(P ) ⊂ SP . Notice that
since Jα(P ) has compact support for every P one can find ε > 0 such that if
x ∈ suppJα(P ) then |xP | > ε.

The functions Jα we have introduced are defined on the unit sphere. We
shall extend them to X in the following way: for |x| < 1 choose any extension
which satisfies (22), for |x| > 1 set jα(x) ≡ Jα( x

|x| ).
The function that we have chosen have the following properties

|x| > 1, λ ≥ 1→ jα(λx) = jα(x) (13.26)

|x| ≥ 1, x ∈ supp jα(P ) → |x|P ≥ ε|x| (13.27)

In the case of two-body potential of Coulomb type it is easy to verify that
(27) implies for every partition P .

|∇jα(P )| = O(
1
|x|

), |x| → ∞ (13.28)

Therefore the second term to the right in (24) is compact relative to H.
In the first term set H = HP + RP and notice that jα(P )RP jα(P ) is a Kato
class potential with respect to HP which vanishes at infinity, and is therefore
compact relative to HP . Hence
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H = jα(P )HAjα(P ) +K (13.29)

where K is compact relative to HP . From Weyl theorem one derives

σess(H) = σess[
∑
P

jα(P )HP jα(P )] (13.30)

Remark now that for every partition P , HP ≥ µ I (by the definition of µ
) and therefore ∑

P

jα(P )HP jα(P ) ≥ µ
∑
P

j2
α(P ) = µ (13.31)

¿From this one derives
σess(H) ⊂ [µ,+∞) (13.32)

Since we have already shown that the reverse inclusion holds, the proof of
Zhislin theorem is complete.

♥

13.5 Structure of the continuous spectrum

In order to achieve the asymptotic decomposition we must now study the
spectrum of H in [µ,+∞) and in particular prove that in this region the spec-
trum is absolutely continuous, property that is needed to prove asymptotic
completeness .

We shall begin providing a qualitative analysis with the purpose of intro-
ducing and justifying some a-priori estimates that we will prove later.

This will permit us to focus on the new role played by the double commu-
tators and by the dilation group (we will study the description of the system
for λ large enough after the scaling xi → λ xi for some of the coordinates.

¿From the experience acquired in the study of potential scattering we
expect that in each channel the asymptotic behavior of the system when
t→∞ approaches free motion ( the meaning of free motion is different in the
different channels) .

We expect also that if the wave function φ has a sufficiently localized
momentum spectrum one should have roughly

(φt, x2φt) =
1
2
θEt

2(1 +O(t−1), ) t→∞ (13.33)

where θE must be somehow linked with a group velocity.
Equation (33) can be written as

d2

dt2
< x2 >t' θE , t→∞ (13.34)

One has
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d2

dt2
< x2 >t=< i[H,A] >t, A ≡ i[H,x2] =

1
2

(x.p+ p.x) (13.35)

whence
i[H,A] = p2 − x.∇V (x), p ≡ i∇ (13.36)

¿From (33) and (34) if E does not belong to the point spectrum of H ( in
particular if it belongs to the continuous part of the spectrum) denoting by
E∆ the spectral projection of H in the neighborhood ∆ of E we expect that
if ∆ is sufficiently small the following inequality holds

B∆(H) ≡ iE∆(H)[H,A]E∆(H) ≥ (θE − ε∆)E∆(H)18.56 (13.37)

for a suitable ε∆ such that lim∆→0ε∆∆
−1 = 0. Remark that if φ and ψ are

eigenvectors of H to the eigenvalue E the following equivalent relations hold
(the second one is frequently called virial theorem).

(φ, (x.∇V )ψ) = 0, < φ, p̂2ψ >=< φ, (x.∇V )ψ > (13.38)

We will prove ( Mourre’s theorem) that (37) holds up to addition of a
compact operator. We shall see also that θE is a function of the thresholds for
H.

13.6 Thresholds

Definition 13.1
A threshold for H is an eigenvalue λPi of HP for some P 6= ∅. It is therefore

a bound state in a non-trivial channel.
♦

To better understand the relation between θE and the threshold values
remark that for energies greater than λPk we expect to be able to construct
states which are approximately the tensor product of a bound state ofHP with
energy λPk and a state of free particle with momentum P in a complementary
cluster. The evolution of this state will be given approximately by

φ(t) ' e−i(
p2
P
2 +λP )tφP ⊗ φP , φP ∈ L2(XP ), HPφP = λPφP (13.39)

For this state one has

< x2 >t'< x2
P >t'< p2

P > t2 ' 2(E − λP )t2, t→∞ (13.40)

¿From (40) we deduce that for this state one has 1
2θ(E) ' E − λP if the

energy is concentrated around E.
This heuristic argument reflects the fact that if a state has energy approxi-

mately equal to E, denoting by λ0 the lower bound of the energy of the cluster
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P, the energy at disposal of the other clusters is E − λ0. We expect therefore
that (39) holds a part from terms which depend only on the properties of the
system at finite distances.

The estimates suggested above on purely local properties are consequences
of the following fact: if we denote by ηR(y) the indicator function of the ball
of radius R, the operator ηR1(x).ηR2(p̂)ηR3(x) is compact for any choice of
finite values for R1, R2, R3.

¿From (39) we shall conclude that the eigenvalues which do not correspond
to thresholds can have only a threshold as limit point. Since the thresholds
are eigenvalues of a cluster it follows that the set of thresholds is closed and
denumerable. To give precise estimates we shall study more in detail the term
i[H,A]; one has

i[H.A] = −∆+ x.∇V (13.41)

We shall assume that W (x) ≡ x.∇V (called the virial of V ) satisfies all
the assumptions we have made on V. In particular we assume that V (x) be
of Kato class. Setting

W (x) =
∑
m

xm.∇xm(
∑
i<k

Vi,k(xi − xk)) ≡
∑
i<k

Wi,k(xi, xk) (13.42)

one has
lim|y|→∞supxWi,k(x, y) = 0 (13.43)

Under these assumptions one can prove

Lemma 13.3 (Virial lemma)
If (42) and (43) hold and if φ and ψ are eigenstates of H to the eigenvalue

E then
(φ, [H,A]ψ) = 0 (13.44)

♦

Proof
For the proof it is convenient to introduce a regularization of the dilation

operator A e.g.

Aε ≡
1
2

[p̂.xe−εx
2

+ e−εx
2
x.p̂], ε > 0 (13.45)

Since Aε is bounded with respect to p̂2 (this is not true for A) it leaves
invariant the domain of p̂2 and on this domain one has

[Aε, H]e−εx
2

= −ε(p̂.x)2e−εx
2
− ε(x.p̂)2e−εx

2
− e−εx

2
x.∇V (x) (13.46)

Since φ, ψ ∈ D(Aε) one has by the standard virial theorem (φ, [H,Aε]ψ) =
0. Passing to the limit ε→ 0 one obtains (44).

♥
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13.7 Mourre’s theorem

Denote by τ(H) the collection of all thresholds. Define

Θ(E) = infλ∈τ(H), λ≤E 2(E − λ)ξ(E − µ) (13.47)

where µ ≡ infλ{λ : λ ∈ τ(H)} and ξ is the indicator function of R+. One
has then the following theorem proved for the case N = 3 by Mourre [1] and
then extended to the N -body case in [2]

Theorem 18.3 (Mourre) [5]
Let V and x.∇V satisfy (43). Let EJ be the spectral projection of H associated
to the interval J . Then
i) ∀E ∈ R, ε > 0 there exists a compact operator K such that

BJ(H) ≡ iEJ [H,A]EJ ≥ (Θ(E)− ε)EJ +K (13.48)

ii) The eigenvalues of H which are not thresholds have finite multiplicity and
can have only a threshold as limit point. Therefore the set τ(H) is closed and
denumerable.

♦

We shall use the notation Jn → {E0} to indicate a sequence of decreasing
intervals which have {E0} as limit. Multiplying (48) from the right and from
the left by per EJ and recalling that K is compact and that EJ →s 0 when
Jn → {E0} and E0 is not an eigenvalue of H we conclude that if E is not an
eigenvalue then

limn→∞‖KEJn‖ = (EjnK
∗KEjn)1/2 = 0

and therefore if J is sufficiently small

BJ(H) ≥ (Θ(E0)− ε) (13.49)

Proof of Mourre’s theorem
We proceed by induction. The result holds if P = ∅. Suppose that it holds

for HP with P > ∅ (the symbol > denotes the partial ordering in the lattice).
In this case En(HP ) are the eigenvalues of HQ ∀Q > P and the threshold

ΘP (E) is defined relative to E(HP ). Therefore (48 ) reads

BJ(HP ) ≥ (Θ(E)− ε)EJ(HP ) +K on L2(HP ) (13.50)

BJ(HP ) ≡ iEJ(HP )[HP , AP ] i[HP , AP ] = −∆P − (xP .∇V P (xP ))

V P =
∑

i,j∈α(P )

Vi,j (13.51)
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We have denoted AP the generator of the dilation group on the variables
xP ). If the theorem holds for HP it follows from that if E is not an eigenvalue
of HP then BJ(HP ) ≥ (ΘP (E) − ε)EJ(HP ) and therefore since ΘP (E) ≥
Θ(E)

BJ(HP ) ≥ (Θ(E)− ε)EJ(HP ) (13.52)

Let now E be an eigenvalue of HP with projection operator ΠP
E . We must

prove (52) with Θ(E) = 0. The dimension of ΠP
E may be infinite.

Choose an increasing sequence of projection operators Pn < ΠP
E that

converge strongly to ΠP
E . Since E is an eigenvalue, from the virial theorem

one derives

BJ = (I −Πn)BJ(I −Πn) + (ΠnBJ(I −ΠP
N ) + (I −ΠP

n )BJΠN (13.53)

¿From (52) and (53)

BJ ≥ −εEJ + (1−Πn)K(I −Πn)− 2||ΠnBJEJ(I −ΠP
E )||I ≥

−εEJ−||K(ΠP
E−Πn||I−||KEJ(I−ΠP

E )||I−2||ΠnEJ(I−ΠP
E ||I(I−Πn)BJ(I−ΠN )

+(ΠnBJ(I −ΠP
N ) + (I −ΠP

n )BJΠN (13.54)

Since K and ΠnBJ are compact and since EJ(I−ΠP
E ) converges strongly

to zero when J → {E} one can choose first n sufficiently large and then J
sufficiently small in such a way to obtain (52) also when Θ(E) = 0.

We want now to improve on this estimate and prove that for any open set
S ⊂ R, E ∈ S and for any given ε > 0 one can choose δ > 0 in such a way
that for all E ∈ S and |J | < δ one has

BJ(HP ) ≥ (Θ(E + ε)− 2ε)EJ(HP ) (13.55)

Indeed of this were not true, the inequality wold not hold for a sequence

En → E, En ∈ S, En ∈ Jn, limn→∞|Jn| = 0 (13.56)

Choose n so large that |En −E| ≤ ε/2. It follows from the definition that
Θ(E + x) ≤ Θ(E) + x for all x ≥ 0 and therefore

Θ(E) ≥ Θ(En + ε)− ε+ E − EN ≥ Θ(En − ε)−
3ε
2

(13.57)

Keeping into account that |Jn| < |J | BJ(HP ) ≥ (Θ(E) − ε/2)EJ(HP )
we derive

BJ(HP ) ≥ (Θ(En + ε)− 2ε)EJn(HP ) (13.58)

and this proves (57). In order to give an estimate for BJ(H) we must now
supplement (57) with an estimate BJ(Hα). To achieve this we prove that for
every E ∈ R and for every ε > 0 there exist an interval J containing E and
such that
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BJ(HP ) ≥ (Θ(E + ε)− 2ε)EJ(HP ) (13.59)

To prove (57) take Fourier transform with respect to xα. In this represen-
tation vectors in L2(X) are represented by function in L2(X̃α) with values in
L2(Xα) and one has

(HPψ)(k) = (k2 +HP )ψ(k), (Ej(HP )ψ)(k) = EJ−k2(HP )ψ(k)

i([HP , A]ψ)(k) = (k2 + i[HP , AP ])ψ(k) (13.60)

Set φ = EJ(HP )ψ. Therefore

(φ,BJ(HP )φ) =
∫
X̃P

[(φ(k), (k2 +BJ−k2(HP ))φ(k)]dk (13.61)

where we have denoted by (, ) the scalar product in L2(X̃P ) and with [, ] the
scalar product in L2(XP ). Since HP is bounded below the integrand vanishes
outside a compact set. From (57) one derives

(k2 +Θ(E − k2 + ε)− 2ε)||φ(k)||2 ≥ (Θ(E + ε)− 2ε)||φ(k)||2 (13.62)

and this completes the proof of (61). To conclude the proof of Mourre’s the-
orem we use now the localization formula we have discussed above

H =
∑
P

jα(P )Hjα(P )+
1
2

[jα(P )[jα(P ), H]] =
∑
P

jα(P )Hjα(P )−
1
2

∑
P

|∇jα(P )|2

(13.63)
where {jα(P ), } is a partition of unity by means of C∞ on X. Choose f ∈ C∞,
real valued and such that f ≡ 1 in J, E ∈ J. Then

if(H)[H,A]f(H) = i
∑
α

f(H)jα[Hα, A]jαf(H) +K (13.64)

where K is compact. We shall prove

L ≡ f(H)jα(P ) − jα(P )f(H) ∈ K (13.65)

Given (65) equation (61) reads

if(H)[H,A]f(H) ≥ (Θ(E + ε)− 2ε)f2(H) +K (13.66)

Multiplying both terms by EJ1 one has BJ1(H) ≥ (Θ(E+ ε)−2ε)EJ1 +K
This inequality is equivalent to (48) if E is not an eigenvalue (indeed if E is
not an eigenvalue one has Θ(E + ε) = Θ(E) if ε is sufficiently small).

To achieve the proof of Mourre’s theorem we must therefore prove (65).
Let f̂ the Fourier transform of f and define RP ≡ (i+HP )−1. Therefore

LRP =
∫
dtf̂(t)e−itH(jα(P ) − eitHjα(P )e

−itH)Rα(P )
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= i

∫
dtf̂(t)

∫ s

0

e−i(t−s)HKe−isHP (13.67)

K ≡ (Hjα(P ) − jα(P )Hα(P )Rα(P )) = ([p2, jα(P )]− jα(P )Iα(P ))Rα(P ) (13.68)

and we have proved that this operator is compact. Since ‖LRP ‖ < C‖K‖ it
is sufficient to consider the case in which K has rank one, i.e. Kψ = (u, ψ)v.
But then the integrand reads

ψ → f̂(t)(eisHPuψ)e−i(t−s)Hv (13.69)

which is norm continuous both in t and in s. Therefore LRP is compact. Set
f(x) = (i+ x)g(x). Then the operator

g(H)jα(P ) − jα(P )g(Hp) = LRα + g(H)([p2, jα(P )]RP + jα(P )IPRP ) (13.70)

is compact. Since g was arbitrary (65) is proved. This concludes the proof of
Mourre’s theorem.

♥

Mourre’s theorem is useful both for giving a-priori estimates for the ex-
ponential decay of the eigenfunctions of H and for proving the absence of
singular continuous spectrum and asymptotic completeness in the N -body
problem. A typical estimate of the asymptotic behavior of the eigenfucntions
is given in the following theorem, which we will state without proof.

Theorem 13.5 (Froese-Herbst I) [3]
Under the hypothesis of Mourre’s theorem, let Hφ = Eφ and let a ≡ sup {b ∈
R, ebxφ ∈ L2(X)}. If E + 1

2a
2 is finite, then it is a threshold for H.

Remark that both Froese-Herbst’s theorem (and the ones that we will state
later) can be proved along the lines of Mourre’s theorem under the following
assumptions on V and on its virial.
i) V belongs to Kato’s class.
ii) For every non-trivial partition P when x is sufficiently large one has a
decomposition

V (x) = V P (xP ) + IP (x), |IP (x)| < f(|xP |) (13.71)

with lims→∞f(s) = 0. In the case V =
∑
i<j Vi,j(xi − xj) these conditions

are satisfied if each term in the sum is of Kato class and vanishes at infinity.
♣

13.8 Absence of positive eigenvalues

¿From the theorem Froese-Herbst I one derives an important result

Theorem 12.6 (Froese-Herbst II) [7]
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Under the assumptions of Mourre’s theorem H has no positive eigenvalue.
♦

Proof

¿From theorem 12.5 we know that if H has no positive thresholds and
Hφ = Eφ, φ ∈ L2 then

ea|x|φ(x) ∈ L2(X) ∀a > 0 (13.72)

By induction starting with α ≡ X it is enough to prove that if (74) holds,
then there are no positive eigenvalues. Choose ρ0 such that∫

r<ρ0

|φ(x)|2dx ≤
∫
r>2ρ

|φ|2(x)dx (13.73)

and choose F (r) ∈ C∞ with the property

F (r) ≤ r, F (r) ≥ 0 r ≥ r0 → F (r) = r (13.74)

Set φa(|x|) ≡ eaF (|x|)φ|eaF (|x|)|φ−1. From (74) one derives
∫
|x|<ρ0

dx|φa(x)|2 ≤
e−2ρ0 . Notice that there exists c1 > 0 such that for every a > 0

(φa, Hφa) ≥ E + a2/2− c1a2e−2aρ0 (13.75)

Indeed set Ha ≡ eaFHe−aF = H − a2

2 |∇F |
2 + ia2 (∇F.p̂+ p̂∇F ). One has

Haφa = Eφa, (φa, Hφa) = E +
a2

2
(φa, |∇F |2φa) (13.76)

and |∇F | = 1 for |x| ≥ ρ0. Therefore

|(φa, |∇f |2φa)− 1| ≤ c1e−2aρ0 (13.77)

from this one derives (76).
In the same way we can estimate i(φa, [H,A]φa). One obtains

i(φa, [H,A]φa) =
ia2

2
(φa, [|∇F |2, A]φa)−2aRe(φa, γAφa) γ =

1
2

(∇F.p̂+p̂.∇F )

(13.78)
The first term in (79) is bounded by c2a2e−2aρ0 . For the second term

2Re(φa, γAφa) = p̂k(xkF,l + F,kxl)−
d

2
F,ll −

xk
2
F,llk (13.79)

The first term in (79) is positive and the remaining two are bounded.
Therefore there are positive constants c2, c3 such that

i(φa, [H,A]φa) =< p̂2 >a − < x,∇V >a≤ c2a2e−2aρ + ac3.79 (13.80)

where <, . >a≡< φa, .φa > . Subtracting ( 75) from (80)
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1
2
< p̂2 >a − < V >a − < x.∇V >a≤ −E −

a2

2
+ (c1 + c2)a2e−2ρ0 + ac3

(13.81)
Inequality (81) leads to a contradiction. Indeed the term to the left is

bounded below for every value of the parameter a because both V and x.∇V
are small relative to p̂2). The term to the right diverges to −∞ when a→∞.
Since the only assumption we have made is Hφ = Eφ, φ ∈ L2(X), E > 0
we conclude that there are no positive eigenvalues.

