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Chapter 1

Riemann surfaces

1.1 Definition of a Riemann surface and basic examples

In its broadest sense a Riemann surface is a one dimensional complex manifold that locally looks
like an open set of the complex plane, while its global topology can be quite different from the
complex plane. The main reason why Riemann surfaces are interesting is that one can speak of
complex functions on a Riemann surface as much as the complex function on the complex plane
that one encounters in complex analysis.

Elementary example of Riemann surfaces are the complex plane C, the disk

D={zeC, |z| <1}

or the upper half space
H={zeC, J(z) > 0}.

B. Riemann introduced the concept of Riemann surface to make sense of multivalued functions
like the square root or the logarithm. For the geometric representation of multi-valued functions
of a complex variable w = w(z) it is not convenient to regard z as a point of the complex plane. For
example, take w = 4/z. On the positive real semiaxis z € R, z > 0 the two branches wy = + /z

and w, = — /z of this function are well defined by the condition w; > 0. This is no longer possible
on the complex plane. Indeed, the two values wy > of the square root of z = re¥
w = VT, wy = —rdT = VT, (1.1)

interchange when passing along a path
z(t) = ré W+, te|0,2n]

encircling the point z = 0. It is possible to select a branch of the square root as a function of z by
restricting the domain of this function for example, by making a cut from zero to infinity. Namely
the function 4/z is single-valued in the cut plane C\[0, +). Riemann’s idea was to combine the
two branches of the function +/z in a geometric space in such a way that the function is well
defined and single-valued. The rules are as follows: one has to take two copies of the complex
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6 CHAPTER 1. RIEMANN SURFACES

plane cut along the positive real axis and join the two copies of the complex plane along the cuts.
The different sheets have to be glue together in such a way that the branch of the function on one
sheet joins continuously with the branch defined on the other sheet. The result of this operation
is the surface in figure 1.1.

Figure 1.1: The two branches of the function +/z

Note that such surface can be given for (w,z) € C? as the zero locus
F(z,w) = w?* —z = 0.

A similar procedure of cutting and glueing can be repeated for any other analytic function. For
example the logarithm log z is a single valued function on C\[0, +o0) with infinite branches. Each
adjacent branch differs by an additive factor 27i. The infinite branches attached along the positive
real line are shown in the figure 1.2.

Next we will give a more abstract definition of a Riemann surface and we will show how the
surface defined by the graph of a multivalued function fits in this definition.

Let us recall that a Hausdorff topological space is a space such that distinct points have distinct
open neighbourhoods. We begin with some general facts about topological spaces and differential
geometry.

Definition 1.1. A complex manifold of dimension n is a Hausdorff topological space M with a collection
of pairs {(Uy, Pu) }acn where U, < M is an open set in M and ¢ : Uy — C" such that

1. ¢o(Uy) is open in C" and ¢, : Uy — Po(Uy) is one-to-one, i.e. ¢, is a homeomorphism.

2. The sets U, are a covering of M

JU.=M (1.2)
aeA
3. IfUyp := Uy n U # I then both ¢o (U, p) and pg(U,p) are open sets in C" and
Gap = Ppody s Pp(Uap) = Pa(Uap) (1.3)

are analytic functions of all the respective variables.
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Figure 1.2: The infinite branches of the function log z

The maps ¢, are called local coordinates, the sets U, are called local charts. The functions G,y are
called transition functions.

To define a real C¥—smooth n-dimensional manifold, one has to replace C" with R" and the
transition functions are C*— smooth in their respective variables. A complex n-dimensional
manifold is also a real C* manifold of dimension 2n.

Given two collections of local coordinate-charts {¢q, Us}o and {1Pg, V}p, we say that they are
equivalent if their union still defines a (real/complex) manifold structure. The equivalence classes
of local coordinate-charts [{(U,, ¢o)}«] are called atlases (or conformal structure in the complex
case).

o The manifold M is orientable if the transitionmap (z1, . ..,z,) — (G1(2),...,Gn(z)) has positive

0G;j(2)
Jacobian determinant det B >0
k

o The manifold is compact if it has an atlas made of a fine number of bounded open sets.

We will be concerned with manifolds of complex dimension 1 and hence the local charts z, =
¢a(p) will be complex valued functions and the transition functions are bi-holomorphic, namely,
holomorphic with inverse holomorphic. The equivalence class of complex atlas is called a complex
structure.

With the definition of complex structure we can define a Riemann surface in the equivalent
way.

Definition 1.2. A Riemann surface I' is a connected one-complex dimensional analytic manifold, or a two
real dimensional connected manifold with a complex structure on it.

Let ¢ and ¢ be two local homeomorphism from two open sets U and U of I' with U ~ U # .
Let P and P, two points in U n U and denote by z = ¢(P) and w = ¢(P) the two local coordinates
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with zg = ¢(Pp) and wy = ¢(Pp). Then the holomorphic transition function T = ¢ o ¢~ must be
of the form

z =T(w) = T(wy) + Z ar(w —wo)*, a1 #0 (1.4)
k>0

with holomorphic inverse

w=T"(z2) =T (z0) + Y| be(z —20)", b1 #0,
k>0

namely the linear coefficient of the above Taylor expansions near the point wy or zj is necessarily
nonzero.

Remark 1.3. If T is a Riemann surface, then it is orientable. Indeed let P and Py be two points
in U n U and denote by z = ¢(P) and w = ¢(P) the two local coordinates with zy = ¢(Py) and

dw . .
wy = ¢(Py). Then I # O near z = zp. Switching to real coordinates z = x + iy and w = u + iv we

have, by Cauchy-Riemann equations, u, = v, and u, = —v, and
dw . dw )
EZfolMy, E:MX+IZ/IV’

so that the Jacobian of the coordinates change takes the form

ou 8_u ,
ox 0

det (9_735 (?_g —uxvy—uyvx—‘E >0
ox 0y

which is non zero in the neighborhood of any point zg € I'.

Example 1.4. Elementary examples of Riemann surfaces

(a) The complex plane C. The complex atlas is define by one chart that is C itself with the
identity map.

(b) The extended complex plane € = C U . The complex plane C with one extra point co. We
make C into a Riemann surface with an atlas with two charts:

u, =C
U, = C\{0},

with ¢; the identity map and

0= { o7 s
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1.1.1 Affine plane curves

Let us consider a polynomial F(z,w) = >, a;(z)w" ™" of two complex variables z and w. The zero

set F(z, w) defines a n-valued function w = w(z). The basic idea of Riemann surface theory is to
replace the domain of the function w(z) by its graph

I:={(z,w) e C*| F(z,w) = anai(z)w”_i =0} (1.5)
i=0

and to study the function w as a single-valued function on I' rather then a multivalued function
of z. As in the example of +/z, the multivalued function w = w(z) = /z becomes a single-valued
function w = w(P) of a point P of the algebraic surface I': if P = (z,w) € T, then w(P) = w (the
projection of the graph on the the w-axis). From the real point of view the algebraic curve (1.5) is
a two-dimensional surface in C* = R* given by the two equations

RF(z,w) =0

JF(z,w) =0 |-
In the theory of functions of a complex variable one encounters also more complicated (nonalge-
braic) curves, where F(z, w) is not a polynomial. For example, the equation ¢ — z = 0 determines

the surface of the logarithm or sinw — z = 0 determines the surface of the arcsin. Such surfaces
will not be considered here.

Definition 1.5. An affine plane curve T is a subset in C? defined by the equation (1.5 ) where F(z,w) is
polynomial in z and w. The curve I is nonsingular if for any point Py = (zo, wy) € I the complex gradient
vector

[ 0F(z,w) 0F(z,w)

does not vanish. If the polynomial F(z, w) is irreducible, the curve I is called irreducible affine plane curve.

(z:zo,w:wo)

Remark 1.6. A non trivial theorem states that an irreducible affine plane curve is connected (see
Theorem 8.9 in O. Forster, Lectures on Riemann surfaces, Springer Verlag 1981).

In order to define a complex structure on I' we need the following complex version of the
implicit function theorem.

Lemma 1.7. [Complex implicit function theorem] Let F(z, w) be an analytic function of the variables z and
w in a neighborhood of the point Py = (zo,wy) such that F(zy,wy) = 0 and d,,F(zo,wo) # 0. Then there
exists a unique function ¢(z) such that F(z,¢(z)) = 0 and ¢(z0) = wo. This function is analytic in z in
some neighborhood of z.

Proof. Letz = x +iyand w = u + iv, F = f +ig. Then the equation F(z, w) = 0 can be written as
the system

fx,yu,0) = 0
{g(x,y,u,v) =0 (1.6)



10 CHAPTER 1. RIEMANN SURFACES

The condition of the real implicit function theorem are satisfied for this system: the matrix

of If
ou ov
g 08

ou ov (zo,w0)

is nonsingular because

of  of

ou v 2
det = 8_1—“ >0,

og g ow

ou 0ov

( we use only the analyticity in w of the function F(z,w)). Thus, in some neighbourhood of
(zo, wy) there exist a smooth function ¢(z,z) = ¢1(x, y) + ip2(x, y) such that F(z, $(z,z)) = 0, with
¢(20,20) = wy. Differentiating with respect to z

0= LF(z,9(2,2) = Fuep(z,2).

Since Fy, # 0, the above relation implies that d%qb(z, z) = 0 which shows that ¢(z) is an analytic

function of z. d

Remark 1.8. A constructive way of obtaining the function ¢(z) is to apply the Residue Theorem.
Indeed let us consider the function F(z, w) where z is treated as a parameter. Let Dy be a small
disk around wy where F(zp, wp) = 0 and F (2o, W)|w=w, # 0. Then the number of solutions of the
equation F(zp, w) = 0 counted with multiplicity is given by the integral

1 f Fa (20, w)

— 2w,
2mi Jop, F(zo,w) @

where 0D is the boundary of Dy. We assume Dy sufficiently small so that the equation F(zg, w) = 0
has only the solution wy in the closure of Dy. Then the above integral is equal to one. Furthermore
by the residue theorem one has

1 F ,
J BRCVI0 Pa—
oDy

2mi F(zp, w)

By continuity, for z sufficiently close to z there is a disk D centred at w such that the equation
F(z,w) = 0 has only one solution w = ¢(z) in the closure of D and

1 wa(z, w)
2ni Jop F(z,w)

dw = ¢(z),

where ¢(zg) = zp and F(z, ¢(z)) = 0. Clearly the function ¢(z) is an analytic function of z.

Theorem 1.9. Let T be an irreducible affine plane curve defined in (1.5). If I is non singular, then I is a
Riemann surface.
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Proof. T is connected since F(z,w) is irreducible. Let us define a complex structure on I'. Let

OF
Py = (zo, wp) be a nonsingular point of the surface I'. Suppose, for example, that the derivative —

w
is nonzero at this point. Then by the lemma 1.7, in a neighborhood Uy of the point Py, the surface
I' admits a parametric representation of the form

(z,zw(z))e Uy < T, w(zo) = wy, (1.7)

where the function w(z) is holomorphic. Therefore, in this case z is a complex local coordinate
also called local parameter on T in a neighborhood Uy of Py = (zo,wp) € I'. For this kind of local
coordinate, the transition function is the identity.
OF
Similarly, if the derivative O_z is nonzero at the point Py = (zp, wp), then we can take w as
a local parameter (an obvious variant of the lemma), and the surface I' can be represented in a
neighborhood Uy of the point Py in the parametric form

(z(w),w) e T, z(wy) = zo, (1.8)

where the function z(w) is, of course, holomorphic. For a local parameter of this second kind the
transition function is the identity map. For a nonsingular surface it is possible to use both ways
for representing the surface on the intersection of domains of the first and second types, i.e., at

F oF s .
points of I where s #0and = # 0 simultaneously. The resulting transition functions w = w(z)

w
and, z = z(w) are holomorphic and invertible. O

The preceding arguments show that such Riemann surfaces are complex manifolds (with
complex dimension 1).

The Riemann surface I' in (1.5) is realized as an n-sheeted covering of the z-plane. The precise
meaning of this is as follows: let 7 : I' — C be the projection map from I’ to the complex z-plane
given by

n(z,w) = z. (1.9)

Then for almost all z the preimage 71! (z) consists of n distinct points

(z,w1(2)), (z,wa(z)), ,...(z,wa(2)), (1.10)

of the surface I where w; (z), ..., w,(z) are the n roots of (1.5) for a given value of z. For certain
values of z, some of the points of the preimage can merge. This happens at the ramifications
points (zp,wp) of the Riemann surface where the partial derivative F,(z, w) vanishes (recall that
we consider only nonsingular curves so far). The point zg € C is called branch point and it is
determined by the system of equations

F(zg,w) =0
Pw(zg, w)=0 } (1.11)

For solving such system, we introduce the concept of resultant.

Definition 1.10. Let f(z) = a, + a,_1z + --- + apz" and g(z) = by + by—1z + --- + bz be two
polynomials of degree n and m respectively with a;, bj € C with ap # 0 and by # 0. The resultant R(f, g)
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is given by the determinant of the (n + m) x (n + m) matrix

a, ap_1 ... ay 0 0 ... 0

0 ay ap_1 ... ap 0 0 ... 0

10 0 a, Aap—1 a ... 4
RESD =ty by .. oo by B O ... 0 (1.12)

0 b by ... ... b by O 0

0 ... by  bu_1 ... ... by by

Lemma 1.11. R(f, g) = 0ifand only if f and g have a common zero.

Proof. The polynomials f and g have a non constant common root (z) if and only if there exists
polynomials ¢(z) and ¢(z) such that f(z) = r(z)¥(z) and g(z) = r(z)¢(z). Here ¢ and ¢ are
polynomials of degree n — 1 and m — 1 respectively. This implies that

f(2)¢(2) = &(2)(2) (1.13)

where
¢(z) = ap + a1z + 121

and

Y(z) = o+ Prz + - + Bu-1z",
for some complex coefficients ay, ..., a—1 and o, . .., fu—1. Then (1.13) can be considered a system
of equations for the coefficients ay, ..., a,—1 and By, ..., B.—1. The solvability of such a system is
equivalent to the vanishing of the determinant (1.12). m|

Lemma 1.12.
R(f.8) = it ] (= vi)
where 11; and vy are the roots of the polynomials f and g respectively.

For a proof of this lemma see [14].

The solutions of the system (1.11) are obtained by calculating the resultant of F(z,w) and
Fy(z,w). Such quantity coincides with the discriminant of F(z, w) with respect to w. It can be
computed as the determinant of a (2n — 1) x (2n — 1) matrix constructed from the coefficients of
the polynomials

1

F=ayw" +mw"™" + - +a,_1w + a,

and
Fp =napw" ' + (n — Doy 2 + - +a,_1,
namely
ay M a B N | ay 0 ... 0
0 ap ay ap—1 A4y 0
B 0 0 e R ay
R(F, Fy)(z) = det nag (m—1a (m—2)ay ... a,1 0 0 (1.14)
0 nag (m—1ay ... 24,5 a,-1 O 0

0 0 2an_2 Ap—1
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From lemma 1.12, the discriminant is also equal to

n n—1
R(FFo)(2) = ()T [ [ ] [(wilz) — ;(2)) (1.15)
i=1 j=1

where w;(z),i = 1,...,n, are the roots of the polynomials F(z,w) and w;(z), j = 1,...,n — 1, are the
roots of the polynomials Fy,(z, w) where z is considered as a parameter. Note that the total number
of branch points is finite since R(F, Fy,) is a polynomial in z of finite degree.

The choice of the variables z or w as a local parameter is not always the most convenient. We
shall also encounter other ways of choosing a local parameter 7 so that near the point (z, w) the
curve I' can be represented locally in the form

z=2(1), w=w(T) (1.16)
where z(7) and w(1) are holomorphic functions of 7, and

dz dw
(F52) 0.0, (117)

We study the structure of the mapping m in (1.10) in a neighborhood of a branch point Py = (zg, wp)
of I' defined in (1.5). Let 7 be a local parameter on I' in a neighborhood of Py. It will be assumed
that z(t = 0) = zp, w(t = 0) = wp. Then

z =20+ @7 + O, a4 #0 1.18)
w = wp + ¢;T7 + O(t1+h), cg #0, '

where a; and ¢; are nonzero coefficients. Since w can be taken as the local parameter in a neigh-
borhood of Py it follows that g = 1. We get a parametrization of the surface I' in a neighborhood
of a branch point:

k k+1

z=2zy+ a7 + O(T ,
0+ ak ( ) ) (1.19)

w = wy + b7 + O(77),

where k > 1.
Definition 1.13. The number b,(P) = k — 1 is called the ramification number of the map T at P.
It is easy to check that such number does not depend on the choice of the local parameter.

Exercise 1.14: Let Py = (zo,wp) be a ramification point for the curve (1.5) with respect to the
projection (z, w) — z. Suppose that the local parameter in the neighbourhood of P; is of the form
(1.19) with k > 1. Show that
d'F(z, w)
dw’

(z0,w0)

Exercise 1.15: Prove that the total multiplicity of all the branch points on I' over z = z is equal to
the multiplicity of z = zj as a root of the discriminant of the polynomial F(z, w).
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Exercise 1.16: A partition u of an integer n is a collection of integers y = (u1,..., ls) such that
Zj-;l uj = n. If zy is not a branch point, the pre-image 7~ (zo) can be identified with the partition
(1,...,1). Suppose that zj is a branch point and

———

n_l(zo) = (Py,...,P), l<mn,
with b, (P;) = kj — 1. Show that such branch point can be identified with the partition (ki, ..., k).

Lemma 1.17. Let Py = (zp, wo) be a branch point of the Riemann surface I defined in (1.5) with respect to
the projection (z,w) — z and let b,(Py) = k — 1 its branching number. Then there are k functions w1 (z),
..., Wi(z) analytic on a sector S, of the punctured disc

0<|z—2zo| <p, arg(z—zp) <o
for sufficiently small p and any positive ¢ < 21t such that
F(z,wj(z))=0 for zeS,s, j=1,...,k
The functions wy(z), . . ., we(z) are continuous in the closure Sy, and
w1(z9) = -+ = wi(z0) = wo.

Proof. By the nonsingularity assumption F,(zp, wp) # 0. So the complex curve F(z,w) = 0 can be
locally parametrized in the form z = z(w) where the analytic function z(w) is uniquely determined
by the condition z(wg) = zo. Consider the first nontrivial term of the Taylor expansion of this
function

z(w) = zo + ap(w — wo)* + agpr(w —wo) P +..., k>1, o #0,

or equivalently

2 — 20 = ag(w — wo)¥(1 + %(w —wo) + O((w—w)?) k>1, a#0.
k

Introduce an auxiliary function

f(w) = B(w — wp) [1 + afv—zl(w —wp) + O ((wwo)z)]k .

= B(w — wp) [1 + %(w—wo) +0 ((w—wo)z)] ,

where the complex number § is chosen in such a way that g = a;. The function f(w) is analytic
for sufficiently small |w —wp|. Observe that f'(wy) = B # 0. Therefore the analytic inverse function
f~!locally exists. The needed k functions wy (z), .. ., wi(z) can be constructed as follows

2mi (j—1)

wi(z) = f! (ef(z — zo)l/k) , j=1...k (1.21)

where we choose an arbitrary branch of the k-th root of (z — zg) forz € S, 4. m]
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Example 1.18. Elliptic and hyperelliptic Riemann surfaces have the form

T ={(z,w) e C |F(z,w) = w* — Qu(z) = 0}, (1.22)
where Q,(z) is a polynomial of degree n. These surfaces are two-sheeted coverings of the z-plane.

The non singularity condition implies that gradient vector grad.F = (—Q;,(z),2w) # (0,0) at any
point of I'. A point (zg, wp) € I is singular if

wo =0, Q; (Zo) =0. (1.23)
Together with the condition (1.22) for a point (zg, wp) to belong to I we get that

Qn(Z()) = 0, Q;(Zo) = 0, (124)

i.e. zg is a multiple root of the polynomial Q,(z). Accordingly, the surface (1.22) is nonsingular if
and only if the polynomial Q,(z) does not have multiple roots:

n

Qu(z) =[[z—z) z#z fori#] (1.25)

i=1

The curve I’ is called an elliptic curve for n = 3,4 and it is called hyperelliptic for n > 4. The
ramification points of the surface with respect to the map n(z, w) — z are determined by the two
equations

w2 = QH(Z)I w = Or
which gives n ramification points P; = (z = z;,w = 0), i = 1,...,n. All the ramification points
have multiplicity one. In a neighborhood of any point of I' that is not a ramification point, one

can take z as a local parameter, and w = /4,(2) is a holomorphic function. In a neighborhood of
a ramification point P; it is convenient to take

T=z—2, (1.26)

as a local parameter. Then near the ramification point P;, the Riemann surface (1.22) has the local
parametrization

z=zi+7, w=r1 H(Tz + z;i — zj) (1.27)
j#i
where w = w(7) is a single-valued holomorphic function and dw/dt # 0 for sufficiently small

values of 7.

Exercise 1.19: Consider the collection of n-sheeted Riemann surfaces of the form

F(z,w) = 2 aijziwj, a;j€C, (1.28)

i+j<n

the so-called planar curves of degree n. Prove that for a general surface of the form (1.28) there
are n(n — 1) branch points and they all have multiplicity 1. In other words, conditions for the
appearance of branch points of multiplicity greater than one are written as a collection of algebraic
relations on the coefficients 4;;.
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1.1.2 Smooth projective plane curves

We recall the the projective space IP" is the quotient of C"*1\{0} by the equivalence relation that
identifies vectors v and av in C"+1\{0} with @ € C*. Namely P" = C"*!\{0}/C*. The space P’
is a singly point, P! can be thought as the complex plane C plus a single point « and it can
be identified with the Riemann sphere. P? can be thought as C? together with a line at infinity,
namely a copy of P! and so on.

The projective line is the simplest example of a compact Riemann surface.

Definition 1.20. The projective plane P? is the set of one-dimensional subspaces in C* or equivalently
P2 = C3\{0}/C*. Let (X, Y, Z) be a nonzero vector in C3. A point in P? is denoted by [X : Y : Z] and

[X:Y:Z] = [AX:AY:AZ], A#0, AeC

As a quotient space, P? is endowed with the quotient topology. Indeed let the projection map
7 : C*\{0} — IP? be defined as
(X, Y,Z2)=[X:Y:Z].

Then we can give to IP? the quotient topology induced from C?\{0}, namely a subset U of IP? is
open if and only if 7~1(U) is open in C3\{0}. As a topological space, IP? is a Hausdorff space,
namely two distinct points have disjoint open neighbourhoods.

Proposition 1.21. The space IP? is compact.

Proof. Let
S = {(X,Y,2) e C|IXP + Y} + |2 =1},

Then S° is a sphere of real dimension 5. It is a closed and bounded subset of C* and by the
Heine-Borel theorem is compact. The restriction of mgs : S° — IP? is continuos. The image of a
compact set under a continuous mapping is compact. Next let us show that 7tgs is also surjective.
Let [X: Y : Z] € P?, then

IX> +|Y]*+|Z|* = A, forsome A > 0.

Then we also have ; ; 1
[X:Y:Z] =[A7:X:A72Y 1 A72Z].

Combining the above two relations one has that
ATEXP+ ATV 4 ATz =1

sothat [X : Y : Z] € t(S°). Namely the map 7t : S° — IP? is surjective and continuos which implies
that IP? is compact. m

Remark 1.22. The spaces IP", n > 0 are all compact. The proof of this statement is a simple
generalisation of the proof of proposition 1.21.

The space P? can be covered with three open sets homeomorphic to C? :
Up={[X:Y:Z]eP?| X # 0}
U ={[X:Y:Z]eP?|Y #0}
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U, ={[X:Y:Z]elP?| Z#0}.

The homeomorphism on Uy is given by the map [X : Y : Z] — (Y/X, Z/X) € C? and similarly for
the other open sets U; and U,.

Definition 1.23. Let Q(X, Y, Z) be a homogeneous non constant polynomial of degree d, in the complex
variables X, Y and Z with complex coefficients. The locus

F={X:Y:Z]eP?|Q(X,Y,Z) =0} (1.29)
is the projective curve defined by the polynomial Q.

Remark 1.24. Observe that the curve I is well defined since the condition Q(X, Y, Z) = 0 is inde-
pendent from the choice of homogeneous coordinates since Q(AX, AY,AZ) = A?Q(X, Y, Z). Fur-
thermore I is a closed subset of IP> and therefore it is compact.

The intersection of I with any of the U; is an affine plane curve. For example
To=TnU = {(u,0) e C*| Q(1,u,v) = 0}.
Now we show that under non singularity assumptions, I is a Riemann surface.

Definition 1.25. The curve (1.29) defined by the zeros of the homogeneous polynomial Q(X,Y,Z) is
nonsingular if there are no non zero solutions to the equations
_0Q _2Q 2Q _

C=x~w-az "
Exercise 1.26: Show that the projective curve I' defined in (1.29) is non singular if and only if each
of the affine components I = I' n U;, i = 1,2,3 is non singular. Hint: use Euler equation that
is obtained differentiating the identity Q(AX, AY, AZ) = A?Q(X, Y, Z) with respect to A and setting
A =1, namely

XQx +YQy +ZQz = Qd. (1.30)

Suppose that I' is a smooth projective curve. In order to give a complex structure on I' let us recall
that each I'; is a smooth affine plane curve and hence a Riemann surface. The coordinate charts
are given by the projections. For example for the curve I'y the coordinate charts are y/x or z/x
and the transition functions are the same as the one obtained for smooth affine plane curves. One
needs to check that the complex structures given on each I'; are compatible.

Proposition 1.27. Suppose that the projective curve I' in (1.29) is non singular. Then T is a Riemann
surface.

Proof. We will show that the complex structures given on each I'; are compatible. Let P € I'y n Iy
where P = [X : Y : Z] and X # 0 and Y # 0. Since each affine plane curve is non singular (see
exercise 1.26), we assume without loss of generality that Qx and Qz are non zero. Let ¢ : I'g — C
with ¢o(P) = Y/X and with inverse ql)al(Y/X) = [1:Y/X : h(Y/X)] where h is a holomorphic
function. Let ¢; : I'1 — C with ¢1(P) = Z/Y with inverse cp;l = [g(£),1, £] where g(%) is
holomorphic for Y # 0 and non zero since we assume X # 0. Then ¢, o gbgl(Y/X) = Xh(Y/X)/Y
which is holomorphic because Y # 0, X # 0 and h(Y/X) is holomorphic. In the same way
1

¢Po o P, Yz)y) = 2z Which is holomorphic because Y # 0 and g is nonzero. Similar checks can

be done with the other coordinate charts. m|
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Lemma1.28. Let Q(X, Y, Z) and F(X, Y, Z) be two homogeneous polynomials of degree d and m respectively.
Suppose that Q(0,0,Z) # 0 and F(0,0,Z) # 0. Then the resultant

R(Qz Fz)(X,Y)
is a homogeneous polynomial in X and Y of degree dm.

Proof. According to the assumptions, Q(X,Y,Z) = qoZ% + q1(X,Y)Z%1 + --- + g4(X,Y) where
g;(X,Y) are homogeneous polynomials of degree jin X and Y, j = 0,...,d and F(X,Y,Z) =
foZ™ + AXY)Z™ L + -+ £u(X,Y) where fi(X,Y) are homogeneous polynomials of degree j,
j=0,...,m

Then according to the definition of resultant in (1.12)

go ¢n - 44 0 0 ... 0
0 qo q1 qd 0 0 0
RQEXY) =det| 0 0 o oo 0@ 2 N (1.31)
SRAS fo fi oo oii fua fu O .0
0 fo fi i i fu fu O .0
0 ... fi A ... i fuet f

We multiply the second row by A # 0, the third row by A? and so on till the m — th row that is
multiplied by A”~!. Then we multiply the (m + 2) — th row by A, the (m + 3) — th by A? and so on
till the (m + d) — th that is multiply by A%~! one has

1
R(Q,F)(AX,AY) =
(Q )( ) /\%(d—l)d/\%m(m—l)
g0 Ap ... Mgy 0 0 e 0
0 0 .. ... Amlg o amg Lo Al
det
LA AR L AT AT, 0 0
0 Afy /\2f1 A" fn1 )\m“fm 0
0 e /\dilfo /\dfl . . Am+d72fm71 /\m+d71fm
= AMR(Q F)(X,Y),

where we use the fact that and 4;(AX,AY) = Ag;(X,Y) and fj(AX,AY) = Af;(X,Y). The above
relation shows that the resultant R(Q, F)(X, Y) is a homogeneous polynomial in X and Y of degree
md. O

Theorem 1.29 (Bezout’s theorem). Let I' and M be two projective curves defined by the homogenous
polynomials Q(X,Y,Z) and F(X,Y,Z) of degree d and m respectively. Then if I and M do not have a
common component, then they intersect in dm points counting multiplicity.

