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Chapter 1

Riemann surfaces

1.1 Definition of a Riemann surface and basic examples

In its broadest sense a Riemann surface is a one dimensional complex manifold that locally looks
like an open set of the complex plane, while its global topology can be quite different from the
complex plane. The main reason why Riemann surfaces are interesting is that one can speak of
complex functions on a Riemann surface as much as the complex function on the complex plane
that one encounters in complex analysis.

Elementary example of Riemann surfaces are the complex plane C, the disk

D “ tz P C, |z| ă 1u

or the upper half space
H “ tz P C, =pzq ą 0u.

B. Riemann introduced the concept of Riemann surface to make sense of multivalued functions
like the square root or the logarithm. For the geometric representation of multi-valued functions
of a complex variable w “ wpzq it is not convenient to regard z as a point of the complex plane. For
example, take w “

?
z. On the positive real semiaxis z P R, z ą 0 the two branches w1 “ `

?
z

and w2 “ ´
?

z of this function are well defined by the condition w1 ą 0. This is no longer possible
on the complex plane. Indeed, the two values w1, 2 of the square root of z “ r eiψ

w1 “
?

r ei ψ2 , w2 “ ´
?

r ei ψ2 “
?

rei ψ`2π
2 , (1.1)

interchange when passing along a path

zptq “ r ei pψ`tq, t P r0, 2πs

encircling the point z “ 0. It is possible to select a branch of the square root as a function of z by
restricting the domain of this function for example, by making a cut from zero to infinity. Namely
the function

?
z is single-valued in the cut plane Czr0,`8q. Riemann’s idea was to combine the

two branches of the function
?

z in a geometric space in such a way that the function is well
defined and single-valued. The rules are as follows: one has to take two copies of the complex
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6 CHAPTER 1. RIEMANN SURFACES

plane cut along the positive real axis and join the two copies of the complex plane along the cuts.
The different sheets have to be glue together in such a way that the branch of the function on one
sheet joins continuously with the branch defined on the other sheet. The result of this operation
is the surface in figure 1.1.

Figure 1.1: The two branches of the function
?

z

Note that such surface can be given for pw, zq P C2 as the zero locus

Fpz,wq “ w2 ´ z “ 0.

A similar procedure of cutting and glueing can be repeated for any other analytic function. For
example the logarithm log z is a single valued function on Czr0,`8qwith infinite branches. Each
adjacent branch differs by an additive factor 2πi. The infinite branches attached along the positive
real line are shown in the figure 1.2.

Next we will give a more abstract definition of a Riemann surface and we will show how the
surface defined by the graph of a multivalued function fits in this definition.

Let us recall that a Hausdorff topological space is a space such that distinct points have distinct
open neighbourhoods. We begin with some general facts about topological spaces and differential
geometry.

Definition 1.1. A complex manifold of dimension n is a Hausdorff topological space M with a collection
of pairs tpUα, φαquαPA where Uα Ă M is an open set in M and φα : Uα Ñ Cn such that

1. φαpUαq is open in Cn and φα : Uα Ñ φαpUαq is one-to-one, i.e. φα is a homeomorphism.

2. The sets Uα are a covering of M
ď

αPA

Uα “ M (1.2)

3. If Uα,β :“ Uα XUβ ,H then both φαpUα,βq and φβpUα,βq are open sets in Cn and

Gα,β :“ φβ ˝ φ´1
α : φβpUα,βq Ñ φαpUα,βq (1.3)

are analytic functions of all the respective variables.
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Figure 1.2: The infinite branches of the function log z

The maps φα are called local coordinates, the sets Uα are called local charts. The functions Gα,β are
called transition functions.

To define a real Ck´smooth n-dimensional manifold, one has to replace Cn with Rn and the
transition functions are Ck´ smooth in their respective variables. A complex n-dimensional
manifold is also a real C8 manifold of dimension 2n.

Given two collections of local coordinate-charts tφα,Uαuα and tψβ,Vβuβ, we say that they are
equivalent if their union still defines a (real/complex) manifold structure. The equivalence classes
of local coordinate-charts rtpUα, φαquαs are called atlases (or conformal structure in the complex
case).

• The manifold M is orientable if the transition map pz1, . . . , znq Ñ pG1pzq, . . . ,Gnpzqqhas positive

Jacobian determinant det
ˆ

BG jpzq
Bzk

˙

ą 0.

• The manifold is compact if it has an atlas made of a fine number of bounded open sets.

We will be concerned with manifolds of complex dimension 1 and hence the local charts zα “
φαppq will be complex valued functions and the transition functions are bi-holomorphic, namely,
holomorphic with inverse holomorphic. The equivalence class of complex atlas is called a complex
structure.

With the definition of complex structure we can define a Riemann surface in the equivalent
way.

Definition 1.2. A Riemann surface Γ is a connected one-complex dimensional analytic manifold, or a two
real dimensional connected manifold with a complex structure on it.