♥

A second important consequence of Mourre’s theorem is an accurate esti-
mate of the rate at which the essential support of the states in the continuous
part of the spectrum of H leaves any compact in X (dispersive estimates).

As a corollary of the estimates we shall prove that there is no singular
continuous part of the spectrum.

¿From the local compactness (expressed in Mourre’s theorem) it follows
that if φ belongs to the continuous part of the spectrum then

limt→∞|ξRe−iHtφ| = 0 (13.82)

Remark that Ruelle’s theorem implies only convergence in the mean.
Under further assumptions on the potential it will also be possible to

estimate the rate of convergence. Equation (82) can also be proved if one makes
the assumption that the second virial (i.e. [[V,A]A]) satisfies the assumption
made for the potential and its first virial. For potentials of the form V =∑
i<j Vi,j(xi − xj) this new condition means that for each pair i 6= j the

function (xi − xj)2∇2Vi,j(xi − xj) be a Kato class potential. .
The following theorem is useful to prove that in the N -body problem

under the stated conditions on the potential the singular continuous part of
the spectrum is empty.

Theorem 13.6 [2] [5]
Assume that V (x) and x.∇V satisfy the hypothesis i) and ii) of Mourre’s
theorem and assume also that the second virial is bounded. Denote with S the
collection of the thresholds and eigenvalues of H. Then if EJφ = φ for every
a > 1/2 and compact in R− S one has, for a suitable constant cφ(J, a)∫ ∞

−∞
dt|(1 + x2)−a/2e−itHφ|2 < cφ(J, a)|φ|2 (13.83)

♦

We shall not prove this theorem but we shall state and prove a corollary.

Corollary
If the conditions in Theorem 13.6 are satisfied, then the singular continu-

ous spectrum of H is empty.
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♦

Proof
Let f ∈ C∞0 and φ = Ejφ. From (82) one derives

|(1 + x2)
−a
2 f(H)φ| ≤ 1

2π

∫
dtf̂(t)|(1 + |x|2)

−a
2 eitHφ| ≤ |f |2|φ| (13.84)

Taking point-wise limits this inequality extends to the characteristic func-
tions of bounded Borel sets. Therefore φ ∈ Ha.c.. Since R − S us open the
states which satisfy φ = EJφ for some compact J ∈ S⊥ span the range of
ER−S . As a consequence the range of ER−S is contained in Ha,c,.

On the other hand the range of ES contains all bound states since S is
denumerable and contains all eigenvalues.

♥

We shall now use theorem 13.6 to derive inequalities which will be useful
in the proof of asymptotic completeness.

Lemma 13.7
Set R ≡ (i + H)−1. If ARm(1 + x2)

a
2 is a bounded operator for some

a > 1/2 m ≥ 1 then for every compact J ⊂ R− S one has∫ ∞
0

|Ae−itHEJ(H)ψ|2 < c|φ|2 (13.85)

♦

Proof
One has

|Ae−itHEJ(H)φ| ≤ |ARm(1 + x2)
a
2 |.|(1 + x2)

a
2 e−itHEJ(i+H)mEJφ|2

(13.86)
If a > 1

2 the second factor is less than c1|φ|.
♥

In the following it will be convenient to make use of the following notation

A = Om(|x|−a)↔ ARm(1 + |x|2)
a
2 ∈ B(H) (13.87)

and also of the following inequality

A = O0(|x|−b)↔ Ap̂k = O1(|x|−a) ∀a ≡ max(1, b) (13.88)

To prove (88) set < x >a≡ (1 + |x|2)
a
2 . Making use of [< x >a,R] = R[<

x >a, H]R one has

Ap̂kR < x >a= A < x >a p̂kR+A[pk, < x >a]R+p̂kR[< x >a, H]R (13.89)
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If a ≤ 1 all the terms in the right-hand side are bounded. They remain
bounded a ≤ b e A = O0(|x|−b). This proves (88) A further important conse-
quence is contained in the following lemma

Lemma 13.8
Suppose that the operator A can be written as A = B.C where B and C

are Om(|x|−a) for some a > 1
2 . Then the following limit exists

limT→∞

∫ T

0

dtEJ(H)eitHAe−itHEJ(H)φ (13.90)

♦

Proof
Denote by φ(t) the integrand in (92). Then

|
∫ τ

T

dt|φ(t)|2 = sup|ψ|=1|
∫ τ

T

dt(ψ, φ(t)|2 ≤

≤ sup|ψ|=1|
∫ τ

T

dt|BEJ(H)e−itHψ|2
∫ τ

T

dt|Ce−itHEJ(H)ψ|2 (13.91)

By assumption J is separated from the eigenvalues of H and also from the
thresholds. Therefore the first factor is bounded and the second converges to
zero as t, τ →∞.

♥

13.9 Asymptotic operator, asymptotic completeness

We want now to use these estimates derived from Mourre’s theorem to prove
asymptotic completeness in the N -body problem if the potentials Vi,j(xi−xj)
are of short range and satisfy a further regularity property that we will state
presently .

Definition 13.2 (short range)
The potential V (x) is short range if, for every partition α one has for |xα|

sufficiently large

V (x) = V α(xα) + J(xα, |IJ(xα)| ≤ |xα|−µ, µ > 1 (13.92)

We have set |xα| ≡ mini⊥k(mimk)1/2(mi + mk)−1/2|xi − xk| where with
the symbol xi ⊥ xk we mean that xi and xk belong to different clusters .

♦

Under the conditions for the applicability of Mourre’s theorem and if all
potentials are of short range one can prove asymptotic completeness. An im-
portant role has the following theorem of Segal and Soffer; we only outline
the proof (see [6],[8])
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Theorem 13.9 (Sigal-Soffer)
Assume that V (x) is short range, satisfies the conditions in Mourre’s theorem
and moreover that

|∇IP (x)| ≤ c |xP |−µ, µ > 1 (13.93)

Then H+ = Hc = Hn and each orbit in these spaces has the asymptotic
behavior

φt ≡ e−itHφ '
∑
P 6={∅}

e−itHP (I ⊗ΠB(HP ))φP (13.94)

where ΠB(HP ) is the projection operator on the bound states of channel P
and we have used the notation

u(t) ' v(t)↔ limt→∞|u(t)− v(t)| = 0 (13.95)

♦

If V (x) =
∑
i<j Vi,j(xi−xj) the conditions for the validity of the theorem

of Sigal-Soffer are that each Vi,j be small in the sense of Kato with respect to
the Laplacian and for every term of the sum one has

|Vi,j(y)|, |∇Vi,j(y)| ≤ c|y|−µ, µ > 1 (13.96)

We shall give only a brief outline of the proof of Theorem 13.9 The proof
uses iteration starting with the partition which has no bound states. An im-
portant role is taken by the generators of partial dilations in which only part
of the coordinates are dilated.

More precisely, if one wants to analyze the asymptotic behavior in time of
a given decomposition P in clusters one makes use of the generator of dilations
of the center-of-mass coordinates of the clusters .

This has the effect that, roughly speaking, the evolution of the cluster
Pbaccording to the full hamiltonian and that according to HP tend to coin-
cide. The method of Mourre is efficient because of this property.

The proof of the Sigal-Soffer theorem is therefore based on the construction
of a collection of observables which commute locally with the hamiltonian H
and have the property that their evolution gives a control of the asymptotic
behavior of the system in the various channels.

An important role is played by the asymptotic behavior in time of the
operator γP ≡ i[H, gP ] where gP are smooth functions that characterize a
regular partition asymptotically linear (so that on a large scale it is similar to
the partition according to hyper-planes).

One has γ = γ0 +
∑
P γP where for each P we have denoted by γ±P an

approximate dilation operator that is used to describe the asymptotic behavior
of the solution of the Schroedinger equation in the P sector.

Correspondingly we introduce the asymptotic operator
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γ±P = s− limt→±∞e
itHγP e

−itHPE∆(HP ) (13.97)

Is easy to prove that γ maps H∆ into itself and on H∆ the relation γ+ =∑
P γ

+
P holds. Every vector ψ ∈ H∆ can be written

ψ =
∑
P

γ+
P φ, φ ∈ H∆ (13.98)

and therefore

ψt = e−itHψ '
∑
P

γP e
−itHφ =

∑
α

e−itHP eitHP γP e
−itHφ ' e−itHPψP

(13.99)
where ψP = W+

P φ e W+
P is the wave operator in channel P

W+
P ≡ s− limt→∞e

itHP γP e
−itHE∆(H) (13.100)

¿From this one develops an iteration procedure that leads to the proof of
the Sigal-Soffer theorem and asymptotic completeness.
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14

Lecture 14
Positivity preserving maps. Markov
semigropus. Contractive Dirichlet forms

In Volume I we have remarked that in order that the operator U = −∆+ V
be self-adjoint the conditions on the positive part V+ of V are much weaker
than the conditions on its negative part. In particular it not required that V+

be small with respect to the laplacian.
Notice that, as multiplication operators, the positive function preserve

positivity.
This trivial remark admits a non trivial extension, since the the multipli-

cation operators are not left invariant, as a set, by a generic transformation
in the Hilbert space H while the property to be small with respect to another
operator (e.g. the Laplacian) does not depend on the representation.

In the case H = L2(X, dµ) and V is the cone of positive functions, by
using properties of the Laplacian (e.g. to have a resolvent that is described
by a positive kernel), it is possible to associate to e−tH a stochastic process,
a modification of Brownian motion.

We are led therefore to consider the case in which in the Hilbert space
there exists a convex cone V that is left invariant by a suitable class of trans-
formations.

14.1 Positive cones

Let Y be a linear topological space and consider in Y a strict convex cone
generating cone K (Y is spanned by the convex combinations of the element
in −K ∪K). Let K0 be the interior of K. We shall call positive the elements
of K, strictly positive the elements of K0.

Definiton 14.1 (preservation of positivity )
We say that a map T of Y into itself is

i) positivity preserving if T (x) ∈ K for every x ∈ K.
ii) positivity improving if T (x) ∈ K0 for every x ∈ K.

♦
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We shall study in some detail only the case Y ≡ L2(X, dµ) where X is a
measure space, and we often specialize to the case in which X = Rd , d < +∞
and µ is Lebesgue measure. In this case K will be the cone of positive-valued
functions and K0 will be the cone of functions that are strictly positive in
very compact.

Analogous results are obtained in the case Y is a C∗ algebra and K is the
cone of its positive elements.

We shall consider only linear maps. In this case definition 14.1 takes the
form

Definition 14.2
The operator T on L2(X,µ) is

i) positivity preserving if f ≥ 0 implies (Tf)(x) ≥ 0; itis
ii) positivity improving if f ≥ 0 implies Tf(x) > 0 on compact sets.

♦

Definition 14.3 (ergodic)
The operator T on L2(X,µ) is ergodic if it is positivity preserving and for

any positive function g and strictly positive function f there exist an integer
n such that (f, Tng) > 0.

♦

Note that if T is positivity improving, it is ergodic since the relation is
satisfied for every integer n. If x → φ(t, x) is a dynamical system in X, the
evolution f → Ttf(x) ≡ f(φ(t, x)) is positivity preserving but not improving.

One can prove that the semigroup Tt is ergodic iff the dynamical system
in the traditional sense (the only invariant sets are the empty set and X).

The evolution described by the semigroup et∆ on L2(Rd, dx) is positivity
improving. For every t > 0 one has

(et∆f)(x) = Cn

∫
e−
|x−y|2

2t f(y)dy > 0 ∀x (14.1)

and the integral kernel of et∆ is strictly positive. If H is self-adjoint and
positive, the semigroup e−tH is positivity preserving (resp. improving) iff (H+
λ)−1, λ > 0 has the same property.

This is a consequence of the following identities

(H + λ)−1 =
∫ ∞

0

e−t(H+λ)dt e−t(H+λ) = limn→∞(1− t

n
(H + λ))−n

(14.2)

Lemma 14.1
If µ is absolutely continuous with respect to the Lebesgue measure and

T is positivity preserving, then |Tf |(x) ≤ T (|f |)(x) ∀f ∈ L2(Rn, dx) (the
inequality is understood to hold a.e.).

♦
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Proof
By density it is sufficient to give a proof when f is continuous. If f is

real valued |f | ± f ≥ 0. Since T is linear and positivity preserving, T |f(x)| ±
|Tf |(x) ≥ 0. Therefore T |f(x)| ≥ |Tf |(x).

If f is not real valued, |f(x)| = supθ∈QRe(eiθf(x)) (Q is the set of rational
numbers). Since Q is denumerable and f is continuous

supθ∈QRe(eiθTf(x)) = Tsupθ∈QRe(eiθf(x)) ≤ T |f |(x)

♥

14.2 Doubly Markov

Definition 14.4
Assume µ finite. A bounded positivity preserving operator T which satisfies

Tι = ι, T ∗ι = ι, ι(x) = 1 ∀x (14.3)

is said to be doubly Markov. This notation is due to the fact that ι is an
eigenfunction to the eigenvalue one for both T and T ∗.

♦

Lemma 14.2
If T is doubly Markov then

||Tf ||p ≤ ||f ||p 1 ≤ p ≤ +∞ (14.4)

(T is a contraction on Lp for 1 ≤ p ≤ +∞)
♦

Proof
By interpolation it suffices to give the proof when p = 1 and p = +∞. If

f ≥ 0 ||Tf ||1 = (ι, Tf) = (T ∗ι, f) = (ι, f) = ||f ||1. If f is not positive, from
the preceding lemma ||Tf ||1 ≤ ||T |f |||1| = ||f ||1.

If f, g ∈ L2, f ≥ 0, g ≥ 0 then (f, Tg) ≥ 0. It follows that also T ∗ is
positivity preserving, and therefore ||T ∗f ||1 ≤ ||f ||1. By definition ||g||∞ =
supf,||f ||1=1|(g, f)| and therefore

||Tg||∞ = supf,||f ||1=1|(Tg, f)| = supf,||f ||1=1|(g, T ∗f)| ≤ supf,||T∗f ||1=1|(g, f)| = ||g||∞
(14.5)
♥

We remark that the integral kernel T (x, x′) of a doubly Markov operator
can be used to define the transition probability of a stochastic process, in
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analogy to what we have seen in the cases of Brownian motion and of the
Ornstein-Uhlenbeck process.

We shall see in this Lecture (Beurling-Deny Theorem) that if the quadratic
form associated to H has suitable contraction properties then e−tH(x, x′) de-
fines a doubly Markov semigroup. We shall describe now the relevant proper-
ties of the positivity preserving operators.

Theorem 14.1
Let the operator T be bounded, closed and positive on L2(X, dµ). Let T be
positivity preserving and assume that ||T || be an eigenvalue (and then the
largest eigenvalue). The following statements are equivalent to each other
a) ||T || is a simple eigenvalue and the corresponding eigenfunction φ0 can be
chosen to be positive.
b) T is ergodic
c) L∞ ∪ {T} is irreducible i.e. if a bounded operator A commutes with T and
with the operator of multiplication by any essentially bounded function, then
A is a multiple of the identity.

♦

This theorem is an extension of the classic Frobenius theorem on matrices;
L∞ takes the place of the collection of matrices which are diagonal in a given
basis.

Proof of Theorem 14.1
a) implies b)

Let B ≡ T
||T || , and let λn be the eigenvalues B in decreasing order. By

assumption
λ0 = 1, λn < 1 ∀n ≥ 1 (14.6)

It follows that s− lim Bn = P0, the orthogonal projector onto φ0. Therefore
for φ ∈ L2(X, dµ) one has

lim
n→∞

(φ,Bnφ) = |(φ, φ0)|2 > 0 (14.7)

(the last inequality follows because φ0 is strictly positive on compact sets).
Therefore there is at least one nφ such that (φ,Bnφ) > 0.
b) implies c)

Let the closed subspace S ∈ L∞ be left invariant by L∞ and by T. If f ∈ S
define g(x) ≡ f̄(x)

|f(x)| if f(x) 6= 0. Then g ∈ L∞ and gf = |f | ∈ S. In the same
way one proves that if g ∈ S⊥ then also |g| ∈ S⊥. But then (|g|, Tn|f |) = 0 ∀n
and therefore f ≡ 0.
c) implies a)

Let φ0 be eigenfunction of T to the eigenvalue ||T ||.
¿From lemma 19.2 it follows that also |φ(x)| is an eigenfunction to the

same eigenvalue, because (ψ, Tφ0)| ≤ ||T || for any ψ. We must prove that for
every compact K one has infK|φ0(x)| > 0. Let Γ ≡ {f ∈ L2, fφ = 0 a.e}.
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By construction Γ is a closed subspace invariant under multiplication by
L∞ functions. Let Γ = Γ+−Γ−+iΓ+−iΓ+, Γ+ ≡ {f ∈ Γ, f(x) ≥ 0}. Then
TΓ+ ⊂ Γ+ because if f ∈ Γ+ one has (Tf, |φ|) = (f.T |φ|) = ||T ||(f, (|φ|) = 0.

Analogous inclusions hold for the other three terms in the decomposition
of Γ. Therefore TΓ ⊂ Γ.

¿From c) one has the alternative Γ = {0} or Γ = L2(x, dµ). The second
alternative is excluded because φ0 /∈ Γ. Therefore Γ = {0} and this implies
that no function f ∈ L2 such that a.e. f(x)φ0(x) = 0.

Uniqueness follows because it is not possible for two functions to be strictly
positive and orthogonal to each other.

♥

14.3 Existence and uniqueness of the ground state

,
We make now use of theorem Theorem 14.1 to prove the following result

which provides necessary and sufficient conditions in order that the ground
state be simple. Later we shall give necessary and sufficient conditions for the
existence of a ground state (here we assume existence).

Theorem 14.2
Let H be self-adjoint and bounded below. Let E ≡ inf σ(H). The following
statements are equivalent to each other
a) E is a simple eigenvalue and the corresponding eigenfunction can be chosen
to be strictly positive
b) There exists λ < E such that (H − λ I)−1 is ergodic
c) There exists t > 0 such that e−tH is ergodic
d) ∀λ < E the operator (H + λ)−1 is positivity improving
e) ∀t > 0 the operator e−tH is positivity improving.