Proof. By Lemma 1.12, I' and M have a common component if and only if their resultant is
identically zero. Next we consider the case in which I' and M do not have a common component.
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Without loss of generality we assume that [0 : 0 : 1] does not belong to both curves. With this
assumption Q(X,Y,Z) = qo(X, Y)Z%+q1(X, Y)Z¥ 1 +- - - +44(X, Y) where q;(X,Y) are homogeneous
polynomials of degree jin X and Y, j = 0,...,d and 4o(0,0) # 0. In the same way F(X,Y,Z) =
fo(X,V)Z™ + A(X,Y)Z" " + -+ - + fu(X, Y) where f;(X, Y) are homogeneous polynomials of degree
j,j=0,...,mand f;((0,0) # 0. Therefore the resultant is a homogeneous polynomial of degree
md by lemma 1.28 and it has md zeros counting their multiplicity. m]

Lemma 1.30. If the projective curve I' defined in (1.29) is non singular, then the polynomial Q(X,Y,Z) is
irreducible. If T is irreducible, then it has at most a finite number of singular points.

Proof. Let us suppose that the polynomial is reducible, namely Q = Q:Q, where Q; and Q, are
homogeneous polynomials in X, Y and Z of degree d; and d — d;. The condition of I being singular
takes the form

Q01 =0, Q0xQ1 + Q10xQ2 =0, QdyQ1 +Q10yQ2 =0, Q207Q1 + Q10702 = 0.

Such system of equations has always a solution as long as there is a point P in the intersections
of the curves defined by Q; = 0 and Q, = 0. But this is always the case. Indeed let us consider
the resultant R(Q1,Q2)(X,Y) of the polynomials Q;(X,Y,Z) and Q»(X, Y, Z) with respect to Z.
Assuming that Q1(0,0,1) # 0 and Q2(0,0,1) # 0 the resultant R(Q1,Q2)(X, Y) is a homogeneous
polynomial of degree di(d — d;). Therefore the curves defined by the equations Q:(X,Y,Z) = 0
and Q»>(X, Y, Z) = 0 intersects by Bezout’s theorem in d; (d — d1) points counted with multiplicity.
We conclude that if Q is reducible, then Q is singular. Suppose that I is irreducible and defined
by the polynomial Q of degree n. Then Q and Qz do not have a common component so that the
resultant R(Q, Qz)(X,Y) is a homogeneous polynomial of degree n(n — 1) not identically zero.
Since the singular points of I' are contained in the zeros of the resultant, the number is finite. O

The simplest example of projective curve is the projective line
aX+pY +yZ=0

where (a,8,7) # (0,0,0). The tangent line to a projective curve I' defined by a homogeneous
polynomial Q(X, Y, Z) at a non singular point (Xo, Yo, Zo) has the form

(X — X())Qx(Xo, Y(),Zo) + (Y — Yo)Qy(Xo, Yo,Zo) + (Z — Zo)Qz(Xo, Yo,Zo) = 0.

Exercise 1.31: Let Q(X,Y,Z) be an irreducible homogeneous polynomial of degree d defining
a smooth projective curve I'. Suppose that the equation Q(X,Y,1) = 0 locally defines Y as a
holomorphic function of X. Show that

PY(X) 1 Oxx Qxy Qx
—xz — opdet| Qrx Qv Qr ).
Qy Qx Qv 0
. . . . . . . d2Y(X)
Observe that a point [Xp : Yj : 1] is an inflection point for the curve T if and only if Ix2

vanishes at Xj. Calculate the number of inflection points of the cubic defined by the homogeneous
polynomial Q(X, Y, Z) = Y?Z = (X — Z)(X —aZ)X witha # 0, 1.
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1.1.3 Compactification of affine plane curve

Complex affine plane curves I' := {(z,w € C? |F(z,w) = 0} where F is a nonsingular polynomial,
are non compact Riemann surfaces. To compactify them one needs to add point(s) oo!, o0?, ... 0oN
at infinity and introducing proper local parameters at these points in such a way that

F=Tuwluv?u-- Ul

is a compact Riemann surface.
The plane curve T, defined by the polynomial equation F(z,w) = 0, can be compactified by
embedding it in CIP?. The mappings

(X:Y:Z)_,<Z_%(,w_;_f>

and the inverse mapping
(z,w) > (z:w: 1)

establish an isomorphism between an affine part of CPP> and C2. The whole projective plane is
obtained from the affine part C? by adding the line at infinity of the form (X : Y : 0) ~ CP' ~ §2.
An embedding of T in CIP? is defined as follows. Suppose that

F(z,w) = Fi(z,w) + Fx_1(z,w) + - - - + Fo(z, w),

where each Fj(z, w) is a homogeneous polynomial of degree j. Then we define the homogeneous
polynomial
XY
XYZ)=Z'F (2,5 1.32
QX2 - 2% (5,5) (132
of degree k. A complex compact curve [ is given in CIP? by the homogeneous equation
[={[X:Y:Z]eP?> | Q(X,Y,Z) =0}. (1.33)

The affine part of the curve I' (where Z # 0) coincides with T. The associated points at infinity
have the form

Q(X,Y,0) = 0. (1.34)
The surface T is compact and is thus the desired compactification of the surface T.

Remark 1.32. Even if the curve I' is non singular, the curve [" might be singular. If this is the case,
the compactification of I' must be realized in a different way.

Example 1.33. T = {(z,w) € C? | w? = z}. A local parameter at the branch point (z = 0,w = 0)
is given by T = +/z, i.e. z = 7%, w = 7. The compactification I' has the form I' = {[X : Y :
Z] € P2 | Y2 = XZ}. The point at infinity is given by solving the equation (1.34), that gives
P® =11:0:0]. We determine the local coordinates near the point P*. For X # 0 we introduce
the coordinates u, v

U===—, v===-, (1.35)
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which define the affine curve u? = v. The point at infinity is given by (v = 0, u = 0) which is clearly

a ramification point for the curve defined by the equation u> = v and /v is a local parameter near
this point. Therefore a parametrization of the I' in a neighborhood of P* takes the form

1 1
z=—, w=-.
u?’ u

Example 1.34. T = {w? = z2 — 4?}. The branch points are (z = +a,w = 0) and the corresponding
local parameters are T4+ = +/z £ a. The compactification has the form ' = {Y? = X? — 4?Z2}. The
point at infinity is given by solving the equation (1.34), that gives PY = [1 : +1 : 0]. Making the
substitution (1.35) we get the form of the curve I" in a neighborhood of the ideal line: u? = 1 —a%v?.
For v = 0 we get that u = +1. We can take v = 1/z as a local parameter in a neighborhood of each

of these points. The form of the surface I" in a neighborhood of these points P4 is as follows:
1 1
z==, w:izvl—/ﬂvz, v—0 (1.36)

where v/1 — 4?02 is, for small v, a single-valued holomorphic function, and the branch of the
square root is chosen to have value 1 at v = 0.

Example 1.35. Let us consider the class of hyperelliptic Riemann surfaces
T = {(z,w) € C* | F(z,w) = w* — Px(z) = 0}, (1.37)

where Py(z) = ]_[1].\]:1(2 —aj),and a; # a; fori # j.
If we consider the projective curve defined by the zeros of homogeneous polynomial

QX Y,Z) = Y?ZN=2 — ZNPN(X/Z) = 0

one can check that the curve is singular at the point [0 : 1 : 0] if N > 4. Therefore, for N > 4, the
embedding of I in IP? results in a singular surface. For N = 3 the projective curve

Y?Z = (X —mZ)(X — a3 Z)(X — a3Z)

is a compact smooth elliptic curve. By a projective transformation such curve can be reduced to
the form

Y?Z = X(X - Z)(X - AZ), AeC\{0,1}.
The point at infinity is given by P® = [0:1: 0]. For Y # 0 the substitution u = X/Y and v = Z/Y
gives the curve

Qu,1,v)=v—u(u—ov)(u—Av) =0

The point (0,0) is a branch point for the above curve. Indeed for (u,v) # 0 the projection
7 : (u,0) — v is a local coordinate. The preimage 7t~!(v) consists of three points. At the point
(0,0) one has Q,(0,1,0) = 0 and Q,,(0,1,0) = 0 so that the preimage of 7~!(0) consists of a single
point. Therefore a local coordinate near the point (0, 0) takes the form

u=11+o(1)), v=1(1+0(1)).
We look for the holomorphic tail of the above expansions in the form

u=r1g(t), v=r14g(1)
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with g(7) analytic and invertible in a neighbourhood of T = 0. Plugging the above ansatz in the
equation Q(u,1,v) = v — u(u — v)(u — Av) = 0 one obtains that

1

Since

, W
Z v Z v
one has that a local coordinate near the point at infinity for the curve I' is given by

1 1
z=—=, W=

p = (1-12)(1 - A12).

The above example shows that not all the affine plane curves can be compactified in a smooth
way by embedding them in IP?. Below we are going to illustrate another way of compactifying
affine plane curves.

Definition 1.36. Let T be a Riemann surface suchT = T U ool U ... 00N

that there exist open subsets

is a compact surface. Suppose

UpuvlUpu---ulgny =Uy T

such that Uy, n = 1,..., N, are homeomorphic to puncture disks
¢Gn:Upn > D\{0} ={zeC|0<|z| <c, ce R},

and the homeomorphism ¢, are holomorphically compatible with the complex structure of I. Then T is
called a compact Riemann surface with punctures.

The goal is to make the compact surface I' a Riemann surface. Let us extend the homeomor-
phism ¢, to the whole neighbourhood Uy = Uy U 0" by defining

In order to make I' a compact Riemann surface one needs to define a complex atlas on it as the
union of the compatible coordinates charts on U+ and I'. The result is a compact Riemann surface
f.

Example 1.37. We recall first how to compactify the complex z-plane C. It is necessary to add to
C a single “point at infinity” co. In this case U,, = C and the map ¢ : Uy, — D\{0} is defined by

o(z) = % with z # 0 and we extend ¢ to U = C U oo by defining ¢(c0) = 0. A complex atlas on

C = C U o is then defined as in example 1.4. We get a surface C with the topology of a sphere
(the "Riemann sphere”). Topological equivalence to the standard sphere is given by stereographic
projection, with one of the poles of the sphere passing into the point oo.

Another description of C is the complex projective line P! := {(z1,23) | |z1]> + |z2> 0, (z1:
z) ~ (Az1 : Az), A € C, A # 0}. The equivalence fo P! with C is established as follows:

(z1:22) >z = 2—1 The affine part {z, # 0} of P! passes into C and the point (1 : 0) into 0.
2
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Example 1.38. Let us consider the class of hyperelliptic Riemann surfaces
I = {(z,w) € C* | F(z,w) = w® — Py(z) = 0}, (1.38)

where Py(z) = ]_[Ij\I:l(z —aj), N> 4anda; # aj fori # j. We need to consider separately the case
of N odd or even. Let us rewrite the curve in the form

N .
(%)2_11_[(1—”—]):0, N=2n+1,
j=1

N
<z”+1) ~[Ja-2)=0, N=2n+2

j=1
For N odd the map

1 w
Y:(z,w) — (Zr ﬁ) (1.39)
describes a biholomorphic map from a punctured neighbourhood of infinity
Up ={zw)eT ||z >c>1aj], j=1,...,2n + 1}
where ¢ > 0, to the punctured neighbourhood
V= {(xy) el [0 <|x <1/c}
of the point (x, y) = (0,0) of the curve I defined by the equation
N
F={(xyeC|y*—x][[1-xa) =0}, N=2n+1. (1.40)
j=1

For N = 2n + 2 even, the map (1.39) describes a biholomorphic map from punctured neighbour-
hoods of infinity oo+

Ut = {(zw)eT ||z > c>lajl, j=1,...,20+2,lim —— = +1}
2+
to the punctured neighbourhoods
VE={(x,y)eT|0<|x| <1/c}

of the points (0, +1) of the curve

N
T={xyeC|y¥-]]1-xa) =0}, N=2n+2. (1.41)
j=1

The local coordinate near (0, 0) of the curve I in (1.40) is defined by the homeomorphism (x, y)
v/x, while the local coordinate near the point (0, +1) of the curve (1.41) is given by (x,y) —
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Therefore for N = 2n + 1 the curve (1.38) has one puncture at infinity and the local parameter in
its neighbourhood is given by

bEw) == 9l) =0
while for N = 2n + 2, the curve (1.38) has two punctures w* = (o0, +00) distinguished by the
conditions

e i +1 as (z,w) — o*.

The local parameter near these points is given by the homeomorphism

1
P1(zw) = -, P(0%) = 0.
Proposition 1.39. The local parameters

(z,w) — z near an ordinary point

(z,w) — /z —zj near a branch point (z;,0)
(z,w) — 1/+/z near the point at infinity, N odd
Zw 1/z near the point at infinity, N even

describe a compact Riemann surface ' = T U oo of the hyperelliptic curve (1.38) for N odd and T' = T U oo®
for N even.

Quotients under Group action

Complex Tori. Let w; and w; be two complex numbers which are linearly independent over the
real numbers. Define the lattice

Ly, w, = Zwy + Zwy = {mwy + nw, | m,n € Z}. (1.42)

Two complex numbers z and Z are equivalent mod Ly, «, if z— Z € Ly, «»,- The set of all equivalence
classes is denoted by C/L,,, », and an element in C/L,,, 4, is denoted by [z].

Proposition 1.40. The quotient I' = C/L,, «, is a compact Riemann surface that is topologically a torus.

Proof. To prove the statement one needs to construct a complex structure on I. Let 7 : C — T be
the projection map. Let us endowed I' with the quotient topology namely a set U < I is open
if 7=1(U) is open in C. This definition makes 7 continuous and since C is connected so is T.
Furthermore, it is easy to check that 7 is an open mapping. Indeed let U be an open set in C,
then 7t(U) is open if 7=!(w(U)). But this is certainly the case since 7= (rt(U)) = |J o (@ + U) is
open. In order to define a complex structure on I, let D, = D, . be a disk centered at z, € C and
of radius € where € is chosen in such a way that |w| > € for every non zero w € L. Then the map
7l|p, : Da — 1(Dy) is a homeomorphism. Let ¢, : ©(D,) — D, be the inverse of the map 7|p,. The
pairs (11(Dy)), $a)aca defines a complex chart. We now must check that the charts are compatible.
Chose two distinct points z; and z; and consider two charts ¢; : 7(D1) — Dy and ¢, : (D2) — D,
with U := (D7) n n(D;) # J. We need to check that the transition function T(z) = ¢2(¢; 1(z))is
holomorphic for z € ¢1(U). It is straightforward to check that T(z) = z + w where w € L so that T
is clearly holomorphic. ]



1.1. DEFINITION OF A RIEMANN SURFACE AND BASIC EXAMPLES 25

Remark 1.41. Let A € SL(2,Z) namely A is 2 x 2 matrix with integer entries and det A = 1. Suppose

that
(@) -2 ()
a)2 w2
Then the Ly, @, = Lo/ ;- Indeed for m,n € Z one has

/
-1 (W I ’o
Loy w, 3 My + nwy = (n,m)A (wi> =m'w) +n'wj € Ly o,
because m’,n’ € Z since the matrix A has integer entries and determinant equal to one.
The above relation shows that Lo, S Le/ . Repeating the same reasoning for a point in
La,;,“,; one obtains that qu oy S Ly, 0, which shows that L, ., = ng -

Remark 1.42. Let us consider an automorphism of the complex plane, namely a map F : C — C of
the form F(z) := az+ B with a # 0. We choose = 0so that F(0) = 0. A lattice L, «, is transformed
under F to the lattice Ly, aw,- The corresponding tori are isomorphic, with the isomorphism given
by [z] — [az]. The map F projects to an automorphism of the torus if |#| = 1. In general

e o = +1, for a generic torus;
e a =i, for the square torus;

e a = ¢35, for the rhombi torus.

Let us define 7 = % with J(7) > 0. Then the lattice L, , defined in (1.42) and
2

“1

Lin={n+mt|mneZ}, 1=
w2

defined isomorphic tori C/Ly, 4, and C/L. respectively. Combining the above remarks one arrives
to the following theorem.

Theorem 1.43. Let T, and T be two tori defined by the lattices L.y and Ly with 3(t) > 0 and
I(t") > 0. The tori are isomorphic if and only if

7 = Ziz (‘Z 2) € SL(2,Z). (1.43)

The proof is left as an exercise.

Exercise 1.44: Consider the group 2nZ under addition and consider the quotient C/2nZ. This
surface is clearly homeomorphic to the cylinder S! x R. Show that C/2nZ is a Riemann surface.

Exercise 1.45: Let G be the multiplicative group G := {a" | n € Z} and a € R*. The quotient
r:=C*/G
is defined as the set of equivalence class with respect to the equivalence relation

z~3 25 teG.
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(i) Prove thatT is a Riemann surface.

(ii) Show that the Rieamann surface constructed in (i) is isomorphic to a torus
C/(Z+1Z), 1eH:={zeC]|I(z)>0}.
Calculate .

The above construction of Riemann surface as quotients can be generalized

Definition 1.46. Let A be a domain of C. A group G : A — A of holomorphic transformations acts
discontinuously and fixed point free on A if for any P € A there exists a neighbourhood V 3 P such that

VnV =g, VgeG, g+l
The action of G is called proper if the inverse image of compact subset is compact.

Introducing an equivalent relation between points of A, namely P ~ P’ if 3g € Gso that P’ = gP,
one can define the quotient space A/G of equivalent classes.

Theorem 1.47. If a group G acts on a domain A of the complex plane properly discontinuously and the
action is fixed point free, then the quotient space A/G has the structure of a Riemann surface.

The proof of the above theorem is very similar to the proof given above for obtaining a complex
structure on the complex one-dimensional tori. In the frame of the uniformization theory, it is
proven that all compact Riemann surfaces can be described as quotients A/G.



Chapter 2

Topological properties of Riemann
surfaces

2.1 The genus of a a compact Riemann surface

An arbitrary Riemann surface is also a real two-dimensional manifold. What can be said about the
topology of this surface? From the topological point of view, Riemann surfaces are quite simple
as the following theorem shows.

Theorem 2.1. [17] Any compact Riemann surface is homeomorphic to a sphere with § > handles. The
number of handles of the surface is called the topological genus of the surface. Riemann surfaces of different
genera are not homeomorphic.

The notion of sphere with handles is left to the
common sense of the reader as shown in Figure 2.1

Each surface of genus g can be obtained from
a genus g — 1 surface by removing two discs and
connecting them with a cylender.

Let us compute the genus of the surfaces in the
examples 1.33-1.35. We begin with example 1.34
namely the curve I' = {(z,w) € C? | w? = z* — a?}.
Let I be the compactification of I obtained by adding
two points at infinity «o*. We want to show that the
genus of I is equal to zero. For the purpose let us con-
sider I as a double sheeted covering of C. Delete the
segment [—a,a] with endpoints at the branch points
from the z-plane C. Off this segment it is possible
to distinguish the two branches wy = + /22 — a2 of
the two-values function w(z) = vz?> —a?. The pre-
image ~!(C\[—a, a]) on T splits into two pieces, with
the mapping 7 an isomorphism on each of them. The
branches w (z) and w_(z) are interchanged in passing from one edge of the cut [—a, 4] to the other.

Figure 2.1: A sphere with five handles

27
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Therefore, the surface is glued together from two identical copies of spheres with cuts according
to the rule indicated in the figure 2.2

' |

Figure 2.2: The cuts of the algebraic function vz? — a2

After the gluing we again obtain a sphere, i.e., the genus g is equal to zero. Example 1.33 is
analogous to Example 1.34, but the cut must be made between the points 0 and o, i.e. the point
at infinity must be regarded as a branch point. Again the genus is equal to zero.

In Example 1.35 for the curve discribed by the equation w? = ]_[7:1(2 — zj) it is necessary

to split up the branch points arbitrarily into pairs and make cuts (arcs) in C joining the paired
branch points. If n is odd one of the branch points is at co. The surface I' is glued together from
two identical copies of a sphere with such cuts, with the edges of the corresponding cuts glued
together in “cross-wise” fashion (see figure 2.4 for n = 4).

o0

Figure 2.3: Opening of the cuts of the two branches of the function \/(z — z1)(z — 22)(z — z3)(z — z4)

It is not hard to see that in the case n = 4 one obtains a sphere with one handle, and, in the
general case one obtains a sphere with 1/2 — 1 handles for n even and (n — 1)/2 for n odd.
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Figure 2.4: The Riemann surface of w? = (z — a1)(z — a2)(z — a3)(z — aa) is glued from two copies
of the extended complex plane cut along the intervals [z, z2] and [z3, z4]. The resulting surface is
topological a torus.

2.1.1 Genus of a Riemann surface and the Riemann-Hurwitz formula

We derive a formula for the computation of the genus of a compact connected Riemann surface
by computing first the Euler characteristic of the surface.

A triangulation of a two-dimensional compact surface M is a decomposition of M into closed
subsets homeomorphic to triangles such that each couple of them is

e disjoint
e meet at a vertex
e meet at an edge.
We state the following theorem.
Theorem 2.2. [17] Every compact connected orientable 2-dimensional manifold M can be triangulated.

Given a 2-dimensional compact manifold M (possibly with boundary) and a triangulation of
the manifold with

e ¢ = # of edges;
e v = # of vertices;
o { = #of triangles,
we can associate to such triangulation the Euler number.

Definition 2.3. The quantity
EM)=0v—e+t (2.1)

is called the Euler number of the manifold M with respect to the given triangulation.

Proposition 2.4. The Euler number is independent from the choice of the triangulation. For a compact
Riemann surface I of topological genus g the Euler number is

ET) =2-2g. (22)
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Proof. We consider compact surfaces with no boundaries. Given a triangulation, one can refine
the triangulation by adding a vertex inside a triangle and three edges. This operation replaces
one triangle with three triangles an it is easy to check that the Euler number remains unchanged.
Another way to refine the triangulation is to add a point on an edge, so that two triangles
are replaced by four triangles. Also in this case the Euler number remains unchanged. These
operations define elementary refinements. A general refinement is obtained by making a sequence
of elementary refinements. Therefore a given triangulation and any of its refinement have the
same Euler number. Now the main point is to show that two triangulations have a common
refinement. It is sufficient to superimpose two triangulations and add the necessary number
for points to make the union of these two triangulations a triangulation. Then the triangulation
obtained in this way is a refinement of both the triangulations. This is enough to show that the
Euler number does not depend on the triangulation. Now let us make the computation of the
Euler number for a compact Riemann surface of genus g. We use an inductive argument. For the
sphere I'y, choosing a triangulation as shown in the figure 2.1.1, with 4 vertices, 4 triangles and
6 edges, one obtains that the Euler number is equal to 2. For the disc D = {z € C||z| < 1}, the
Euler number is equal to E(l_)) = 1 and for the cylinder C,jjug, of finite length the Euler number
E(Cyinder) = 0, (see figure 2.5).

U1 U3

Us

Figure 2.5: Triangulation of the sphere with 4 vertices, 6 edges and 4 triangles. Triangulation of
the disc with 3 vertices, 3 edges and one triangle.Triangulation of the cylinder with 6 vertices, 12
edges and 6 triangles.

The torus can be obtained from the sphere by removing two discs and connecting them with
a cylinder. It is simple to check that the Euler number of the torus I'1 can be obtained as

E(T'1) = E(To) — 2E(D) + E(Cytinger) =2 =2+ 0 = 0. (2.3)

Indeed removing two disks from a genus zero surface, the Euler number decreases by two, because
it is just sufficient to subtract from the Euler formula the two discs that are homeomorphic to two
triangles. Next we add a cylinder to connect the two discs. In order to compute the Euler number
of the resulting surface, it is sufficient to add the contribution of the cylinder (8 edges and 6
triangles for a triangulation like in figure 2.1.1). The resulting Euler characteristics then can be
written as in (2.3).
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This procedure can be iterate. Indeed the surface I'; of genus g can be obtained from the
surface of genus I';_; by removing two discs and connecting them with a cylinder. Therefore one
has

E(T'g) = E(Tg—1) — 2E(D) + E(Cyinder)

which implies
E(I'y) =2—2g.

We apply this result to calculate the genus of an affine plane curve.

Proposition 2.5. Let T = {(z,w) € C* | F(z,w) = a,(2)w" +a,_1(z)w" "' +...a9(z) = 0} an irreducible
non singular affine plane curve and let T be the compactification of T. Let z1, . .., zm be the branch point for
I' with respect to the projection m(z, w) — z with multiplicity by, ..., by, respectively. Then the genus of T
is equal to

g:

N =

dibj—n+1. (2.4)
j=1

Proof. Consider a triangulation of C so that the set of vertices of the triangulation contains the
points z1,...,zm. Suppose that for each triangle T in C, the projection 1 restricted to the interior
of each preimage 7~!(T) is homeomorphic to the interior of T. In this way the triangulation on C
can be lifted to a triangulation on I'. Suppose the triangulation of C has v vertices, t triangles and
e edges. Then the triangulation of T has

e f = nt triangles
o & = needges
e U = nv — b vertices,
where b = ZT=1 bj. The Euler characteristic of the surface I' gives
2-2¢9=nv—b—ne+nt=n(v—e+t)—>b
so that one obtains the statement. ]

The relation (2.4) is a particular case of a more general formula known as Riemann-Hurwitz
formula that will be proved later. As an application of the proposition 2.5 we calculate the genus
of a smooth projective curve

IF={[X:Y:Z]eP?|Q(X,Y,Z) =0}

where Q is a homogeneous polynomial of degree 1. Suppose that [0: 0: 1] ¢ I'so that Q(0,0,Z) =
cZ" # 0 with ¢ # 0. Then the map

¢: TP, ¢(XY2Z)=[X:Y]

realised I' as a n-sheeted covering of IP!. Let us calculate the total branching number of this map.
The branch points are obtained by solving the equations

QX Y,Z) =0, Qz(X,Y,Z)=0
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The solution of the above two equations are given by the zeros of the resultant R(Q, Qz) with
respect to Z. Since R(Q, Qz) is a homogeneous polynomial of degree n(n — 1) in X and Y, the total
number of branch points counting their multiplicity is n(n — 1).

Recall that the branching number of a branch point Py = [Xo : Yy : Zo] indicated as b (Po) is
the order of the zero of Q(Xy, Yo, Z) at Z = Zy minus one. We can write

Q(Xo, Yo, 2) = [ (z—2z)m™
0<j<s

where Zj mj = n and Zy, ..., Zs are distinct complex numbers, Z; = Z;(Xo, Zo). With the above
notation the branching number of each branch point P; = [Xo : Yo : Z;] is by(P;) = m; — 1. So
a regular point is simple zero of Q(Xy, Yo,Z) a branch point with branching number one is a
double zero, and in general a branch point with branching number m — 1 is a zero of order m
of Q(Xo, Yo,Z). So if the number of distinct roots of the discriminant is n(n — 1) it means that
the curve has n(n — 1) branch points with multiplicity one, so that the total branching number
is n(n — 1). If the discriminant has for example n(n — 1) — k distinct roots, k > 0, it means that
some of the branch points have branching number bigger then one. However the total branching
number remains equal to n(n — 1). Then we can apply formula 2.4 to obtain

g:%(n—l)n—n—i—l.