♦

Proof
¿From theorem 14.1 we know that a), b), c) are equivalent to each other,

that d) implies b) and that e) implies c). We shall now prove the two remaining
implications
c) implies d)

By assumption there are s0 > 0 and non-negative functions u, v which
are not identically equal to zero such that (u, e−s0Hv) > 0 . By continuity
(u, e−sHv) > 0 when s is in a neighborhood of s0. Then

(u, (H + λ)−1v) =
∫ ∞

0

esλ(u, e−sHv)ds > 0

and therefore ((H + λ)−1v)(x) > 0 ∀x.
c) implies e)
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Let u, v be non-negative functions not identically equal to zero. Define
N ≡ {t > 0 (u, e−tHv) > 0}. The function (u, e−tHv) is analytic in a neigh-
borhood of R+ therefore the set ((0,∞)−N ) cannot have 0 as accumulation
point. It follows that N contains arbitrary small numbers.

In order to prove that N ≡ (0,+∞) it suffices therefore to prove that
t > s, s ∈ N implies t ∈ N . Let s0 ∈ N . By assumption (u, e−s0Hv) > 0 and
then ū(x)(e−s0Hv)(x) is not identically equal to zero.

Let w(x) = mins{u(x) , (e−sHv)(x)}. Since the operator e−tH is positivity
preserving

(u, e−tH(e−sHv)) ≥ (u, e−tHw) = (u, e−tHw) ≥ (w, e−tHw) = |e− tH2 w| > 0
(14.8)

It follows that if t > 0 and s ∈ N then t+ s ∈ N . This ends the proof of
Theorem 14.2

♥

Example
Let A ≥ cI, c > 0 an operator on H1 ≡ L2(Rd) and denote by H =

dΓ (A) on H = Γ (H1) its second quantization. Identify H with L2(X, dµ) for
a suitable measure space X,µ

In Quantum Field Theory H1 is the one-particle space (e.g L2(R3)) , A
is the one-particle hamiltonian, X is a space of distributions in R3 and µ is
a Gauss measure on X). Denote by Ω the vacuum state in Fock space. By
construction

HΩ = 0, HΩ⊥ ≥ cI (14.9)

Therefore H has a ground state which is simple and can be chosen positive.
From theorem 14.2 one derives that if e−tA is positivity preserving, then
Γ (e−tA) ≡ e−tH is positivity improving in L2(X, dµ).

♣

We apply now theorem 14.2 to the N -body problem in Quantum Mechan-
ics.

Theorem 14.3
Let H be the hamiltonian of the N -body system in the frame in which the
center of mass is at rest. If the infimum of the spectrum is an eigenvalue,
then this eigenvalue is simple, and the corresponding eigenfunction can be
chosen positive.

♦

Proof
According to theorem 14.2 it is sufficient to prove that e−tH is positivity

preserving and that {e−tH ∪ L∞(R3N−3)} is irreducible. We know that both
statements hold for H0 ≡ −

∑
n∆n. Set V Ni,j (x) ≡ inf{N,Vi,j(x) if |Vi,j}.

Then e−tV
N
i,j(x) ∈ L∞ and is invertible.
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Therefore the algebra A generated by e−t(H0+V Ni,j) together with the ele-
ments of L∞(R3N−3) (considered as multiplication operators) is irreducible.

Moreover e−t(H0+
∑

i,j
V Ni,j) is positivity preserving (use Trotter-Kato formula

and remark that each factor has this property).
It is easy to verify that

∑
i,j V

N
i,j converges in L2, when N → ∞, to∑

i,j Vi,j . Therefore when N → ∞ H0 +
∑
i,j ViN ,j converges in the strong

resolvent sense (and therefore in the strong sense for the associated semi-
groups ) to H0 +

∑
i,j Vi,j .

Since the strong limit in L2 preserves positivity and A is weakly closed ,
the proof of theorem 14.3 is complete.

♥

Recall (lemma 14.4) that if T is bounded and doubly markovian on
L2(X, dµ) with µ finite measure, then T is a contraction on all Lp, 1 ≤ p ≤ ∞.

We now introduce a stronger condition on T, namely we require that T
be a contraction from Lp to Lq where p and q are positive constants , with
p < q.

Recall that , since the measure has finite total weight, one has always
||.||q ≥ ||.||p if p < q and the inequality is strict unless the measure is carried
by a finite number of points.

14.4 Hypercontractivity

Definition 14.5
Let (X,µ) a measure with finite total weight. A bounded operator T is

said to hypercontrative if there exist q > 2 such that T be a contraction from
L2 to Lq (i.e. ∀f ∈ L2 |Tf |q ≤ |f |2)

♦

The importance of this notion is given by following theorem

Theorem 14.4 (Gross) [1]
Let H ≥ 0 be the generator of a positivity preserving semigroup and suppose
that there exist t0 > 0 such that e−t0H is hypercontractive between L2 and L4.

Then
1) inf σ(H) ≡ E is an eigenvalue
2) The eigenvalue E is simple
3) The corresponding eigenfunction can be chosen positive.

♦

Proof
It follows from theorem 14.3 that it suffices to to prove point 1) since the

2) and 3) follow. Consider a finite partition α ≡ {S1, ..SN} of X, i.e. a finite
collection of measurable sets such that
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∪nSn = X, Si ∩ Sk = ∅ i 6= k (14.10)

Denote by ξ(Sk) the indicator function of Sk and call Pα the operator

(Pαf)(x) =
∑
i

1
µSi

ξ(Si)(x)
∫
Si

f(y)µ(dy) (14.11)

Then one easily verifies that
1) Pα ≤ Pβ if the partition β is finer that α and Pαn converges strongly to
the identity when the partition is refined indefinitely
2) Pα is positivity preserving
3) Pα is a contraction on every Lp as one sees by interpolation: by construction
|Pαf |∞ ≤ |f |∞ and Pα contracts in L1 because it is symmetric and Pαι = ι.

Set A ≡ e−t0H and Aα ≡ PαAPα. From properties 1),2),3) one derives (
the notation limα→∞ indicates the limit when the partition if refined indefi-
nitely)
a) s− limα→∞Aα = A
b) ||A|| = limα→∞||Aα||
c) for every φ ∈ L2 there exists an integer K such that |Aαφ|4 < K ||A||α|φ|2

Property c) follows from a) e b) and the assumptions we have made on
e−t0H . For every finite partition we can identify the operator A with a N ×N
matrix that preserves positivity. From the Perron-Frobenius theorem follows
the existence of φα ∈ PαH such that

Aαφα = ||A||αφα (14.12)

Normalizing this vector with |φ|2 = 1 it follows from c) |φα|4 ≤ K. Hölder
inequality gives

|φα|2 ≤ |φα|
1
3
1 |φα|

2
3
4 |φα|1 =

∫
X

|φα|(x)|dµ(x) ≥ 1
K2

(14.13)

The unit ball in in L2(X, dµ) is compact for the weak topology, and we
can extract a sequence φαn with αn < αn+1 that converges weakly to ι and
it follows

|φα|1 ≡
∫
X

φαdµ→
∫
X

φ(x)dµ = |φ|1 (14.14)

Notice that ||φ||1 ≥ 1
K2 and therefore φ 6= 0. On the other hand, a) and

b) imply for every element ψ ∈ L2(X, dµ)

(ψ,Aφ) = (Aψ, φ) = limβ(Aψ, φβ) = limβ ||A||β(ψ, φβ) = ||A||(ψ, φ)
(14.15)

Since this relation holds for every ψ one derives Aφ = ||A||φ.
♥
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Remark that if the measure space has total measure µ(X) > 1 and

|Aφ|q ≤M |φ|2, M > 0 (14.16)

an analysis similar to that presented above [1] proves that if ||A|| is an eigen-
value of T its multiplicity m is bounded by

m ≤ m0 ≡ (
M

||T ||
)

2q
q−2µ(X) (14.17)

The proof makes use of the fact that for every solution of Aφ = ||A||φ one
has

(φ, ι) ≥ (
||T ||
M

)
q
q−2 (14.18)

¿From this one derives that the number of orthogonal solutions cannot be
greater than m0.

♣

We study now conditions on the operators A and B under which if A
has the properties we are considering (preserve or improve positivity, being
doubly Markov, be hypercontrative...) also the operator A+B has the same
property.

We are particularly interested to the case A ≡ −∆ and B is a multiplica-
tion operator by a function V (x). .

Theorem 14.5
Let H = L2(Rd, µ), H0 ≥ 0 where µ is absolutely continuous with respect
to Lebesgue measure, and assume (H0 + λ)−1 is positivity preserving for all
λ > 0. Let U(x), −W (x) be real positive functions. Denote by Q(H) the
form-domain of the operator H.

Let Q(H0)∩Q(U) be dense in H and let W be small with respect to H0 in
the quadratic-form sense. Define

H ≡ H0 + U +W (14.19)

as quadratic forms. Let λ0 be the infimum of the spectrum of H0 + W. Then
for λ > λ0 the operator (H − λ I)−1 is positivity preserving.

♦

Proof
Denote by ηF the indicator function of the set F. Set

Uk(x) = ηU(x)≤k(x)U(x), Wh = η|W (x)|≤h(x)W (x) (14.20)

Consider
Hk,h ≡ H0 + Uk +Wh (14.21)

Since Uk and Wh are bounded the series
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(Hk,h + λ I)−1 = (H0 + λ I)−1
∞∑
n=0

[(Uk + Vh)(H0 + λ I)−1]n (14.22)

is absolutely convergent for λ sufficiently large and each term in the series
preserves positivity. But if H0 +W > −b I for each value of the parameter h
one has H0 +Wh > −b I. It follows that Hk,h + b is invertible and

(Hh,k + b I)−1 = (Hh,k + λ I)−1(I +
∑
n

[(λ− b)(Hh,k + b I)−1]n (14.23)

The series converges uniformly and each term preserves positivity . There-
fore (Hh,k + b I)−1 preserves positivity for b > λ0 with λ0 the infimum of the
spectrum of H +W.

Since the cone of positive functions is weakly closed, to pass to the limit
h, k →∞ it is enough to prove that Hh,k converges to H in strong resolvent
sense.

This has been proved, under the assumptions of theorem 14.5, in Book I
(convergence of operators).

♥

Remark that the (open) cone of strictly positive functions is not closed
under weak convergence. Therefore even if each of the resolvent of each of the
Hh,k improves positivity this needs not be true for H.

Recall also that in the Feynman-Kac formula for the proof of the self-
adjointness of H0 + V an important role is played by the requirement that
Q(H0) ∩Q(V ) be dense in H.

Theorem 14.6
Let H = L2(X, dµ) H0 ≥ 0 H0φ0 = 0, φ0 ∈ H and let φ0 be strictly
positive. Assume that (H0 + λ I)−1 be positivity preserving for each λ > 0.
Let V (x) ≥ 0, (φ0, V φ0) < +∞. Then D(H0) ∩ D(V0) is dense in H and
therefore Q(H0) ∩Q(V0) in dense in H.

♦

Proof
Define L∞φ0

≡ {f : ±f ≤ tφ0} for some t > 0. Notice that from φ0(x) >
0 ∀x it follows that L∞φ0

is dense in H and also that

(H0 + λ I)−1 L∞φ0
⊂ L∞φ0

19.13 (14.24)

Indeed (H0 + λ I)−1f ≤ t(H0 + λ I)−1φ0 = t
λφ0. By assumption V ∈

L1(X,φ2
0(x))dx) and therefore L∞φ0

⊂ Q(V ). Therefore

(H0 + λ I)−1L∞φ0
⊂ D(H0) ∩Q(V )19.14 (14.25)

Since L∞φ0
is dense in H we conclude that (H0 + λ I)−1L∞φ0

is dense in
(H0 + λ I)−1H ≡ D(H0).
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♦

As a consequence of theorem 14.5 and of the theorems we have proved
for quadratic forms we know that H + V is self-adjoint. We prove now that
D(H0) ∩D(V ) is a core for it.

Theorem 14.7
Let H0 ≥ 0, φ0 ∈ L2, φ0(x) > 0 and suppose that (H0 + λ I)−1 is positivity
preserving. Let V ∈ L2(X,φ2

0dx). Then H0 + V is essentially self-adjoint on
D(H0) ∩D(V ).

♦

Proof
We must show that D(H0)∩D(V ) is dense in D(H) in the graph topology.

We know that if λ is sufficiently large (H − λ I)−1 preserves positivity and
leaves L∞φ0

invariant. Set K ≡ (H − λ I)−1 L∞φ0
. Then

K ⊂ D(H) ∩ L∞φ0
= D(H) ∩D(V ) (14.26)

If g ∈ H, H0g ∈ H it follows g ∈ D(H) and therefore K ⊂ D(H0)∩D(V ).
But L∞φ0

is dense in H and therefore L∞φ0
is dense in (H−λ I)−1H. The closure

of (H − λ I)−1H in the graph topology of H coincides with D(H); therefore
K is dense in D(H) in the graph topology of H.

Notice that K ⊂ D(H0) ∩D(V ) and therefore also this set is dense H in
the same topology.

♥

¿From theorem 14.1 we know that for a bounded positivity preserving
operator the smallest eigenvalue is simple if the operator is ergodic.

14.5 Uniqueness of the ground state

In the ergodic theory for classical ergodic systems it is known that ergodicity is
equivalent to indecomposability (metric transitivity) . An analogous definition
can be introduced for operators on L2(X, dµ); this definition coincides with
the classical one if the operators are obtained by duality from maps X → X.

We give here the definition in the operator case, prove that indecompos-
ability implies uniqueness of the ground state and we give two conditions
on V under which if H0 satisfies indecomposability also H + V satisfies this
property.

Definition 14.6 (indecomposable)
The bounded and closed operator T on L2(X, dµ) is indecomposable if

it does not commute with the projection on L2(Y, dµ) where Y ⊂ X is a
measurable proper subset with µ(Y ) 6= 0.

♦
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Theorem 14.8
Let T be an operator on L2(X, dµ) bounded self-adjoint and positivity preserv-
ing. Let ‖T‖ be an eigenvalue. T is indecomposable iff the eigenvalue ‖T‖ is
simple and the corresponding eigenfunction can be chosen positive.

♦

Proof
Assume Tu = ‖T‖u, u ∈ L2(X, dµ). We can take u real because T

preserves reality. Then

‖T‖|u|2 = (u, Tu) ≤ (|u|, T |u|)⇒ |u| = u (14.27)

therefore Tu+ = ±‖T‖u If f ≥ 0, f ∈ L2(X, dµ) one has (Tf, u±) =
‖T‖(f, u±) Since T is indecomposable either u− = 0 or u+ = 0. This implies
uniqueness.

Conversely, assume that ‖T‖ is a simple eigenvalue with eigenfunction
u > 0 and that there exists a measurable set Y , such that the the orthogonal
projection PY onto Y commutes with T.

Therefore PY u = u. But this is only possible if µ(Y ) = 0 or µ(X − Y ) =
0.

♥

In the case of unbounded self-adjoint operators the definition of irreducibil-
ity requires more attention.

Definition 14.7
Let A be self-adjoint unbounded on L2(x, dµ). A is indecomposable if one

cannot find a measurable subset Y of X with 0 < µ(Y ) < µ(X) such that
f ∈ D(A) implies PY f ∈ D(A), PYA−APY = 0 on D(A).

If A is bounded below the condition is equivalent to (A+ λ I)−1 be inde-
composable (in the sense of the previous definition) for λ sufficiently large.

♦

We consider now conditions under which if H0 is indecomposable so is
H0 + V. If H0 + V is bounded below, this implies that if H0 has a unique
ground state, also H0 + V has this property.

Theorem 14.9
Let H = L2(X,µ), and H0 positive. Let U and −W measurable positive func-
tions on X. Let Q(U) ∩ Q(H0) be dense in H and let W be form-small with
respect to H0. Define H = H0 +U +W as sum of quadratic forms and denote
by Ĥ0 the self-adjoint operator associated to the closed positive quadratic form
obtained by closing the quadratic form of H0 restricted to Q(H0) ∩ Q(W ). If
Ĥ0is indecomposable so is also H.

♦

Remark that if U satisfies (φ0, Uφ0) < +∞, and Q(H0) ∩ Q(U) is dense
in Q(H0), then Ĥ0 = H0 and H is indecomposable.
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Proof of Theorem 14.9
It is easy to verify that P (Y ) commutes with H iff g ∈ Q(H) implies

P (Y )g ∈ Q(H), (f,HP (Y )g)− (P (Y )f,Hg) = 0 ∀f, g ∈ Q(H) (14.28)

In particular if H ≥ 0 one has

P (Y ) Hψ = H P (Y )ψ, ψ ∈ D(H)⇒ P (Y )
√
Hφ =

√
H P (Y )φ, φ ∈ D(

√
H)

(14.29)
Assume that P (Y ) commutes with H. Since P (Y ) commutes with U and

W , if Q(H) is dense in Q(H0) it follows from (29) that

(f,H0 P (Y )g) = (P (Y )f,H0)g) ∀f, g ∈ Q(H0) (14.30)

and therefore either µ(Y ) = 0 or µ(X−Y ) = 0, since by assumptionH0 is inde-
composable.If Q(H) is not dense in Q(H0) notice that (P (Y )g,H0P (Y )g) =
(g,H0g) if g ∈ Q(H). Therefore the map g → P (Y )g is continuous in the
topology of Q(H0).

It follows that g ∈ Q(Ĥ0) ⇒ P (Y )g ∈ Q(Ĥ0) and that g → P (Y )g is
continuous in the topology of Ĥ0. Therefore (30 ) holds also for Ĥ0 and P (Y )
commutes Ĥ0.

♥

It is important to have criteria which guarantee that a given self-adjoint
operator be the generator of a positivity preserving semigroup. Of particular
interest are criteria that refer only to the quadratic form associated to the
operator. The basic results are due to Beurling and Deny [2[

Theorem 14.10 (Beurling- Deny I)
Let H ≥ 0 su L2(X, dµ) and define (ψ,Hψ) = +∞ if ψ /∈ D(H). The follow-
ing statements are equivalent
a) e−tH is positivity preserving for each t > 0
b) (|u|, H|u|) ≤ (u,Hu) ∀u ∈ L2(X, dµ)
c) e−tH preserves reality for all t > 0 and

(u+, Hu+) ≤ (u,Hu)∀u ∈ L2(X, dµ) (u+(x) ≡ max{u(x), 0})

(u+, Hu+) + (u−, Hun) ≤ (u,Hu) u = u+ − u− (14.31)

♦

Remark that the thesis of the theorem have a simpler form if expressed
in terms of the corresponding quadratic forms. Denote by EH the quadratic
form associated to the operator H and with Q(EH) its form domain.

In what follows we omit the suffix H. With these notations conditions b),
c), d) become
b’)
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u ∈ Q(E)⇒ |u| ∈ Q(E) E(|u|, |u|) ≤ E(u, u) (14.32)

c’)
u ∈ Q(E)⇒ u+ ∈ Q(E), E(u+, u+) ≤ E(u.u) (14.33)

d’)

u ∈ Q(E)⇒ u+, u− ∈ Q(E), E(u+, u+) + E(u−, u−) ≤ E(u.u) (14.34)

♣

Proof of theorem 14.10
In the applications we shall see that the interesting part of the theorem is

a)⇔ b).
This the only part which we shall prove. The proof of the other implications

is similar.

Proof
a)⇒ b)
One has

(u,Hu) = limt→∞
1
t
(u, (I − e−tH)u) (14.35)

(u, e−tHu) = |e− t2Hu|2 ≤ |e− t2Hu||2 = (|u|, e−tH |u|) (14.36)

Therefore
(u, (I − e−tH)u) ≥ (|u|, (I − e−tH)|u|) (14.37)

Passing to the limit t → ∞ b) follow. One may notice that the result is
obtained in the form 2′ because (37) holds for u ∈ L2(X, dµ) and the limit in
(31) exists esists for u ∈ Q(E) and equals E(u, u).

b)⇒ a)
Let u ≥ 0, λ > 0. Define

w ≡ (H + λ I)−1 (14.38)

We want to prove w ≥ 0. This shows the the resolvent is positivity pre-
serving and then the semigroup has the same property. Set

E(u, u) ≡ (φ,Hφ) + λ(φ, φ) (14.39)

Performing the calculations one obtains

E(φ+ ψ, φ+ ψ) = E(φ, φ) + E(ψ,ψ) + 2 Re((H + λ)φ, ψ) (14.40)

If Re(V ) > 0

E(w + v, w + v) = E(w,w) + E(v, v) +Re(u, v) ≥ E(w,w) + E(v, v) (14.41)

One may notice the analogy with the inequality which characterizes dis-
sipative operators. If one has equality in (36) then v = 0 because u ≥ 0. Set
v = w − w. Then
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E(|w|, |w|) ≥ E(w,w) + E(|w| − w, |w| − w) (14.42)

and identity holds if v = 0. From (38) one derives v = 0 since by assumption
E(|w|, |w|) ≤ E(w,w).

♥

14.6 Contractions

Theorem 14.11
Let H ≥ 0 be a self-adjoint operator on L2(X.µ) generator of a positivity
preserving semigroup.

Define (f ∧ 1)(x) ≡ inf{f(x), 1}. The following statements are equivalent
to each other
a) For all t > 0 the operator e−tH is a contraction on Lp, 1 ≤ p ≤ ∞
b) For all t > 0 the operator e−tH is a contraction on L∞

c) For all f one has (f ∧ 1, H f ∧ 1) ≤ (f,Hf) (.
d) If F is such that |F (x|) ≤ |x| and |F (x)− F (y)| ≤ |x− y| ∀x, y ∈ R, then
(F (f), HF (f)) ≤ (f,Hf) ∀f ∈ L2.

♦

Remark that we have use the term defines a contraction because initially
the operator e−tH is defined on L2(X,µ). One obtains the extension to Lp,
p 6= 2 by first restricting the operator to L2 ∩ Lp and extending the result to
all Lp ( e−tH is by assumption bounded with bound one on L2 ∩ Lp in the
topology of linear operators Lp).

Also in this theorem the best formulation is by means of quadratic forms.
For example, points c) and d) become
c’)

f ∈ Q(E)⇒ f ∧ 1 ∈ Q(E), E(f ∧ 1), f ∧ 1) ≤ E(f.f) (14.43)

d’)

|F (x)| ≤ |x|, |F (x)− F (y)| ≤ |x− y| ⇒ f ∈ Q(E)→ F (f) ∈ Q(E) (14.44)

and E(F (f), F (f)) ≤ E(f, f). Notice that F is a contraction with Lipshitz
norm ≤ 1. Therefore d’) is the requirement that x→ F (f(x)) leave invariant
the form domain and operate as a contraction.

Proof of theorem 14.11
The implication d) → c), b) → a), c) → b) are easy to prove. We now

prove c)→ b), a)→ d).
c)→ d)

Let u ∈ L2, 0 ≤ u(x) ≤ 1 ∀x. Define for v ∈ Q(E)

ψ(v) = (v,Hv) + ‖u− v‖2 = (v, (H + I)v) + ‖u‖2 − 2Re (u, v) (14.45)
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and set R1 ≡ (H + I)−1. Then ψ(R1u) = ‖u‖2 − (u,R1u) and

((R1u−v), (H+I)(R1u−v)H(R1u−v)) = (u,R1u)+(v, (H−I)v)−2Re (u, v)
(14.46)

Therefore

ψ(v) = ψ(1u) + ((R1u− v), (H + I)(R1u− v)H(R1u− v))

= (u,R1u) + (v, (H − I)v)− 2Re (u, v) (14.47)

It follows that ψ(v) reaches the maximum value only in v = R1u. Since
u ≤ 1 one has

|u(x)− sup(v(x), 1)| ≤ |(u(x)− v(x)| (14.48)

Therefore ψ((R1∧1)) ≤ ψ(R1 u). Since R1u is a minimum point (R1∧1) =
R1 and therefore R1u ≤ 1 , It follows that R1 is a contraction in L∞(X, dµ).
In the same way one proves that Rε is a contraction in L∞(X, dµ) and hence
e−tH ≡ limn→∞(I + tH

n )n is a contraction in L∞(X, dµ).
a)→ d)

It suffices to prove that under the hypotheses made of F

(F (f), (I − e−tH)F (f)) ≤ (f, e−tHf) (14.49)

¿From (45) one obtains d) dividing by t and passing to the limit t → 0.
Consider a partition α of X in measurable disjoint sets S1, ..SN(α). Let Πα

be the projection operator on the space of functions that are constant in each
set.These functions are often called simple .

By density it suffices to prove that for any finite partition

(F (Παf), (I − e−tH)F (Παf)) ≤ (Παf, e
−tHΠαf) (14.50)

If ξS is the indicator function of the set Sand bk,h ≡ (ξSk , (I − e−tH)ξSk)
we must prove ∑

h,k

F̄ (αh)F (αk)bh,k ≤
∑

ᾱk αh bh,k (14.51)

under the assumption |F (α)| ≤ α, |F (α)− F (β)| ≤ |α− β|. Set

λk ≡ (ξk, ξk)), bh,k ≡ λkδh,k − ah,k ah,k ≡ (ξSk , e
−tHξSk) (14.52)

One has
∑
h ah,k ≤ λk and therefore∑

z̄h zkbh,k =
∑
h<k

ah,k|zh − zk|2 +
∑
k

mk|zk|2, mk ≡ λk −
∑
h

ah,k ≥ 0

(14.53)
Define zk ≡ F (αk); one has∑

F̄ (αh) F (αk)bh,k =
∑
h<k

ah,k|F (αh)− F (αk)|2 +
∑
k

mk|F (αk)|2

≤
∑
h<k

ah,k|αh − αk|2 +
∑
k

mk|αk|2 =
∑
h,k

ᾱh αkbh,k (14.54)

♥
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14.7 Positive distributions

A further characterization is based on the following Lemma [2].

Lemma 14.3 (Levy-Kintchine )
Let F (x) be a complex-valued function on Rd, Re F (x) ≥ −c. Define

e−F (i∇) = Fe−F (x) (F is Fourier tranform). The following statements are
equivalent
a) The operator e−F (i∇) is positivity preserving
b) ∀t ≥ 0, e−tF (x) is a positive distribution (in Bochner’s sense).
c)

F̄ (x) = F (−x),
m∑
1

F (zi − zj)z̄i zj ≤ 0, ∀xi ∈ Rd, z ∈ Cm
m∑
1

zi = 0

(14.55)
♦

Proof
b)→ a)
Set G(x) ≡ e−tF (x) and denote by ∗ convolution. One has

(f,G(−i∇)g) = (2π)−
d
2 (Ĝ ∗ (ĝ ∗ f̂))(0) (14.56)

Therefore if Ĝ is a positive measure then (f,G(−i∇)g) ≥ 0.
a)→ b)

Assume G(−i∇) preserves positivity. Set gy(x) ≡ f(x+y). Taking Fourier
transforms

(2π)−
d
2 (Ĝ ∗ (f̂ ∗ f̂))(y) = (2π)−

d
2 (Ĝ ∗ (ĝy ∗ f̂))0 = (f,G(−i∇)g) ≥ 0 (14.57)

Since Re F (x) ≥ −C one has G(x) ≤ etC ∀x. Therefore G(x)is a tempered
distribution and so is Ĝ.

Definining f(x) = jε(x) where jε is an approximated δ and passing to the
limit ε→ 0 one has ĝε(k)Ĝ(k)→ Ĝ(k) uniformly over compact sets. It follows
that Ĝ(k) is a positive measure.
b)↔ c)

Denote by A the matrix with elements ai,j and with M(t) the matrix
with elements etai,j . We must prove that M(t) is positive definte iff is positive
definite the restriction of A to the subspace

∑
k ξk = 0 ≡ (ι, ξ) ( ι is the vector

with all components equal to one).
The condition is necessary : from M(0)i,j = 1 follows (ξ,M(0)ξ) = 0 if

(ξ, 1̂) = 0. Since (ξ,M(t)ξ) ≥ 0 ∀t ≥ 0 one has

(ξ, Aξ) ≡ d

dt
(ξ,M(t)ξ)t=0 > 0 (14.58)

The condition is sufficient : denote by I − P the orthogonal projection on 1̂.
By assumption PAP > C I. One has



344 14 Lecture 14Positivity preserving maps. Markov semigropus. Contractive Dirichlet forms

A = PAP + (IP )A(IP ) + PA(I − P ) + (I − P )AP (14.59)

and ai,j = ãi,j + b̄i + bj where Ã is positive definite. Hence M(t)i,j =
etb̄jM̃(t)i,jetbi i.e. the matrix M is obtained from the positive matrix M̃
through a linear transformation with positive coefficients and is therefore pos-
itive.

♥

A generalization of the theorem II of Beurling-Deny has been given by
M.Fukushima. It provides a one-to -one correspondence between positivity
preserving semigroups and Dirichlet forms having spacial properties.

Theorem 14.15 Fukushima [2]
In theorem II of Beurling-Deny, the semigroup improves positivity iff the
corresponding Dirichlet form is strictly contractive i.e.

|f | ≥ c > 0, E(|f |, |f |) = E(f, f)⇒ f = α|f | (14.60)

♦

For a proof of this theorem and for a detailed description of the relation
between quadratic forms and Markov processes on can see [2] .

Notice that if T is a d-dimensional torus and H is the laplacian defined
on T with periodic boundary conditions, if f ∈ L2(T ) for any t > 0 one has
etHf ∈ C∞(T ). In fact

F(etHf) =
d∑
k=1

∑
nk∈N

e−n
2
kfn1,..nd (14.61)

and the series is uniformly convergent for every t > 0. The same holds true if
X is a compact Riemann manifold and H is the Laplace-Beltrami operator.

In the case of non-compact manifolds and for a general probability space
the improvement in regularity is of different nature and is a generalization of
the hyper-contractivity bound we have mentioned in this Lecture.

Let µ a probability measure on X. The following inclusions hold

Lp(X,µ) ⊂ Lq(X,µ), 1 ≤ p ≤ q ≤ ∞ (14.62)

and the inclusions are strict unless the measure µ is supported by a finite
number of points. Define

‖e−tH‖q→p ≡ sup‖e−tHf‖p, f ∈ Lq ∩ Lp ‖f‖q ≤ 1 (14.63)

The relation (57) means ‖e−tH‖q→p ≤ 1 q ≥ p. The regularization prop-
erty we want to discuss considers the case q < p.
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Definition 14. 7
The semigroup e−tH is said to be (q, p, t0) hyper-contractive, with q < p,

if there is t0 > 0 such that

‖e−t0H‖q→p ≤ 1, q < p (14.64)

♦

Remark that if (60) holds for t = t0 it also holds for t > t0. The (q, p, t0)
hyper-contractivity property holds for singular perturbations of the Laplace-
Beltrami (which have no L2 → L∞ regularization property. )

It also holds and also in some cases of infinite-dimensional spaces, e.g R∞

if one makes use of Gauss measure in some models of Quantized Field Theory
and of the Dobrushin-Ruelle measure (generalization of Gibbs measure) and
in models of Statistical Mechanics for infinite particles systems. If zero is a
simple eigenvalue of H ≥ 0, inequality (60) implies that it is isolated.

14.8 References for Lecture 14

[1] (L.Gross, Journ. Functl. Analysis 10, (1972) 52-109)

[2] M.Fukushima, Dirichlet forms and Markov Processes North-Holland
1980.
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Lecture 15
Hypercontractivity. Logarithmic Sobolev
inequalities. Harmonic group

We ended the previous lecture with an analysis of conditions under which the
semigroup e−tH has suitable regularizing properties.

In this Lecture we exploit these results. For example if T is a d-dimensional
torus and H is the laplacian defined on T with periodic boundary conditions,
if f ∈ L2(T ) for any t > 0 one has etHf ∈ C∞(T ) as one proves noticing that
upon taking Fourier transform on has

F(etHf) =
d∑
k=1

∑
nk∈N

e−n
2
kfn1,..nd (15.1)

and the series is uniformly convergent for every t > 0. The same hold true if the
manifold is smooth manifold and H is minus the Laplace-Beltrami operator.

In the case of non-compact manifolds and for a general probability space
the improvement in regularity is of different nature and is a generalization of
the hyper-contractivity property.

For a probability measure on a Banach space X one has Lp(X,µ) ⊂
Lq(X,µ), 1 ≤ p ≤ q ≤ ∞ and the inclusions are strict unless the measure µ
is supported by a finite number of points. Define

‖e−tH‖q→p ≡ sup‖e−tHf‖p, f ∈ Lq ∩ Lp ‖f‖q ≤ 1 (15.2)

Therefore ‖e−tH‖q→p ≤ 1 q ≥ p.
Definition 15.1

The semigroup e−tH is said to be (q, p, t0)-hyper-contractive, with q < p,
if there is t0 > 0 such that

‖e−t0H‖q→p ≤ 1, q < p (15.3)

♦

Remark that if (3) holds for t = t0 it also holds for t > t0. The (q, p, t0)
hyper-contractivity property holds for singular perturbations of the Laplace-
Beltrami operator which have no L2 → L∞ regularization property.
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It also holds and also in some cases of infinite-dimensional spaces, e.g R∞

if one makes use of Gauss measure.
This property is used in some models of Quantized Field Theory and in

models of Statistical Mechanics for infinite particles systems ( Dobrushin-
Ruelle measure, a generalization of Gibbs measure).

We shall show that if zero is a simple eigenvalue of H ≥ 0, inequality (3)
implies that it is isolated. It is therefore interesting to give a characterization
of the generators of the semigroups are hyper-contractive.

15.1 Logarithmic Sobolev inequalities

Definition 15.2
Let (X,µ) be a probability space, and let E(f) be a non-negative closed

quadratic form densely defined on L2(X, dµ). We will say that E determines
( or satisfies ) a logarithmic Sobolev inequality (in short L.S. ) if there exists
a positive constant K such that

K|
∫
X

|(f(x)|2log |f(x)|
‖f‖2

dµ(x) ≤ E(f), ∀ f ∈ Q(E) ∩ L2, f 6= 0 (15.4)

♦

The greatest constant K for which the inequality is satisfied will be called
logarithmic Sobolev constant relative to the triple E , µ,X). We remark that
by construction both terms in (3) are homogeneous of order two for the map
f → λf λ ∈ R+. Therefore (3) can be written

K|
∫
X

|(f(x)|2log|f(x)|dµ(x) ≤ E(f), ‖f‖2 = 1 (15.5)

We will show that (3) provides a necessary and sufficient condition that
the Friedrichs extension associated to the quadratic form E be the generator
of a hyper-contractive semigroup. Before proving this, let us compare in the
case X = Rd, d < ∞ and µ = Lebesgue measure, inequality (3) with the
classic Sobolev inequalities i.e.

‖f‖q ≤ Cp,d‖∇ f‖p,
1
q

=
1
p
− 1
d
, 1 ≤ p ≤ q ≤ +∞ (15.6)

where Cp,d are suitable positive constants. The inequalities (3) are established
first for f ∈ C∞0 (Rd), and remain valid by density and continuity for functions
such that the right-hand side is defined. We shall denote these inequalities with
Sd,p (S for Sobolev).

Comparing (3) with (5) one sees that Sd,p contains more information than
S.L. on the possible local singularity of f .
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However these information becomes less relevant when d increases and
lose interest in the limit d → ∞. In this limit the L.S. inequality give useful
information

For the behavior of the functions at infinity (if X is not compact) , notice
that inequalities Sd,p are valid only for those functions that are contained in
the closure of the C∞0 in the norm ‖∇f‖p.

This set does not contain all function which have finite Lp norm. In the
case X is not compact the comparison should be rather with the coercive
Sobolev inequalities

‖f‖q ≤ cp‖∇f‖p + bp‖f‖p
1
q

=
1
p
− 1
d
, 1 ≤ p ≤ ∞ (15.7)

for suitable constants cp, bp > 0. In (7) the symbol ‖f‖p means

‖f‖pp =
∫
X

|f(x)|pdµ(x) (15.8)

where µ is a measure continuous with respect to Lebesgue measure.
For completeness we remark that in Rd (or on a non-compact manifold of

dimension d) inequalities (3) with bp > 0 imply L.S. .
To see this, e.g.in case p = 2, choose f positive and set dν = f2dµ. Jensen’s

inequality gives

2
q − 2

∫
logfq−2dν ≤ 2

q − 2
log

∫
fq−2dν ==

q

q − 2
log‖f‖2q ≤

q

q − 2
(‖f‖2q−1)

(15.9)
(in the last inequality we have used α ≥ 1→ log α ≤ α− 1.