We summarise the above discussion with the following Lemma.

Lemma 2.6. The genus of a smooth projective curve of degree n is given by the relation

1
g= E(n—Z)(n—l). (2.5)
Exercise 2.7: Calculate the genus of the following surfaces
e w=(z—-1)(z—-2)(z—-3)(z—4),

o w'=2z"+4", a+0.

2.2 Fundamental group and monodromy

Let M be a connected manifold.

Definition 2.8. A fopolgical space M is said to be arc-connected if Vx, y € M there is a continuous curve
y :[0,1] — M such that y(0) = x,y(1) = y.

For general topological spaces the notions of arc-connectedness is stronger then the notion of
connectedness.

Exercise 2.9 (Exercise): A manifold M is connected iff it is arc-connected.

Let x € M be chosen arbitrarily (the “basepoint”). We consider the collection of all closed
curves starting and ending at x

LM, x):={y:[0,1] - M, yeC([0,1],M), y(0) = y(1) = x} (2.6)

If two curves can be deformed continuously one into the other, the curves are called homotopic.
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Definition 2.10. Two curves y and 1 are homotopic if there is a continuos map A : [0,1] x [0,1] - M
such

o A(t,0) = y(t),
° A(t,l) = T](t),
o A(0,s) = A(l,s) = x, forall s € [0,1].

The notion of homotopic is an equivalence relation. It is easy to construct homotopic curves.
For example given a smooth map f : [0,1] — [0, 1], the curves u and y o f are homotopic. In the
space of curves we can define a group structure.

Definition 2.11. Given two closed curves y : [0,1] — M and 1 : [0,1] — M, with base point x the
product curve is

y(28) foro<t<}
on)(t) :=
(yem® { n2t—1) forl<t<1
the inverse of a curve is
y_l(t) = V(l —t), tel01],

and the constant curove is
Id:[0,1] - M, Id(t) = x.

Clearly y o y~! is homotopic to Id.

Definition 2.12. The fundamental group of M (or first homotopy group) is the set-theoretical
quotient of L(x, M) by the relation of homotopy equivalence at fixed end-points ~

(M, x) := L(M,x)/ ~ . 2.7)

The set m1(M, x) forms a group under the operation induced by the product of curves. We
denote its elements by [y]. It is easy to check that for arc-wise connected spaces M, the group
111(M, x) is independent from the base point x. Indeed let 1(M, y) be the fundamental group
with base point y, and let 1 be a path from x to y. Then for any element [y] € 71 (M, x) the loop
[N~ oy on] € m1(M, y) and this map is an isomorphism. This implies that the fundamental group
711 is “the same” no matter what base-point is used in the definition and hence we can refer just to
the manifold and omit the basepoint 71 (x, M) = 111 (M).

Exercise 2.13: Let M = {z : |z| = 1} with the standard topology. Prove that 7;(M) ~ Z (the
additive group of integers).

Definition 2.14. An arc-wise topological space M is called simply connected if 71 (M) = Id.

In other words in a simply connected space : all loops are homotopic to the identity loop. A
covering space M of M s a continuous map f : M — M such that f is surjective and for each point

x € M there is an open neighbourhood U < M such that f~'(U) consists of open sets U; < M
which map homeomorphically to U via f.

Definition 2.15. The covering space f : M — M is called universal cover of M if Mis simply connected.
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Remark 2.16. The only Riemann surfaces with trivial fundamental group are the sphere, the
complex plane and the disk.

Exercise 2.17: Show that the only Riemann surface M with 711(M) = Z is the punctured disk or
the punctured complex plane. Show that the fundamental group of the torus C/L,, «, is Z x Z,
namely a free abelian group on two generators isomorphic to the lattice L, «,. Here w1 and w; are
two complex number linearly independent over the real numbers.

Exercise 2.18: Let M = C\(z; U - -- U z,,) with z; # zifori# j. Letzope Mandletyy, k=1,...,m
be a loop starting and ending in zy and encircling the point zx, k = 1,...,m and denote by [yi] the
homotopy class of this loop. Show that 711 (C\(z1 U - - - U z,,), zo) is generated by [y1],...[yn] and
satisfy the constraint

iloly2lo-olyul =1d (2.8)

namely the trivial loop.

Now we are ready to define the monodromy group of a compact Riemann surface. Let us
consider a compact Riemann surface T realised as the compactification of the smooth affine plane
curve

T = {(z,w) € C*|F(z,w) = a,(2)z* + ay,_1(2)w" ™ + - + ap(z) = 0}

and consider the projection 7 : I > C, n(z,w) = z and denote by zi,...,z, the branch point of
such map. Let us delete from C the branch points z1, ..., z,, and delete from I the complete inverse
images m1(z1),..., 7 1(zy) of these points. We get a surface Iy that is a n-sheeted covering of
the punctured sphere C\(z; U -+ U z,,). The monodromy group of the Riemann surface is the
monodromy group of this covering. Fix a point zg € C\(z1 U - - - U z,) and number in an arbitrary

way the points in the fiber 71(z) as P(()l),...,P(()") (these points are all distinct). Any closed
contour in 711 (C\{z1 U - -+ U z,},20) beginning and ending at zy can be lifted to n contours on I'.
These 1 contours are in general not all closed contours. Indeed the contour starting at the point P((;)

can end at the point Péj ) with i # j. The lift via 7t of any close contour in 7t1(C\{z1 U - - - U 2y}, 20)

generates a permutation of the points P(()l) ,e .,P(()") in the fiber. We get a representation of the
fundamental group 71 (C\(z1 U - - - U zy), 2o) into the group S, of permutations of n elements; this
is called the monodromy representation. The mondromy representation

prm(C\z1 v vzm) z0) = Su, p([ye]) = ok
is a group homomorphism namely
p([yel o [y;l) = oxoj, (2.9)
for any set of generators. The homotopy relation (2.8) implies
0107 ...0pm = 1d
the identity in S,,.

Definition 2.19. The image of the map p defined in (2.9) in S, is called the monodromy group of the surface
I.
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Remark 2.20. For connected surfaces, the image of the monodromy group is a transitive subgroup
in S,,. Indeed a transitive subgroup G € S, has the property that for every number i, j e {1,...,n}
there exists a permutation 7 € G such that j = 7(i). If the Riemann surface is connected, for any
points P; and Pj in the fiber 17! (z), z € C it is possible to find a path connecting these points.

Exercise 2.21: Show that for hyperelliptic Riemann surfaces the monodromy group coincides
S, = Z,. For curves of the form
N
w" = n(z —z;)
j=1

show that the monodromy group coincides with Z,,.

In the general case the action of the generators of the monodromy group that correspond to
circuits about branch points is determined by the branching indices.

Exercise 2.22: Let z be a branch point, and let the complete inverse image 77~!(z) on I consist
of the ramification points Py, ..., Py of multiplicity b, ..., by, respectively (if some point P; is not
a branch point, then we set b; = 0) and assume that Zl;zl bj + k = n. Prove that to a cycle in C
encircling z once, there corresponds an element in the monodromy group associated to a partition
of n of the form (b; + 1,..., b + 1).

Remark 2.23. Suppose that one of the branch points, let say zyr = . Then the monodromy
corresponding to circuits about the point z = o0 is uniquely determined by the monodromy
corresponding to circuits about the images of the finite branch points. Indeed, a contour encircling
only the point z = oo splits into a product of contours encircling all the finite branch points, and
we get the monodromy at infinity by multiplying the corresponding elements of the monodromy
groups at the finite points. For example, for the surface w? = Py, (z) the monodromy at infinity
is trivial (the corresponding contour in the z-plane encircles an even number of branch points), i.e.,
this surface has no branch points at infinity. But for the surface w? = Py, 11(z) the monodromy at
infinity is nontrivial, because here a contour encircling z = o encircles an odd number of branch
points. We thus see once more that the point at infinity of the surface w? = P,,1(z) is a branch
point.

Exercise 2.24: Prove that for a general surface of the form (1.28), namely
F(z,w) = Z aijziwj, a;j€C,
i+j<n

the monodromy group coincides with the complete symmetric group S, . Hint. Show that the
branch points of such a surface can be labeled by pairs of distinct numbers i # j,(i,j = 1,...,n) in such a
way that a circuit about the images of the points P;; and Pj; gives rise to a transposition of the ith and jth
points of the fiber ( when these points are suitably numbered).

Exercise 2.25: Let us consider the reducible curve

Lo = {(z,w) € C* | (w — p1(2) (w — p2(2)) (w — p3(z)) = 0}

with
pi(z) =az+b;, =123
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and a; and b; i = 1,2,3 complex constants such a;b; —a;b; # 0 for i # j. Furthermore let us suppose
that the polynomials p;(z) satisfy the relation

p1(2) + pa(2) + pa(2) = 0.
Consider the curve
Ii={(zw0) € C | @ +w[pi (2)p2(2) + Pr(2)pa(2) + P2(2)pa(2))] - p1 D2 (2ps(z) L+ 1) = 0} (2.10)
where 1 is a small complex constant. Let I be the compactification of T'. Determine
e how many points have been added to I to obtain T;
e the genus of T;
e the branch points (only the form of the expansion in i, namely z;(h) = z;(0) + hz;(0) +...);
e the monodromy of I considered as a 3-sheeted covering of the z-plane.
Exercise 2.26: Let us consider the curve
[:={(z,w) e C*| (w—2*)(z — w?) + hzw = 0},
where & is a small non zero constant. Determine
e the compacification I of I and the genus of T;

e the monodromy of T with respect to the projection to the z plane.

2.3 Singular curves

Let us consider an irreducible affine plane curve
I'={(z,w) € C*|F(z,w) = a,(z)w" + a,_1(2)w" " + - +ay(z) = 0}, (2.11)
with ay(z), . ..,a,(z) polynomials in z. A point Py = (zp, wp) € I is called singular if
F(zo,wo) = F(zo,wo) = Fu(zo,wo) = 0.

Since the polynomial F is irreducible the set of singular points is finite and coincides with the
common zeros of the equations R(F, F;) = 0 and R(F, F,,) = 0 where R is the resultant with respect
to w of the polynomials F and F, and F and F,, respectively. The singular point Py = (zo, wp) € I is

called a node if the Hessian

det (FZZ(ZOrzUO) Fzzu(20/w0)>
Fou(z0,w0)  Fuw(zo, wo)
The singular point is called a cusp if the parametrisation near the point (zo, wy) takes the form
z=z0+amt> +O(F), w=wo+bst> +O(t*) a,#0, bz 0.

The singular point is called a monomial singularity of type (m,n) with m and n co-prime if the
parametrisation of the curve near the singular point (zp, wp) takes the form

z=2z9+a,t" + O(t"™), w=wy+but" +O(t"*"), a,#0, b, #0.
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Puiseux expansion

For a general curve I' defined by the polynomial equation (2.11) it is not simple to classify its
singular points. For the purpose, one needs to determine the first term of the Puiseux expansion
near these points. Puiseux series are a generalisation of powers series. They were first introduced
by Newton and then they were rediscovered by Puiseux in 1850. Let us denote by C[[z]] the
formal power series in the variable z with coefficients in C and by C((z)) the field of formal
Laurent series in z with coefficients in C. The Puisex series are formal Laurent series in z with
fractional exponents.

Definition 2.27. A formal Puisex series in z is the field C{(z)) = |Ji"; C((z+)). The order of a Puisex
series f(z) is the smallest exponent of a term with non vanishing coefficient.

Let us consider the polynomial equation F(z,w) = 0 and suppose that F(zo,wp) = 0 and
Fu(zo,wp)) # 0. Then the implicit function theorem gives a local parametrisation of the curve near
(2o, wp) in the form

2= (z,9(2)),

where 1(z) is an analytic function of z in the neighbourhood of z = zy with ¢(z9) = wy. If the
curve is singular in (2o, wg), namely

grad F = (F.(zo,wo), Fuw(zo,wo)) = (0,0),

it is not possible to apply the implicit function theorem. For example the curve described by the
polynomial equation F(z,w) = w? —z3 = 0 has a cusp in (0,0). However there is a parametrisation
of the form

t— (15,1, or z— (z,z%).

If we consider the polynomial F(z, w) as a polynomial in w with coefficients in C{{x)), then Puisex
theorem asserts that it is always possible to solve the equation F(z,w) = 0 for w over the field

CLx)-
Theorem 2.28. The field C{{x)) is algebraically closed.

A proof of Puiseux’s theorem can be obtained constructively by applying the Newton method
that we explain below. Let us suppose that

F(z,w) = a,(2)w" + a,_1(z2)w"™" + - + ap(z)

with
ax(z) = Az + gz + higher order terms, 0 <k <k;.

Let us suppose that F(0,0) = 0 and we look for a solution of the equation F(z,w) = 0 in the
neighbourhood of the point (0,0) of the form

w=b1z" + wi(z), wi(x) =byz" + b3z ... (2.12)

with by # 0and y1 <y, < ... and y; € Q. In order to determine y; and b; we substitute (2.12) into
the equation F(z,w) = 0:

ao(z) +a1(z) (12" + w1 (z)) + - - - + a,(2) (12" + wq(2))" = 0. (2.13)
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The terms which have the lowest order must cancel, namely we can find at least two indices j, k
such that

ac]-(z)b{zh’1 = ajlbjlzjyﬁj1 + higher order terms,

and
ak(z)b’{zk”1 = aklb’{zky”kl + higher order terms,

have the same order and this order is the smallest possible. If there are exactly two indices j > k
with the smallest possible order then we have the equations
j1—k

ik

nm+h=kni+k, —- yi=-

and
1

. —k
2 Ak \’
ajlb{ = aklbl — bl = (a—> .
1

Namely we have determined the first term of the Puiseux expansion. Let us observe that the

coefficient —yll is simply the slope of the line connecting the integer points (j1, j) and (k;, k) on the

cartesian plane and all other points (111, m) associated to the powers of the polynomial equation
(2.13) must lie above this line. If there are other points (11, m) on the line connecting the points
(j1,j) and (k1, k) then the coefficient b; is determined from the equation

Z amb]' =0, n=k +ky.

my+my1=n

The possible values of b; are the non zero roots of the above equation.
One can recursively continue the procedure to determine the higher order terms of the Puiseux
expansion. Let us suppose that y; = g where p,q € IN and they are relatively prime. For

determining w; in (2.12) one has to repeat the procedure to the polynomial F;(z1,w1) defined by
the equation

Fl(Zl, wl) = F(Z?, blz’; + wl).

An efficient way to determine the exponents y; < 7, < ... in the Puiseux expansion is to use
the Newton polygon which we define below. For a polynomial

F(z,w) = Za,«,«ziwj, aj€C,
if
the carrier C of F is defined as
C(F) = {(i, j) € Z* | a;j # 0}.

Definition 2.29. The Newton polygon of the polynomial F(z,w) = > ;; aijz'wl, is the convex hull of the
points in the carrier C(F).

We describe the Newton algorithm with an example.
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Example 2.30. Let F(z,w) = w® + w’z® — z° — z* — w?z. Clearly the point (0, 0) is a singular point
for the curve determined by the equation F(z,w) = 0. The Newton polygon associated to this
polynomial is shown in figure 2.6. One can see that there are two lines on its left boundary

2 8
y=-3x+5, y——§x+§.

We first analyse the line with slope —3, namely the case w = blz% + w1(z), which gives
F(z, bz + wy) = z%(b? —b}) + o(z%),

so that b? = 1, namely by is one of the three roots of unity. For simplicity let us consider by = 1.
The other roots will be considered at the end. Next we consider the parametrisation

z=2z, w=z(1+w)
so that
F(z3,z1(1 +w1)) = 23F1(z1,w1),
Fi(z1,w1) = w} + 5w} + (2] + 10)w’ + (32] + 9)w? + (3z] + 3)w;y —z;°.  (2.14)
The Newton polygon of the polynomial F;(zq,w;) is show in figure 2.6 and one can see that the

59 5

ta
ta

\-

] \
I
5 8

0 2 4 6 10

Figure 2.6: The Newton polygon for F(z, w) on the left and Fi(z1, w) on the right.

line x1 + 10y1 = 10 is on the boundary of the Newton polygon. So we look for w; = byz1°
Fi(z1,b22)°) = 2;°(3b, — 1) + 0(z;°),

which gives b, = 1. We conclude that the first two terms of the Puiseux expansion are

1
zZ3 4+ ...

Wl

w=2z5 +

QW



40 CHAPTER 2. TOPOLOGICAL PROPERTIES OF RIEMANN SURFACES

Let us denote by i1 (z3) the above Puiseux expansion. In a neighbourhood of (0,0) we have
F(£,41(t) =0,

for sufficiently small t. Repeating the same procedure for the coefficient u = g one obtains the
equation

F(z, biz3 + w1) = —(1+b)z* + o(z*)
so that by = +i. Choosing b; = i and continuing the procedure we have

1 s

+ -z 4+ ...
2

Let us denote by 1,(z2) the above Puiseux expansion. In a neighbourhood of (0,0) we have

F(t,4»(t)) =0,

for t sufficiently small. Summarising near (0, 0) the polynomial F(z, w) can be factored in the form

F(z,w) = ﬁ (w — 1/)1(e¥z%) ﬁ (w — z,bz(e¥z%) .
s=1

s=1

w= i(z)%

We conclude that the point (0, 0) is a cusp and a ramification point with branching number equal
to two.

Exercise 2.31: Consider the curve defined by the equation F(z, w) = w? — z*(z + 1). Show that the
point (0, 0) is a node and near such point the polynomial F(z, w) can be factored in the form
F(z,w) = (w — ¢1(2))(w — 2(2))
where
1, 15 1.4 5 5

¢1(z)=z+§z — g2 +Rz ~ 128% +

and 1{12(2) = —l/)l (Z)

In the general case let us suppose that (zg,wp) is a singular point of the curve defined by
F(z,w) = 0. Furthermore we assume for simplicity that the pre-image of the point zy with respect
to the projection 7(z,w) — z consists only of one point, namely 7~ !(z)) = wy. We have the
following theorem [?].

Theorem 2.32. Let F(z, w) be a polynomial such that F(zy, w) = cw" and ¢ # 0. For each point near z,
there are homolorphic functions 1(t),..., (t) defined near t = 0, such that 1;(0) = wo and positive
integers my, ..., m; with my + - - - + m; = n such that

F(zo +t",¢(t) =0, j=1,...,L
In other words for z — zg in a sector
0<|z—2z0| <p, arg(z—z) <o,
for sufficiently small p and any positive ¢ < 2m, the polynomial F(z,w) can be factored in the form
Ko =] ][] (0= gtz — ) )
j=1s=1
The Puiseux series ; and 1 are called essentially different fori # j.
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2.3.1 Resolution of singularities

Let I' = {(z,w) € C* |[F(z,w) = 0} and suppose that the curve is singular at the point (z, wp).
The type of singularity at this point is obtained from the Puiseux expansion near this point. The
resolution of the singularity consists in removing the singular point (zo, wp) so that one obtains a
curve T that is smooth and has I punctured neighbourhoods, where  is the number of essentially
different Puiseux expansions near (zop, wp). The next step is to compactify T in these punctured
neighbourhoods by adding a suitable local chart compatible with the complex structure of I. We
illustrate the procedure for a node singularity.

Node singularity. Let us suppose that the point (zo,wg) is a node singularity for the curve I'
defined by the equation F(z, w) = 0. Then by Theorem 2.32 near the point (zo, wg) the polynomial
F(z,w) can be factored in the form

F(z,w) = (w = 1(2))(w — ¢2(2))

where 1, and 1, are holomorphic function of z in a neighbourhood of zp and ¢/;(zg) = wo, j = 1,2.
Therefore near the node (zp, wy) the curve I'is the locus of zeros of (w — y1(z))(w — P2(z)) which is
the union of the locus of zeros of the functions w — ¢1(z) and the locus of zeros of w — ¢»(z). Each
locus corresponds to the curves I'1 and I'; respectively. These curves are nonsingular in (zo, wp).
Next we call I the curve obtained from the singular curve I by removing the point (z, wp). The
curve [ looks locally as the union I';)\{(zo, wo}, j = 1,2. Let us consider punctured open sets U; in
I'\{(zo, wo}. Such open sets are homeomorphic to punctured disks. According to definition 1.36,
the surface " is a Riemann surface with two punctures. Compactifying the curve I" according to
section 1.1.3, one obtains a smooth compact Riemann surface S. The smooth Riemann surface S
obtained in this way is called also the normalisation of I'.

Exercise 2.33 (Pliicker’s formula): . Let I" be a projective curve of degree n with k nodes and no
other singularities. Show that the genus of S, the curve obtained by resolving the nodes of I' is

g=z(n—-1)(n-2) -k

NI =

Monomial singularities

A curve I defined by the zero of the polynomial F(z, w) = 0 has a singularity of type (m, n) at the
point (0,0) if locally the polynomial F(z, w) is of the form

F(z,w) = w" — 2",

with m and 7 co-prime integers. Let us consider the puncture neighbourhood of (0,0) inI', namely
the set
U={(zzw)eC*: 0<lz| <p, and F(z,w) = 0}

and the disc :
D={teC: |t|<p"}.

Th
s W D\(0} > U, D) = (", ")
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is a biholomorphic map from D\{0} to U. The inverse map is given by
O(z,w) - 2w’ =t, an+mb=1

with a and b integers. The map @ is compatible with the complex structure of I'. So the curve
I'\{(0, 0} is a Riemann surface with a puncture according to definition 1.36. We can extend the map
®:Uu{(0,0)} — D, by defining ®(0,0) = 0. The Riemann surface that we obtain is a smooth
compact Riemann surface S.

Singularities of projective curves can be treated in a similar way. For example the point
[Xo : Yo : Zo] is a singular point for the irreducible projective curve

I={[X:Y:Z]eP*|Q(XY,Z) =0}
if Q(Xo, Yo, Zo) = 0 and for example Zy # 0 and Q,(1,v,1) = 0 and Q,(u,v,1) =0 atu = )Z(—S and
=%
7.
We can summarise the results of this subsection with the following theorem.

Theorem 2.34. For every irreducible algebraic curve T < P? there exists a compact Riemann surface S
and a holomorphic map
¢:S—-T

with the properties
e let [ := T\Sing T be the smooth part of T and let S := ¢—(T'). Then
$i=¢ls: ST
is bi-holomorphic
e ¢ : S — I'is holomorphic and surjective.

For a singular point P € Sing T, the number of points in the preimage of ¢p~!(P) is given by the
number of essentially different Puiseux expansions of I' near P. In the example 2.30 the number
of pre-images of the singular point (0,0) consists of two points.

Exercise 2.35: Calculate the genus of the singular curves
1. wd = (z—m)*(z—a)(z — a3)*(z — ag),
2. w =23(z — a3)%(z — ay).

For each singular point calculate the number of points in the preimage of the map ¢ defined in
theorem 2.34.

Exercise 2.36: For which value of A the following curves are non singular?
L X+ Y*+Z° +3AXYZ =0,
22X+ Y+ 28+ AX+Y+2Z)P=0.

Describe the singularities when they exist and calculate the genus of the corresponding Riemann
surface.
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24 Homology

In this section we define the homology of a compact Riemann surface I'. Given a triangulation of
the Rieamnn surface I', we define the verteces as 0-simplex, the edges as 1-simplex and the triangles
as 2-simplex. The orientation on the manifold induces an orientation on the triangles that can be
used to orient the edges bounding each triangle.

Definition 2.37. A (simplicial) 0,1,2-chain is a formal sum of vertices P;, edges y; or triangles T}

cozanPj 61=ijyj C2=ijT‘, nj,mj,kje 2.

The element —c; is the edge with opposite orientation and —t is the triangle with opposite
orientation. The vertices Py, P,, P3,... can be used to identify edges and triangles. For example
(P1P,) is the oriented edge from P; to P, and (Pi, P;, P3) is the oriented triangle with sides the
oriented edges (P1P;), (P2P3) and (P3P1). The sets of p—chains C, have the (natural) structure of
free abelian groups (just by formal sums). A closed curve y can be homotopically deformed to a
chain of edges in the triangulation 7~ thus defining a cycle (Exercise: prove that it is a cycle!); this
can be called a simple cycle.

With this notation we define the boundary operator 0.

Definition 2.38. The boundary operator 6 : C, — Cp—1 withn = 0,1,2 is defined as follows:
560 = 0, Cp € Co

& P1Pyy = P, — Py
6<P1,P2,P3> = <P1P2> + <P2P3> + <P3P1>

The above relation defines 6 on 1 and 2-simplex and it can be extend to 1 and 2-chain by linearity.
The fundamental property is that 6> = 0: indeed (we need to check this only for C;)
66(T> =0 (<P1P2> + <P2P3> + <P3P1>) =P, —P;+P3—P,+P;—P3=0. (215)

Definition 2.39. A p—chain c, such that 6c, = 0 € Cy is called a p—cycle. A chain which is the boundary
of another chain is called a p-boundary. Clearly any p-boundary is a p-cycle, but not viceversa.

In our case, being the manifold of real dimension 2, all the interesting information is contained
in Cy; the 1-cycles and 1-boundaries are the following subgroups of C:

Zi={ci€CylOc, =0}, B,={cheCyl|lIcns1€Cusr1, ¢n=0Cns1}
From the above definition it is clear that
B, cZicCy.
Definition 2.40. The first homology group of I is denoted by H1(I', Z) and is

Hi(T,Z) = élg)) . (2.16)
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Figure 2.7: The blue contour is not homotopic to the trivial loop but it is homologous to zero
because it separates the surface.

This homology group can be shown to be independent of the choice of triangulation 7~ (more
precisely the homology groups corresponding to two triangulations are isomorphic).

Remark 2.41. The other homology groups are defined similarly: in particular Hy(T, Z) is made of
the classes of points that cannot be joined by cycles. It is simple to show that Hy(T, Z) = Z* where
k is the number of connected components of I' (hence for connected Riemann surfaces k = 1).
The generator is the class of any vertex. Regarding H»(I', Z) we have that if I is compact, then
C; consists of one 2-chain, namely the chain that covers all the surface and 8, = . Therefore
H,(T,Z) =Z.

Therefore the only nontrivial group is H; (I, Z). One has

Proposition 2.42. The first homology group Hy(T', Z) is isomorphic to the Abelianization of the first
homotopy group, namely
()

[ (T), m (T)] 7
where [ ., .] is the standard commutator. The group H1(T, Z) is a free Abelian group with 2g generators

and hence it is isomorphic to Z2¢. These generators can be chosen as (classes of) simple cycles.
Any cycle can be written as sum of simple cycles (with coefficients in Z).

Hi(T,Z) ~ (2.17)

Let I be a compact Riemann surface of genus g and let [y1], ..., [y2,] be the set of generators
of m1(I'). Then any element [y] € 71(I') can be uniquely written as

Ve = el o rlio e, ki kee {1,2,...,28)

with ji,..., ju € Z and we use the subscript 71; to denote the elements of the homotopy group.
Then the corresponding element [y]y, in the homology class is obtained as

Wl = ilyelm + i2lvels + -+ jalye s, k.o ko€ {1,2,...,2¢}

This in particular also shows that the homology is independent from the triangulation.

Remark 2.43. A cycle may be homologous to the trivial cycle but not homotopic to a point, for
example the one in Fig. 2.7.



24. HOMOLOGY 45

In the rest of this section we simply denote as y an element in the homology. Letay, ..., ag, b1, ..., by
be a basis in H;(I', Z). Then any cycle y is homologous to a linear combination of the basis with
integer coefficients:

8 8
Y =~ Zmiai + 2 nb;, m;, n;€”Z.
i=1 i=1

Intersection number

The notion of intersection number is more general than the one given here as it applies to any two
submanifolds of complementary dimensions. In our case of complex one-dimensional manifold
(i.e. real surface) two submanifolds of complementary dimension must have both dimension 1
(i.e. they must be curves) or 0 and 2 (points and domains). The latter case is rather degenerate
(although not meaningless) and we focus only on the first case.