These inequalities imply that if f is positive there are constants a > 0, b >
1 such that∫

f2log
f2

‖f‖22
dµ ≤ c q

q − 2

∫
|∇f |2dµ+ (b− 1)

q

q − 2

∫
|f |2dµ (15.10)

If X is not compact, it is not possible to derive L.S. from the Sobolev
inequalities because L.S. require more stringent conditions to the behavior of
the function at large distances.

However L.S. can be derived from Sd,2 if one requires that the function
satisfies the following Poincaré inequality.

αd‖f − E(f)‖22 ≤
∫
|∇f |2dµ(x) ≡ E(f, f) (15.11)

where we have denoted with E the energy form, αd is a suitable constant and

E(f) ≡
∫
f(x)dµ(x), f ∈ C∞(Rd) (15.12)

Notice that Schwartz inequality implies that E(f) is well defined since
f ∈ C∞(Rd) ∩ L2(Rd, dµ).
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Roughly speaking, if a function satisfies Poincaré inequality, then its norm
‖f‖2 is controlled by its mean value and the L2 norm of its gradient.

¿From the Poincaré inequality one derives that, if the mean of f is zero,
then αd‖f‖22 ≤ E(f, f) and therefore the logarithmic Sobolev inequality is
implied, for d <∞, by the Sobolev inequality Sd,2.

One should note, however, that αd in (11) is such that limd→∞αd = 0. If
E(f) 6= 0 set

f̃ ≡ f − E(f) (15.13)

If µ is a finite measure one has f̃ = π(f), where π is the orthogonal projection
in L2(X, dµ) on the constant function. Explicit computation shows∫
|f(x)|2log(

|f(x)|
‖f‖

2

)dµ(x) ≤
∫
|f̃(x)|2log(

|f̃(x)|
‖f̃‖

2

)dµ(x) + 2
∫
|f̃(x)|2dµ(x)

(15.14)
and therefore there exists a constant Kd for which

Kd

∫
f2(x)log(

f(x)
‖f‖

)dµ(x) ≤ E(f, f) K−1
d = Cd +

bd + 2
αd

(15.15)

Suppose now that on L2(X, dµ) acts a semigroup Tt has the contractive and
Markov properties and that its generator is the Friedrichs extension associated
to the positive quadratic form E

limt→0t
−1(Ttf − f) = E(f, f) = −(f, Lf) (15.16)

The function ι identically equal to one is a simple eigenvector L and the
corresponding eigenvalue is zero. If it is isolated

Sp L ⊂ {0} ∪ [α,∞, α > 0 (15.17)

and from spectral theory

α2‖f − E(f)‖2 ≤ E(f, f) (15.18)

We shall see that the L.S. inequality (15) implies (18) (with 2K ≤ α).

15.2 Relation with the entropy. Spectral properties

The presence of a logarithm in L.S. suggests a relation between L.S. and the
entropy.

Recall that the relative (von Neumann) entropy of a probability measures
µ on X relative to another measure ν is denoted H(µ|ν) and is defined as
follows
1) if µ is not absolutely continuous with respect to ν, H(µ|ν) =∞
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2) If µ is absolutely continuous with respect to ν with Radon-Nikodym deriva-
tive fµ then

H(µ|ν) ≡
∫
x

fµ(x)logfµ(x)dν(x) (15.19)

It is easy to verify the reflexive property

H(µ|ν) = H(ν|µ) (15.20)

and that H(µ|ν) = 0 iff µ = ν. For the Radon-Nikodym derivative of fµ of µ
with respect to ν one has

∫
f(x)µdν(x) = 1.

Making use of Schwarz inequality and of the inequalities

3(y − 1)2 ≤ (4 + 2y)(y logy − y + 1) ylogy − y + 1 ≥ 0 ∀y > 0 (15.21)

one derives

3‖µ− ν‖var ≡ 3‖fµ(x)− 1‖L1(ν) ≤ ‖(4− 2fµ)
1
2 (fµlogfµ − fµ + 1)‖

1
2
L1(ν) ≤

≤ ‖4 + 2f‖L1(ν ‖fµ log fµ − fµ + 1‖L1(ν) ≡ 6H(µ|ν) (15.22)

In the last identity we have used

‖fµlogfµ−fµ+1‖L1(ν) ≡
∫

[fµ(x)logfµ(x)−fµ(x)+1]dν(x) =
∫
fµ(x)logfµ(x)dν(x)

(15.23)
We study now the relation between the logarithmic Sobolev inequality and

the spectral properties of the Laplace-Beltrami operator on a compact Rie-
mann surface. We shall then generalize to semigroups on probability spaces.

Let X be a compact Riemann surface. Denote by µ the Riemann-Lebesgue
measure which satisfies P ∗t µ ≡ µ.Pt = µ.

We have denoted Pt the semigroup generated by the Laplace-Beltrami
operator L defined by (u,Lu) = −

∫
|∇u|2dµ, u ∈ D(L). Denote with ft

the Radon-Nikodym derivative of P ∗t ν with respect to µ.

ft ≡
d(νPt)
dµ

(15.24)

A straightforward calculation gives

d

dt
H(P ∗t ν|µ) =

∫
X

(Lft) (15.25)

(we have integrated by parts and used the relation (P ∗t ν)(g) = ν(Ptg). Equa-
tions (22) and (25) imply

d

dt
H(P ∗t ν, µ) ≤ −4E(f

1
2
t , f

1
2
t ) (15.26)



352 15 Lecture 15Hypercontractivity. Logarithmic Sobolev inequalities. Harmonic group

In these notation the L.S. inequality reads K H(ν|µ) ≤ E(f
1
2
t , f

1
2
t ). Equa-

tion (26) implies
d

dt
H(P ∗t ν|µ) ≤ −4K H(P ∗t ν|µ) (15.27)

and therefore
H(P ∗t ν|µ) ≤ e−4KH(ν|µ) (15.28)

¿From (27) one derives

‖P ∗t ν − µ‖var ≤
√

2H(µ|ν)e−2Kt, t ≥ 0 (15.29)

which can be rewritten as

‖Ptf − ι‖L1(µ) ≤
√

2H(µ|ν)e−2Kt, ∀f ∈ L1
µ, ‖f‖L1

µ
= 1 (15.30)

We conclude that the semigroup generated by the Laplace-Beltrami op-
erator converges strongly in L1(µ) with exponential speed to the projection
onto the ground state.

If the converence takes place also in the L2
µ topology, the spectrum of the

operator L is contained in {0} ∪ [2K,+∞) and zero is a simple eigenvalue.
Inequalities of the type (26) can hold in more general contexts, and is

useful in the study the case X = R∞ with a suitable measure.
It is sufficient that one can define a quadratic form

E(u, u) =
∞∑
n=1

| ∂u
∂xn
|2µ(dx) (15.31)

and that integration by parts (to define (26) be legitimate.
The bilinear form E(u, v) in (31) can be defined for functions on R∞ which

depend only on a finite number of coordinates (cylindrical functions) and are
in the domain of the partial derivative with respect to these coordinates.

Denote by D0 the collection of such functions. It can be shown, under
suitable conditions on µ(dx), that the quadratic form defined by (31) on D0

is closable.

15.3 Estimates of quadratic forms

We have seen that the constant K in the logarithmic Sobolev inequality gives
an estimate from below of the gap between the lowest eigenvalue and the rest
of the spectrum. For this reason the following problem is relevant:

Let µ a probability measure on a Riemann on a d-dimensional manifold
X. Consider the quadratic form

E(φ, φ) ≡
∫
X

|∇φ|2dµ(x) (15.32)
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defined on C∞0 (X) and closable. Assume that S.L. is satisfied with constant
K

K

∫
|φ(x)|2log φ(x)

‖φ‖
L2
µ

2

dµ(x) ≤ E(φ, φ) (15.33)

for any real-valued function φ ∈ D(E)∩L2
µ. For any given function U ∈ C∞(X)

integrable with respect to ν define a new probability measure νU on X by

νU (dx) ≡ Z−1e−U(x)µ(dx) (15.34)

(Z is a normalization factor). Consider now the quadratic formEU

EU ≡
∫
|∇φ|2dνU (x) = Z−1

∫
|∇φ|2e−U(x)dµ(x) (15.35)

Lemma 15.1
If U ∈ C∞0 (X) the quadratic form EU (φ, φ) ≡

∫
X
|∇φ(x)|2dνU (x) satisfies

a logarithmic Sobolev inequality. Moreover and KU ≥ Ke−osc(U) where the
oscillation of U (denoted by osc(U)) is defined as osc(U) ≡ maxx∈XU(x) −
minx∈XU(x).

♦

Proof
For any probability measure ν on X, for any real valued function φ ∈ L2

ν

and for any t ∈ R+ the following holds

0 ≤ φ2(x)log
φ2(x)
‖φ‖2L2(ν)

≤ φ(x)2log(φ(x)2)− φ2(x)log t2 − φ2(x) + t2 (15.36)

(the term to the left is a convex function of t that reaches its minimum at t =
‖φ‖L2(ν) ≡ ‖φ‖ν). Integrating with respect to ν(x) ≡ φ(x)2dµ(x), choosing
t = ‖φ‖µ and keeping onto account that E satisfies L.S. one has∫

φ2(x)(log
φ(x)
‖φ‖ν

)2dν ≤

∫
φ(x)2logφ(x)2dν −

∫
φ(x)2log‖φ‖ν −

∫
φ(x)2dν +

∫
‖φ‖2dν ≤

e−minU(x)

Z

∫
φ(x)2 log(φ(x)

‖φ‖2
≤ e−minU(x)

Z

∫
|∇φ|2dµ ≤ e−oscU

K

∫
|∇φ|2dν

(15.37)
♥

If a quadratic form Q is defined on H ≡ ⊗Hn by Q =
∑N
n=1Qn, and each

Qn satisfies L.S. with constant Kn then Q satisfies L.S. with constant not
smaller that the minimum of the Kn. We shall use later this property to prove
that the Gauss-Dirichlet form, defined by
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E(f, f) ≡
∫
Rd
|∇f |2dµG(x) (15.38)

satisfies L.S. Here dµG is a Gauss probability measure.
We shall use the fact that the quadratic form Q(f) defined on X = {1} ∪

{−1} by Q(f) = 1
4 (f(1)−f(−1))2 satisfies L.S. With an analogous procedure

one can prove that L.S. inequalities hold for the are verified for the Gauss-
Dirichlet form in R∞.

This property is at the basis of the analysis by E.Nelson of the properties
of the scalar free quantum field and of some interacting ones.

15.4 Spectral properties

We discuss now some spectral properties that are derived form the fact that
the generator of the semigroup satisfies the L.S. inequalities.

Theorem 15.1 (Federbush, Gross, Faris)
If the quadratic form E satisfies L.S. with constant K and V (x) is a real valued
function on X and satisfies ‖e−V ‖2 <∞, then the following holds

1
K
E(f) + (f, V f) ≥ −log‖e−V ‖ ‖f‖22 ∀f ∈ Q(E) (15.39)

Conversely, if ‖e−V ‖2 < ∞ implies that (39) holds for every f ∈ L2(X) ∩
Q(E), then E satisfies L.S. with constant K.

♦

Proof
For the first part of the theorem we consider in detail only the case

‖e−V ‖ < ∞ and V bounded from above.The general case follows by inter-
polation and continuity.

The integral
∫
X
V (x)|f(x)|2dµ(x) is well defined. Using the inequality st ≤

s log s− s+ et s ≥ 0, t ∈ R and setting s = t2 one has

−(V f, f) ≤ 1
2

∫
X

[|f(x)|2log|f(x)|2 − |f(x)|2]dµ(x) +
1
2

∫
X

e−2V (x)dµ(x)

≤ 1
K
E(f) + ‖f‖2log‖f‖ − 1

2
‖f‖2 +

1
2
‖e−V ‖ (15.40)

Therefore

1
K
E(f) + (V f, f) ≥ −‖f‖2log‖f‖+

1
2

(‖f‖2 − ‖e−V ‖2) (15.41)

Since the L.S. inequalities are homogeneous (invariant under f → λf) it
suffices to verify them for ‖f‖ = ‖e−V ‖. But in this case (19.63) coincides
with L.S.
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We prove now the second part. Consider a generic function f ∈ Q(E) ∩
L2(X, dµ) and set V (x) ≡ −log|f(x)|. Then ‖e−V ‖ = ‖f‖ < ∞. By assump-
tion (39) holds. Therefore

1
K
E(f)−

∫
X

|f(x)|2log|f(x)dµ(x) ≥ −‖f‖2log‖f | (15.42)

Hence L.S. holds for f and f is arbitrary in Q(E) ∩ L2(X, dµ). Thus E
satisfies the L.S. inequality.

♥

The next theorem states, under some supplementary assumptions, that if
Q satisfies L.S. the lower boundary of the spectrum of the Friedrichs extension
is an isolated simple eigenvalue.

Theorem 15.2 (Rothaus, Simon)
Let µ(X) = 1 and let E(f), f real, satisfy L.S. with constant K and moreover
i) E(ι) = 0
ii) L∞(X) ∩Q(E) is a core for E

Then for any real g

g ⊥ ι→ E(g) ≥ K‖g‖22 (15.43)

(we have denoted by ι the function identically equal to one). This implies that
there is a gap in the spectrum and gives a lower bound to it.

♦
Proof

Denote by E(f, g) the bilinear form obtained from E(f) by polarization.
From E(f, ι) ≤ E(f)E(ι) it follows E(f, ι) = 0 ∀f ∈ Q(E) and

E(ι+ sg) = s2E(g), ‖ι+ sg‖ = 1 + s2‖g‖2 ∀g ∈ Q(E) (15.44)

Let g ∈ L∞ and of mean zero. For s sufficiently small we can develop
log(1 + sg(x)) in powers of s; inserting in L.S. one obtains∫

X

(1 + 2sg(x) + s2g2(x))(sg(x)− s2g2(x)
2

)dµ(x) ≤ (15.45)

≤ 1
K
s2(g) +

1
2

(1 + s2‖g‖2 +O(s3) (15.46)

By assumption
∫
x
g(x)dx = 0 and then

Ks2|g|2 ≤ s2E(g) +O(s3) (15.47)

Dividing by s2 and passing to the limit s → 0 we obtain (42) for all g ∈
L∞, (g, ι) = 0.
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Let now f ∈ Q(E), (f, ι) = 0. From assumption ii) there exists a sequence
{fn}, fn ∈ Q(E) ∩ L∞ such that

limn→∞‖fn − f‖ = 0 limn→∞E(fn − f) = 0 (15.48)

Since limn→∞(fn − f, ι) = 0 we can substitute fn(x) with fn(x) −
(ι, fn)fn(x) and assume (fn, ι) = 0 ∀n. Taking the limit we obtain (42)
for all functions f ∈ Q(E), (ι, f) = 0.

♥

15.5 Logarithmic Sobolev inequalities and
hypercontractivity

We study next the relation between the logarithmic Sobolev inequality and
and the hyper-contractivity of the semigroup generated by the Friedrichs op-
erator associated to a positive quadratic form.

We shall use the following notation: for p > 1 fp ≡ signf |f |p−1 (with the
convention that sign0 = 0).

Definition 15.3 (principal symbol)
Let Ω,µ be a probability space and let p ∈ (1,∞). An operator H on

Lp(µ) is a Sobolev generator of index p if it is the generator of a continuous
contraction semigroup in Lp(µ) and there exist constants K > 1 and γ ∈ R
such that∫

|f |plog|f |dµ− ‖f‖pplog‖f‖p ≤ K Re((H + γ)f, fp) f ∈ D(H) (15.49)

The constant K is called principal symbol of H and γ is its local norm
♦

Notice that If p = 2 and f ≥ 0 the inequality (47) is the logarithmic
Sobolev inequality

Definition 15.3 (Sobolev generator)
Let 0 ≤ a < b ≤ ∞. The operator is a Sobolev generator in the interval

(a, b) if the exist in this interval functions K(s), γ(s) and a family of strongly
continuous semigroups e−tHs on Ls such that

e−tHs |Lr = e−tHr a < s < r < b (15.50)

and the generator of the semigroup e−tHs has principal symbol K(s) and local
norm γ(s).

♦

Using Jensen’s inequality and (46) one can prove
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‖(H + γ + λ)f‖p ≥ λ‖f‖p (15.51)

and therefore, according to the Hille-Yosida theorem ‖e−t(H+γ)‖p,p ≤ 1. In
particular if γ(p) = 0 the semigroup e−tH contracts in Lp.

♦

Theorem 15.3
If H is a Sobolev generator in (a, b) then the semigroup generated by H is
hyper-contractive.

♦

Proof
We shall give the proof only in the case

(Hf, f) ≡
∫
Rd
|∇f |2dµ(x) (15.52)

where µ is absolutely continuous with respect to Lebesgue measure with a
Radon-Nikodym derivative of class C∞.

The theorem holds in greater generality under the condition that H be
self-adjioint on L2(Ω, dµ) where Ω,µ is a probability space and that e−tH be
positivity preserving and act as a contraction in L∞ (for a proof, see e.g. [1] )

We limit ourselves to the case f ∈ C∞ and positive. Derivation of com-
posite functions gives

|∇(f(x))|
p
2 =

p

2

2
(f(x)

p
2−1)2|∇f(x)|2 (15.53)

and also
∇f(x).∇fp−1(x) = (p− 1)fp−2(x)|∇f |2 (15.54)

Therefore
p2

4(p− 1)2
|(∇f,∇fp−1)| = |∇f

p
2 |2 (15.55)

and, if H satisfies∫
f2(x)logf(x)dµ(x) ≤ K(f,Hf) + ‖f‖2log‖f‖ (15.56)

then, substituting f withj f
p
2 one obtains∫

fp(x)logf(x)dµ(x) ≤ Kp

4(p− 1)
(f,Hf) + ‖f‖pplog‖f‖p (15.57)

The proof in the case f is positive and in the domain of H is obtained by
approximation.

♥

An important relation between Sobolev generators and hyper-contractivity
is given by the following theorem that we quote here without proof.
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Theorem 15.4 [1]

Let H be a Sobolev generator in (a, b) with principal coefficient K(s) and local
norm γ(s). If q ∈ (a, b) denote by p(t, q) the solution of

K(p)
dp

dt
= p, p(0) = q t ≥ 0 (15.58)

and set

M(t.q) ≡
∫ t

0

γ(p(s, q))ds1 (15.59)

(γ(t, q) e M(t, q) are defined if p(t.q) < b). One has then

‖e−tH‖q,p(t,q) ≤ eM(t,q) (15.60)

♦

We remark that if the local norm is zero, the semigroup generated by H
is a contraction from Lq toLp(t,q).