Given two simple cycles y and n we represent them as smooth closed curves and we consider
their intersection: again, possibly by a small deformation of one or both contours we can reduce
to the situation that
(a) the intersection is finite and
(b) all intersections occur transversally, i.e. the tangents to y and 7 at the point of intersection are
not parallel.

Given p € y n n one such point of intersection, we associate a number v(p) € {+1, -1} as
follows. Let z be a local coordinate at p: the two (arcs) of y and 1 now are arcs in a neighbourhood
of z(p) = 0 crossing each other transversally. We denote by y¢ and 1y the two tangent vectors at
z(p) = 0; if the determinant of their components is positive we set v(p) = 1, if it is negative we
set v(p) = —1. In other words the number v(p) indicates the orientation of the axis spanned by y,
and 7o (in this order!) relative to the orientation of the standard R(z), J(z) axes.

Definition 2.44. The intersection number between y and 1 is then defined by

Y= Z v(p) . (2.18)
peyon
It follows immediately from the definition that y * 7 = —n * y and the intersection number is

an integer. One can also prove that:
Proposition 2.45. The intersection number is invariant under smooth homotopy deformations of y and n.

Therefore the intersection number depends only on the homotopy classes of y and n, which we
then denote by [y] = [17].
In particular it makes sense to compute the self-intersection of a cycle

[y]*[y]=0. (2.19)

This makes sense because in the actual computation one chooses two different representatives in
the same class of y which intersect transversally: the fact that the result is zero then follows from
the antisymmetry.

Note also that the intersection number depends on the orientation of the contours: if we reverse
one contour the intersection number changes sign

[y =—[y1" «[n] . (2.20)
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Moreover:
Lemma 2.46. The intersection number of any boundary p with any cycle y vanishes y = = 0.

Proof. A boundary f is a collection of simple cycles that bound a domain. if y is a symple cycle it
must traverse the boundary of this domain an even number of times, and two consecutive crossing
count with opposite sign, hence cancel out. m|

This lemma implies that the intersection number is well defined as a pairing on the first
homology group. More in fact is true

Theorem 2.47. The intersection pairing
«: Hi(T,Z) x Hy(T',Z2) - Z (2.21)

is a bilinear skew-symmetric map. If T is a compact Riemann surface then it is nondegenerate.

Figure 2.8: Intersection of y; and y».

2.4.1 Homology of a compact Riemann surface of genus g

We have said that H; (T, Z) is isomorphic to Z2¢ and that the intersection pairing is antisymmetric
and nondegenerate. It can be shown that there are simple cycles

{allﬁll aZIﬁZI‘ . .,(Xg,ﬁg} (222)
that generate H1 (T, Z) and such that
0(1‘*0(]‘20, ‘Bi*ﬁj:O, ai*ﬁ]‘:é,‘j. (2.23)

Definition 2.48. A basis of H1(T', Z) satisfying (2.23) is called a canonical basis.
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Figure 2.9: Homology basis.

A canonical basis exists but it is not unique. Let & = (ay,.. ., ozg)t and B = (By,.-. ,ﬂg)t denote
the column vectors of the 2¢ generators and let us suppose we make a transformation

<;’/ ) - <é g) <2) (2.24)

where the 2¢ x 2¢ matrix S = (é g) is integer valued and nonsingular. The basis &/, 8’ will be

a set of generators provided that S~ is also integer-valued and hence the determinant of S must
be +1.
Moreover if we want that the new basis is also canonical this forces

() @en e

] =SJst (2.26)

so that

Matrices of dimension 2g x 2g satisfying (2.26) form a group, the symplectic group, denoted by
5p(8.Z).
Example 2.49. Let us construct a canonical basis of cycles on the hyperelliptic surface w? =

lei ;rl (z —zi), § = 1. We represent this surface in the form of two copies of C (sheets) with cuts
along the segments [z1,22], [z3,24], ..., [224+1,%0]. A canonical basis of cycles can be chosen as
indicated on the figure for ¢ = 2 (the dashed lines represent the parts of a; and a, lying on the

lower sheet).

2.4.2 Canonical dissection of a compact Riemann-surface and Poincare poly-
gon

We take a basepoint Py and consider the homotopy group 71 (I, Py) of loops based at Py. Amongst
these there are 2¢g generators ay, f1,...,ay, f, whose homology classes form a canonical basis.
Although these loops are only identified by their homotopy classes, we will think of them as
concrete choices of (smooth) closed curves on the surface with basepoint Py.
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=

N

Figure 2.10: An example of a canonical dissection (genus 2)

Definition 2.50. The canonical dissection of I, called the Poincare” polygon of T, is the simply connected
domain T obtained by removing the 2g generators identified above.

The boundary oI of this domain consists of both sides of each generator and hence consists of
4g arcs (see Fig. 2.10 and 2.11).

Viceversa we could start with a 4g—gon with sides ay, 1, ], B, ... and identify topologically
the sides a;, a;., Bjs ‘B; with opposite orientations. The result is a topological model of a Riemann

surface of genus g.

o 2
B // >a1

A,

Figure 2.11: Poincaré polygon for surfaces of genus one and two.

Further reading: Harer-Zagier formula??



Chapter 3

Meromorphic functions on a
Riemann surface.

3.1 Holomorphic mappings of Riemann surfaces

Definition 3.1. Let I be a Riemann surface. A function f : I — C is said to be holomorphic, if for each
local chart the function

foga!:dalla) > VacC
Za = falza) == f(§7" (2)),
is holomorphic on the open subset ¢o(Uy).
The following theorem is inherited from complex analysis.

Theorem 3.2. If I is a connected compact Riemann surface, then the only holomorphic functions are
constants.

Proof. Since f is holomorphic, |f] is continuos on I' compact. Therefore |f| achieves its maximum
value at some point of I'. By the maximum modulus Theorem, f must be constant on I since I' is
connected. m]

In the same way one can define meromorphic functions.

Definition 3.3. A function f is a meromorphic function on a Riemann surface I if it is holomorphic in
a neighborhood of any point of I' except for finitely many points Q1,...,Qum. At the points Q1,...,Qn
the function f has poles of respective multiplicities q1,...,qy i.e., in a neighborhood of the point Q;,
j=1,...,m,it can be represented in the form

f=1"fT), (3.1)

where T is a local parameter centred at the point Qj, and f;(t;) is a holomorphic function for small T; and
fi(t)) ls;=0 # 0. The order of f in Q; denoted as ordq,(f) is the first nonzero exponent in the Laurent series

of f in Qj, namely olf
or Qj = —q]‘.

49
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It is easy to verify that Definition 3.4 is unambiguous. i.e., is independent from the choice of
the local parameter, and also that the definition of the multiplicity of a pole is unambiguous.

Definition 3.4. Let T be a compact Riemann surface defined as T = {(z,w) € C? | F(z,w) = 0} , F(z, w)
polynomial. A function f = f(z,w) is meromorphic on T if it is a rational function of z and w, i.e., it has
the form

P(z,w)
Z,W) = ——=,
flzw) =5 )

where P(z, w) and Q(z, w) are polynomials, and Q(z, w) is not identically zero on T

(3.2)

The meromorphic functions on the surface I' form a field whose algebraic structure actually
bears in itself all the information about the geometry of the Riemann surface.

A similar definition of meromorphic functions can be given for a projective curve I' := {[X :
Y : Z] € P2Q(X,Y,Z) = 0} where now Q(X, Y, Z) is a homogeneous polynomial. Meromorphic
functions on the projective curve I' take the form

G(X,Y,Z)

where G and H are homogeneous polynomials of the same degree and Q does not divide H.
It is not hard to verify that the conditions of Definition 3.3 follow from the conditions of
Definition 3.4. The following result turns out to be true.

Theorem 3.5. Definitions 3.4 and 3.3 are equivalent.

We do not give a proof of this theorem; see, for example, [?] or [6].
Holomorphic mappings of Riemann surfaces are defined by analogy with meromorphic func-
tions on Riemann surfaces.

Definition 3.6. Let I and T be Riemann surfaces. A map f : T — T is called holomorphic at a point P € T
if and only if there is exists charts from a neighbourhood U of P and a neighbourhood U of f(P), namely
¢:U—VcCand¢:U— V c Csuch that the composition

gofor!
is holomorphic. The map f is holomorphic, if it is holomorphic everywhere on I'.

In other words, if 7 is a local parameter onI" and 7 a local parameter in a neighborhood of the
point f(P), then f must be written locally in the form T = (), where ¢ is a holomorphic function
of 7.

If T = {(z,w) € C* | F(z,w) = 0}, T = {(Z,@) € C | F(Z,@) = 0}, then a holomorphic mapping
f : T — T is defined by a pair of meromorphic functions z = fi(z,w), @ = fo(z, w). It follows from
Theorem 3.5 that this definition is equivalent to (3.6).

Remark 3.7. Let f : T — C be a meromorphic function on I Then f can be extended to an
holomorphic function from I to C in the following way:

E(P) — f(P), if Pisnota pole for f
(P) = 0 if P is a pole for f.
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Let us verify that the map F is holomorphic. This is obvious in a neighborhood of regular
points. Let z be a local coordinate in the finite part of C, and C = 1/z the local coordinate at o € C.
Assume that the function has a pole of order k at the point Py € I, i.e., it can be written in terms of
a local coordinate 7 centred in Py in the form

Then C = LI ¢~ 178 + O(7F*1), i.e., the mapping has a zero of multiplicity k at Py.

f(P)
Example 3.8. A meromorphic function f from P! to C is of the form
P(XY)

fXY) = oxX.Y)

where P and Q are homogeneous polynomials of the same degree. One can extend f to a
holomorphic function F : P! — P! in the form

F(X,Y):= [P(X,Y): Q(X, Y)].

Theorem 3.9. Let I and T be connected Riemann surfaces and T be compact. Let f : T — T be a non
constant holomorphic map. Then T is compact and f is onto.

Proof. Since f is holomorphic, it is also an open mapping. Therefore, f(I') is open in I. SinceT is
compact, f(I') is compact in I'. Since I' is Hausdorff and connected, f(I') is open and close in I,
therefore f(I') = I'and T is compact. O

The following lemma characterizes the local behaviour of a holomorphic mapping.

Lemma 3.10. let f : T — T be a non constant holomorphic function between compact Riemann surfaces.
Then there exists local parameters T and T centered in P € T and Q = f(P) € T respectively, such that the
map f takes the form

T=1 keN. (3.3)

Proof. Let s and & be local coordinates centered at P € T and f(P) € I'. Then in local coordinates
the holomorphic non constant function f : I' — I takes the form

S=90)
with 1 holomorphic and ¢(0) = 0. The function i can be written in the form
U(s) = sh(s) (34)

with h holomorphic, (0) # 0 and k non negative integer. The number k does not depend on the
choice of the local parameters s and 5. Let us define the new local coordinate 7 as

T=5g8(s), §(s) =his).

Such map is biholomorphic. In terms of the local coordinate 7, the map f takes the form (3.3). O
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Definition 3.11. The number k defined (3.4) is called the multiplicity of f in P, and denoted by multp(f).
A point P € T is called ramification point for f if multp(f) > 2. The point f(P) = Q € T is called branch
point. The number

bs(P) = multp(f) — 1

is called the branch number of f in P. The map f : T — T is called a holomorphic unramified (ramified)
covering if f does not (does ) have branch points.

Lemma 3.12. Non constant holomorphic mappings f : I’ — T are discrete. Namely the pre-image of a
point Q € T is a discrete set f~1(Q) in T. In particular, if T and T are compact, f~*(Q) is finite.

Proof. LetQ e FandPe F~HQ). Let t and 7 local coordinates centered at P and Q respectively. In
these coordinates the function f takes the form 7 = h(7) with #(0) = 0 and & holomorphic. Since
the set of zeros of a non constant holomorphic function is discrete, it follows that P is the only
pre-image of Q. Therefore f~!(Q) forms a discrete subset. The second statement follows from the
fact that discrete subsets of compact space are finite. ]

Lemma 3.13. Let f : T — I be a non constant holomorphic map. Then the set of branch points
B={PeT|bs(P)>0}
is discrete and it is finite if T is compact.

The proof of the Lemma is similar to the proof of Lemma 3.12

Example 3.14. A hyperelliptic nonsingular Riemann surface w? = Payy1(2), Pani1(z) = ]_[12:’1 (z—

z;). Here the coordinates z and w are single-valued functions on I and holomorphic in the finite
part of I'. These functions have poles at the point of I' at infinity: z has a double pole, and w
has a pole of multiplicity 2n + 1. This follows immediately from the proposition (1.39). The
function 1/(z — z;) has for each i a unique second order pole on I' at the branch points. This
follows from (1.27). We mention also that the function z has on I' two simple zeros at the points
z =0, w = +4/P2,41(0) which merges into a single double zero if P5,41(0) = 0. The function w
has 2n 4+ 1 simple zeros on I at the branch points. (The multiplicity of a zero of a meromorphic
function is defined by analogy with the multiplicity of a pole.)

Example 3.15. A hyperelliptic Riemann surface w? = Py,;2(z). Here again the functions z and
w are holomorphic in the finite part of I'. But these functions have two poles at infinity (in the
infinite part of the surface I'): z has two simple poles, and w has two poles of multiplicity n + 1.
This follows from proposition (1.39).

Exercise 3.16: Prove Theorem 3.5 for P!.

Exercise 3.17: Prove Theorem 3.5 for hyperelliptic Riemann surfaces. Hint. Let f = f(z,w) be
a meromorphic (in the sense of Definition 3.3) function on the hyperelliptic Riemann surface
T defined by the equation w?> = P(z). Show that the functions f, = f(z,w) + f(z,—w) and

; _few - few)

w
of the form f(z, w) = r1(z) + r2(z)w where r; and r, are rational functions.

are rational functions of z, so that any meromorphic function on on I is

To prove the simplest properties of meromorphic functions on Riemann surfaces it is useful to
employ arguments connected with the concept of the degree of a mapping.
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Proposition 3.18. Let f : T — I be a nonconstant holomorphic mapping between compact Riemann
surfaces. For each Q € T let us define degq(f) to be the sum of the multiplicities of f at the point of T
mapping to Q:
dego(f) = Z multp(f).
Pef~1(Q)
Then deg(f) is constant independent from Q.

Proof. We show that the function Q — degQ (f) is locally constant. Let Py, ...P i be the number of
pre-images of Q under f. Let 7; be local coordinates centered at P; and 7 local coordinate centered
in Q so that locally near P; the function f takes the form

- . .
T=r1", i=1,...,]

The above map has constant degree in a small neighbourhood of 7; = 0 fori = 1,...,j. What
is left to prove is that near Q there are no other pre-images of Q left unaccounted which are
not in a neighbourhood of P, ...P;. Suppose by contradiction that arbitrary close to Q there are
pre-images which are not contained in any of the neighbourhood of the P;. Since I' is compact
we may extract a convergent sub-sequence of points in I, say P}, which are not contained in any
of the neighbourhood of the P;. This subsequence has the property that f(P;) — Q because f
is holomorphic, therefore, the limit point of P, must be one of the P;, i = 1,...j. We obtained
a contradiction since we assumed that none of the P,’s lie in a neighbourhood of the P;, i =
1,...,j. m]

Exercise 3.19: Prove that for any meromorphic function on a Riemann surface I' the number of
zeros is equal to the number of poles (zeros and poles are taken with multiplicity counted).

Remark 3.20. A single non constant meromorphic function on a Riemann surface I' completely
determines the complex structure of I. Indeed let P € T'and n = by(P) + 1. Then a local coordinate
vanishing at P is given by

(f = FPYY™if f(P) # o0 (3.5)
FRY7"if f(P) = oo, '

Exercise 3.21 (Riemann-Hurwitz formula): Let f : I — T be a nonconstant holomorphic map
between compact Riemann surfaces. Prove the following generalization of the Riemann-Hurwitz
formula (see Lecture 2)

2 —2g(T) = degf(2 — 2g(F) — > (multpf — 1) (3.6)

Pel’

where g(I') and g(T') is the genus of the Riemann surface I and I" respectively and deg is the degree
of the function f.

Exercise 3.22: LetI beanonsingular projective curvedefinedasT := {[X: Y : Z] e P? | Q(X, Y, Z) =
0} where Q is an irreducible homogenueos polynomial of degree 1. Show that the map

[X:Y:Z] - [Qx:Qy: Q7]

from IP? to IP? is well defined. The image of such map is called the dual curve I to T. Show that
the map is holomorphic but it does not have a holomorphic inverse if n > 3.
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Definition 3.23. A map f : T — T is called a biholomorphic isomorphism if it is a bijective holomorphic
map with holomorphic inverse. IfI' = T, then the map is called an automorphism.

It is not hard to derive from Theorem 3.5 that the class of biholomorphic isomorphisms of
Riemann surfaces coincides with the class of birational isomorphisms (the mapping itself and
its inverse are given by rational functions. Namely let T' := {(z,w) € C?|F(z,w) = 0} and
I := {(Z®) € C*|FZ @) = 0}, then a birational isomorphism is of the form 2 = ri(z,w), W =
s1(z,w) and z = 1, (Z, W), w = 52(Z, W), with 71 (z, w), r2(Z, W), s1(z, w) and s, (Z, W) rational functions.
In what follows we use the terms bi-holomorphic isomorphism and birational isomorphism
interchangeably.

The following is obvious but important.

Lemma 3.24. If the surfaces T and T are biholomorphically (birationally) isomorphic, then they have the
same genus.

Proof. A biholomorphic isomorphism is clearly a homeomorphism. But the genus is invariant
under homeomorphisms [9]. The assertion is proved. m|

Definition 3.25. A Riemann surface T is said to be rational if it is biholomorphically isomorphic to P1.

The genus of a rational surface is equal to zero. It turns out that this condition is also sufficient
for rationality.

Exercise 3.26: Let I' be a Riemann surface of genus g > 1. Prove that there is no meromorphic
function on I with a single simple pole.

Example 3.27. The surface w* = z. This surface is rational. A birational isomorphism onto P! is
given by the projection (z, w) — w.

Exercise 3.28: Consider the Riemann surface I' := {(z,w) € C?|w" = P,(z)} where P,(z) is a
polynomial of degree m in z with distinct roots. Consider the automorphism

J: (z,w) > (z,eznj/”w), j=1,...,n

and define the equivalence relation (z1,w1) ~ (zp,wy) if z1 = zp and wy = ey, for some j.
Show that the quotient surface I'/] is well defined and it is rational. Determine the branch points
of the projection map

n:T —T/J
Example 3.29. A surface with w? = Pa»(z) with ¢ > 1 is nonrational. We show that any such
surface is birationally isomorphic to some surface of the form = f)zg+1 (2). Let zg be one of the
zeros of the polynomial Pyg5(z), and let

1 & w
ya —Zol B (Z —Zo)g+1.

5
The inverse mapping has the form

1 w
Z=z20tz, W=z

If Pagin(z) = (z — 20) [T51"(z — 21), then Pag11(2) = TT257 (1 + (20 — 2i)2). Thus, both “types” of

hyperelliptic Riemann surfaces considered in Lecture 1 give the same class of surfaces.



Chapter 4

Differentials on a Riemann surface.

4.1 Holomorphic differentials
We consider a complex-one dimensional manifold M with with an atlas of charts {U,, ¢,} with
Gp: Uy =V, cC

and ¢, (P) = z, € V, and P € U,. Here we are identifying C with R? by writing z, = x, + iy, with
X, and vy, standard coordinates on R2.

Definition 4.1. A smooth one 1-form (also called differential) w on M is an assignment of a collection of
two smooth functions Uy (Xa, Yo) and v4(Xa, Ya) to each local coordinate z, = x, + iy, in U, such that

@ = Ug(Xa, Ya)dXa + Vo (Xa, Ya)AYa 4.1)

transform under change of coordinates as a (1,0)-tensor. Namely if zg = xp + iy is another local coordinate
such that U, n Ug # & then

o O
<”ﬁ(xﬁfyﬁ)> _ | 9% oxg <ua(xa/]/a)>
0 (xp, Yp) %0 OYa |\ 0a(Xa, Ya)
dyg  yp

with xXa = Xa(xp, Yp) and Yo = Ya(Xg, Yp)-

Using the basis dz, = dx, + idy,, dz, = dx, — idy,, we can rewrite w in the form
@ = ho(2a,2a) Az + §a(2a, Za) 424, 4.2)

where . .
ha = E(ua - iva)/ 8a = E(ua + iva)«

The two parts h(zy,Za) dzo and §(z4,Za) dz, of the expression (4.2) will be called (1,0)- and
(0,1)-forms respectively. The above expression shows that the decomposition of w in (1,0) and

55
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(0,1) form is invariant under local change of coordinates, if and only if the change of coordinates

is holomorphic, namely
0Za %a

d0zp | 0z5

The above conditions in real coordinates are equivalent to the Cauchy-Riemann equation. For a
one-complex dimensional manifold M that has a complex structure ( namely a Riemann surface),
the decomposition of a one form in (1,0) and (0,1) form is invariant under local change of
coordinates. From now on we will consider only holomorphic change of coordinates.

Definition 4.2. A one form w is called holomorphic is the functions hy(za, Za) in (4.2) are all holomorphic
functions and g, = 0, namely
w = h(zy)dz,.

A one form w is called antiholomorphic if
w = g(z4)dzar.

In a similar way to one form we can define two-forms.

Definition 4.3. A smooth two form n on M is an assignment of a smooth function fy(z,,z4) such that
N = fo(2Za,Za)dza A dzg

is invariant under coordinate change.

The exterior multiplication satisfies the conditions

dzy ndzy =0, dzy ndz, =0, dzy Adz, = —dz, A dz,.
Under holomorphic change of coordinates zg = zg(z4), Zp = Zg(24) one has
n = fp(zp,2p)dzp A dzg = fo(Za,Za)dZa A dZa

where

2
dz,

To(2,28) = fa(zasZa) %

We define QF fork = 0, 1, 2 as the set of smooth functions, smooth one forms and smooth two-forms
on M respectively. We define the exterior derivative

d:QF -0 k=012
as follows. For f € Q°,
Af(2,2) = fudz + fudz,

For one forms w € Q!, with w = h(z,z)dz + ¢(z,z)dz in a given coordinate chart, the exterior
derivative takes the form
dw =dh Andz+dg A dz

and for two forms, 1 € Q*(M)
dn=0.
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Clearly the fundamental property of the exterior differentiation is
d* = 0.

We can decompose the exterior derivative operator d according to the decomposition of 1-form in
(0,1) and (1, 0) forms
d=0+0

so that for 1 € Q%0 := Q0 in a local chart
0:Q% - QY 0h(z,2) = h.dz,

and

0:Q% - Q%" 0Oh(z,2) = hzdz.
In general we get the diagram
QO,l 0 QZ
b
QO 5 Ql,O
d
where Q2 = QU1 Also in this case ¢ = 0 and ¢% = 0.

Definition 4.4. A one form w is called exact if there is a function f € QO such that df = w. A one form
w € Qs called closed if dw = 0.

Lemma 4.5. A (1,0)-form w = h(z,z) dz is closed if and only if the function h(z,z) is holomorphic.

It follows that all the holomorphic differentials, locally can be written in the form w = h(z)dz
where h(z) is a holomorphic function. Holomorphic differentials are closed differentials.

Definition 4.6. The first de Rham cohomology group is defined as

) Closed 1-forms ~ ker(d : Q' — Q?)
H jerpam(T) = =
deRham Exact 1-forms — Im(d : Q0 — Q1)

A similar definition can be obtained for the Dolbeault cohomology groups H*?(T') and H*!(T)
with respect to the operator ¢:

ker(d: QW0 — O _
() o Ko ) er(@: Q10 0?),
(0:Q0 > Qo)

HONT) = ker_(é : Q01— 2) _ _QO'1 '
(0: Q0 — QO1) Image(0 : Q0 — QO1)

A non trivial result shows that there are isomorphisms among the above three groups [16]. By

denoting H%!(T') the complex conjugate of the group H!(T'), one has the following theorem.
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Theorem 4.7. The Dolbeault cohomology groups H*(T') and HOY(T) are isomorphic

HY(T) ~ HOY(T) (4.3)
and the first de-Rham cohomology group is isomorphic to

H1

deRham (F) = HLO (r) S HO,l (F) . (44)

The relation (4.3) shows that the complex vector spaces H?(T') and H*}(T') have the same
dimension. The relation (4.4) shows that the dimension of the complex vector space H?(T') and

H!(T) is half the dimension of the complex vector space H} ., (T).

4.1.1 Integration

We can integrate one forms on curves of the Rieamnn surface I', two-forms on domains of I' and
0-forms on zero dimensional domains of I', namely points. Let ¢y be a 0-chain,

Co ZZI’Z,‘Pi, PieF
i

then for f € Q°(T) the integral of f over a 0-chain ¢y is
| 7= Zmre)

A one form w can be integrated over a one-chain c. If the piece-wise differentiable pathc: [0,1] — T
is contained in a single coordinate disc with coordinates z = x + iy, then the integral of w over the
one-chain c takes the form

1 ! z
Lw:JO h(Z(t),Z(t))Z_jdt+J g(z(t),Z(t))dZ—Sf)dt

0

By the transition formula for w the above integral is independent from the choice of the coordinate
chart z. In a similar way a two-form 7 can be integrated over two chains D. Again restricting to a

single coordinate chart one has
JJ n= JJ f(z,z)dzdz.
D D

The integral is well defined and extends in a obvious way to an arbitrary two-chain.

Theorem 4.8 (Stokes theorem). Let D be a domain of I with a piece-wise smooth boundary 0D and let

@ be a smooth one-form. Then
J dw = J w. (4.5)
D oD

As a consequence of Stokes theorem, the integral of closed forms w on any closed oriented
contour (cycle) y on I' does not depend on the homology class of y. Recall that two cycles y; and
¥ are said to be homologous if their difference y1 — y2 = y1 U (—y2) (where (—)2) is the cycle with
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the opposite orientation) is the oriented boundary of some domain D on I' with 6D = y; — y».
Then for a close differential w and from Stokes theorem we obtain

0=Jdcu=j a)=f a)=fa)—J w.
D oD Y1—)2 )41 V2

In addition, the integral of a close differential w on a close cycle y is independent from the
cohomology class. Let o’ = w + df for some smooth function f, then

Lw— L(w’—df) —La}’.

We summarise the above discussion with the following proposition.
Proposition 4.9. The integration is a paring between the first homology group Hq(T', Z) and the first

cohomology group H} ., (T, C)

f :Hi(T,Z) x H} 5, ([,C) — C

The pairing is non-degenerate.

Proof. We need to prove that the pairing is non-degenerate. Consider a smooth one-form w such

that
f w=0
4

for all y € Hy(T', Z). It follows that the function

P
fo) = | o
Py
is well defined and it does not depend on the path of integration between Py and P. Therefore
df = w, namely the equivalent class of w in the de-Rham cohomology is zero, [w] = 0 in
H;eRham (r’ C) ! o
As a consequence of the above proposition we have the following lemma.
Lemma 4.10. The dimension of the space H}
the compact Riemann surfaceI.

orham L+ C) 18 less then or equal to 2¢ where g is the genus of

Proof. Suppose by contradiction, that there are wy, ..., ws, s > 2¢ independent closed differentials

in H} .. (I,C). Then let us consider a basis of the homology 7, j = 1...,2¢ and construct the

matrix with entries
Cik = f w,, j=1,...2¢9, k=1,...s.
Vi

Such matrix has rank at most equal to 2g, and therefore one can find nonzero constants a, ..., 4,
such that the differential = >};_; axws has all its periods equal to zero, namely

J w=0, j=1,...2¢
Y

J

By proposition 4.9 it follows that [w] = 0 and we arrive to a contradiction. m]
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As a consequence of the above lemma we have the following corollary for the dimension of
the space of holomorphic differentials.

Corollary 4.11. The space of holomorphic differentials on a Riemann surface of genus g is no more than
g-dimensional.

Actually the number of independent holomorphic differentials is indeed equal to g.
Theorem 4.12. The space of holomorphic differentials on a Riemann surface I of genus g has dimension g.

We do not give a proof of the above theorem that is constructive (see [17] or [16]). However
for a Riemann surface given as the zeros of a polynomial equation one can determine explicitly
the holomorphic differentials.

Example 4.13. Let us consider holomorphic differentials on a hyperelliptic Riemann surface

2¢+1
T = {w’ = Pogi1(2)}, Pogni(2) = [ [(z—=)
k=1
of genus g > 1. Let us check that the differentials
Zldz Z1dz
Me=—1—= , k=1...¢ (4.6)
P2g+1<z>

are holomorphic. Indeed, holomorphicity at any finite point but branch point is obvious as the
denominator does not vanish. We verify holomorphicity in a neighborhood of the i-th branch
point P; = {z = z;, w = 0}. Choosing the local parameter 7 in a neighborhood of P; in the form
T = 4/z — z;, we get from (1.27) that n, = (7)dt, where the function

2(z; + 2)k1

V(e +2—2))

k(7)) =

is holomorphic for small 7.

(NI

At the point at infinity the differentials 1), can be written in terms of the local parameter 7 = z~
in the form 1, = ¢x(7)dt, where the functions

1
2¢+1 2

Oi(T) = —272(8=k) [H (1 —zi’()] , k=1,...,g

i=1
are holomorphic for small 7.

In the same way it can be verified that the differentials 1, = zkildz/ w,k=1,...,gare holomor-
phic on the Riemann surface w? = Pyg.2(z) with Pag2(2) an even polynomial with 2¢ + 2 distinct
roots.

In general for a nonsingular Riemann surface I := {(z,w) € C?,|F(z,w) = 0}, where F(z,w) is
a polynomial in z and w, the differential

Zwldz
= i,i>=0, 4.7
Y Raizw) Y170 et
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is holomorphic for all finite values of z and w. Indeed the only possible points where such
differential might have poles are the zeros of F,,, namely the branch points with respect to the
projection 7 : I' — C such that 7t(z, w) = z. At the branch points with respect to the projection 7
one needs to take w as local coordinate. Since F,dz + F,dw = 0 one has

bz __dw
FUJ FZ )
Therefore at the branch points where F;, = 0 one can write the differential @ in the form v =
Zwkdw

. Since we assume that the surface I' is nonsingular, F, # 0 at the branch points.

In order to determine for which coefficients (i, j) the differential w in (4.7) remains holomorphic
also at infinity, we explain the following rule, that is true for nonsingular Riemann surfaces.
Consider the carrier of the polynomial F(z,w) = >;; ;a;;z'w/, namely the set of all integral points
in Z? such that

C(F) = {(i, j) € Z?|a;j # 0}.
The Newton polygon N(F) of F(z, w) is defined as the convex hull of the carrier C(F). Then the
holomorphic differentials associated to the curve given by the equation F(z, w) = 0 are

zi=lwi—ldz

T w) (i,7) € N(F)

where (i, j) are the points strictly inside the Newton polygon N(F).

This fact can be easily verified for hyperelliptic Riemann surfaces. Now let us check it for a
smooth projective curves.

Consider the smooth compact Riemann surface

T={[X:Y:Z]eP%|QX,,2) = >, a;X'Y/IZ" =0}
0<i+j<n
Let us consider the affine part of I' given by the equation F(z,w) = >};, j<n ai]-ziwf . The point(s) at
infinity of the affine curve are determined by the equation Q(X,Y,0) = >, ;_, a;;X'Y/ = 0. For
simplicity we assume that there are no branch points at infinity so that the homogenous equation
Q(X,Y,0) = 0 has n distinct roots. From this it follows that deg Q(X,0,0) = deg Q(0, Y,0) = n.
Then the holomorphic differentials are

I
i = OF(z,w)/ow’
Indeed the above expression is holomorphic for finite values of z and w. The only points we need

to consider are the points at infinity !, ...,". By the above assumptions we have that a local
coordinate at infinity is

i+j<n-—1. (4.8)

1 ¢ .
z==, W= — =1,...,n
£ £’
where c; are the solutions of the homogeneous equation Q(c;,1,0) = 0. In these coordinates w
takes the form
e 1 EH(1 + O(é))dé
P (Y
Fw <Er E)
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where c is a nonzero constant. The above differential is holomorphic if i + j < n — 1. The curve
I is non singular in (0, 0) if at least one of the coefficients 419 and a¢; is non zero. For simplicity
we assume that both are not zero. Then the Newton polygon associated to F is the polygon with
vertices (0,1), (1,0) (0,n) and (n,0). Then all the integral points strictly inside this polygon satisfy
the rule 0 < i + j < n — 1. Therefore the integral points inside the Newton polygon are in one to
one correspondence with the holomorphic differentials (4.8).

Exercise 4.14: Show that the differentials obtained using the Newton polygon formula for the
polynomial F(z, w) are holomorphic without assuming that both ay; and a1 are non zero and that
at infinity there are no branch points. (Study the conditions on the shape of the Newton polygon
so that the curve I' is non singular in (0, 0) or at infinity.)

4.1.2 Riemann bilinear relations

In this section we prove several technical assertions regarding the periods of close differential and
holomorphic differentials. Such relations are known as Riemann bilinear relations

Lemma 4.15. Let wq and w, be two closed differentials on a surface I of genus g = 1. Denote their periods
with respect to a canonical basis of cycles ay, ..., aq, B1,...,Bg by A, B and Al’,, B;:

Ai=JCU, Bi=fa)/ A;:fw/' Bngw/' (4.9)
a; Bi ai Bi

Denote by f = §w the primitive of w, then

ffra) Ao = jgfa)’ = g(AiBl’. — AlB;). (4.10)

Q)
—h

Proof. The first of the equalities in (4.10) follows from Stokes’ formula, since d(fw’) = w A @'. Let
us prove the second. We have that
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g 3

%fw'—E(J +J )fa)’-kE(J—k )fa/.

A i1 \Jai Ja7! i=1 i JB

or

To compute the i-th term in the first sum we use the fact that f(P) = SII;O @ where Py is a point in
the interior of I:

P; P P;
£~ 1) = [ [w= [0 -8 @.11)
Py Py 4

since the cycle P;P;, which is closed on I, is homologous to the cycle f; (see the figure; a fragment
of the boundary o7 is pictured). Similarly, the jump of the function f in crossing the cut $; has the

form
Qi

f(Qi) = £(Q) = Jw = A; (4.12)
Q

since the cycle Q!Q; on T is homologous to the cycle a;. Moreover, o'(P}) = »'(P;) and o' (Q}) =
'(Q;) because the differential @’ is single-valued on I'. We have that

| fegrcey + f FRYw/(Pl) = | FRO(P) ~ [ (7(P) + B)(P)

= —B,‘f a)’(Pi) = —Bl‘A;
a;j

where the minus sign appears because the edge a;l occurs in o' with a minus sign. Similarly,

([ )t -

Summing these equalities, we get (4.10). The lemma is proved. m]

We derive some important consequences for periods of holomorphic differentials from the
lemma 4.15. Everywhere we denote by as,...,aq, f1, ..., ¢ the canonical basis of cycles on T

Corollary 4.16. . Let w be a nonzero holomorphic differential on T, and Ay,...,Ag, Bi,...,Bg its
corresponding periods with respect to the canonical homology basis a1 ..., aq and By ..., g, then

8
g (Z AkEk> <0. (4.13)

i=1

Proof. Take @’ = @ in the lemma 4.15. Then A} = A; and Bl/. =Bifori=1,... ,§. We have that

iffa)Aa)’:ifJ\f\deAdZ:JJ|f|2dx/\dy>0.
2 r 2 r
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Here z = x + iy is a local parameter, and w = f(z)dz. In view of (4.10) this integral is equal to
P& g
5 k;AkBk — A¢By = -9 (; AkBk> :
The corollary is proved. m]
Corollary 4.17. If all the a-periods of a holomorphic differential are zero, then w = 0.
This follows immediately from Corollary 4.16.

Corollary 4.18. On a surface I of genus g there exists a basis wy, . . ., wg of holomorphic differentials such
that

%wk=(§]’k, j,k= 1,...,g. (4.14)
aj

Proof. Let 1, ...,ng be an arbitrary basis of holomorphic differentials on I'. The matrix
Ajk = %T]k (4.15)
@j

is nonsingular. Indeed, otherwise there are constants cj,...,c, such that >, Ajcy = 0. But then
DNk = 0, since this differential has zero a-periods. This contradicts the independence of the
differentials 1, . .., .

8
a)]- = ZAkjr]k/ ] = 1,...,g, (416)
k=1

where the matrix (Ay;) is the inverse of the matrix (Aj), D A,-kAk]- = 0ij, we get the desired basis.
The corollary is proved. |

A basis wy, ..., wg satisfying the conditions (4.14) will be called a normal basis of holomorphic
differentials (with respect to a canonical basis of cycles a, ..., &g, B1,...,fg) -

Corollary 4.19. Let w1, ... wq be a normalized basis of holomorphic differentials, and let

Bjk = %a}k, j,k: 1,...,g. (417)
Bj
Then the matrix (Bj) is symmetric and has positive-definite imaginary part.

Proof. Let us apply the lemma 4.15 to the pair v = w; and @’ = wy. By (4.10) we have that
0 = (6B — 6xBij) = (Bjx — By;).

1

The symmetry is proved. Next, we apply Corollary 4.16 to the differential Zle xjw; where all the
coefficients x1, ..., x; are real. We have that Ay = xi, By = Z]‘ xjByj which implies

S(Z XkZXjEkj) = Z S(Bk]')xkx]‘ < 0.
k i k,j

The lemma is proved. o
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Figure 4.1: Homology basis.

Definition 4.20. The matrix (Bj) is called a period matrix of the Riemann surface T.

Example 4.21. We consider a surface I of the form w? = P3(z) of genus g = 1 (an elliptic Riemann
surface). Let P3(z) = (z —z1)(z — 22)(z — z3) and choose a basis of cycles as shown in the figure 2.8.

We have that
-1
© © adz . é dz
1=w = p = — .
v/ P3(2) - VPs(2)
Note that
dz

dz
5
B adz ? \/Ps(z)
B—§ &@_K“ ——, 9(B)>0. (4.18)
“ P3 (Z)

Example 4.22. . Consider a hyperelliptic Riemann surface w? = Pyg;1(z) = ]_[l.zifl(z — z;) for

genus g > 2, and choose a basis of cycles as indicated in the figure 4.2 (there ¢ = 2). A normal
basis of holomorphic differentials has the form

8 k=1
k=1 Cjk% dz
wj=—7—,
P2g+1(Z)

i=1,...,¢ (4.19)

Here (cj) is the matrix inverse to the matrix (Aj) where

22 k—l
A].k:#] A Y (4.20)
2j-1 p2g+1 (z)
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Bl

-

R -

Figure 4.2: Homology basis.

4.1.3 Meromorphic differentials, their residues and periods

Meromorphic (Abelian) differentials on a Riemann surface differ from holomorphic differentials
by the possible presence of singularities of pole type. If a surface is given in the form F(z,w) = 0,
then the Abelian differentials have the form w = R(z, w)dz or, equivalently, w = Ry (z, w)dw, where
R(z,w) and Ry(z,w) are rational functions. For example, on a hyperelliptic Riemann surface
w? = Pag11(z) the differential w—'z*~dz has for k > ¢ a unique pole at infinity of multiplicity
2(k — g) (see Example 4.13). Suppose that the differential w has a pole of multiplicity k at the point
Py i.e., can be written in terms of a local parameter z, z(Py) = 0, in the form

w=<c—k+~~+c71+0(1))dz 4.21)

(the multiplicity of the pole does not depend on the choice of the local parameter z).

Definition 4.23. The residue Resp_p, w(P) of the differential w at a point Py is defined to be the coefficient
C_1.

Lemma 4.24. The residue Resp_p, w(P) does not depend on the choice of the local parameter z.

Proof. This residue is equal to
c e L
7 2mi
C
where C is an arbitrary small contour encircling Py. The independence of this integral on the

choice of the local parameter is obvious. The lemma is proved. o

Theorem 4.25 (The Residue Theorem). . The sum of the residues of a meromorphic differential w on a
Riemann surface, taken over all poles of this differential, is equal to zero.

Proof. Let Py, ..., Py be the poles of w. We encircle them by small contours Cj, ..., Cy such that

1
Resw = —,fﬁw, i=1,...,N,
27
Ci



4.1. HOLOMORPHIC DIFFERENTIALS 67

(the contours C; run in the positive direction), and cut out the domains bounded by C;, ..., Cy from
the surface I'. This gives a domain I'" with oriented boundary of the form dI” = —C; —- - - — Cy (the
sign means reversal of orientation). The differential w is holomorphic on I". By Stokes’ formula,

N 1 1 1
Resw = — s — o= || do=
2 N 2m‘,23£“’ 2mi | ¢ Zm'JJ, w=0,

=i ar
since dw = 0. The theorem is proved. m]

We present the simplest example of the use of the residue theorem: we prove that the number
of zeros of a meromorphic function is equal to its number of poles (counting multiplicity). Let
Py, ..., Py, be the zeros of the meromorphic function f, with multiplicities m;, ..., m; a nd let
Q1,...,Q; be the poles of this function, with multiplicities #y,...,n,. Consider the logarithmic
differential d(Inf). This is a meromorphic differential on I' with simple poles at Py, ..., Py with
residues my, ..., m and at the points Qy, ..., Q; with residues —ny, ..., —n;. By the residue theorem:
my + - +m—ny; — - —n = 0, which means that the assertion to be proved is valid. One
more example. For any elliptic function f(z) on the torus T> = C/{2mw + 2n«'} the residues at
the poles are defined with respect to the complex coordinate z (in C). These are the residues of
the meromorphic differential f(z)dz, since dz is holomorphic everywhere. Conclusion: the sum of
the residues of any elliptic function (over all poles in a lattice parallelogram) is equal to zero. We
formulate an existence theorem for meromorphic differentials on a Riemann surface I' (see [?] for
a proof).

Theorem 4.26. Suppose that Py,...,Py are points of a Riemann surface I and zy,...,zN are local
parameters centered at these points, z;(P;) = 0, and the collection of principal parts is

C_k. -1 .
—k_'+~-~+— dz;, i=1,...,N. (4.22)
zi' Zj
Assume the condition N
Y, =o. (4.23)
i=1

Then there exists on I a meromorphic differential with poles at the points Py, ..., Py, and principal parts
(4.22).

Any meromorphic differential can be represented as the sum of a holomorphic differential and
the following elementary meromorphic differentials.

1. Abelian differential of the second kind Q} has a unique pole of multiplicity n + 1 at P and a
principal part of the form

1
Qp = (z”“ + O(l)) dz (4.24)
with respect to some local parameter z, z(P) = 0,n = 1,2,....

2. An Abelian differential of the third kind Qpg has a pair of simple poles at the points P and
Q with residues +1 and —1 respectively.
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Example 4.27. We construct elementary Abelian differentials on a hyperelliptic Riemann surface
w? = Pyg11(z). Suppose that a point P which is not a branch point takes the form P = (a,w, =

A/ P2g+1(a)). An Abelian differential of the second kind Ql(al) has the form

Py, . 1(a)
oW _ (LFwa  Tn az (4.25)
P (z—a)2 2w,(z—a) | 2w
(with respect to the local parameter z-a). The differentials Ql(,”) can be obtained as follows:
- L4 o 426
b= T (426)
If P = (z;,0) is one of the branch points, then
. dz . dz
QP:W for Tl:2k, szm for 71:2k+1. (427)
Finally, if P = oo, then
o _ 1 = no_ L ekdz =
Q" = 57 dz for n =2k, Qf 57 - for n =2k +1. (4.28)

We now construct differentials of the third kind. Suppose that the point P and Q have the form
P = (a,w, = 4/Prg+1(a)) and Q = (b,wy = /Prg+1(b)). Then

w+w, wH+wy)\ dz
Qpg = - — 4.29
FQ <z—a z—b>2w (429)
If Q = +o0 then
w+ w, dz
OQpg = ——— 5. (4.30)

Accordingly, we see that for a hyperelliptic Riemann surface it is possible to represent all the
Abelian differentials without appealing to Theorem 4.26.

Exercise 4.28: Deduce from Theorem 4.26 that a Riemann surface I' of genus 0 is rational. Hint.
Show that for any points P, Q € T the function f = exp {Qp is single valued and meromorphic
on T and gives a biholomorphic isomorphism f : T — CP".

The period of a meromorphic differential w along the cycle y is defined if the cycle does not
pass through poles of this differential. The period § @ depends only on the homology class of
y on the surface I, with the poles of @ with nonzero residue deleted. For example, the periods
of the differential Qpg of the third kind along a cycle not passing through the points P and Q
are determined to within integer multiples of 27i. In speaking of the periods of meromorphic
differentials we shall assume that the cycles do not pass through the poles of the differential, and

we also recall that the dependence of the period on the homology class of I' is not single-valued
(for differentials of the third kind).
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Lemma 4.29. Suppose that the differentials Q1 and Q) on a Riemann surface I have the same poles and
principal parts, and the same periods with respect to the cycles ay, . .., ag, B1, . .., Bg. Then these differentials
coincide.

Proof. The difference w1 — w; is a holomorphic differential that has zero a-periods. Therefore, it is
identically zero (see Lecture 4.1.2). The lemma is proved. o

Definition 4.30. A meromorphic differential w is said to be normalized with respect to a basis of cycles
a,...,qq, B1,...,Bg if it has zero a-periods.

Any meromorphic differential w can be turned into a normalized differential by adding a
holomorphic differential Zl‘f:l crwg. Indeed the condition that Q = w + >, ¢crwy is normalised,

namely
g
f a)+ch‘[ wr=0, j=1,...,8
aj k=1 &j

defines the constants ¢y, ..., ¢ uniquely.

By Lemma 4.29, a normalized meromorphic differential is uniquely determined by its poles
and by the principal parts at the poles. In what follows we assume that meromorphic differentials
are normalized. We obtain formulas that will be useful for the -periods of such differentials by
arguments like those in the proof of Lemma 4.15.

Lemma 4.31. The following formulas hold for the B-periods of normalized differentials Ql(,”) and Qpg

fﬁQ”)_z l_id” 1x,bk( 2|emo, k=1,...,g 1=1,2,..., (4.31)

where z is a particular local parameter in a neighborhood of P, z(P) = 0, and the functions (z) are
determined by the equality wy = Pr(z)dz and w1, ..., w4 is a normalized basis of holomorphic differentials
with respect to the canonical homology basis ay, ..., ag,p1, ..., g,

P
QPQ = 27UJ‘ Wi, i= 1,...,g, (432)
Q
Pr

where the integration from Q to P in the last integral does not intersect the cycles ay, ..., ag, p1, ..., Py

Proof. We encircle the point P with a small circle C oriented anti-clockwise; deleting the interior
of this circle from the surface I', we get a domain I with JI" = —C. Let us apply the arguments of

()

Lemma 4.15 to the pair of differentials @ = wy, @’ = Q" Denote by u; the primitive

Q
(@ = | @39
Py
which is single-valued on the Poincare’ polygon I' of the surface I'. We have that

8
0= JJ WA = f QY Z AjB}— A'B jﬁukglﬁ”) (4.34)

o1’
C
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(the boundary oI” differs from the boundary oI’ by (—C)). Here the a and g-periods of wy and QF
have the form

Aj = 0j, Bj =By, A;- =0, B;- = ngl(jn).

Bj
From this,
() ) _ o () : " dz
3€QP = jgqup = 271 ngs(quP ) = 2mi I}Eg, [(LO +JO tpk(’c)d’c> ﬁ] (4.35)
Br c

Computation of the residue on the right-hand side of this equality leads to (4.31).

We now prove (4.32). Let C and C’ small circles around P and Q respectively. Deleting the interior
of this circles from the surface I', we get a domain I" with dI” = —C — C’. Let us apply the
arguments of Lemma 4.15 to the pair of differentials w = wy, @’ = Qpg. Denote by u; the primitive
of w;. By analogy with (4.34) and (4.35) we have that

§QPQ = 2mi § qupQ + 2mi § MkaQ
B C C

Since the differential (pg has a simple pole in P and Q with residue +1 respectively, the above

integrals are equal to
P Q P
%QPQ = uk(P) — uk(Q) = J Wy — J Wy = f Wy
e Py Py Q

where we assume that the point Py lies in the interior of I”. The lemma is proved. O

Exercise 4.32: Prove the following equality, which is valid for any quadruple of distinct points

Py,...,P4 on a Riemann surface:
P1 P3

Qp.p, = Qp,p,. (4.36)
P, P,

Exercise 4.33: Consider the series expansion of the differentials Ql(,")

point P

in a neighborhood of the

@
QI(,") = (z”lT + 2 CE")zf) dz. (4.37)

j=0

Prove the following symmetry relations for the coefficients C](.k):

kel =je, kj=12.... (4.38)

Exercise 4.34: Prove that a meromorphic differential of the second kind w is uniquely determined
by its poles, principal parts, and the real normalization condition

Fpw=0 (4.39)
f
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for any cycle y. Formulate and prove an analogous assertion for differentials of the third kind
(with purely imaginary residues).

Elliptic curve and elliptic functions

Let’s come back to the example 4.21 and consider the function (“elliptic integral”)

P
u(P) = J w1, (4.40)
Py
which is single-valued and holomorphic on the surface I' which is obtained by cutting T along
the cycles a; and B;. This function is not single-valued on I. When the path of integration in the
integral (4.40) is changed, the integral changes according to the law u(P) — u(P) + SV w; where y
is a closed contour (cycle). Decomposing it with respect to the basis of cycles, y = ma; + nf1, m
and n integers we rewrite the last formula in the form

u(P) — u(P) +m+ Bn, I(B) > 0. (4.41)

We define the two-dimensional torus T? as the quotient of the complex plane C = R? by the integer
lattice generated by the vectors 1 and B,

T?> =C/{m+Bn|m,ne Z} (4.42)

(the vectors 1 and B are independent over R because J(B) > 0). The torus T? is a one-dimensional
compact complex manifold. By (4.41) the function u(P) unambiguously defines a mapping I' — T?.
It is holomorphic everywhere on I du = w and du vanishes nowhere (verify!). It is easy to see
that this is an isomorphism. The meromorphic functions on the Riemann surface I" are thereby
identified with the so-called elliptic functions — the meromorphic functions on the torus T?. The
latter functions can be regarded as doubly periodic meromorphic functions of a complex variable.
The absence of nonconstant holomorphic functions on I' (see Lecture 3) leads to the well-known
assertion that there are no nonconstant doubly periodic holomorphic functions. For comparison
with the standard notation of the theory of elliptic functions we note that usually B is denoted
with the letter T and J7 > 0. We give the construction of the mapping T?> — T inverse to (4.40).
Let " and w” be two complex numbers linearly independent over the real numbers and consider
the torus T? defined as

T?=C/L, L={2ma' +2na"|mneZ)}. (4.43)
The Weierstrass elliptic function, p(u), u € C is defined by
1 1 1
pu) = —+ [— - —] (4.44)
u? meLZ\;[o} (u—w)? @?

It is not hard to verify that the function p(u) converges absolutely and uniformly on compact
sets not containing nodes of the period lattice. Therefore, it defines a meromorphic function of u
having double poles at the lattice nodes. Its derivative ¢’(u) can be obtained by differentiating
the series term by term ( check!)

@/(M) =2 2 (1,11—61))3

weL
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The function ¢ (u) is obviously doubly periodic: p(u+2ma’ +2nw”) = p(u), m,n € Z. The Laurent
expansions of the functions p(u) and ¢’(u) have the following forms as u — 0

1 ut  gut

g)(u)=;+ 20 +T+..., (4.45)

2 qu gl

M) = 2 4 827 | 33
o' (1) e + 0 + 7 +..., (4.46)

where
g@=60 > o

wel\{0} (4.47)

g2 = 140 Z a)_6,

wel\{0}

(verify!). This gives us that the Laurent expansion of the function (¢')?(u) — 49> (u) + g9 (1) + 3
has the form O(u) as u — 0. Hence, this doubly periodic function is constant, and thus equal to
zero. Conclusion: the Weierstrass function p(u) satisfies the differential equation

(') = 49° — 229 — &5. (4.48)
Proposition 4.35. The function ¢ : C/L — C is surjective. If
pu) = p(ug), thenuelL + up. (4.49)

Proof. For any c € C consider the function f(u) = ¢(u) — c. This function is meromorphic with a
double pole on the lattice points. Consider the parallelogram

H = {é + 250)/ + th/// S/t € [0/ 1]}

Since the function f has only a double poleinIl, it has two zeros counting multiplicity. Let ug be one
of the two zeros, f(uy) = ¢(ug)—c = 0. Since p(—u) = p(u), it follows that0 = f(—ug) = p(—ug)—c
and this shows that the function p(u) is surjective. From the above argument and the periodicity
of ¢, it follows that for any u € L + 1y, one has p(u) = @ (up). O

Let us now consider the curve
T = {[X:Y:Z]eP?|ZY? = 4X° — g2XZ% — g37°} (4.50)
Lemma 4.36. The curve I';, is non singular.
Proof. Consider the affine curve (4.48). By the periodicity properties of ¢(u) one has
9 (u+20') = 9'(u)
which is true in particular for u = —«’ so that ¢'(v’) = ¢’(—«’). Since ¢’ (1) is odd it follows that

(@) =0.
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Repeating the same reasoning for »” one has

P'(0") =0, ¢'(v"+a")=0.
Using (4.48) the zeros of the polynomial 4¢%(u) — g29(u) — g3 are given by u = o', u = " and
u = o' + w” so that one has

49°(u) — g29(u) — g3 = 4(p(u) — p("))(p(u) — p(@"))(p(u) — p(o’ + @")).

By proposition 4.35 the values p(«'), p(w”) and p(@’ + @) are distinct so that the curve (4.48) is
non singular. ]

The following theorem can be proved as an exercise

Theorem 4.37. The map
¢:T* > Ty

defined by
¢(u+L) = { [ggu) .:Sﬁl(u) 1l ueC\L (4.51)

is biholomorphic.

In particular the map (4.51) is the inverse of the map (4.40). We observe that from lemma 4.36
the discriminant A(w’, 0”) of the curve (4.48) is different from zero, namely
A, ") = g0, 0") = 27g5(0’, ") #0
furthermore under the dilatation @’ — Aw’ and w” — Aw” the discriminant scales as
1
AA', A" = ﬁA(a)’, ).
"
1

2
In particular, choosing A = 55 and defining 7 = i/, with J(w”/w') > 0, we obtain that

g = (1), and g3 = g3(7), A = A7) with t € H, H := {t € C, 37 > 0}. Regarding the
Weierstrasse g function it is easy to check that

! i 1 !/ A
(A Ao, A") = ﬁg)(u,;w,w )

so that choosing A = 51 one can consider the Weierstrasse function normalised as

1 1 L
i—-m—nt)?2 (m+nt)?| = 2w’

_ 1
p(ii;T) = 2T (
mneZ,(mn)#(0,0)

Exercise 4.38: Show that

n_at+b ) = (et +d)*p(iI; 7), (Z’ Z) € SL(2,Z). (4.52)

p(c7+d’c7+d
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Definition 4.39. The Klein | function | : H — C is defined as

$2(1)°
At)

J(t) = 1728 (4.53)

The Klein | function is an an analytic function from H to €. The choice of the number 1728 is
due to the fact that defining g = €™ the expansion of | as § — 0 takes the form

J(q) = 5 + 744 + 1968844 + 2149376047 + ...

namely all the coefficients of the expansion are integers.
We consider the action of the modular group

PSL(2,Z) = SL(2,Z)/{I, I}

namely the set of 2 x 2 matrices with integer entries and determinant equal to one where the
matrices A and —A are identified. Such group has two generators

ToT14+1, TH> —-.
T

In order to determine isomorphism classes of elliptic curves given by (4.50), the following lemma
and theorem will be useful.