15.6 An example: Gauss-Dirichlet operator

To exemplify theorem 15.4 we shall now prove the following hyper-contractive
result for the Gauss-Dirichlet form in Rd, due to E.Nelson.

The result, with a similar proof, holds in R∞ and can be used to study the
free relativistic field. It leads to rigorous results for polynomial interactions in
the theory of relativistic quantized field in two space-time dimensions.

Let ν be Gauss measure on Rd with mean 0 and covariance 1. Denote by
N the Gauss-Dirichlet operator associated to the quadratic form

(Nf, f)L2(ν) ≡
∫
Rd

(∇f,∇f)dν(x) (15.61)

Integrating by parts

(Nf, f)L2(ν) ≡
d∑
j=1

[− ∂2f

∂2xj
+ xj

∂f

∂xj
] f ∈ D(N) (15.62)

Theorem 15.5 (Nelson)
If 1 ≤ q, p <∞ e−2t ≤ q−1

p−1 then

‖e−tN‖q→p = 1 (15.63)
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♦
Proof [1]

¿From (60) and (61) , substituting f ≥ 0 with f
p
2 one obtains∫

Rd
f(x)plogf(x)dν(x) ≤ p

2(p− 1)
(Nf, fp−1) + ‖f‖pplog‖f‖p (15.64)

We have made use of the fact that L satisfies a logarithmic Sobolev in-
equality with local norm zero and coefficient one.

We will prove this fact later in this Lecture. Therefore for the local norm
of the function f is zero and its principal coefficient is K(p) = p

2(p−1) .

The semigroup e−tN is positivity preserving and contracts in Lp for all
p ∈ [1,∞). We can apply therefore theorem 15.5.

In the present case the solution of (55) is

p(t, q) = 1 + (q − 1)e2t, q ≥ 2, t ≥ 0 (15.65)

Moreover γ = 0, e−tN ι = ι ∀t, ι ∈ Lp for all p, and ‖e−tN‖q→p(q,t) ≤
1 q ≥ 2.

♥

Using the duality between Lp and Lq, q ≡ p
p−1 it is possible to prove the

the thesis of Theorem 15.6 hold for any 1 < q < p <∞.
Nelson theorem proves hyper-contractivity of the heat semigroup in Rd. It

is an optimal result as seen in the following lemma.

Lemma 15.2
Let N be the hamiltonian of the harmonic oscillator in d = 1. If p >

1 + e2t(q − 1) the operator e−tN is unbounded from Lq to Lp, t ≥ 0.
. ♦

Proof
The Kernel of the semigroup e−tN is

(e−tNf)(x) =
∫
R

f(e−tx+
√

1− e−2ty)e−
y2

2 dy (15.66)

Consider the function fλ(x) ≡ eλx λ ∈ R. It belongs to the domain of N
and

(e−tNfλ)(x) = e
λ2
2 (1−e−2t)fλe

−λt (15.67)

A straightforward computation gives

‖(e−tNfλ)‖P = e
λ2
2 [e−2t(p−1)+1−q]‖f‖q (15.68)

This quantity is not bounded above as function of λ ∈ R if p−1 > e2t(q−1).
♥
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Theorem 15.6
Let Tt be an hyper-contracting semigroup on L2(X,µ) such that Tt : L∞ →
L∞. Then for all 1 < q < p < ∞ there exists a positive a Cq,p and time
tq,p > 0 such that

‖Ttu‖p ≤ Cq,p‖u‖q t ≥ tq,p, ∀u ∈ Lq(X,µ) (15.69)

♦

Proof
Since Tt0 : L2(X,µ)→ Lp0(X,µ) and Tt0 : L∞ → L∞ the interpolation

theorem of Riesz-Thorin provides a constant C such that for every r ≥ 2
‖Tt0u‖r ≤ C‖u‖ p0

2
r holds.

Consider two cases:
a) If q ≥ 2 choose n large enough in order t satisfy 2(p0

2 )n > p. Then
‖Tnt0u‖2 (p0

2)

2 ≤ Cn‖u‖2 Since Tt is a contraction in every Lp, 1 ≤ p <∞

‖Tnt0u‖2 (t0
2)

2 ≤ Cn‖u‖2 ≤ Cn‖u‖q (15.70)

b) if q < 2 choose n large enough so that

2(
p0

2
)n > p > q > Cα α−1 + (2(

p0

2

n
))−1 = 1 (15.71)

Since Tnt0 is a bounded map from L2 to L2(
p0
2 )n , by duality T ∗nt0 is a

bounded map from LC toL2.
We have assumed that T coincides with its adjoint and therefore Tnt0 is

bounded from LCα to L2(
p0
2 )n .

The thesis of the theorem follows then from the remark that , by construc-
tion, C < q < p < 2(p0

2 )n.
♥

15.7 Other examples

Example 1
The harmonic oscillator is hyper-contractive

We shall now give an alternative proof that the harmonic oscillator semi-
group is hyper-contractive. Recall that in L2(R, 1

2π e
−x2

dx, the operator of the
harmonic oscillator is

H0 ≡ −
1
2
d2

dx2
+ x

d

dx
(15.72)

The operator H0 is essentially self-adjoint on the finite linear combinations
of Hermite polynomials Pn and H0Pn = nPn. Using this information one can
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see that Tt ≡ e−tH0 acts as contraction semigroup on Lp for all p ≥ 1. For
each T the semigroup e−tH0 preserves positivity.

It is a contraction from L∞ to L∞ and also on L1 since e−tH0ι = ι. By
interpolation it contracts on every Lp, 1 ≤ p ≤ ∞). We show that there exist
t0 > 0 such that

‖e−tH0u‖4 ≤ C‖u‖2 u ∈ L2(R,µG), t ≥ t0 (15.73)

Setting x = 1√
2
(a+ a∗), [a, a∗] = 1 one has

Pn(x) =
1√
n!

(a∗)nP0 =
1√
n!

2
n
2 : (a+ a∗)n : P0 (15.74)

where : .. : is Wick ordering of a polynomial in a, a∗ ( obtained placing the
as to the right of the a∗)

‖xnPn(x)‖L2(R,dµG ≤ 2n(
(2n)!
(n!)2

)
1
2 ≤ 4n (15.75)

It is easy to verify that ‖xn‖L4(R,dµG) = ‖xnPn‖
1
2
L2(R,dx). Setting

φ =
∑
n

anx
n ∈ L2(R, dµG) ∩ S(R) (15.76)

one has
‖e−tH0

∑
anx

n‖L2 ≤
∑
|an|e−tn‖pn(x)‖L4(R,dµG)

≤ (
∑
|an|2)

1
2 (

∑
e−2tn4n)

1
2
≤ C‖φ‖L2(R,µG) (15.77)

for t > 1
2 log 4

♥

Example 2
Let

X ≡ {1,−1} µ({1} = µ{−1} =
1
2

(15.78)

If f : X → R define ∇f = 1
2 [f(1)− f(−1)]. Define the quadratic form

Q(f) ≡
∫
X

|∇f |2(x)dµ(x) =
1
4

(f(1)− f(−1))2 (15.79)

Lemma 15.3
Q satisfies a logarithmic Sobolev inequality with constant one.

♦

Proof
Since Q(|f |) ≤ Q(f) it suffices to consider the case f > 0. Any function on

X has the form f(x) = a+ bx and the condition f ≥ 0 gives a > 0, |b| < 1.
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Due to homogeneity it suffices to take a = 1 and by symmetry it suffices
to consider 0 ≤ b ≤ 1.

Set fs(x) = 1+sx, 0 ≤ s ≤ 1. One has ‖fs‖2 = 1+s2. Define the function
( entropy)

H(s) =
∫
fslogfsdµ−

∫
‖fs‖2log‖fs‖dµ (15.80)

Explicit calculation shows

H(s) =
1
2

(1+s)2log(1+s)+(1−s)2log(1−s)]− 1
2

(1+s2)log(1+s2) (15.81)

¿From the definition of Q one has Q(fs) = s2. Therefore to verify the L.S.
inequality it suffices to prove H(s) ≤ s2, 0 ≤ s ≤ 1.

Since H(0) = 0 it suffices to prove H ′(s) ≤ 2s and since H ′(0) = 0 it
suffices to prove that H ′′(s) ≤ 2. One easily computes

H ′′(s) = 2 + log
1− s2

1 + s2
− 2s2

1 + s2
(15.82)

and the L.S. is satisfied since for 0 ≤ s ≤ 1 the second and third terms are
non positive.

♥

Example 3
The Gauss-Dirichlet quadratic form is

E(f, f) ≡
∫
Rd
|∇f |2dµG(x) (15.83)

The gradient is meant in distributional sense and µG is Gauss measure
with mean zero an covariance one Rd.

We must prove that if f ∈ Q(E) ∩ L2
µ then∫

Rd
|f(x)2|log|f(x)|dµ(x)− ‖f‖2log‖f‖ ≤

∫
Rd
|∇f(x)||2dµ(x) (15.84)

Because of the additivity theorem it suffices to give the proof for d = 1.
Identify, as measure space, R with Gauss measure with the direct product

of denumerable copies of the measure space used in Example 2, and use the
additivity property.

We have previously employed this procedure to give a representation of
Brownian motion as measure on the space of continuous trajectories. Set

ΩK ≡ ΠK
j=1Xj , µK ≡ ΠK

1 µj (15.85)

where Xj , µj are identical copies of X,µ. The additivity theorem gives∫
ΩK

f(x)2log|f(x)|dµK(x) ≤ EK(f) + ‖f‖µK log‖f‖µK (15.86)
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where
EK(f) =

∑
j

∫
ΩK

(δjf)2dµK(δjf)(x)

=
1
2

[f(x1, x− 2, xj−1, 1, xj+1..xK)− f(x1, x− 2, xj−1,−1, xj+1..xK) (15.87)

Set y = 1√
K

(x1 + ...+ xK) and evaluate (85 ) on a function φ(y) ∈ C∞0 .

The Central Limit Theorem, applied to the sum of gaussian random vari-
ables identically distributed with mean zero and variance one, states that the
left hand side of inequality (85) converges when K →∞ to∫

R

|φ(t)|2log|φ(t)|dν(t) (15.88)

For the same reason the right hand side converges to

‖φ‖2log‖φ‖, ‖φ‖2 ≡ 1
2π

∫
|φ(t)|2e− t

2
2 dt (15.89)

It remains to be proved that EK(f) verifies

limK→∞EK(f) =
∫
|φ′(t)|2dµ(t) (15.90)

Since φ ∈ C∞0 Dini’s theorem gives the existence of a bounded function
g(t, x, h) on R× {1,−1} × (0, 2) such that

1
2

[φ(t− hx+ h)− φ(t− hx− h)]− φ′(t)h = h2g(t, x, h) (15.91)

One has

(δj(f)(x) =
1
2

[φ(y−hxj+h)−φ(y−hxj−h) = Φ′(y)h+h2g((y, xj , h) (15.92)

and then
∑K
j=1 |(δjf)(x)|2 = |φ′(y)|2 + ψK(x, h) where ψK is the sum of K

terms each of which is of order h3 o h4. Taking h = 1√
K

one derives

EK(f) =
∫
X

|φ′(y)|dµ(y) +
∫
X

ψ(x, h)dµ(x) (15.93)

with ψ(x, h) = O(h) uniformly in x. Using once more the central limit theorem

limk→∞EK(f) =
∫
R

|φ′(t)|2dν(t) (15.94)

This proves (88) when f ∈ C∞0 .
To extend the proof to Q(E)∩L2(R, dν) one makes use of a limiting proce-

dure. If f ∈ L2(R, dν) and its distributional derivative satisfies f ′ ∈ L2(R, dν),
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there exists a sequence of C∞0 functions fn which converges to f in the
‖f‖L2(ν) + ‖f ′‖L2(ν) norm.

The function t2logt is bounded below for t ≥ 0 and therefore one can apply
Fatou’s lemma (passing if needed to a subsequence that converges almost
everywhere).

The logarithmic Sobolev inequality is thereby proved for any f ∈ Q(E) ∩
L2(R, dν).

♥

15.8 References for Lecture 15

[1] D.Stroock, An introduction to the theory of large deviations Springer 1984

[2] L.Gross, Journ. Functl. Analysis 10, (1972) 52-109

[3] M.Fukushima, Dirichlet forms and Markov Processes North-Holland 1980.
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Lecture 16
Measure (gage) spaces. Clifford algebra,
C.A.R. relations. Fermi Field

In Book I of these Lecture Notes we have studied the Weyl algebra and its
infinitesimal version, i.e. canonical commutation relations.

In that context we have considered the Fock representation, which can
be extended to the case of an infinite (denumerable) number of degrees of
freedom to construct the free Bose field.

In the preceding Lectures we have also mentioned that this field can be
constructed by probabilistic techniques through the use of gaussian measures
and conditional probabilities.

In this Lecture we seek an analogous procedure for algebra of canonical
anti-commutation relations

aha
∗
k + a∗kah = δk,h akah + ahak = 0

but this time we have to resort to non-commutative integration.
We start with a general outlook on non-commutative integration on gage

spaces [1][2][3]

16.1 gage spaces

Definiton 16.1 (gage spaces)
A gage space ( regular measure space) is a triple {H,A,m} where H is a

separable Hilbert space, A is a concrete von Neumann algebra of operators on
H with identity e and m is a non-negative function on the projection operators
P in A with the following properties
1) m is completely additive
2) m(U∗PU) = m(P ) for every unitary operator U ∈ B(H)
3) m(e) < +∞ (e is the unit element of the algebra)
4) m is regular i.e. P 6= 0→ m(P ) > 0

♦
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Under these conditions there exist a unique function (the Dixmier trace)
that extends m(P ) to A We shall denote it with the symbol Tr.

The trace has the following properties:
If A > 0 then TrA > 0.
If the Hilbert space H has dimension N and P projects onto a Mdimensional
space, then TrP = M

N .

One has Tre = 1 ∀N and this property holds also in the infinite-
dimensional case.

The trace Tr is normal (completely additive). One has Tr(AB) = Tr(BA)
and if A > 0 then Tr(A) > 0

If A is self-adjoint with spectral projections Eλ, using Riesz theorem and
the Gelfand construction one has

TrA =
∫
λdm(Eλ)

We define for a ∈ A

||a|| = (a∗a)
1
2 , ‖a‖p = [Tr(a∗a)

p
2 ]

1
p 1 ≤ p ≤ +∞ (16.1)

With these definition ‖a‖∞ coincides with ‖a‖ i.e with the operator norm
of a.

We define Lp(A) to be the completion of A in the Lp norm. Notice that
Lp for 1 ≤ p ≤ +∞ can be regarded as a space of unbounded operators on H.

With these definitions Hölder inequalities hold.
The space of operators which are measurable is closed for strong sum

(closure of the sum), strong product and conjugation.
If the algebra A is commutative, by the Gelfand isomorphism one recovers

the usual structure of integration theory (the projection operators are the
indicator functions of the measurable sets).

Since
‖ax‖p‖ ≤ ‖a‖∞‖x‖p ‖xa‖p‖ ≤ ‖a‖∞‖x‖p (16.2)

one can define in every Lp left and right multiplication by an element of a ∈ A.
We shall denote them by the symbols La, Ra .

Definition 16.2 (Pierce subspace)
We define Pierce subspace Pe associated to the projection e the range of

Pe ≡ Le Re i.e. the closure of eA .
♦

Pierce subspaces are closed in all Lp and also in L∞

Notice that we are defining a non-commutative integration from the point
of view of functional integration, i.e. defining non commutative Lp spaces.
This is possible because we have a functional (the trace) that has the same
property of an integral.
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In the commutative case (Lebesgue) integration over a space X can be
defined through the introduction of measurable sets and their indicator func-
tions. In the non-commutative gage theory that we are considering the Pierce
subspaces play the role of measurable sets.

Notice that if e1 e2 = 0 then Pe1 ⊥ Pe2 (if the product of two measurable
characteristic functions is zero then they have with disjoint support).

More generally an integration theory (in the sense of defining Lp spaces
) may be defined if the algebra admits a cyclic and separating vector as we
have seen in Vol 1 of these Lecture Notes.

Indeed in this case the Tomita-Takesaki theory establishes a duality be-
tween the algebra A and the algebra of functions over the A and therefore
allows for the definition of non commutative integration based on measurable
sets.

If a tracial state exists, as in a gage theory, the probability space has
measure one and one can define a non-commutative measure theory (which is
the basis for non-commutative Lebesgue integration theory).

If a tracial state does not exists a Lebesgue-like, non-commutative algebraic
integration theory is still possible (algebraic in the sense that Lp spaces and
Radon-Nikodym derivatives can be defined) but the construction of a non-
commutative measure theory requires a different approach.

For an introduction to non-commutative measure theory which leads to a
non-commutative Lebesgue integration theory one can consult [3] [4][5] .

In non-commutative gage theory the algebra A is a subalgebra of B(H). If
the projector P projects on φ ∈ H, then the Pierce subspace associated to P
is the set generated by the action of A on φ.

By definition the support of a ∈ A is the union Range a ∪ Range a∗. If
z ∈ A is real then there a unique pair x, y ∈ A+ such that z = x− y.

The positive cone is the set of positive elements x ∈ A+ such that there
does not exist a projection e for which exe = 0.

We say that B ∈ L(A) (the set of linear functionals on A) is positivity
preserving if a ≥ 0 implies Ba ≥ 0. It follows for the definitions that the
following Lemma holds

Lemma 16.1
Let {H,A,m} be a regular gage space. Set

(α, β) ≡ Tr(αβ) (16.3)

If α ≥ 0 and β ≥ 0 then αβ ≥ 0 and if αβ = 0 then α and β have
orthogonal supports.

♦

We use this Lemma to prove [3]

Theorem 16.2
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Let {H,A,m} be a regular gage space. Let a ∈ L2(A) be positivity preserving.
If a does not leave invariant any Pierce subspace, and if λ = ‖a‖ is an eigen-
value, then this eigenvalue has multiplicity one and the associated eigenvector
is strictly positive.

♦

Proof
Let z be an eigenvector associated to λ. Let z = x − y x, y ≥ 0. Then one
has

λ(|z|, |z|) = (Az, z) = (Ax, x)+(Ay, y)−(Ax, y)−(Ay, x) ≤ (A|z|, |z|) ≤ ‖A‖(|z|, |z|)
(16.4)

and the equality sign holds only if |z| is an eigenvalue. Therefore ax =
λx ay = λy If π is the projector onto the null space of x consider Pπ ≡ LπRπ
and let b ≥ 0. Then

(x, aPπb) = (ax, Pπb) = λ(x, Pπb) = λ(x, Pπb) = λ(Pπx, b) = 0 (16.5)

and the Pierce subspace of π is invariant under A.
It follows that π = 0 and therefore the range of x is the entire space H.