Lemma 4.40. Let T and v/ € H. Then

J(T') =](7)
if and only if
, _at+b a b

Proof. Suppose that (4.54) holds. From the definition one has
4

1
at+b
ct+d

1

- )t - -
60(ct +d) (0 = )

m' n'e€Z,(m’ n')#(0,0)

2(7') = 60
mmneZ,(mn)#0,0) \ m +n

= (¢t + d)4g2(7f).

In the same way we obtain

83(7') = (ct +d)°g3(7)
so that

3t et +d)12g3 (T
J(t') = 1728 &) — = 1728 ( - 3) &0 — =J(1).
(1) = 2783(7) (et +d)'2(g5(7) — 27g3(7)
Viceversa, let us assume that J(7) = J(t') = p. Suppose p # 0 and p # 1728. Then
27¢%(7) 27¢%(7)

AT = 1728 AT

u—1728 = 1728
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so that

p TR 2
pu—1728  &3(v) & (1)

(5m) - (&)

, it is straightforward to obtain the identity

which shows that

$2(7) g3(7')
$2(7') g3(7)

Defining 02 :=

L (20 &)\ o)

G‘QMOMﬂ)‘@m
and )
6 83\7
7T nm

Therefore the curves defined by w? = 4z° — ¢2(7)z — ¢3(7) and y? = 4x° — ¢»(7')x — g3(7’) are
isomorphic. Indeed the dilatation

x =z0%, y=wo
maps one curve into the other one. Therefore the two tori defined by the above two curves are
isomorphic. By theorem 1.43 it follows that their corresponding periods 7 and 7’ are related by
a modular transformation (4.54). In the case y = 1728 one has g3(7) = g3(7') = 0. In this case

,.[/
defining o in such a way that ¢* = $2(7) one can prove the statement in a similar way. For the
82(7) /
T
case i = 0 one has g(17) = g2(7’) = 0. In this case defining o in such a way that ¢°® = g; (( )) one
3(T
can prove the statement in a similar way. m|

The above lemma shows that the Klein | function is a modular function of weight zero. We
recall that an analytic function f : H — C is a modular function of weight k with respect to the
modular group PSL(2, Z) if

f (” ki b) — (ct + d)f(), (‘Z Z) € PSL(2,Z).

ct+d

Remark 4.41. The upper half space H can be naturally identified with the Teichmdiller space T(1,0)
of compact surfaces of genus one. The quotient H/PSL(2,Z) is the moduli space of Riemann
surfaces of genus one.

Combining theorem 1.43 and lemma 4.40 we conclude that

Theorem 4.42. Given two lattices L = {n + mt, mn e Zyand L' = {n + mt’, m,n € Z} with
7,7 € H, the tori
Cc/L, cC/U

are isomorphic if and only if
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Doing some algebra we can express the Klein ] invariant using the branch points p(t/2), 9(1/2)

and 50(1%) of the elliptic curve (4.48). For simplicity we define

1+7
2

er = 9(1/2), e =p(1/2), e3=p( )- (4.55)

It is easy to check that

A =16(ex —e1)*(es —e1)*(e3 —e2)?, 2=z ((e2—e1)> — (e3—e1)(e2 —e1) + (e3 — e1)?)

QI W~

so that J(7) can be written in the form

<1 & —a n (e3 —61)j>3
-6 (o—e)

T) = 256 4.56
J(7) e (o — 22 (4.56)
(2 —e1)” (2 —e1)?
Introducing the function A : H — C\{0, 1}
_ Ly _ 2
1= €3 (4] _ @( 2 ) 50(7'—/ ) (457)
ea—e  9(1/2) —p(1/2)
and the function j : C\{0,1} — C defined as
oy o, (=A%)
j(A) =256 FEEE (4.58)

it follows that the Klein | invariant is the composition of the maps
J=joh.

Remark 4.43. Since the function | as defined in (4.53) is invariant under the action of the permutation
group Sz on e, e; and e3, such invariance must be preserved for the function j(A). Indeed one has
the following relations between the action of Sz on ej, e; and e3 and transformations of A:

123 — 213 thenA —1—A, 123 — 321 then A — ﬁ, 123 — 132 then A — %

123 — 231 then A — L, 123 — 312 then A — 1 — 1
1-A A
and the function j(A) is invariant under the above five transformations of A (six including the
identity).
The curve w? = 4(z — e1)(z — €2)(z — e3) is mapped under the linear transformation

zZ—e w

’ VN
e —eq 2(ey —e1)?2

to the curve
y? = x(x —1)(x — A).

So using the j-invariant (4.58), we have the following corollary.
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Corollary 4.44. Two curves y* = x(x — 1)(x — A) and y* = x(x — 1)(x — A’) are isomorphic if and only
j(A) = jA%).

We will see later that any Riemann surface of genus one can be realised as a double covering
of the sphere branched over four points ej, ¢, e3 and co. We can use a linear transformation to map
the points e1,e; and e;3 to 0,1 and A respectively. Any other linear transformation obtained from
the permutation of the points e, e, and e; will give an isomorphic Riemann surface. So we can
identify the moduli space of genus one Riemann surface as the quotient (C\{0,1})/Ss. In remark
(4.41) we identify the moduli space of Riemann surfaces of genus one with H/PSL(2,Z). Below
we are going to sketch an argument which shows that the spaces

(C\{0,1})/Ss and H/PSL(2,Z)
are isomorphic.

Lemma 4.45. The map A : H — C\{0, 1} is a universal covering of C\{0, 1}. This map is invariant under
the action of the subgroup I', — PSL(2,Z.)

I, = {(‘z Z) € PSL(2,Z)|a=d =1 (mod2), bc—O(modZ)}.

b
Proof. Suppose 7' = ad i d and I et us consider A(7’) and use the relation (4.52)

Al =

p(3h ) - (%T): 9(3(b+d +(a+c)1);7) — p(3(at +b);7)
p(3:7) = 9(5:7) p(H555 1) — p(3(aT + b); 1) '

It is straightforward to check that A(7) = A(7) if and only if the modular transformation belongs
to 1”2. O

Remark 4.46. The group I'; is the group of deck transformations of the covering A : H — C\{0, 1},
namely the set of homeomorphism f : H — H preserving the fibers of the covering. Such group
is isomorphic to the fundamental group of C\{0, 1} and therefore [13]

/T, ~ C\{0,1}.

Furthermore, the following identity is satisfied [11] PSL(2,Z)/T> ~ S;. Namely the quotient of
the modular group under the group I'; is isomorphic to the group of permutation S;. The above
identity and the lemma 4.45 explain the identification of the spaces (C\{0,1})/Ss and H/PSL(2,Z)

Exercise 4.47: Prove that any elliptic function with period lattice {2m«w” +2nw'} can be represented
as a rational function of p(z) and ¢’(z).

Exercise 4.48: Show that if 7 is pure imaginary then the branch points e;, e; and e are real.

Exercise 4.49: Consider the curve

Ii={(zw) eP*|w? =z(z-1)(z—A)}
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with 0 < A < 1 and consider the lattice L = {2mw’ + 2nw”, m,n € Z} where

0 dz 1 dz A dz
f — =L+da", J — =L+a +a” J —=L+da.
o W o W o W

Show that the curve I' is isomorphic to the curve w? = 4z% — g,z — g3 where ¢, and g3 are defined
in (4.47).

Exercise 4.50: Consider the Korteweg-de Vries (KdV) equation
Uy = OUUy — Uyyy (4.59)

(here u = u(x,t), and u; stands for the derivative with respect to t, and u, for derivative with
respect to x. Show that any (complex) periodic solution of it with the form of a traveling wave has
the form c

u(x,t) = u(x —ct) = 2p(x — ct — x0) — 2 (4.60)
where the Weierstrass function g corresponds to some elliptic curve (4.50), and the velocity c and
the phase x are arbitrary.

Exercise 4.51: (see [7]). Look for a solution of the KdV equation in the form
u(x, t) = 2p(x — x1(t)) + 20(x — x2(f)) + 20 (x — x3(¢)). (4.61)
Derive for the functions x;(t) the system of differential equations

=12) p(xj—x), j=1,273, (4.62)
k#j

and its integrals

D19 (xj — x) j=123. (4.63)
k#j

Integrate this system in quadratures.

We define the Weierstrass C and o functions (which are useful in the theory of elliptic functions)
from the conditions

C(z) = —p(2), = ((2). (4.64)

The series expansion of ((z) has the form

C(z)=%+ 3 [ L +l+i]. (4.65)

2
zZ—@ [0V
wel\{0} @w

This function has simple poles at the nodes of the period lattice. The function o(z) is entire. It has
simple zeros at the nodes of the period lattice and can be expanded in the infinite product

)=z [] {(1——>exp[ +ZZ—;2]} (4.66)

weL\{0}
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The functions ((z) and o(z) are not elliptic; under a translation of the argument by a vector of the
period lattice they transform according to the law

Uz +2ma’ + 2nw") = L(z) + 2mn + 2nn', n=_"), 1 =C(@"), (4.67)
0(z+2a") =0(z)exp[2n(z + @')], 0(z+20") = —0(z) exp[2n (z + @")] (4.68)
where 1 and 1’ are constants depending on the period lattice.
Exercise 4.52: Prove the following identity:
o(u+v)o(u—ov)
0?(u)a?(v)

Other properties of the functions,p, C and o and of other elliptic functions as well, can be found,
for example, in the texts [2] and [?], or in the handbook [3].

= (1) — p(0). (4.69)

4.1.4 The Jacobi variety, Abel’s theorem

Letey,..., e be the standard basis in the space C8, ej = ©,...,1,...,0), with one on the j-entry.
Given 2g row vectors Ay € €8,k =1,...,2¢, with Ay = Z?.’:l Akjej, we construct the 2¢ x ¢ matrix
A having in the k-row the vector A

Axj = (). (4.70)

The matrix A generates a lattice in C¢ of maximal rank, if its row vectors are linearly independent
over the real numbers.
Consider in C8 the integer period lattice L generated by the vectors (4.70). The vectors in this
lattice can be written in the form
28
L={veCs|v= 2 mgAy, (M, ..., myg) € Zzg} (4.71)
k=1

We assume that L generates a lattice of maximal rank in C8. Then the quotient of C8 by this lattice
is the 2¢-dimensional torus
T2 = C¢/L (4.72)

namely a g-dimensional complex manifold. Changing the basis in C$, namely e, — eM, with
M e GL(g, C), the matrix A — AM. Furthermore, the same lattice is given by vectors (A1, ..., Az)
with

28
Ak = Z Vlij]‘
k=1

with N = {nkj}igj=1 € SL(2¢,Z). Therefore A — NA. Summarizing, two matrices A and A
represent the same torus if

A=NAM, MeGL(g,C), NeSL(2g, 7). (4.73)

If we assume that the lattice generated by A has maximal rank, we can always choose A in such a

way that
A
v ()
Ay
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with Ay € GL(g,C). Therefore, by (4.73) the two matrices A and AA[ 1 - ( > with I, the

8
AoA]!
g-dimensional identity, represent the same torus.

Let B = (Bj) be an arbitrary complex symmetric ¢ x ¢ matrix with positive-definite imaginary
part (as shown in Lecture 4.1.2, the period matrices of Riemann surfaces have this property). We
consider the vectors

el,...,e, eB,... eB. (4.74)

Lemma 4.53. The vectors (4.74) are linearly independent over R.

Proof. Assume that these vectors are dependent over R:

(p1er + -+ + pgeg) + (u1er + - + ugee)B =0, p;, ujeR.

Separating out the real part of this equality we get that I ((u1e; + - - - + uge,)B) = 0. But the matrix
J(B) is nonsingular, which implies y; = --- = y, = 0. Hence also p; = --- = pg = 0. The lemma
is proved. m|

Consider in €8 the integer period lattice generated by the vectors (4.74). The vectors in this
lattice can be written in the form
m+nB, m,neZs. (4.75)

By Lemma 4.53 the quotient of C8 by this lattice is a torus of maximal rank:
T% = T%(B) = C$/{m + nB}. (4.76)

Definition 4.54. Suppose that B = (Bj) is a period matrix of a Riemann surface I of genus g. The torus
T?¢(B) in (4.76), constructed from this period matrix is called the Jacobi variety (or Jacobian) of the surface
I' and denoted by J(T').

Remark 4.55. What happens with the torus J(I') when the canonical basis of cycles on I' changes?
Leta = (aq,..., ozg)t and 8 = (B1,---, ﬁg)t be the column vectors of the canonical homology basis.
Let @’ and p’ be anew canonical homology basis related to a and by the symplectic transformation

(g’/ ) - (z Z) (g) (Z Z) € Sp(28, Z).

Let w = (w1, ..., w,) be the canonical homology basis of holomorphic differentials with respect to
the basis @ and 8, namely
J w = I, f w=B8B
a B

where I is the ¢ dimensional identity matrix. Then

J.a)=f w = aly + bB,
a’ aa+bp

fw=f w = clg +dB.
/ ca+dp
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/ /

So the canonical basis of holomorphic differentials @’ = (w7, ..., a

and g’ is given by

) with respect to the basis o’

@' = w(aly + bB)™!

This implies that the corresponding period matrix
E:fd:@ﬁdM%+wﬂ. (4.77)

From (4.73) it follows that the tori T2¢(B) and T?¢(B’) are isomorphic. Accordingly, the Jacobian
J(I') changes up to isomorphism when the canonical basis changes.

We consider the primitives (" Abelian integrals”) of the basis of holomorphic differentials:
P
uk(P) = J Wk, k= 1,. e & (4.78)
Py
where Py is a fixed point of the Riemann surface. The vector-valued function
A(P) = (ur(P), ..., ug(P)) (4.79)
is called the Abel mapping (the path of integration is chosen to be the same in all the integrals
ui(P), ..., ug(P)).
Lemma 4.56. The Abel mapping is a well-defined holomorphic mapping

I — J(T). (4.80)

Proof. (cf. Example 4.27). A change of the path of integration in the integrals (4.78) leads to a
change in the values of these integrals according to the law

uk(P) — Mk(P) + %wk, k= 1,...,g,
Y
where y is some cycle on I'. Decomposing it with respect to the basis of cycles, y ~ > mja; + > n;b;
we get that
Mk(P) — uk(P) + my + ZBij’l]', k=1,. -, 8
j

The increment on the right-hand side is the kth coordinate of the period lattice vector 2riiM + NB
where M = (my,...,mg), N = (ny,...,ng). The lemma is proved. O

The Jacobi variety together with the Abel mapping (4.80) is used for solving the following
problem: what points of a Riemann surface can be the zeros and poles of meromorphic functions?
We have the Abel’s theorem.

Theorem 4.57 (Abel’s Theorem). The points P1,...,P, and Q1,...,Q, (some of the points can repeat)
on a Riemann surface I' are the respective zeros and poles of some function meromorphic on I if and only if
the following relation holds on the Jacobian:

APy) + -+ APy) = AQ1) + -+ + A(Qn)- (4.81)
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Here and below, the sign = will mean equality on the Jacobi variety (congruence modulo the
period lattice (4.75)). We remark that the relation (4.81) does not depend on the choice of the initial
point Py of the Abel map (4.78).

Proof. 1) Necessity. Suppose that a meromorphic function f has the respective points P, ..., P,
and Qs,...,Q, as zeros and poles, where each zero and pole is written the number of times
corresponding to its multiplicity. Consider the logarithmic differential O = d(log f). Since

f = constexp Slljo Q), is a meromorphic function, the integral in the exponent does not depend on
the path of integratio. It follows that all the periods of this differential Q) are integer multiples of
2mi. On the other hand, we represent it in the form

n 8
Q= 2 Qpg, + ) csws, (4.82)

where Qp,q; are normalized differentials of the third kind (see Lecture 4.1.3) and cy,...,c, are
constant coefficients. Let us use the information about the periods of the differential. We have
that

2ming = %Q =cC,, Ny€Z,

which gives us ¢, = 2ming. Further,

P;
n
27Timk:fo:2T( Zf k+2n12n5 sk
:Q

by

(we used the formula (4.32)). From this,

no A 8
we(Pr) + - (Po) = u(Q) — -+ = k(Qn) = ) ka = my— . 1By (4.83)
=15 s=1

The right-hand side is the kth coordinate of the vector m + nB of the period lattice (4.75), where
m= (my,...,mg), n = (ny,...,ng). The necessity of the condition (4.81) is proved.
2) Sufficiency. Suppose that

8
we(Py) + -+ + we(Pa) —u(Qr) — -+ — u(Qu) = my — ) B (4.84)

f(P) —exp[ JQPJQ]—ch]J a)]]

where Qp,. are the normalised third kind differentials with poles in P; and Q; and c; are constants.
The function is a single valued meromorphic function if the integrals in the exponent do not depend

Consider the function
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on the path of integration. Let us study the behaviour of f when P — P + ay:

8
f(P) —~ fPexp | Yo |y
j=1 Y%

In order to have a single valued function the constant ¢y = 2mn, 1 € IN. Next let us consider the
behaviour of f when P — P + fi:

g g 8 P 8
f(P) — f(P)exp ]Z;Lk Qpo, +]Z;n]fﬁk w; | = f(P)exp Zni]z{fgj Wk +2ni;nj Lk w;j

Using the relation (4.84) one obtains that f(P) — f(P) exp[2mimy] = f(P) which shows that f(P)
is a meromorphic function on I'. ]

Example 4.58. We consider the elliptic curve
2 _ 4.3
W =4z — gz — g3. (4.85)

For this curve the Jacobi variety J(I') is a two-dimensional torus, and the Abel mapping (which
coincides with (4.40)) is an isomorphism (see Example 4.21). Abel’s theorem becomes the following
assertion from the theory of elliptic functions: the sum of all the zeros of an elliptic function is
equal to the sum of all its poles to within a vector of the period lattice.

Example 4.59. (also from the theory of elliptic functions). Consider an the elliptic function of the
form f(z,w) = az + bw + ¢, where 4, b, and c are constants. It has a pole of third order at infinity
(for b # 0). Consequently, it has three zeros P;, Py, and P3. In other words, the lineaz + bw +c¢ =0
intersects the elliptic curve (4.85) in three points (see the figure). We choose c as the initial point
for the Abel mapping, i.e., u(®0) = 0. Let u; = u(P;), i = 1,2,3. In other words,

P = (p(w), ' (w)), i=1,2,3,

where p (1) is the Weierstrass function corresponding to the curve (4.85). Applying Abel’s theorem
to the zeros and poles of f, we get that

Uy +up +uz =0.

Conversely, according to the same theorem, if 17 + up + u3 = 0, i.e. u3 = —up — uy then the points
Py, P, and Pj3 lie on a single line. Writing the condition of collinearity of these points and taking
into account the evenness of g and oddness of ¢’, we get the addition theorem for Weierstrass
functions:
1 o(m) ¢’ (1)
det |1 50(1/[2) g{)/(uz) = 0. (4.86)
1 o +uy) —' (g +un)
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4.1.5 Divisors on a Riemann surface. The canonical class. The Riemann-Roch
theorem

Definition 4.60. A divisor D on a Riemann surface is defined to be a (formal) integral linear combination

of points on it:
n

D=>nP;, Piel, neZ (4.87)
i=1

For example, for any meromorphic function f the divisor (f) of its zeros Py, ..., Px and poles
Q1,...,Q; of multiplicities my, ..., my, and ny, ..., n, respectively is defined

(f) = miPy + -+ + mPp — mQy — - — mQ). (4.88)

Observe that given f and g two meromorphic functions

(f&) = (f) +(8), (f/8)=(f)—(8):
Definition 4.61. Divisors of meromorphic functions are also called principal divisors.

Another useful notation for the divisor of a meromoprhic function is given by
(f) = > ordp(f) - P
P

where we recall that the order of f in P is the minimum coefficient present in the Laurent expan-
sion in a neighbourhood of the point P namely ordpf = min,ez{n, |a, # 0} where the Laurent
expansion of f in P is ), a,z". Such definition does not depend on the choice of the local coordi-
nates. The set of all divisors on I, Div(T'), obviously form an Abelian group (the zero is the empty
divisor).

Definition 4.62. The degree deg D of a divisor of the form (4.87) is defined to be the number

N
degD = ) n;. (4.89)

i=1
The degree is a linear function on the group of divisors. For instance,

deg(f) = 0. (4.90)

Two divisors D and D’ are said to be linearly equivalent, D ~ D’ if their difference is a principal
divisor. Linearly equivalent divisors have the same degree in view of (4.90). For example, on CP!
any divisor of zero degree is principal, and two divisors of the same degree are always linearly
equivalent.

Example 4.63. The divisor (w) of any Abelian differential @ on a Riemann surface I is well-defined
by analogy with (4.88). If ' is another Abelian differential, then (w) ~ («'). Indeed, their ratio
f = w/w' is a meromorphic function on T, and (w) — (v’) = (f). We remark that any differential
in a coordinate chart ¢, : U, — V,, with ¢,(P) = z, take the form

W = hy(z4)dz, @' = (24)dza
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where i, and &, are meromorphic functions. The ratio g, = h,/h,, is a meromorphic function of
Va. Now define f := g, o ¢, which is a meromorphic function on U,. It is easy to check that f is
well defined and independent from the coordinate chart.

Definition 4.64. The linear equivalence class of divisors of Abelian differentials is called the canonical
class of the Riemann surface. We denote it by Kr.

For example, the divisor —200 = (dz) can be taken as a representative of the canonical class
Kept-

We reformulate Abel’s theorem in the language of divisors. Note that the Abel map extends
linearly to the whole group of divisors. Abel’s theorem obviously means that a divisor D is
principal if and only if the following two conditions hold:

1. degD = 0;
2. A(D)=0onJ(I),

where
M M

AD) = Y (A(P) —AQj), D=>(P—Qj),

j=1 j=1

with A the Abel map defined in (4.79).

Let us return to the canonical class. We compute it for a hyperelliptic surface w? = Ppg»(z). Let
P1,...,Pyg o be the branch points of the Riemann surface, and P+ and P, - its point at infinity.
We have that

(dZ) =P+ + P28+2 — 2P+ — 2P

Thus the degree of the canonical class on this surface is equal to 2g — 2. We prove an analogous
assertion for an arbitrary Riemann surface.

Lemma 4.65. Let f : I' — X a holomorphic map between Riemann surfaces I and X and w a meromorphic
one form on X, then for any fixed point P € T

ordpf*w = (1 + ordgpy(w))multp(f) — 1 (4.91)

where f*w denotes the pull back of w via f. We recall that the multiplicity of f in P is the unique integer
m such that there is local coordinatea near P € T and f(P) € X such that f takes the form z — z™.

Proof. Suppose that the map f can be represented near the point P and f(P) with local coordinates
tand 7 as T — v = . Suppose that near the point f(P) the one form w takes the form
w = g(t')dt’ with g(') = Y};-, ax’*. Then, the one form f*w, near the point P, takes the form

fro = g(t")ymt"dr = Z a1,
k=n
Looking at the coefficient in the exponent, one has the claim of the lemma. m]

Definition 4.66. Let f : T — X a holomorphic map between Riemann surfaces. The branch point divisor
Wy is the divisor on T defined by

Wy = > [multp(f) — 1]P. (4.92)
Pel’
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Definition 4.67. Let f : I' — X be a holomoprhic map between Riemann surfaces and let Q € X. The
inverse image of the divisor Q denoted f*(Q) is defined as

Q= multy(f)-P

Pef~1(Q)

Applying (4.91) and (4.92) we arrive to the relation between divisors
(ffw) = Wi + f*(w), (4.93)

where f*(w) is the inverse image of the divisor (w) of the one form w.

Suppose that the Riemann surface I'is given by the equation F(z, w) = 0. Further, let Py, ..., Py
be the branch points of this surface with respective multiplicities fi,..., fy with respect to the
meromorphic functionz : I' — CP'. (see Lecture 1). The branch point divisor W, = fiP1+... fNPn.

Lemma 4.68. The canonical class of the surface I has the form
Kr = W, + z*(Kgpr)- (4.94)

Here z* denotes the inverse image of a divisor in the class Kqp1 with respect to the meromorphic function
z:T — CP".

Proof. This follows immediately from (4.93). ]
Corollary 4.69. The degree of the canonical class Kr of a Riemann surface I of genus g is equal to 2g — 2.

Proof. We have from (4.94) that deg Kr = deg W, — 2 degz, where deg W, is the total multiplicity
of the branch points of the map z. By the Riemann-Hurwitz formula (2.4), degW, = f =
2g +2degz — 2. The corollary is proved. m|

The divisor (4.87) is positive if all multiplicities # are positive. An effective divisor is a divisor
linearly equivalent to a positive divisor. Divisors D and D’ are connected by the inequality D > D’
if their difference D — D’ is a positive divisor.

With each divisor D we associate the linear space of meromorphic functions

L(D) = {f | (f) = -D}. (4.95)

If D is a positive divisor, then this space consists of functions f having poles only at points of D,
with multiplicities not greater than the multiplicities of these pointsin D. If D = D — D_, where
D, and D_ are positive divisors, then the space L(D) consists of the meromorphic functions with
poles possible only at points of D, with multiplicities not greater than the multiplicities of these
points in D, and with zeros at all points of D_ (at least), with multiplicities not less than the
multiplicities of these points in D.

Lemma 4.70. If the divisors D and D' are linearly equivalent, then the spaces L(D) and L(D') are
isomorphic.

Proof. Let D — D' = (g), where g is a meromorphic function. If f € L(D), then f' = fg e L(D’).
Indeed,

(f)+D =)+ (g +D" = () +D>0.
Conversely, if f' € L(D'), then f = ¢g~1f" € L(D). The lemma is proved. ]
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We denote the dimension of the space L(D) by
I(D) = dim L(D). (4.96)

By Lemma 4.70, the function /(D) (as well as the degree deg D) is constant on linear equivalence
classes of divisors. We make some simple remarks about the properties of this important function.

Remark 4.71. A divisor D is effective if and only if /(D) > 0. Indeed, replacing D by a positive
divisor D’ linearly equivalent to it, we see that the space L(D’) contains the constants. Conversely,
if[(D) > 0, then D is effective. Indeed, if the meromorphic function f issuch that D’ = (f)+D > 0,
then the divisor D’, which is linearly equivalent to D is positive.

Remark 4.72. For the zero (empty) divisor, [(0) = 1. If deg D < 0, then /(D) = 0.

Remark 4.73. The number /(D) — 1 is often denoted by |D|. According to Remark 4.71 |D| > 0
for effective divisors. The number |D| admits the following intuitive interpretation. We show
that |D| > k if and only if for any points Py, ..., Py there is a divisor D’ ~ D containing the points
Py, ..., Py (the presence of coinciding points among P4, . . ., Py is taken into account by their multiple
occurrence in D’). If [(D) > k + 1, then there are linearly independent functions fi,..., fx € L(D)
such that the function f = Zi-(:l cifi — co, wherec;, i = 1,...,k are arbitrary constants, has zeros in
Py,..., Py, namely
f(P))=0,j=1,...,k

This is a system of inhomogeneous linear equation for the constants cy, .. ., cx which has a solution
for any choice of the points P, ..., Py. So it follows that the divisor D’ of zeros of f contains the
point Py, ..., P, which implies that D + (f) = D’, or equivalently D’ ~ D and D’ contains the
points Py, ..., Py.

Viceversa suppose that there is a positive divisor D’ containing the arbitrary points Py, ..., Pk
and such that D’ ~ D. Then there is a meromorphic function f such that (f) = D’ — D, or
(f) + D =D’ > 0. It follows that f € L(D) and f has zeros in arbitrary points P, ..., Px. We write
f is the form f = Z?:l ckfx — co where f; € L(D). If the function f has zeros in arbitrary points
Py, ..., Py it follows that the system of equations

FP)=0,j=1,...,k

must be solvable for any set of points P, ..., Py, but this is possible only if the functions fi, ..., fi
are linearly independent and different from the constant, which means that I(D) > k + 1. One
therefore says that |D| is the number of mobile points in the divisor D.

Remark4.74. Let K = Kr, be the canonical class of a Riemann surface. We mention an interpretation
that will be important later for the space L(K — D) for an arbitrary divisor D. First, if D = 0, then
the space L(K) is isomorphic to the space of holomorphic differentials on I'. Indeed, choose a
representative Ky > 0 in the canonical class, taking Ky to be the zero divisor of some holomorphic
differential wo, Ko = (wp). If f € L(Kp), i.e. (f) + (wo) = 0, then the divisor (fwy) is positive,
i.e., the differential fwy is holomorphic. Conversely, if w is any holomorphic differential, then the
meromorphic function f = w/wy lies in L(Kp).
It follows from the foregoing and Theorem 4.12 that

I(K) = g.
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Lemma 4.75. For a positive divisor D the space L(K — D) is isomorphic to the space
QD) = {we HY(I) | (w) — D > 0}

Proof. We choose a representative Ky > 0 in the canonical class, taking Ky to be the zero divisor
of some holomorphic differential wy, Ko = (wp). If f € L(Ky — D), then the differential fwy is
holomorphic and has zeros at the points of D, i.e., fwg € Q(D). Conversely, if w € Q(D), then
f = w/wy € L(Ky — D). The assertion is proved. o

The main way of getting information about the numbers /(D) is the Riemann-Roch Theorem.

Theorem 4.76 (Riemann Roch Theorem). For any divisor D
I(D)=1+degD — g+ I(K—D). (4.97)

Proof. For surfacesT of genus 0 (which are isomorphic to CIP! in view of Problem 6.1) the Riemann-
Roch theorem is a simple assertion about rational functions (verify!). By Remarks 4.72 and 4.74
(above) the Riemann-Roch theorem is valid for D = .

We first prove (4.97) for positive divisors D > 0. Let D = > /', nPx where all the n; > 0. We
first verify the arguments when all the n; are = 1, i.e., m = degD. Let f € L(D) be a nonconstant
function.

We consider the Abelian differential w = df. It has double poles and zero residues at the points
Py, ..., Py and does not have other singularities. Therefore, it is representable in the form

m
Q=df =), 6Qy +
k+1

where Qg)
k

are normalized differentials of the second kind (see Lecture 4.1.3), ¢y, ..., ¢, are con-
stants, and the differential ¢’ is holomorphic. Since the function f(P) = Slljﬂ Q is single-valued on

I, the integral Sgﬂ Qis independent from the path of integration. This implies that

§>Q=O, §Q=O, i=1,...¢ (4.98)
@i b;

From the vanishing of the a-periods of the meromorphic differentials Ql(jlk) we get that ¢ = 0 (see
Corollary 4.17). From the vanishing of the g-period we get, by (4.31) with n = 1, that

m

0= EFQ = aic(z)lzm0, i=1,...,8, (4.99)
k=1
ﬁz

where z; is a local parameter in a neighborhood of Py, zx(Px) = 0, k = 1,...,m, and the basis of
holomorphic differentials are written in a neighborhood of Py in the form w; = i (z)dz;. Defining
wi(Pr) := Y (0), we write the system (4.99) in the form
a)l(Pl) a)1(P2) 0)1(Pm) C1
wz(Pl) a)z(Pz) 0)2(Pm> Cy _ 0, (4100)

wP) wy(P) ... wg(Pu)) \cn
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We have obtained a homogeneous linear system of m = degD equations in the coefficients
c1,...,cm. The nonzero solutions of this systems are in a one-to-one correspondence with the
nonconstant functions f in L(D), where f can be reproduced from a solution c,...,c, of the
system (4.99) in the form

m P
fPy = | QY.
k=1 “Po

Thus (D) = 1 + deg D — rankA where A is the matrix of holomorphic differentials in (4.100) (the
1 is added because the constant function belong to the space L(D)). On the other hand the rank
of the matrix A has another interpretation. Consider the holomorphic differential w = 2?;1 ajw;.

Such differential w belongs to the space Q(D) if
wPr) =0, k=1,...,m.

The above system of equations can be written in the equivalent form

(cul(Pl) cul(Pm))
(an ap ... ag) | ... ... |=0 (4.101)
wg(P1) ... wg¢(Pm)

The number of solutions of this system is equal to g —rankA and it is in one to one correspondence
with the linearly independent holomorphic differentials in 3(D). Therefore dimQ(D) = g —
rankA. On the other hand we have obtained that

I(D) =1+ degD — rankA
so that combining the two equations we obtain
(D) =1+degD — g+ dimQ(D) =1+ degD — g+ (K- D)

where the second identity is due to the fact that the space Q(D) and L(K — D) are isomorphic for
positive divisors. Accordingly the Riemann-Roch theorem has been proved in this case.

We explain what happens when the positive divisor D has multiple points. For example
suppose thatD = nyP1+.... Thenw =df = Z;”:l leﬂl(,]]) +... and the system (4.99) can be written
in the form

ny . 1 dj—l .

j=1 J: dzl z1=0
If the rank of the coefficient matrix of this system is denoted (as above) by rankA, the dimension
of the space L(D) is equal to /(D) = 1 4+ deg D — rankA while the dimension of the space Q(D) is
equal to g —rank#l. We have proved the Riemann-Roch theorem for all positive divisors and hence
for all effective divisors, which (accordingly to Remark 4.71) are distinguished by the condition
I(D) > 0. Next we note that the relation in this theorem can be written in the form

I(D) — %degD =Il(K-D) - % deg(K — D), (4.102)

which is symmetric with respect to the substitution D — K — D. Therefore the theorem is proved
for all divisors D such that D or K — D is equivalent to a positive divisor. If neither D nor K — D are
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equivalent to a positive divisor, then /(D) = 0 and /(K — D) = 0 and the Riemann-Roch theorem
reduces in this case to the equality
degD = g —1. (4.103)

Let us prove this equality. We represent D in the form D = D, — D_, where D and D_ are
positive divisors and degD_ > 0. It follows from the validity of the Riemann-Roch theorem
for D, that [(D;) > degD, — ¢+ 1 = degD + degD_ — ¢ + 1. Therefore if degD > g, then
I(D+) = 1+ degD_. Then the space L(D) contains a nonzero function vanishing on D_, i.e.
belonging to the space L(Dy — D_) = L(D). This contradicts the condition /(D) = 0. Similarly,
the assumption deg(K — D) > g leads to a contradiction. This implies (4.103). The theorem is
proved. m]

41.6 Some consequences of the Riemann-Roch theorem. The structure of
surfaces of genus 1. Weierstrass points. The canonical embedding

Corollary 4.77. If deg D > g, then the divisor D is effective.
Corollary 4.78. The Riemann inequality
I(D) =1+ degD —g, (4.104)
holds for deg D > g.
Definition 4.79. A positive divisor D is called special if
dimQ(D) > 0.

We remark that any effective divisor of degree less then g is special since /(D) > 0 and by
Riemann-Roch theorem this implies dimQ(D) > 0.
Corollary 4.80. If deg D > 2g — 2, then D is nonspecial.

Proof. For degD > 2¢g — 2 we have that deg(K — D) < 0, hence /(K — D) = 0 (see Remark 4.72).
The corollary is proved. ]

Exercise 4.81: Suppose that k > g; let the Abel mapping A : I' — J(I') (see Lecture 4.1.4) be
extended to the kth-power mapping

AF:Tx ... xT - J(T)
k times

by setting A¥(Py, ..., Px) = A(P1) + - - - + A(Py) (it can actually be assumed that A¥ maps into J(T)
the kth symmetric power SKT, whose points are the unordered collections (P, ..., Px) of points of
I'). Prove that the special divisors of degree k are precisely the critical points of the Abel mapping
AF. Deduce from this that a divisor D with deg D > g in general position is nonspecial.

Remark 4.82. Let deg D = 0, then if D is equivalent to a divisor of a meromorphic function, then
I(D) = 1 otherwise [(D) = 0. Let deg D = 2¢ — 2, then if D is equivalent to the canonical divisor,
then (D) = g otherwise /(D) = g — 1. Furthermore if degD > 2¢ — 2, then by Riemann Roch
theorem one has /(D) = 1+ degD — g. If 0 < deg D < g — 1 the minimum value of /(D) is zero
while for ¢ < degD < 2¢ — 2, min(/(D)) =1 — g+ degD.
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The values of /(D) for 0 < deg D < 2¢ — 2 are estimated by the Clifford theorem.
Theorem 4.83. If0 < degD < 2g — 2, then

ID)<1+ %deg D. (4.105)

Proof. If (D) = 0 or [(K — D) = 0, the proof of the theorem is straightforward. Let us assume that
I(D) > 0 and /(K — D) > 0 and consider the map L((D) x L(K — D) — L(K) given by (f,h) — fh
where (f,h) € L((D) x L(K — D). Let V be the subspace in L(K) which is the image of this map.
Then one has

¢g=IK)=zdimV =I(D)(K-D) =Il(D)+I(K-D) -1

where in the last equality we use the identity which holds for real numbers a and b bigger then
one: (@ —1)(b—1) >0andsoab>a+b—1.
Therefore
g=>1D)+I(K-D)—1=2[(D)+g—2—degD,

which implies (4.105). O

Let us make a plot of the possible values of /(D) using Clifford theorem and the above obser-
vations.

1(D)

divisors

g-1 2g-2 deg(D)

Figure 4.3: The values of /(D) as a function of deg D. One can see that the value of /(D) of a special
divisors is located between the two lines.

We now present examples of the use of the Riemann-Roch theorem in the study of Riemann
surfaces.

Example 4.84. Let us show that any Riemann surface I of genus ¢ = 1 is isomorphic to an elliptic
surface w? = P3(z). Let Py be an arbitrary point of I'. Here 2¢ — 2 = 0, therefore, any positive
divisor is nonspecial. We have that/(2P;) = 2, hence there is a nonconstant function zin [(2Py), i.e.,
a function having a double pole at Py. Further /(3Py) = 3, hence there is a function w € /(3P) that
cannot be represented in the form w = az 4 b. This function has a pole of order three at Py. Finally,
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since [(6Py) = 6, the functions 1, z, 22, z%, w, w?

have that

,wz which lie in [(6Py) are linearly independent. We

Mw? + awz + asw + asz° + asz® + agz + ay = 0. (4.106)

The coefficient a; is nonzero (verify). Making the substitution

ap as
w—w— (2a12+ 2111)
we get the equation of an elliptic curve from (4.106).

Example 4.85 (Riemann count of the moduli space of Riemann surface). Consider a Riemann
surface I of genus g and a meromorphic function of degree n > 2¢ — 2. Such function represents
I' as a n-sheeted covering of the complex plane, branched over a number of points with total
branching number by equal to

bf=2n+2g—2

where the Riemann-Hurwitz formula has been used. Generically the branch points have branching
number equal to one so that by is also equal to the branch points of the Riemann surface. From the
Riemann existence theorem, given the branch points and a permutation associated to each branch
point such that the corresponding monodromy group is a transitive sub-group of S,,, then one can
construct a Riemann surface I'. Let f : T — P! be the obvious projection map. To any set of branch
points it correspond a finite number of Riemann surface of genus g together with a meromorphic
function of degree n.

Any meromorphic function of degree n on I' will represent I' as a n-sheeted covering of the
complex plane. Let Dy, be the divisor of poles of f. Since the degree of f is equal to n then
deg D, = n. Furthermore from Riemann-Roch theorem

IDp)=n+1-g.

So the freedom of choosing the function f is given by the position of the poles, and this gives n
parameters, and the number of functions having poles in Dy, which is equal to n +1 — g. The
total number of parameters in choosing the meromorphic function of degree nis 2n +1 — g. So
the total number of parameters for describing a curve of genus g is the number of branch points
by minus the parameters for describing the meromorphic function f, namely

2n+2¢g—-2-(2n+1-g)=3¢g—-3.

Definition 4.86 (Weierstrass points). A point Py of a Riemann surface I of genus g is called a Weierstrass
point if [(kPy) > 1 for some k < g.

It is clear that in the definition of a Weierstrass point it suffices to require that /(gPy) > 1 when
g = 2. There are no Weierstrass points on a surface of genus ¢ = 1. On hyperelliptic Riemann
surfaces of genus g > 1 all branch points are Weierstrass points, since there exist functions with
second-order poles at the branch points (see Lecture 3).

Definition 4.87. A Riemann surface is called hyperelliptic if and only if it admits a non constant mero-
morphic function of degree 2.

The use of Weierstrass points can be illustrated in the next exercise.
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Exercise 4.88: Let I' be a Riemann surface of genus g > 1, and Py a Weierstrass point of it, with
I(2Py) > 1. Prove that I is hyperelliptic. Prove that the surface is also hyperellipticif /(P + Q) > 1
for two points P and Q.

Exercise 4.89: Let I be a hyperellitpic Rieamnn surface and z a function of degree two. Prove that
any other function f of degree two is a Moebius transformation of z.

We show that there exist Weierstrass points on any Riemann surface I of genus g > 1.

Lemma 4.90. Suppose that z is a local parameter in a neighborhood Py, z(Py) = 0; assume that locally the
basis of holomorphic differentials has the form w; = Y;(z)dz, i = 1,...,g. Consider the determinant

Pi(z) ¢ ... P V()
W(z) =det]| ... (4.107)
Yolz) Pi2) ... PEV()

The point Py is a Weierstrass point if and only if W(0) = 0.

Proof. If Py is a Weierstrass point, i.e., [(gPy) > 1, then[(K—gPy) > 0by the Riemann-Roch theorem.
Hence, there is a holomorphic differential with a g-fold zero at Py on I'. The condition that there
be such a differential can be written in the form W(0) = 0 (cf. the proof of the Riemann-Roch
theorem). The lemma is proved. m]

Lemma 4.91. Under a local change of parameter z = z(w) the quantity W transforms according to the

. dz \ 28+
rule W(w) = (%> W(z).

Proof. Suppose that w; = ¢;(z)dz = {;(w)dw. Then each ¢§; = 1{1,-5—;, i=1,...,8 Thisimplies that

the derivatives d*i); /dw* can be expressed for each i in terms of the derivatives d'y;/dz' by means
of a triangular transformation of the form

dx Ni k+1 4k ; k-1 d i
_wz(d_z> _¢+ch~—¢ i=1,...g
=1

dwk dw dzk dzi’

(the coefficients ¢; in this formula are certain differential polynomials in z(w)). The statement of
the Lemma readily follows from the transformation rule. o

Let us define the weight of a Weierstrass point Py as the multiplicity of zero of W(z) at this
point. According to the previous Lemma the definition of weight does not depend on the choice
of the local parameter.

The proof of existence of Weierstrass points for ¢ > 1 can be easily obtained from the following
statement.

Lemma 4.92. The total weight of all Weierstrass points on the Riemann surface I of genus g is equal to
(@-1glg+1).
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Proof. Let us consider the ratio
W(@)/yy (2).

Here N = } g(¢ + 1). According to lemma (4.91), the above ratio does not depend on the choice
of the local parameter and, hence, it is a meromorphic function on I'. This function has poles of
multiplicity N at the zeroes of the differential w; (the total number of all poles is equal to 2g — 2).
Therefore this function must have N (2g —2) = (¢ — 1) g(g + 1) zeroes (as usual, counted with
their multiplicities). These zeroes are the Weierstrass points. m]

Let us do few more remarks about the Weierstrass points. Given a point Py € I', let us consider
the dimension I(k Pp) as a function of the integer argument k. This function has the following
properties. According to figure (4.3) we have

1<I(kP) <g 1<k<2g-1

In particular I ((2¢g — 1)Py) = g. It follows that while k increases 2¢ — 2 times the function I(k Py)
increases only g — 1 times. The next lemma shows that the function I(k Py) is a piece-wise constant
function where each step has size equal to one.

Lemma 4.93.

1k Do) — I((k—1)Po) + 1, if there exists a function with a pole of order k at Py
(kPo) =1 | ((k—1)Py), if such a function does not exist

Proof. The space L(k Py) is larger then the space L((k — 1)Py) therefore I(k Py) > I((k — 1)Pp). On
the other hand, dimQ(kPy) < dimQ((k — 1)Pp). From the Riemann Roch theorem one has

I(kPo) —I((k —1)Py) = 1 + dimQ(kPy) — dimQ((k — 1)Py)
which, when combined with the above two inequalities, gives the statement. m]

When I(k Py) = I((k — 1)Py) we will say that the number k is a gap at the point Py. From the
previous remarks it follows the following Weierstrass gap theorem:

Theorem 4.94. There are exactly g gaps 1 = a; < ... < ay < 2g at any point Py of a Riemann surface of
genus g.

The gaps have the forma; = i,i = 1,..., g, for a point Py in general position (which is not a
Weierstrass point). Namely for a non Weierstrass point the function I(kPy) is non zero only for
k > g and one has [(kPy) = 1 + k — g for k > g. A Weierstrass point Py is called normal if the
Weierstrass gap sequence takes the form 1,2,...,¢ — 1, ¢ + 1 where g is the genus of the surface.
Namely a meromorphic function with only a pole in Py has order at least equal to g. Normal
Weierstrass points are generic. A Weierstrass point Py is called hyperelliptical is the Weierstrass
gap sequence takes the form 1,3,5,...,2¢ — 1. In this case a meromorphic function with only a
pole in Py has order equal to two.

Exercise 4.95: Show that every compact Riemann surface of genus g is conformally equivalent to
a (g + 1)—sheeted covering surface of the complex plane.
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Exercise 4.96: Prove that for branch points of a hyperelliptic Riemann surface of genus g the gaps
have the form a; = 2i —1,i = 1,...,g. Prove that a hyperelliptic surface does not have other
Weierstrass points. Next suppose that the hyperelliptic Riemann surface has genus 2 and let Py
be a Weierstrass point. Show that there exist meromorphic functions z and w with only a pole in
Py and such that

W + mwz + awz® + a32° + a2t + a5z’ + agz® + ayz + ag = 0.
Exercise 4.97: Prove that any Riemann surface of genus 2 is hyperelliptic.

Exercise 4.98: Let I' be a hyperelliptic Riemann surface of the form w? = Ppg(z). Prove that any

birational (biholomorphic) automorphism I' — TI" has the form (z,w) — (Z IZ

linear fractional transformation leaves the collection of zeros of P»g>(z) invariant.

, tw), where the

Example 4.99 (The canonical embedding). . Let I’ be an arbitrary Riemann surface of genus g > 2.
We fix on I a canonical basis of cycles ay,...,aq, by, ..., by; let wy,...,w, be the corresponding
normal basis of holomorphic differentials. This basis gives a canonical mapping I' — CIP$™"
according to the rule

P — (w1(P) : w2(P) : -+ : wg(P)). (4.108)

Indeed, it suffices to see that all the differentials wy, ..., ws cannot simultaneously vanish at some
point of the surface. If P were a point at which any holomorphic differential vanished, i.e.,
I(K — P) = g, (see Remark 4.74), then I(P) would be = 2 in view of the Riemann-Roch theorem,
and this means that the surface T’ is rational (verify!). Accordingly (4.108) really is a mapping
T — CP#™Y; it is obviously well-defined.

Lemma 4.100. If I is a nonhyperelliptic surface of genus g > 3, then the canonical mapping (4.108) is a
smooth embedding. If T is a hyperelliptic surface of genus g > 2, then the image of the canonical mapping
is a rational curve, and the map itself is a two-sheeted covering.

Proof. We prove that the mapping (4.108) is an embedding. Assume not: assume that the points
Py and P, are merged into a single point by this mapping. This means that the rank of the matrix

w1 (Pl) w1 (PQ)
a)g(Pl) a)g(Pz)
is equal to 1. But then I(P; + P;) > 1 (see the proof of the Riemann-Roch theorem). Hence,

there exists on I' a nonconstant function with two simple poles at P; and P, i.e., the surface I' is
hyperelliptic. The smoothness is proved similarly: if it fails to hold at a point P, then the rank of

the matrix
(w1(P) wi(P))
we(P) wy(P)

isequal to 1. Then!(2P) > 1, and the surface is hyperelliptic. Finally, suppose thatI is hyperelliptic.
Then it can be assumed of the form w? = Pyg41(2). Its canonical mapping is determined by the
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differentials (5.42). Performing a projective transformation of the space CIP¥ ™! with the matrix
(cjk) (see the formula (5.42)), we get the following form for the canonical mapping:

P=(zw)— (1:z:---:28571) (4.109)
Its properties are just as indicated in the statement of the lemma. The lemma is proved. m]

Exercise 4.101: Suppose that the Riemann surface T is given in CIP? by the equation

> @ttt =0, (4.110)

i+j=4

and this curve is nonsingular in CIP? (construct an example of such a nonsingular curve). Prove
that the genus of this surface is equal to 3 and the canonical mapping is the identity up to a
projective transformation of CIP?. Prove that T is a non hyperelliptic surface. Prove that any non
hyperelliptic surface of genus 3 can be obtained in this way.

The range I” = CIP$™! of the canonical mapping is called the canonical curve.

Exercise 4.102: Prove that any hyperplane in CIP$™! intersects the canonical curve I" in 2¢ — 2
points (counting multiplicity).



Chapter 5

Jacobi inversion problem and
theta-functions

5.1 Statement of the Jacobi inversion problem. Definition and
simplest properties of general theta functions

In Lecture 4.1.2 we saw that inversion of an elliptic integral leads to elliptic functions. For a surface
of genus g > 1 the Inversion of integrals of Abelian differentials is not possible since any such
differential has zeros (at least 2g — 2zeros). Instead of the problem of inverting a single Abelian
integral, Jacobi proposed for hyperelliptic surfaces w? = Ps(z) the problem of solving the system

T dz +T dz _
NN Ve

(5.1)

Py Py
J zdz N J zdz
Ve I Ve
0 0
where 11,1, are given numbers from which the location of the points Py = (z1, w1), P2 = (z2, w»)
is to be determined. It is clear, moreover, that P; and P, are determined from (5.1) only up to
permutation. Jacobi’s idea was to express the symmetric functions of P; and P, as functions of 1
and ;. He noted also that this will give meromorphic functions of 7; and 1, whose period lattice
is generated by the periods of the basis of holomorphic differentials dz/+/P5(z) and zdz/ 1/ P5(z).
This Jacobi inversion problem was solved by Goepel and Rosenhain by means of the apparatus of
theta functions of two variables. The generalization of the Jacobi inversion problem to arbitrary
Riemann surfaces and its solution are due to Riemann. We give a precise statement of the Jacobi
inversion problem. Let I be an arbitrary Riemann surface of genus g, and fix a canonical basis of
cyclesay, ..., ag,P1,...,BgonT;as aboveletwsy,..., Wg be be the corresponding basis of normalized
holomorphic differentials. Recall (see Lecture 4.1.4) that the Abel mapping has the form

A:T > J(T), A(PP) = (ur(P),...,ug(P)), (5.2)

97
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where J(I') is the Jacobi variety,
P
ui(P) = fw,-, (5.3)
Py

Py is a particular point of I', and the path of integration from Py to P is the same foralli = 1,...,g.
Consider the gth symmetric power S&T of I'. The unordered collections (Py, ..., P,) of ¢ points of
I' are the points of the manifold S8T. The meromorphic functions on S8T are the meromorphic
symmetric functions of g variables Py,...,P,, P; € I. The Abel mapping (5.2) determines a
mapping

A® ST — J(T), AS(Py,...,Pg) = A(P1) + -+ A(Py), (5.4)

which we also call the Abel mapping.

Lemma5.1. Ifthedivisor D = Py+- - -+Pg is nonspecial, then in a neighborhood of a point A(®) (P4, ..., Pg) €
J(T) the mapping A®) has a single-valued inverse.

Proof. Suppose that all the points are distinct; let zy, ...,z be local parameters in neighborhoods
of the respective points Py, ..., P, with z;(Px) = 0 and w; = i (zx)dz; the normalized holomorphic
differentials in a neighborhood of Pk. The Jacobi matrix of the mapping (5.4) has the following

form at the points (P, ..., Py)
(17[)11(21 = 0) . l,Dlg(Zg = O))
Por(z = 0) .. Pelzg=0))

If the rank of this matrix isless than g, then /(K—D) > 0, i.e., the divisor D is special by the Riemann-
Roch theorem. The case when not all the points P, ..., P, are distinct is treated similarly. We now
prove that the inverse mapping is single-valued. Assume that the collection of points (P}, ..., Py)

is also carried into A (Py, ..., P;). Then the divisor D" = P| +--- + Pg, is linearly equivalent to D
by Abel’s theorem. If D’ # D, then there would be a meromorphic function with poles at points
of D and with zeros at points of D’. This would contradict the fact that D is nonspecial. Hence,
D" = D, and the points P/, ..., P, differ from Py, ..., P, only in order. The lemma is proved. O

Since a divisor P; + ... + P, in general position is nonspecial (see Problem 4.81), the Abel
mapping (5.4) is invertible almost everywhere. The problem of inversion of this mapping in
the large is the Jacobi inversion problem. Thus, the Jacobi inversion problem can be written in
coordinate notation in the form

{ ul(P1)+---+u1(Pg) =mM
......... (5.5)
ug(Pr) + - +ug(Py) =14

which generalizes (5.1). To solve this problem we need the apparatus of multi-dimensional theta
functions.
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5.2 Theta-functions

The g-dimensional theta-functions are defined by their Fourier serie. Let B = (Bjx) be a symmetric
g % ¢ matrix with positive-definite Imaginary part and let z = (z1,...,z;) and N = (Ny,...,N) be
g-dimensional vectors. The Riemann theta function is defined by its multiple Fourier series,

g
0(z) = 0(z;B) = ) exp (mi(NB,N) + 2mi(N, z)), (5.6)
NezZ
where the angle brackets denote the Euclidean inner product:
g g
(N,z) = > Nizi, (NB,N)= > ByN;Ni.
k=1 k=1

The summation in (5.6) is over the lattice of integer vectors N = (Ny,...,N g). The obvious estimate
R(i{NB,N)) < —b{N,N), where b > 0 is the smallest eigenvalue of the matrix J(B), implies that
the series (5.6) defines an entire function of the variables zy, .. ., z,.

Proposition 5.2. The theta-function has the following properties.
1. 6(—z; B) = 6(z; B).
2. For any integer vectors M, K € Z¢,

0(z + K + MB; B) = exp (—mi{MB, M) — 2nti(M, z)) 6(z; B). (5.7)

3. It satisfies the heat equation

0 1
6B,-]- Q(Z/ ) 27t (’)ZiZ]' Q(Z’ )’ 1# /
p " (5.8)

Proof. The proof of properties 1. and 3. is straightforward. Let us prove property 2. In the series
for 6(z + K + MB) we make the change of summation index N — N — M. The relation (5.7) is
obtained after this transformation. O

The integer lattice {N + MB} is called the period lattice.

Remark 5.3. It is possible to define the function 6(z) as an entire function of zy, .. ., Zg satisfying the
transformation law (5.7) (this condition determines 6(z) uniquely to within a factor).

The theta-function is an analytic multivalued function on the g-dimensional torus T8 = C8/{N+
MB}. In order to construct single valued functions, i.e. meromorphic functions on the torus, one
can take for example, for any two vectors ej, e, € C8 the product

O(z+e1)0(z—e1)
O0(z+e)0(z—e)
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Indeed the above expression is by (5.7) a single valued function on the g-dimensional torus. In
general for any two sets of ¢ vectors ey, ...e, € C$,vy,...0, € C? satisfying the constraint

e1+...g=0, v1+...0,=0

the product

is a meromorphic function on the torus (verify this!).
Let p and g be arbitrary real g-dimensional row vectors. We define the theta function with
characteristics p and g:

0[p.q](z)

exp (ni{pB, p) + 2mi(z + q,p)) O(z + q + pB)

2 exp (ti{(N + p)B,N + p) + 2ni{z + q,N + p)) . (5.9)
Nezs

For p = 0 and g = 0 we get the function 6(z). The analogue of the law (5.7) for the functions
O[p, q](z) has the form

O[p,ql(z + K+ MB) = 0[p, q](z)exp [-ni{MB, M) — 2ri{M, z + q) + 2mi(K, p)]. (5.10)
Observe that all the coordinates of the characteristics p and q are determined modulo 1.