♥

Definition 16.3 (ergodic)
A map T of the algebra A is ergodic if for any x, y ∈ L2(A), x, y ≥ 0

there exist n ∈ Z such that (Tnx, y) > 0 We say that the algebra A is
indecomposable if it leaves invariant no Pierce subspace.

♦

Proposition 16.3
If A preserves positivity and is bounded over L2(A) then it is ergodic if

and only if it is indecomposable.
♦

Proof
⇒
If π ∈ A, π 6= 0 and aPπ = Pπa, a ∈ A for any element x, y ≥ 0, Pπx =

x, Pπy = y one has

(anx, y) = (anPπx, y) = (Pπanx, y) = (anx, Pπy) = 0 ∀n (16.6)

⇐
Let T be not ergodic. Choose x, y ≥ 0 and (Tnx, y) = 0 ∀n ∈ N. Denote

by N (B) the null space of B. Then the projection π onto N (An)x belongs to
A and is not the null element.

If c ∈ L2(A), 0 ≤ c ≤ Pec one has (anc, c) = 0 ∀n Since anx ≥ 0, and
c ≥ 0 it follows that the range of Ac is contained in N (Anx) for all n. It
follows Pl(Ac) = Ac and the range of Pl is left invariant by A.

♥



16.3 Perturbation theory for gauge spaces 369

16.2 Interpolation theorem

In the present non-commutative setting one has the following non-commutaitve
equivalent of Stein’s interpolation theorem.

Proposition 16.5
Let {H,A,m)} and {K,B, n} be two finite regular gage spaces.
For every z ∈ C , 0 ≤ Rez ≤ 1 let Tz be a norm continuous map from A

to L1(B).
Assume that for all a ∈ A, b ∈ B the function Ψ(z) ≡ TrB(Tz(a)b) be

bounded and continuous for 0 ≤ Rez ≤ 1 and analytic in 0 < Imz < 1.
Choose 1 ≤ p0, p1q0, q1 and define, for 0 ≤ s ≤ 1

1
p
≡ (1− s) 1

p0
+

s

p1

1
q
≡ (1− s) 1

q0
+

s

q1
(16.7)

Assume moreover that there exist a0, a1 such that

‖TiyA‖q0 ≤ a0‖A‖p0 ‖T1+iy(A)‖p1 ≤ a1‖A‖p1∀y ∈ R∀A ∈ A (16.8)

Then for all a ∈ A one has

‖Ts(A)‖q ≤ a(s)‖A‖p ∀A ∈ A a(s) = a1−s
0 as1 (16.9)

♦

We do not here give the proof of Proposition 16.5 [1][2].[5]
It can be reduced to the commutative case by using the polar decompo-

sition of the elements in A and the spectral decomposition of the positive
elements of A as operators on H.

16.3 Perturbation theory for gauge spaces

We now give some basic elements of perturbation theory in gage spaces.
In the non-commutative setting it is natural, in the description of pertur-

bation of a free hamiltonian, to substitute the potential with the sum of right
and left multiplication by a real (= selfadjoint) element of the algebra. This
operation preserves reality.

Let H0 be a positive operator on H with 0 as simple eigenvalue with
eigenvector I Choose α ∈ L2(A) and define

Hα = H0 + Lα +Rα (16.10)

With this definition the operator Hα is symmetric.
Assume that Hα is self-adjoint on D(H0) ∩ D(Lα) ∩ D(Rα), and that

Hα ≥ −C. Assume moreover that A∩D(Hα) coincides with A∩D(H0). This
is certainly true if α ∈ A.
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In this case one has Hαb = H0b+ {a, b}. Then one has

Proposition 16.6 [1][2]
There is no Pierce subspace that is left invariant by the operator Hα

♦

We end this brief outline of non-commutative integration by a condition
on the existence and uniqueness of the ground state. Also in this case the
proofs follows the same lines as in the commutative case

Proposition 16.7 [1][3]
Let {H,A,m} be a finite regular gage space and let H0 ≥ 0 on L2(A)
Assume

1) e−tH0 is a contraction in Lp for all T > 0 and there exists T0 > 0 such that
e−TH0 is a contraction from L2(A) to Lp(A)
2) e−tH0 is positivity preserving.
3) H0φ = 0→ φ = e ∈ A
4) v is a self-adjoint element in L2(A) , v ∈ Lp(A) for some p > 2 and e−v ∈ Lp
for every p < +∞

Set V = Lv +Rv Then
a) H0+V is essentially self-adjoint on D(H0) and its closure is bounded below.
b) Define E0 = inf Σ(H). Then E0 is a simple eigenvalue and the correspond-
ing null space is trivial.

♦

Proof
Since e−tV u = e−αvue−αv one has of v is bounded

e−t(H0+V = s− limn→∞[e−t
V
n e−t

H0
n ]n (16.11)

Therefore e−t(H0+V ) is positivity preserving (if V is unbounded, V =∫
λdE(λ) one considers the sequence Vn =

∫ n
−n λdE(λ).)

Notice then that if a sequence ψn ∈ L2(A) is such that ‖ψn‖ ≤ c ∀n then
‖ψ‖p ≤ c for all p > 2 (use Tr(ψn, φ) ≤ c‖φ‖ if 1

p + 1
p′ = 1)

Point b is proved along the lines of the commutative case [3]
♥

16.4 Non-commutative integration theory for fermions

We now apply the theory of integration in gage spaces to formulate an in-
tegration theory for particles which satisfy the Fermi-Dirac statistics and
are therefore quantized according the canonical anti-commutation relations
( C.A.R.)

We recall that the algebra C.A.R. of canonical anti-commutation relations
for a system of N ≤ +∞ degrees of freedom is the C∗ algebra AN generated
by elements that satisfy the relations
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aia
∗
k + a∗kai = δi,k aiak + akai = 0 i, k = 1, . . . N (16.12)

As a consequence of these relations a∗i ai + aia
∗
i = 1 and since both terms

are positive it follows that on any realization as operators on a Hilbert space
the operators ai have norm bounded by one.

The Fock representation of the algebra C.A.R is obtained by requiring
that in the Hilbert space there exists a vector Ω for which akΩ = 0 ∀k.

¿From the defining relations it follows that for each value of the index k
the pair ak, a∗k can be realized faithfully and irreducibly by two dimensional
complex-valued matrices and if N is finite the entire algebra can be realized
faithfully and irreducibly in the Hilbert space C2N .

If N <∞ all irreducible faithful representations of AN are equivalent and
in any such representation there is a vector ΩN (called vacuum ) such that
akΩN = 0, k = 1 . . . N.

A basis in this representation is made of the vectors

|i1, iK >≡ a∗i1 · · · a
∗
iKΩ (16.13)

where 0 ≤ K ≤ N and the indices are all distinct.
Correspondingly the representation is called Fock representation and each

element of the basis is labelled by a sequences N of numbers ni which are zero
and one according to whether the index appears in (14).

The operators a∗k are called creation operators (since they change a zero
in a one) and ak are called destruction operators.

Notice that according to (13) one has a∗k|i1, iK >= 0 if k ∈ {i1, iK}
(the occupation number for each index is at most one).

For this reason the algebra CAR is suitable for the description of particles
which satisfy the Fermi-Dirac statistics (the Pauli exclusion principle holds) .

16.5 Clifford algebra

We give now a connection of the algebra CAR with the Clifford algebra.

Definition 16.4 (orthogonal space)
Given a topological vector space M we define orthogonal space the space

(M ⊕M∗, S) (16.14)

where M∗ is the topological dual of M and S is the quadratic (symplectic)
form

S(x⊕ λ, x′ ⊕ λ′) = λ′(x)− λ(x′) (16.15)

Definition 16.5 (Clifford structure )
Let L = M ⊕ M∗ , and let {L, S} be an orthogonal space. A Clifford

structure on {L, S} is a pair (K, φ) where K is a complex Hilbert space and
φ is a linear continuous map from L to B(H) such that
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φ(z)φ(z′) + φ(z′)φ(z) = S(z, z′)I (16.16)

♦

Definition 16.6 (Clifford system)
Let H be a complex Hilbert space , and let H∗ its presentation as a pair of
real Hilbert spaces. Let (S(z, z′) ≡ Re(z, z′).

Then (H∗, S) is a Clifford system on H∗ If there is a self-adjoint operator
on H such that S(z, z′) = Re(z,Az′) we will say that the pair {H∗, S} is a
Clifford system with covariance A.

♦

The relation of the CAR with a Clifford algebra is as follows:

Definition 16.7 (Clifford algebra)
Let H be a complex Hilbert space and set H∗ = Hr ⊕Him.
Then the Clifford algebra is the only associative algebra on the field of

real numbers generated by H∗ and by a unit e and defined by the following
relations

xy + yx = Re(x, y) e (16.17)

♦

Notice that if H is finite dimensional for the Clifford algebra there exist a
unique functional E such that

E(ab) = E(ba) ∀a, b ∈ B(H) E(e) = 1 (16.18)

and a unique adjoint map such that x∗ = x ∀x ∈ Hast.

Definition 16.8 Clifford field [1]
Let H be the closure of Cl with respect to the scalar product < a, b >=
E(b∗a). Let a ∈ Cl and denote by La (left multiplication by the element a)
the map b→ ab, b ∈ A.

Similarly denote by Ra (right multiplication by the element a) the map
b→ ba. It is easy to verify that the following holds true for z ∈ H∗

< a,Lzb >= E(b∗za) (16.19)

This identifies Lz with an hermitian operator densely defined in H.
It extends uniquely to a self-adjoint operator which is bounded since L2

z =
1
2‖z‖

2I. We shall call Lz Clifford field and denote it with the symbol ψ(z)
If V is an orthogonal map on H (it preserves S) and ψ(x) is a Clifford

systems, also ψV (x) ≡ ψ(V x) is a Clifford system.
Moreover if ψ and φ are anti-commuting Clifford systems,

ψ(x)φ(y) = −φ(y)ψ(x) (16.20)

and a, b are real numbers with |a|2 + |b|2 = 1 also
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ψ′(x) ≡ aψ(x) + bφ(x) (16.21)

is a Clifford system.
Denote by T the automorphism z → −z in Cl . Then T anticommutes

with Lz and with Rz and T 2 = I. It follows that

z → iLzT, z → iRzT (16.22)

define Clifford system and LzT and RwT anticommute for every z, w ∈ H. It
follows that for every a, b c ∈ R+ the map

z → aLz + ibRzT (16.23)

defines a Clifford system with variance c such that |a|2 + |b|2 = c2.
Remark that H∗ = Hr ⊕Hl is regarded as a real Hilbert space and S is a

symplectic form, while Cl is the algebra over the complex field generated by
H∗.

For the Clifford system on H∗ one can define [1] creation and annihilation
operator by

c(z) =
1√
2

[φ(z)− iφ(−z)] c(z∗) =
1√
2

[φ(z) + iφ(−z)] (16.24)

These operators are bounded and satisfy the canonical anticommutation
relations

c(z)c(w)∗ + c(w)∗c(x) = C(z, w) c(z)c(w) + c(w)c(z) = 0, c(iz) = ic(z)
(16.25)

Conversely, every system of operators on a complex Hilbert space H which
satisfies (25) define a Clifford system on H = HR ⊕HR.

In the case of a finite-dimensional Hilbert space all the irreducible repre-
sentations of (26) are equivalent; this is not the case if the Hilbert space is
infinite-dimensional.

The conditions for equivalence are the same as in the case of the Canonical
Commutation relations as discussed in Vol I.

16.6 Free Fermi field

Definition 16.9 ( Free Fermi field I) [1][4]
The free Fermi field on the complex Hilbert space H is a Clifford system

together with
1) A map which satisfies (26) with C(z,w) =(z,w)
2) A continuous representation Γ of the unitary group on H on the unitary
group of K which satisfies

Γ (u)c(z)Γ−1(u) = c(uz) ∀z ∈ H ∀u ∈ U (16.26)
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3) An element ν ∈ H which is cyclic for the algebra generated by the c(z) and
such that Γ (u)ν = ν ∀u ∈ U

♦

Let A be a non-negative element of B(H) and denote by ∂Γ (A) the gen-
erator of the unitary group Γ (eitA).

Then ∂Γ (A) is positive. One has [1]

Theorem 16.8 (Segal)
The free Fermi field as defined above is unique up to unitary transformations.

♦

We shall later see a different but equivalent definition. We do not give here
the proof of theorem 16.8. It follows the same lines as the analogous theorem
in the bosonic case proved in Volume I of these Lecture Notes.

The explicit construction of the Fock representation can be done as in the
bosonic case (with the simplifying feature that all operator considered are
bounded).

16.7 Construction of a non-commutative integration

We are interested here in the construction of a non-commutative integration
on function of the Clifford algebra (as one constructs a commutative gaussian
integration theory in the bosonic case).

Recall that if Hr is a real Hilbert space of dimension 2n we have defined
Clifford algebra Cln onHr with variance C the C∗-algebra A over the complex
field which is the norm closure of the algebra generated by the unit element
e and by elements in B(Hr) which satisfy the relation

xy + yx = C(x, y)e ∀x, y ∈ Hr (16.27)

If n > m there is a natural injection of B(R2m) in B(R2n) given by C →
C ⊗ I2n−2m. Therefore Clm is naturally immersed as a subalgebra of Cln for
n > m by the map b→ b⊗ I2(n−m).

Each of the algebras Cln is a C∗ algebra with the natural norm. The im-
mersion preserves the norm and satisfies obvious compatibility and immersion
relations if one considers a sequence n1 < n2 < . . . .

In the infinite dimensional case one can therefore consider therefore the
Clifford algebras Cln as subalgebras of a normed algebra Cl. We denote by A
the norm closure of Cl. It is isomorphic to the algebra of canonical anticom-
mutation relations.

Theorem 16.9
There exists on A a unique functional E with the properties

E(e) = 1 E(ab) = E(ba) ∀a, b ∈ A (16.28)
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( e is the unit of A).
♦

The functional E has the properties of a trace. With this functional we
construct an integration theory. We shall denote by η the canonical injection
of Hr in the complex Hilbert space H.

The functional E is constructed the following way. If the dimension 2n is
finite, the algebra A is made of all real matrices of rank 2n and E is the usual
trace normalized to one on the identity.

If n = ∞ the algebra A is generated (as norm closure) by the algebras
which are constructed over a finite-dimensional space.

Continuity and uniqueness follow from the fact that the finite-dimensional
algebras are unique and uniformly continuous.

To prove existence notice that every element of Cl is based on R2m for
some finite n and there is a natural immersion of B(R2m) in B(R2n) n > m
given by D → D ⊗ I2n−2m.

This immersion does not alter the value of the functional E (recall that it
is normalized to one on the unit element) . Therefore E is defined on a dense
set , is continuous (and bounded) and extends to A.

Remark that steps we have followed to define the functional E are the
same as those followed to define a probability measure on the infinite product
of measure spaces on each of which is defined a probability measure satisfying
suitable compatibility conditions.

Therefore the construction of the functional E parallels in the non-
commutative case the construction of a theory of integration in the com-
mutative setting.

The functional E has been constructed over the C∗-algebra A. The GNS
construction based on the functional E provides a representation π0(A) of A
as an algebra of bounded operators on a Hilbert space H0. The representation
can be extended to the weak closure of π0(A).

Notice that this representation is different from the Fock representation.
In the infinite-dimensional case they are inequivalent.

It indeed easy to verify from the construction that on the projection oper-
ators in π0(AF ) the functional E takes values which cover the interval (0, 1].

It is important to notice that if P is a projection operator in A it projects
on a infinite dimensional subspace.

We conclude that in the infinite-dimensional case the representation π0 of
the C.A.R. is a von Neumann algebra of type II in von Neumann classification.
In this representation there is a vector Ω

E(a∗1a
∗
2 ∗ . . . a∗n) = (Ω, π(a∗1)π(a∗2) . . . π(a∗n)Ω) (16.29)

where π(a)∗ is either the creation or the destruction operator .
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16.8 Dual system

Definition 16.10
If (K,Φ) is a real Clifford system the dual system is defined as

{K, P (x), Q(x)} P (x) = φ(x), Q(x) = φ(ix), x ∈ Hr (16.30)

♦

Notice that this definition depends on the choice of the conjugation in
H = Hr⊕Hi Conversely of {K, P (x) Q(x)} is a dual system, the real system
is given by φ(z) = P (x) +Q(y) if z = x+ iy.

The complex representation can be regarded as the analog of the Segal-
Bargmann representation for bosons.

Since there is no complex quadratic form which is invariant under the
unitary group, in the Clifford algebras A only real space are considered and
the complex representations depend on the choice of conjugation.

Define φ→ φ̄ the conjugation in Cl(H∗), H∗ = Hr ⊕Hl. It is the unique
operation that extends η(x) + iη(y)→ η(x)− iη(y).

The connection of the algebra A with the fermionic free field is as follows:

Theorem 16.10
Let H be a Hilbert space, and let K′ be the space of function s which are
anti-holomorphic in L2(Cl(H)) . For x ∈ H define the operator φ(x) as

φ(x) =
1√
2

[Lx + iRix] (16.31)

For every unitary on H let Γ0(U) the second quantization of U . Let ι be
the function identically equal to one in L2(Cl(H), E) .The space K′ is left
invariant under the action of φ(x) and of Γ0(U). Denote by φ(x)′ , Γ0(U)′

the restriction of these operators to K′.
Then the algebra generated by the operators φ(x)′ is isomorphic the algebra

A.
♦

16.9 Alternative definition of Fermi Field

Definition 16.11
The free Fermi field on H is the quadruple K′, φ′, Γ ′0, ι .

♦

Theorem 16.11
The free Fermi field is self-adjoint and satisfies the Clifford relations.

♦
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Proof
If z ∈ H∗, z = η(x)− iη(ix) the following relations hold true

φ(z) =
1√
2

[Lz − iRz] φ(z̄) =
1√
2

[Lz̄ + iRz̄] (16.32)

Moreover if U(t) = eiht one has

η(U(t)x− iη(iU(t))x = eiht(η(x)− iη(ix)) (16.33)

♥

Recalling the definition of gage space (Definition 16.1) we see that the free
Fermi field is an example of non-commutative integration theory.