Definition 5.4. The characteristics p and q with all coordinates equal to 0 or 1/2 are called half periods. A
half period [p, q] is said to be even if 4(p,qy = 0 ( mod 2) and odd if 4(p,q) =1 ( mod 2).

Exercise 5.5: Prove that the function 6[p, g](z) is even if [p,g] is an even half period and odd if
[p,q] is an odd half period.

In particular the function 6(z) is even. For e = g + Bp with 4(p,4) = 1 ( mod 2) one has
O(e) = 0.

Example 5.6. For ¢ = 1 the theta-function reduces to the Jacobi theta-function. Let 7 be an
arbitrary number with It > 0. The Jacobi theta function is defined by the series

0(z;7) = Z exp (mitn® + 2minz) . (5.11)

—oo<n<ao
Since
lexp (ritn® + 2minz)| = exp (—nItn* — 2nnJz))

the series (5.11) converges absolutely and uniformly in the strips |J(z)| < const and defines an
entire function of z.
The series (5.11) can be rewritten in the form common in the theory of Fourier series:

0(z) = Z exp (rtitn®)e?™ =" (5.12)

—o0o<n<oo
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(the function 93(z; 7)) in the standard notation; see [[3]). The function 6(z) has the following
periodicity properties:
0(z+1) =0(2) (5.13)
0(z + 1) = exp(—mit — 2miz)6(z) (5.14)

The integer lattice with basis 1 and 7 is called the period lattice of the theta function. The remaining
Jacobi theta-functions are defined with respect to the lattice 1, T = b/2mi as

‘91(2;,[)::@[%/%](2): 2 explni’[<n+%)2+2ni(z+%> (n—i—%)]

—0<n<oo

9(z; 7) 1= 3[%,0](2) = Z exp lm’r (n + %)2 + 2miz (n + %)]

—oo<n<oo
4(z; 1) = 0[0, 5](2) = Z exp [m’mz + 2mi (z + 1) n] )
2 —o0o<n<oo 2

The functions 9,(z; 1), 93(z; 1) and 94(z; 1) are even functions of z while 9;(z; 7) is odd. So for
1+

g =1, the theta-function 6(z; ) = 93(z; 7) = 0 forz =

Exercise 5.7: Prove that the zeros of the function 6(z) form an integer lattice with the same basis
1+7

2

By multiplying theta function (5.9) we obtain higher order theta functions. The function f(z)
is said to be a nth order theta function with characteristics p and g if it is an entire function of
z1,...,Z¢ and transforms according to the following law under translation of the argument by a
vector of the period lattice

1, 7 and with origin at the point zy =

f(z+ N+ MB) = exp [-nin{MB, M) — 2niin{M, z + q) + 2ni{p, N)] f(z). (5.15)

Exercise 5.8: Prove that the nth order theta functions with given characteristics g, p form a linear
space of dimension né. Prove that a basis in this space is formed by the functions
_|_
601", ql(nz; nB), (5.16)

where the coordinates of the vector y run independently through all values from 0 to n — 1.

Under a change of the homology basis a1, ..., a; and By, ..., B, under a symplectic transforma-

tion (g:) _ (i Z) (g) , (Z Z) € Sp(28, 7).

The period matrix transforms as (see 4.77)

B = f w' = (clg + dB)(alg + bB) .
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Denote by R the matrix
R =al; + bB (5.17)

The transformed values of the argument of the theta-function and of the characteristics are deter-
mined by

z=12R

PN _(d =\ (p\, K 1, [cd (5.18)
<Q’>(—b ﬂ)<Q>+§dlag <abt)'

Here the symbol diag means the vectors of diagonal elements of the matrices ab’ and cd’. We have
the equality

Olp’,q'1(z'; B') = x VdetRexp { 221 ]8logdetR} Olp,q](z; B), (5.19)

i<j
where ) is a constant independent from z and B. See [18] for a proof.

Exercise 5.9: Prove the formula (5.19) for g = 1. Hint. Use the Poisson summation formula (see

[19],[18]: if
= in Jf(x)e”gxdx

is the Fourier transform of a sufficiently nice function f(x), then

o0

Z (2mn) Z f(n)

n=—aoo n=—auoo

Theta function are connected by a complicated system of algebraic relations, which are called
addition theorems. These are basically relations between formal Fourier series (see [18]). We
present one of these relations. Let

Oln](z:B) = 6[3,0(22; 2B),

according to (5.16) this is a basis of second order theta functions.

Lemma 5.10. The following identity holds:

0z +w)0(z—w) = Y. O[n](z)0[n](w). (5.20)

ne(Zy)$

The expression n € (Z,)¢ means that the summation is over the g-dimensional vectors n whose
coordinates all take values in 0 or 1.

Proof. Let us first analyze the case ¢ = 1. The formula (5.20) can be written as

0(z + w)0(z — w) = O(z)0(w) + O[1](2)0[1](w) (5.21)
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where A
0(z) = Z:exp(m'bk2 + 2mikz), O(z) = Z exp(2mibk® + 4mikz),
k k

0[1](z) = > exp( [mm(% + k)% + 4mi(k + 1/2)2] , () > 0.
k
The left-hand side of (5.21) has then the form

D lexp [mib(k? + ) + 2mik(z + w) + 2mil(z — w)] . (5.22)
k1

We introduce new summation indices m and n by setting m = (k +1)/2 and n = (k —)/2. The
numbers m and #n simultaneously are integers or half integers. In these variables the sum (5.22)
takes the form

Z exp[2nibm? + dnimz + 2mibn® + 4minw]. (5.23)

We break up this sum into two parts. The first part will contain the terms with integers m and n,
while in the second part m and n are both half-integers. In the second part we change the notation
from m to m + % and from 1 to n + 3. Then m and n are integers, and the expression (5.19) can be
written in the form

Z exp[2mibm? + 4nimz] exp[2mibn® + 4minw]+
mnez.
‘ 1, ‘ 1 . 1, . 1
Z exp|[2mib(m + E) + 4mi(m + E)z] exp[2nib(n + 5) +4mi(n + E)w] =
mmnez.

0(2)0(w) + 0[1](2)0[1] (w).

The lemma is proved for ¢ = 1. In the general case g > 1 it is necessary to repeat the arguments
given for each coordinate separately. The lemma is proved. m]

O B//
where B’ and B” are k x k and [ x | Riemann matrices, respectively with k + [ = g. Prove that the
corresponding theta function factors into the product of two theta function

!
Exercise 5.11: Suppose that the Riemann matrix B has a block-diagonal form B = (B 0 >,

0(z; B) = 0(z ; B)O(z"; B"),
, Py (5.24)
z=(21,..-,2¢), 2 =(21,--.,%), 2" = (Zk41,---,%¢)-

Notte that the period matrix of a Riemann surface never has a block diagonal structure.

5.2.1 The Riemann theorem on zeros of theta functions and its applications

To solve the Jacobi inversion problem we use the Riemann 6-function 6(z) = 6(z; B) on the
Riemann surface I As usual we assume that ay,...a; and f,..., B, is a canonical homology
basis. The basis of holomorphic differentials wy, ..., w, is normalized

f wk = Ojt, J @y = Bi.
aj B

]
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Even though O(z | B) is not single-valued on J(I'), the set of zeros is well defined because of (5.7).
The set of zeros of 0(z | B) is an analytic set of codimension one in J(I'). Lete = (ey, ..., ¢e;) € C8 be
a given vector. We consider the function F : I' — C defined as

F(P) = O(A(P) —e), (5.25)

P P
J wl,...,f a)g>,
PO po

is a holomorphic map of maximal rank of I into J(I'). Because of the periodicity properties of the
theta-function (5.7), the function F(P) transforms in the following way:

where the Abel map A
aw) - (

o F(P+aj) = F(P) (5.26)

P
. F(P + ﬁ]) = F(P) exp [RZB” — ZRIJ Wj + 27'(i€]'] . (527)
Py

The study of the zeros of F(P) is thus the study of the intersection of A(T') = J(I') with the set of
zeros of O(z; B) which form a well defined compact analytic sub-variety of the torus J(I'). Since
I' is compact, there are only two possibilities. Either F(P) is identically zero on I or else F(P) has
only a finite number of zeros. The function F(P) is single-valued and analytic on the cut surface T
(the Poincaré polygon). Assume that it is not identically zero. This will be the case if, for example
O(e) #0.

Lemma 5.12. IfF(P) % O, then the function F(P) has g zeros on T (counting multiplicity).

Proof. To compute the number of zeros it is necessary to compute the logarithmic residue

1
i § dlog F(P) (5.28)
or

(assume that the zeros of F(P) do not lie on the boundary of dI'). We sketch a fragment of oI (cf.
the proof of lemma 4.15). The following notation is introduced for brevity and used below: F*
denotes the value taken by F at a point on ¢ lying on the segment ay or f and F~ the value of F
at the corresponding point a,” Lor By ! (see the figure 5.1).

The notation u™ and u~ has an analogous meaning. In this notation the integral (5.28) can be
written in the form

1 18 . _
%fﬁdlogF(P) = E}; <Lk +Lk> [dlog F* —dlog F]. (5.29)
or -

Note that if P is a point on ay then

u]f(P)=u].+(P)+j a)j=u;f(P)+B]~k, j=1,...,g, (5.30)

k
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Figure 5.1: A fragment of T.

(cf. (4.11)), while if P lies on B, then

u;”(P) =u}.‘(P)+J wj=u; (P)+ 05, j=1,..8 (5.31)
273

(cfr. (4.12)). We get from the law of transformation (5.7) of the theta function or from (5.27), that
for P on the cycle ay one has

log F~ (P) = —miBy — 2miu (P) + 2mie; + log F* (P); (5.32)

while on the cycle i from (5.26) one has

logFt =logF~. (5.33)
From this on ay
dlog F~(P) = dlog F* (P) — 2miw(P), (5.34)
and on fi
dlogF~(P) = dlog F*(P). (5.35)

Accordingly, from (5.34) and (5.34) the sum (5.29) can be written in the form
1
i ﬂgdlogF = Zk]§wk =g
or ag

where we have used the normalization condition §, @ = 1. The lemma is proved o

Note that although the function F(P) is not a single-valued function on T, its zeros Py, ..., P,
do not depend on the location of the cuts along the canonical basis of cycles. Indeed, if this basis
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cycles is deformed then the path of integration from Py to P can change in the formulas for the
Abel map. A vector of the form (<§y w1, .-, §y wy) is added to the argument of the theta-function
6(z) in (5.25). This is a vector of period lattice {N + MB}. As a result of this the function F(P) can
only be multiplied by a non zero factor in view of (5.7).

Now we will show now that the g zeros of F(P) give a solution of the Jacobi inversion problem
for a suitable choice of the vector e.

Theorem 5.13. Let e € C8, suppose that F(P) = O(A(P) —e) # 0and P1,..., Py are its zeros on I'. Then
on the Jacobi variety J(I')
A8(Py,...,Py) =e+ K, (5.36)

where K = (K1, ..., Ky) is the vector of Riemann constants,

1+B P
K= — ”+Z(j€ J a)]), i=1,...,% (5.37)
Py

I#j a

Proof. Consider the integral
1

This integral is equal to the sum of the residues of the integrands i.e.,
Ci=uj(Py) + - +u(Py), (5.39)

where Py, ..., P, are the zeros of F(P) of interest to us. On the other hand, this integral can be
represented by analogy with the proof of Lemma 5.12 in the form

]—Ziig J) ufdlogF* —u; dlogF))

1< .
= 5.7 Z J *dlogl—ﬂr (u;r + Bji)(dlog F* — 2miawy)]
8
ZJ erlogFJr (uf i Ojx)dlog F*]
2nz [ 2mu Wk — ]kf dlog F* + ZmB]k] + —J dlogF*,

in the course of computation we used formula (5.30)-(5.35). The function F takes the same values
at the endpoints of «ay, therefore

J- dlog Ft = 2miny,
a

where 7 is an integer. Further let Q; and @) j be the initial and terminal point of ;. Then

dlogF* =log F"(Q;) —log F*(Qj) =
Bj

= log Q(A(Q]' + ﬁ]) —e) — log G(A(Q]) —e) = —ﬂiBjj + 27'(i€]' — Zniu]-(Q,-),
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The expression for (; can now be written in the form
Cj = Ll]‘(Pl) +-+ Mj(P]') =

1 5.40
=ej— EB]']'—M]'(Q]‘)—FZL ujwk+ZB]-k(—nk+l). ( )
kYo% k

The last two terms can be thrown out, they correspond to the j-coordinate of some vector of the
period lattice. Thus the relation (5.40) coincides with the desired relation (5.36) if it is proved that
the constant in this equality reduces to (5.37), i.e.

1 ,
7§B]]7MJ(Q])+ZJ ujwk=7(j, ]=1,...,g.
koY
To get rid of the term u;(Q;) we transform the integral

1
fusor = 302Q) )
aj
where R; is the beginning of a; and Q); is its end (which is also the beginning of b;). Further
uj(Q;) = uj(R;j) + 1. We obtain
1
jgujwf = 512uj(Q) — 1],
aj

hence
g

1 8
_uj(Q]') + EJ Ujwy = —5 + 2 UjWk.
Qg

k=1 ke jk=1" %
The theorem is proved. o

Remark 5.14. We observe that the vector of Riemann constant depends on the choice of the base
point Py of the Abel map. Indeed let Kp, be the vector of Riemann constants with base point Py.
Then K, is related to Kp, by

Po
7(Q0 = Kp, + (g - 1)‘[ w. (5.41)

Example 5.15. The vector of Riemann constants can be easily calculated for hyperelliptic Riemann

surfaces. In particular let us consider the curve w? = [[>_,(z — z) of genus g = 2, and choose a

basis of cycles as indicated in the figure 5.2. A normal basis of holomorphic differentials has the

form )
L cpldz
w) - [ Tiza £ . i=12, (5.42)

where the constants cj; are uniquely determined by

J a)]‘ = 5jk~
Qak
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Bl

Figure 5.2: Homology basis.

We chose as base point of the Abel map the point Py = (o0, 00). We need to compute

fwa(P)JP]:wl ’ j;wl(P)Liwz

2 1

Using the fact that
P Z4 Z4 (z,w) Z4 (z,—w)
i;wz(P) J Wy = fﬁwz(P)f w1 + J. w(z,w) J w1 — J- wy(z, —w) J w1
o Py o Py z3 Zy 23 Z4

one obtains

In the same way calculating

P Zp 2 (z,w) 2 (z,—w)
fﬁwl(P)J Wy = %(ul(P)J CL)2+J- a)l(z,w)J a)z—f a)l(z,—w)f w7
Py Py Z1 ¥4) Z 22

aq ai

22
= jgwl(P)f wy = —Byn /2
M Py

one obtains that
_ 1+ By + By

2

Observe that the vector K can be written in the form

1 11
K = (O,E) + (E,E)B

i =
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Namely, given the odd characteristic

(). - 63)
one has that K = g + pB. From this expression it follows that
6(K) = 0.
It is a general result not restricted to this particular example that 6(z)|,—« = 0.
Corollary 5.16. Let D a positive divisor of degree g. If the function
6(A(P) — A(D) + K)
does not vanish identically on I then its divisor of zeros coincides with D.

Accordingly, if the function 6(A(P) — e) is not identically equal to zero on I', then its zeros give
a solution of the Jacobi inversion problem (5.5) for the vector = ¢ + K. We have shown that the
map (5.4) A : ST — J(T') is a local homeomorphism in a neighborhood of a non special positive
divisor D of degree g. Since 6(z) # 0 for z € J(T'), then 8(A%(D)) does not vanish identically on
open subsets of SST. In the next subsection, we characterize the zero set of the 0-function. The
zeros of the theta-function form an analytic subvariety of J(I'). The collection of these zeros forms
the theta divisor in J(T').

5.3 The Theta Divisor

In this section we study the set of zeros of the theta functions and in particular the Riemann
vanishing theorem which prescribes in a rather detail manner the set of zeros of the theta-function
on C8.

Theorem 5.17. Let e € C8, then O(e) = 0 ifand only ife = A(Dy_1) — K where Dq_1 is a positive divisor
of degree g — 1 and K is the vector of Riemann constants (5.37).

Remark 5.18. For D € S&~VT the expression A(D) — K does not depend on the base point of the
Abel map. The theorem 5.17 says that the theta-function vanishes on a ¢ — 1-dimensional variety
parametrized by ¢ — 1 points of I'. Defining A(S$7'T) = W,_; the theta function vanishes on
We_1 — K.

g

Proof. We first prove sufficiency. Let P; + - - - 4+ P, be a non special divisor and v = A(Py + --- +
Py) — K. Let us consider F(P) = O(A(P) —v). Either F is identically zero or not. In the former case
foreachk=1,...¢

F(Py) = O0(A(Py + -+ + P+ + Pg) —K) =0,

where we use the symbol P to mean that P does not appear in the divisor. So for e = A(P; +
o4 P+ + Pg) — K we have 0(e) = 0.

In the latter case F(P) # 0, we have that F has precisely g zeros on I' due to lemma 5.12. Let
Q1,...Qq be the zeros of F, then according to theorem 5.13 one has

AQi+ -+ Q) =v+K=AP1 + -+ Py).
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Since Py + --- + P is not special, it follows from the Riemann-Roch and the Abel theorems that
Qi+:+++Qq = P1+- - -+Pg. Therefore also in this case F(Px) = O(A(P1+ - +Px+--+Pg)—K) =0
fork = 1,..., g. Since the set of non-special divisor of degree g is dense in S®T, the divisors of the
form Py + -+ P+ + P¢ form a dense subset of S@=DT. Since the function 6(z) is continuous,
it follows that 0(z) is identically zero on W,_; — K, where in general W,, = J(T'), is the Abel image
of ST forn > 1.

Conversely, let O(e) = 0. Then by Jacobi inversion theorem, since 0 is not identically zero on
J(I'). Then there exists an integer s, 1 < s < g, so that

O(A(Dy — D) —e) =0, VDj,D,e 86T

but
O(A(D; —D;) —e) #0, D, Dy e SOT.

LetD; = P14+ -+ Psand Dy = Q1 + - - - + Qs where we assume that the points of the divisors are
mutually distinct. Now let us consider the function

F(P) = O0(A(P) + A(Py+ -+ DPs) —A(Q1 + -+ Qs) —¢)

Since F(P;) # 0, this function is not identically zero on I'. Therefore, by theorem 5.13 it has g zeros
on I'. These zeros are by construction Qy, ..., Qs plus some other ¢ — s points Ts1,...,Tg. By
theorem 5.13 one has

A+ + Qs+ T+ +T) —K=AQi+- + Q) —AP2+ -+ Ps) +e

or equivalently
e=APy+ -+ P+ Topr,+- -+ Tg) =K

which is a pointin W1 — K. O

Regarding the zeros of the theta-function it is possible to prove a little bit more then stated in
the previous theorems. Let D € S~VT and let e = A(D) — K. Then

mult,_.0(z) = (D).

where /(D) is the dimension of the space L(D). The proof of this identity can be found in [19].

Remark 5.19. The vector of Riemann constants has a characterisation in terms of divisors. Indeed
there is a non positive divisor A of degree ¢ — 1 such that its Abel image coincides with %, namely
A(A) = K. Furthermore let D be a positive divisor of degree g — 1, then the vector

e=AD)-K

is a zero of the theta-function, namely 6(e) = 0. By the parity of the theta-function one has
6(—e) = 0. It follows by theorem 5.17 that

—e=AD")-K
where D' is a positive divisor of degree ¢ — 1. Then summing up the two relations we obtain

2K =A(D +D")
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where D + D' is a positive divisor of degree 2¢g — 2. It can be proved that the divisor D + D is the
divisor of a holomorphic differential, namely the vector 2K is the Abel image of the divisor of a
differential. More precisely a divisor D is canonical if and only if A(D) = 2K (see [18] for a proof
of these results).

Using the characterization of the theta-divisor one can complete the description of the function
F(P).

Lemma 5.20. Let F(P) = O(A(P) — e) where e = A(D) — K, D € S®T and K the vector of Riemann
constants defined in (5.37). Then

1. F(P) = 0 iff the divisor D is special;

2. F(P) # 0iff dimQ(D) = 0, i.e. the divisort D is not special. In this last case D is the divisor of zeros
of F(P).

Proof. Let’s prove part 1. of the lemma. Let F(P) = 0, then by theorem 5.17 there is a positive
divisor D of degree ¢ — 1 so that

A(D) — K — A(P) = A(D) — K.

By Abel theorem, the identity holds if and only if D and D + P are linearly equivalent, that is there
is a meromorphic function in L(D) with a zero in an arbitrary point P € I'. This is possible only if
I(D) > 1 or equivalently dimQ(D) > 0, namely D is special. Conversely, if D € ST is special then
I(D) > 1 and therefore there is a function f € L(D) with an arbitrary zero in a point P € I so that
(f) = P+D—D. where D € S&~UT. It follows by Abel theorem that A(P)—A(D)+K = —A(D)+%K,
then by theorem 5.17, one has 6(A(D) — K) = 0.

Now let us prove part 2. of the lemma. Suppose now that D is not special, then F(P) # 0 and
by theorem 5.13, the divisors of zeros of F(P) coincides with D. O

Corollary 5.21. Let e = A(D) — K with D € S$™'T. Them the function F(P) = O(A(P) — e) vanishes
identically if and only if dimQ(D + Po) > 1 (Check!!) where Py is the base point of the Abel map.

Proof. Let Py be the base point of the Abel map, then A(P — Py) = A(P). Suppose F(P) = 0, then
by theorem 5.17 there exists a positive divisor D of degree ¢ — 1 such that

A(P = Pg) — A(D) + K = —A(D) + K

which implies that A(D + Py) = A(D + P). By Abel theorem, there is a nontrivial meromorphic
function h with divisor
(hy=D+P—D — Py

for all P € T'. This implies that /(D + Py) > 2 or equivalently, D + Py is a special divisor. Viceversa
suppose that dimQ(D + Py) = 1, then [(D + Py) > 1 so that L(D + Py) is generated by {1, i} where
h is a meromorphic function. So there is a nontrivial meromorphic function with poles in D + Py
and having zero in an arbitrary point P ( take for example the function & — h(P)) and some other
¢ — 1 points given by the divisor D. It follows that

A(D + Py) = A(D + P)



112 CHAPTER 5. JACOBI INVERSION PROBLEM AND THETA-FUNCTIONS

or equivalently

A(P = Pg) — A(D) + K = —A(D) — K

which implies by theorem 5.17 that 0 = 6(—A(D) — K) = 6(A(P — Py) — A(D) — K) = 6(A(P) —
A(D) — K) where we recall that Py is the base point of the Abel map. ]

The zeros of the theta function (the points of the theta divisor) form a variety of dimension
2¢—2 (for g = 3). If we delete from J(I'), the theta divisor, then we get a connected 2g-dimensional
domain. We get that the Jacobi inversion problem is solvable for all points of the Jacobian J(I') and
uniquely solvable for almost all points. Thus the collection (P4, ...,P,) = (A®)~(n)) of points
of the Riemann surface I' (without consideration of order) is a single valued function of a point
n = (mn,...ng) € J(I') (which has singularities at points of the theta divisor.) To find an analytic
expression for this function we take an arbitrary meromorphic function f(P) on I. Then the
specification of the quantities 1y, ..., 1y uniquely determines the collection of values

f(P1),..., f(Pg), AW(Py,...,Pg)=n. (5.3.43)

Therefore, any symmetric function of f(P1),..., f(P,) is a single-valued meromorphic function
of the g variables 7 = (11,...,1g), that is 2¢g-fold periodic with period lattice {2riM + BN}. All
these functions can be expressed in terms of a Riemann theta function. The following elementary
symmetric functions has an especially simple expression:

g
= Y f(Py). (5.3.44)
=1
From Theorem 5.36 and the residue formula we get for this function the representation

75(1) = 5 § F(PI10g O(AP) — 1+ %)
or (5.3.45)

> Res f(P)dlog 0(A(P) — 1 + %K),
f(Q=o0 "

the second term in the right hand side is the sum of the residue of the integrand over all poles if
f(P). As in the proof of Lemma 5.12 and Lemma 5.13, it is possible to transform the first term in
(5.3.45) by using the formulas (5.34) and (5.35). The equality (5.3.45) can be written in the form

" 2rmi ZJ f(PJox = >, Res f(P)dlog 0(A(P) — 1+ K). (5.3.46)
flax)=0
Here the first term is a constant independent of 1. We analyze the computation of the second term

(the sum of residue) using an example.

Example 5.22. T is an hyperelliptic Riemann surface of genus g given by the equation w? =
P3¢41(z), and the function f has the form f(z, w) = z, the projection on the z-plane. This function
on T has a unique two-fold pole at co. We get an analytic expression for the function o ¢ constructed
according to the formula (5.3.44). In other words if Py = (z1,w1), ..., Py = (z¢, wg) is a solution of
the inversion problem A(Py) + --- + A(P,) = 1, then

of(n) =z1+ - +2z. (5.3.47)
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We take o as the base point Py (the lower limit in the Abel mapping). According to (5.3.46) the
function o¢(n) has the form

04(n) = ¢ — Res [zd1og O(A(P) — 1 + K)].

Let us compute the residue. Take 7 = 271 as a local parameter in a neighborhood of o. Suppose
that the holomorphic differentials w; have the form w; = 1;(7)dt in a neighborhood of . Then

8
dlog 6(A(P) —n+K) = Z[log 9(A(P) — n + Kiwi(P) =

Il
_

[es

[log O(A(P) — 1 + K)]ii(T)dT

Il
—_

where |[...]; denotes the partial derivative with respect to the ith variable. By the choice of the
base point point Py = o, the decomposition of the vector-valued function A(P) in a neighborhood

of o has the form
A(P) = U + O(1?),

where the vector U = (Uy, ..., U,) has the form
Uj= 9,0, j=1....g
From these formulas we finally get
or(n) = —(log 6(n — K));,;jUilj + ¢ = =07 log O(xU + n — K)|x—0 + ¢, (5.3.48)

where (log 0( — K));; denotes derivative with respect to the i — th and j — th argument of the
theta-function and c is a constant.

We shall show in the next Section that the function

2
u(x, t) = %loge(wﬂ— Wt—n+%K)+c
1
where W, = 51,[}” (0) solves the Korteweg de Vries equation

1
U = Z(6uux + Uyyy)-

Exercise 5.23: Suppose that a hyperelliptic Riemann surface of genus g is given by the equation
w? = Ppgey(z). Denotes its points at infinity by P_ and P... Chose P_ as the base point Py of the
Abel mapping. Take f(z,w) = z as the function f. Prove that the function o¢(17) has the form

O(n—K—-A(P
ar(n) = (log (n a0 —7(5 +))> Uj+c (5.3.49)
j
where the vector U = (Uj, ..., U,) has the form
Up=v;(0), j=1...8 (5.3.50)

where the basis of holomorphic differentials have the form

w;i(P) = ¢Yj(t)dr, = z7l, P—om.
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Exercise 5.24: Let I' be a Riemann surface w? = Ps(z) of genus 2. Consider the two systems of
differential equations:

dz; Ps(z1)  dz Ps(zy)

el e M R S aid 3.51
dx z1—zp | dx Zp — 71 (5:3.51)
dzi  22+/Ps(z1)  dzy  z1+/Ps5(22)

dn 2y dn  ayisE) (5.3.52)
dt Z1 — Zp dt Z— 71

Each of these systems determined a law of motion of the pair of points

Py = (z1, 4/P5(z1)), P2 = (22, 1/ P5(22))

on the Riemann surface I. Prove that under the Abel mapping (5.1) these systems pass into the
systems with constant coefficients

dm o dm
dc« 7 dt
d171 dﬂz
R

In other words, the Abel mapping (5.1) is simply a substitution integrating the equations (5.3.51)
and (5.3.52).
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