In the case of the free Fermi field one can define a gage as follows. Consider
the Hilbert space

Λ(H) ≡
∞∑
n=1

Λn(H) (16.34)

where Λn(H) is the Hilbert space of the antisymmetric tensors of rank n on
the complex Hilbert space H.

Let J be a conjugation in H . Define for each x ∈ H

Bx = Cx +AJx Ax = Cx∗ (16.35)

where
Cxu = (n+ 1)

1
2x ∧ u (16.36)

n is the rank of the tensor u and Ax = C∗x . Let M be the smallest von
Neumann algebra that contains all Bx, x ∈ H. These data define a gage space.

Theorem 16.12
{H,m,M} above define a gage if one takes m(u) = (uΩ,Ω) where Ω is the
vacuum state i.e. the unit of ∧0(H) Moreover u → uΩ extends to a unitary
operator from L2(Cl) onto Λ(H).

♦

Proof
Let C1 the algebra generated (algebraically) by the Bx. One has B∗x = BJx

and therefore C1 is self-adjoint. Let M be its weak closure.
The function Tr defined by Tr(u) = (uΩ,Ω) is positive and Tr(I) = 1.

Repeated use of AJxΩ = 0 and AyCx + CxAy = (x, y)I leads to

(BxBy1 . . . BynΩ,Ω) =
n∑
j=1

(−i)j−1(x, yj)(By−1 · · · B̂yj . . . BynΩ,Ω) (16.37)

where the hat signifies that the symbol must be omitted. In the same way one
has
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By1 · · ·BynCxΩ =
n∑
j=1

(−1)n−jBy1 · · · B̂xj · · ·BynΩ ± CxBy1 · · ·BynΩ

(16.38)
It follows

(Bx1 · · ·BxnΩ,Ω) =
n∑
j=1

(−1)n−j(xj , x)(Bx1 . . . B̂xj ·BxnΩ,Ω) (16.39)

Define Bnx = (Bx1 · · ·Bxn). If n is even, one has

(BnxByΩ,ByΩ) = ByB
n
xBy, Ω) (16.40)

If n is odd, BnxΩ is a tensor of odd rank, therefore (BnxByΩ,ByΩ) = 0 It
follows that (BCΩ,Ω) = (CBΩ,Ω) for every B, C ∈ A.

Therefore the function

TrB = (Ω,BΩ) (16.41)

is a central trace. The map A→ AΩ is faithful since

‖ABΩ‖2 = (B∗A∗Ω,ABΩ) = Tr(B∗A∗AB)

= Tr(BB∗A∗A) = Tr(A∗AB∗B) = (BB∗A∗AΩ) (16.42)

and therefore
AΩ = 0→ ABΩ = 0 ∀B (16.43)

Moreover the function (Ω,KΩ),K ∈ A is clearly σ− additive and for
every unitary U one has Tr(U∗KU) = TrK. Therefore

{H, A , m} m(A) ≡ (ω,AΩ) (16.44)

is a regular finite gage
♥

16.10 Integration on a regular gage space

We shall give here some results of integration theory on a regular gage space.
Later we shall give an outline of the integration of a fermionic field in presence
of an external field.

We begin by giving a definition that is equivalent to the support of a
function in the case of a measure space. Recall the definition
Definition (Pierce subspace)

Let {H, A , m} be a regular finite gage space, and e a projection operator
in A.
Define Pe = LeRe. The range of Pe is called Pierce subspace of e
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♦

Definition 16.14 (positivity preservation)
A bounded operatorA on L2(A) is positivity preserving if φ ≥ 0→ Aφ ≥ 0.

The support of a densely defined operator B is the convex closure of the union
of the range of B and the range of B∗.

♦

Lemma 16.13
Let {H, A , m} be a regular finite gage space, If a ≥ 0, b ≥ 0 then

Tr(ab) ≥ 0, If tr(ab) = 0 the elements a and b have disjoint support.
♦

Proof
The first statement is obviously true. For the second, notice that Tr(a

1
2 ba

1
2 ) =

o implies a
1
2 ba

1
2 = 0 Setting b = c2 with c self-adjoint and measurable one

has ‖ca 1
2x‖ = 0 for every x in the support of a

1
2 ba

1
2 = 0. Therefore ca

1
2 = 0

on a dense set, and then ca
1
2 = 0 and ba = 0

♥

Theorem 16.14 (Gross) [3]
Let {H,A,m} be a regular finite gage space. Let A on L2(A) positivity pre-
serving. Suppose that ‖A‖ is an eigenvalue of A and that A does not invariant
any proper Pierce subspace. Then ‖A‖ has multiplicity one.

♦
Proof

By assumption A maps self-adjoint operators to self-adjoint operators and
has a self-adjoint eigenvector to the eigenvalue ‖A‖

It is easy to see that the positive and negative part of this eigenfunction
separately belong to the eigenspace to the eigenvalue ‖A‖.

Let now x ≥ 0 belong to the eigenspace to the eigenvalue ‖A‖ and let e be
the projection to the null space of x. Set Pe ≡ LeRe and let b ∈ L2(A). Then

(x,APeb) = (Ax, Peb) = ‖A‖(x, Peb) = ‖A‖Tr(Pex, b) = 0 (16.45)

But APeb ≥ 0 and therefore the support of APe is contained in the range
of Pe. Therefore the Pierce subspace of e is invariant under the action of A.

The eigenspace associated to ‖A‖ is therefore spanned by its self-adjoint
elements and these can be chosen to be positive. It follows that the eigenspace
has dimension one

♥

Definition 16.13 (strongly finite)
A regular gage {H, A m} is strongly finite if A contaions a family Aα of
finite-dimensional subalgebras, directed by inclusion , and such that ∪αAα iis
dense in L2(A).

♦
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Theorem 16.16 (Gross) [3]
Let {H, A m} be a regular strongly finite gage. Let A be a bounded operator
positivity preserving. If the exist a number p > 2 such that

‖Aφ‖p ≤M‖φ‖2 M > 0 ∀φ ∈ L2(A) (16.46)

then ‖A‖ is an eigenvalue of A.
♦

Remark that the hypothesis p > 2 is an hypothesis of hyper-contractivity.
This theorem has a counterpart in the integration theory on the Bosonic Fock
space based on gaussian integration.

Hypercontractivity is at the root of the construction given by Nelson [4]
of the free Bose field as a measure in the space of distributions.

Proof
Let Pα be conditional expectation with respect to Aα. By definition it is

the only element of Aα such that

Tr(Pαx, y) = Tr(x, y) ∀y ∈ Aα (16.47)

This defines Pα for every x ∈ LA; when restricted to L1(A) it is the
orthogonal projection on Aα.

It is now easy to prove that Pα preserves positivity. Moreover

‖Pαx‖p = sup{Tr(Pαx)y) y ∈ Aα, ‖y‖q ≤ 1} = sup{Tr(xy); y ∈ Aα, ‖y‖q ≤ 1}

≤ {Tr(xy); y ∈ A, ‖y‖q ≤ 1} = ‖x‖p
1
p

+
1
q

= 1 (16.48)

It follows that the restriction of Pα to Lp(A) has norm one.
Since ∪αAα is dense in L2(A) the net Pα converges strongly to the identity

map. If A ∈ A define Aα = PαAP .
The operator Aα preserves positivity , leaves Aα invariant , and there-

fore by the Perron-Frobenius theorem has an eigenvector Φα ∈ Aα to the
eigenvalue λα.

¿From the fact that Pα increases to the identity it follows λα ≤ ‖A‖ and
limαλα = ‖A‖ . On the other hand, by density, for each Φ ∈ L2(A) there
exist an index β such that that for every ψ ∈ L2(A)

|(ψ, Pβψ − ψ)| < ε→ (Aφ,Pβψ − ψ) < ε (16.49)

It follows that weakly
Pβψ → ψ Aψ = ‖A‖ψ (16.50)

We must now show that ψ is not the zero element of L2(A. For this we
use the hyper-contractivity assumption For any choice of a; b with 1

a + 1
b = 1

we have by interpolation [5]
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‖f‖2 ≤ ‖f‖a1‖f‖pp a =
p− 2

2(p− q)
b =

p

2(p− 1)
(16.51)

Since Pα has norm one in Lp(A) one has

‖A‖‖ψα‖p = ‖AαΨα‖p ≤M‖ψα‖2 = M (16.52)

It follows

1 = ‖ψα‖2 ≤ ‖ψα‖1
M

‖A‖

b

(16.53)

and therefore

‖ψα‖1 ≥ (
‖A‖
M

)
p
p−2 (16.54)

Since ψα ≥ 0 for all α one has

(ψ, I) = lim
α

(ψα, 1) = lim‖ψα‖ = (
‖A‖
M

)
p
p−2 (16.55)

Therefore ψ 6= 0. ♥

In the proof of the previous theorem we have used the non-commutative
version of Stein’s Lemma [5].

For a comparison, notice that in the Bose case the fields φ(x) and π(x)
are real valued distributions, and therefore

φ(f) =
∫
f(x)φ(x)dx, π(g) =

∫
g(x)π(x)dx (16.56)

are symmetric operators that are self-adjoint in the Fock representation.
Therefore for them integration theory hods in the classical sense if one

makes use of suitable gaussian measures.

16.11 Construction of Fock space

As an application of the theory of gage spaces we formulate now a theorem
that is useful in the construction of the representation for a free Fermi field.
We begin with a construction of Fock space. Let A be a self-adjoint operator
on the complex Hilbert space H. Denote by Γ (eitA) the strongly continuous
group of unitary operators defined by

Γ (eitA) = ⊕neitA ⊗ eitA . . .⊗ eitA (16.57)

where the nth term act on antisymmetric tensors of rank n and by convention
the first term is the identity. Also here the map Λ is called second quantization.
We have discussed it in Volume I in the case of the Bose Field. Denote by
dΓ (A) he infinitesimal generator of Γ (eitA) so that formally
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Γ (eitA) = eitdΓA (16.58)

Denote by Λ(H) the direct sum of antisymmetric tensors over H.

Lemma 16.17
Let D be the extension of the map u → uν of an unitary operator from

L2(Cl) to Λ(H). Define

β = Γ (−1) a = Bx (16.59)

Then
DLxD

−1 = Cx +AJx DRxD
−1 = (Cx −AJx)β (16.60)

The operator β is one on the even forms and minus one on the even forms
(this reflects the anti-commutation properties of the ).

♦
Proof
The first relation follows from

DLxD
−1Du = DLxD

−1uν = DLxu−Dau = Bxu (16.61)

For the second relation notice that for any y ∈ H one has

[Cx −AJx, By] = 0 (16.62)

It follows that setting E = Cx −AJxβ one has

EuΩ = uEΩ = uCxΩ = u(Cx + Jax)Ω = uaΩ +RxΩ = RxΩ (16.63)

Therefore
(ED −DRx)Ω = 0 (16.64)

and by (69) the same relation holds in L2(Cl).
♥

Lemma 16.18
Let x, y ∈ H. Define

σ ≡ 1
2
BxBy −

1
2

(x, Jy)I (16.65)

Then σ ∈ Cl, Trσ = 0 and

D(La +Ra)D−1 = CxCy +AJxAJy Dσ =
1
2
CxCyΩ (16.66)

♦

Proof
¿From the Clifford relations it follows

BxBy −+ByBx = 2(x, y)I (16.67)
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Defining
Rσ = (x, y)I −RuRv (16.68)

from the preceding Lemma

DRσD
−1 = (x, y)I − 1

2
(Cy − CJx)β(Cy −AJxβ −

1
2

(x, y)I (16.69)

Using β2 = I and {Cy −AJx, β} = 0 and the preceding Lemma one has

DRσD
−1 =

1
2

(Cc +AJx)(Cy +AJx)− 1
2

(x, y)I (16.70)

To conclude the proof of Lemma 16.18 note that Tr(BxBy) = (x, y).
Acting on Ω with AJx and Cy and using DΩ = I we have

2Dσ = CxCyΩ (16.71)

♥

We can formulate the following Theorem [3][4]

Theorem 16.19.
Let H be a complex Hilbert space, J a conjugation. Let A be a self-adjoint
operator in H, A ≥ mI, m > 0. Set

H = D−1dΓ (A)D (16.72)

If A commutes with J then
1) e−tH is a contraction in Lp(Cl) for every t ≥ 0 and a contraction on
Lp(Cl) ∪ L2(H) for every p ∈ [1,+∞]
2) If t ≥ 1

2 log3 then e−tH is a contraction from L2(Cl) to L4(Cl)
3) For every t ≥ 0 thee−tH is positivity preserving.

♦

To simplify the presentation, we will prove first this theorem assuming the
validity of Lemma 16.20 and Lemma 16.21 below. We shall then prove these
Lemmas.

Lemma 16.20 [3]
Let U = D−1dΓ (I)D. If t ≥ 1

2 log3 then e−tH is a contraction from L2(Cl)
in L4(Cl).

♦

Lemma 16.21 [4]
Let

A ≥ 0 [A, J ] = 0, H = D−1dΓ (A)D (16.73)

Then for every t ≥ 0 the operator e−tH is positivity preserving. Moreover it
is a contraction in L∞(Cl) and in L1(Cl). ♦
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Proof of Theorem 16.19 assuming the validity of Lemmas 16.20 and
16.21.
1) If H ≥ 0 and if a sequence of operators An ≥ 0 is such that

e−tAn → e−tH (16.74)

then
e−tdΓ (An) → e−tdΓ (H) (16.75)

This follows because the sequence is uniformly bounded.
2) If A has finite range and commutes with J , then J leaves invariant the
the range RA. In fact, define

Λ(K) = Cl(K) (16.76)

with Cl(K) based on on R(A). By Lemma 16.19 one has

u ≥ 0→ e−tHAu ≥ 0, HA ≡ D−1dΓ (A)D (16.77)

and moreover by Lemma 16.18 ‖e−tHAu‖ ≤ ‖u‖.
The union of of subspaces that are invariant under J and which contain RA

is dense in L2(Cl) and also dense in L1(Cl) due to Lemma 16.19 (contraction
implies convergence of the iterations)

Therefore for any u ∈ L2(Cl) there exists a sequence un ∈ L2(Cn) which
converges to u in the L2 norm and then

(e−tHu, φ) ≤u‖1‖φ‖∞∀φ ∈ Cl (16.78)

and moreover
(e−tHu, φ) ≥ φ > o → e−tHu ≥ 0 (16.79)

If A ≥ 0 and bounded and not of finite range, one can repeat this proce-
dure with An of finite range. If A > 0 self-adjoint unbounded with spectral
projections Eλ , take

An =
∫ n

0

λdλ [E(.), J ] = 0 (16.80)

and consider
An → A; e−tAn → e−tA (16.81)

It follows that e−t(DΓA)D−1
preserves positivity and is a contraction in

L1(Cl).By duality it is a contraction in L∞(Cl) and by the Riesz-Thorin
theorem it is a contraction from L2(Cl) to L4(Cl) if mt > log3

2 .
Now set N = dΓ (I) (in Fock space this is the number operator). Acting

on any finite-dimensional subspace K the operator e−tD
−1ND leaves C1(K)

invariant and is a contraction form L1(Cl) to L4(Cl).
Since the finite-dimensional space K is arbitrary
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(‖e−tD
−1NDu, φ) ≤ |u|2|φ| 4

3
(16.82)

and this inequality extends by continuity to all L2(Cl). If A ≥ mI, one
has dΓ (A) ≥ mN and therefore e−tdΓ (A) ≤ e−tN . It follows that E ≡
emtNe−tdΓ (A) has norm not greater than one and

e−tH0 ≡ e−mtD
−1NDD−1ED (16.83)

is a contraction from L2(Cl) to L4(Cl) if mt ≥ log3
2 .

♥

We now prove lemmas 16.20 and 16.21,

Proof of Lemma 16.20
It is sufficient to prove the lemma in the case A has discrete spectrum. In

this case by factorization it sufficient to give the proof in the one.-dimensional
case.

Then every element of H2 ≡ {x ∈ H, Jx = x} can be written as

w = u+ av a = Bx1 x1 ∈ Hr (16.84)

and one has e−tHu = u, e−tHv = v. Recall that a1a = I, a∗ = a a = Bx1

and set z = r + sa Then

z∗z = r∗r + e−2ts∗s− e−t(s∗ar + r∗as) (16.85)

We have |z|4 = (z∗z)2 and ‖z‖44 = Tr|z|4 . Making use of the cyclic
property of the trace and of the expression of z∗z one verifies

‖z‖4 = Tr(r∗r + e−2ts∗s)2 + e−2t(s∗ar) + r∗as)2 (16.86)

and therefore

‖z‖4 ≤ ‖u‖42 + e−4t‖v‖42 + 6e−2t‖u‖22‖v‖2 (16.87)

If T ≥ log3
2 one has 6e−2t ≤ 2 and therefore

‖z‖42 ≤ (‖u‖22 + ‖v‖22) (16.88)

Since ‖w‖22 = Tr((u + av∗(u + av∗ = Tr(u∗u + v∗v) the case N = 1 implies
the generic case.

♥

Proof of Lemma 16.21
Let K be finite-dimensional and let

[A.J ] = 0, A ≥ 0 H = D−1dΓ (A)D (16.89)

Then e−tH is positivity preserving and is a contraction on Lp(Cl) for p = 1
and p =∞ If A is a one-dimensional projection Lemma 16.20 gives
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e−tH(w∗w) = e−tw∗w + (1− e−t)(u∗U + v∗v) ≥ o (16.90)

If A is not a one-dimensional projection, let A =
∑
λiPi where Pi are

one-dimensional projections. Then

e−tH = Πke
−tλkHk Hk = D−1dΓ (Pk)D (16.91)

and each factor is positivity preserving. To prove the contraction property,
begin again with the case in which A is a rank-one projector. Then one has

U−1(u+ av)U = u− av (16.92)

where if A = Pi then U is the unitary operator which corresponds to the
operation xi → .− xi, xj → xj for j 6= i. Notice that

e−Hw = u+ e−tav =
1 + e−t

2
(u+ av) +

1− e−t

2
(u− av) (16.93)

This implies ‖e−tHw‖∞ ≤ ‖w‖∞. If A =
∑
i λiPi one proceeds similarly. It

follows also that e−tH is a contraction in L1 and since L1 and L∞ are dual for
the coupling < u, v >= Tr(v+u) and e−tH is is auto-adjoint for this coupling
since (e−tHv)∗ = e−tHv∗.

Notice finally that if a map is a contraction both in L1 and in L∞ then it
is a contraction in Lp for 1 ≤ p ≤ +∞. ♥
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