Let φ and φ̃ be two local homeomorphism from two open sets U and rU of Γ with U X rU ,H.
Let P and P0 two points in UX rU and denote by z “ φpPq and w “ φ̃pPq the two local coordinates
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with z0 “ φpP0q and w0 “ φ̃pP0q. Then the holomorphic transition function T “ φ ˝ φ̃´1 must be
of the form

z “ Tpwq “ Tpw0q `
ÿ

ką0

akpw´ w0q
k, a1 , 0 (1.4)

with holomorphic inverse

w “ T´1pzq “ T´1pz0q `
ÿ

ką0

bkpz´ z0q
k, b1 , 0,

namely the linear coefficient of the above Taylor expansions near the point w0 or z0 is necessarily
nonzero.

Remark 1.3. If Γ is a Riemann surface, then it is orientable. Indeed let P and P0 be two points
in U X rU and denote by z “ φpPq and w “ φ̃pPq the two local coordinates with z0 “ φpP0q and

w0 “ φ̃pP0q. Then
dw
dz
, 0 near z “ z0. Switching to real coordinates z “ x` iy and w “ u` iv we

have, by Cauchy-Riemann equations, ux “ vy and uy “ ´vx and

dw
dz
“ ux ´ iuy,

dw
dsz
“ ux ` iuy,

so that the Jacobian of the coordinates change takes the form

det

¨

˚

˝

Bu
Bx

Bu
By

Bv
Bx

Bv
By

˛

‹

‚
“ uxvy ´ uyvx “

ˇ

ˇ

ˇ

ˇ

dw
dz

ˇ

ˇ

ˇ

ˇ

2

ą 0

which is non zero in the neighborhood of any point z0 P Γ.

Example 1.4. Elementary examples of Riemann surfaces

(a) The complex plane C. The complex atlas is define by one chart that is C itself with the
identity map.

(b) The extended complex plane sC “ CY8. The complex plane C with one extra point8. We
make sC into a Riemann surface with an atlas with two charts:

U1 “ C

U2 “
sCzt0u,

with φ1 the identity map and

φ2pzq “
"

1{z, for z P Czt0u
0, for z “ 8.
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1.1.1 Affine plane curves

Let us consider a polynomial Fpz,wq “
řn

i“0 aipzqwn´i of two complex variables z and w. The zero
set Fpz,wq defines a n-valued function w “ wpzq. The basic idea of Riemann surface theory is to
replace the domain of the function wpzq by its graph

Γ :“ tpz,wq P C2 | Fpz,wq “
n
ÿ

i“0

aipzqwn´i “ 0u (1.5)

and to study the function w as a single-valued function on Γ rather then a multivalued function
of z. As in the example of

?
z, the multivalued function w “ wpzq “

?
z becomes a single-valued

function w “ wpPq of a point P of the algebraic surface Γ: if P “ pz,wq P Γ, then wpPq “ w (the
projection of the graph on the the w-axis). From the real point of view the algebraic curve (1.5) is
a two-dimensional surface in C2 “ R4 given by the two equations

<Fpz,wq “ 0
=Fpz,wq “ 0

*

.

In the theory of functions of a complex variable one encounters also more complicated (nonalge-
braic) curves, where Fpz,wq is not a polynomial. For example, the equation ew ´ z “ 0 determines
the surface of the logarithm or sin w ´ z “ 0 determines the surface of the arcsin. Such surfaces
will not be considered here.

Definition 1.5. An affine plane curve Γ is a subset in C2 defined by the equation (1.5 ) where Fpz,wq is
polynomial in z and w. The curve Γ is nonsingular if for any point P0 “ pz0,w0q P Γ the complex gradient
vector

gradCF|P0 “

ˆ

BFpz,wq
Bz

,
BFpz,wq
Bw

˙
ˇ

ˇ

ˇ

ˇ

pz“z0,w“w0q

does not vanish. If the polynomial Fpz,wq is irreducible, the curve Γ is called irreducible affine plane curve.

Remark 1.6. A non trivial theorem states that an irreducible affine plane curve is connected (see
Theorem 8.9 in O. Forster, Lectures on Riemann surfaces, Springer Verlag 1981).

In order to define a complex structure on Γ we need the following complex version of the
implicit function theorem.

Lemma 1.7. [Complex implicit function theorem] Let Fpz,wq be an analytic function of the variables z and
w in a neighborhood of the point P0 “ pz0,w0q such that Fpz0,w0q “ 0 and BwFpz0,w0q , 0. Then there
exists a unique function φpzq such that Fpz, φpzqq “ 0 and φpz0q “ w0. This function is analytic in z in
some neighborhood of z0.

Proof. Let z “ x ` iy and w “ u ` iv, F “ f ` ig. Then the equation Fpz,wq “ 0 can be written as
the system

"

f px, y,u, vq “ 0
gpx, y,u, vq “ 0 (1.6)
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The condition of the real implicit function theorem are satisfied for this system: the matrix
¨

˚

˚

˚

˝

B f
Bu

B f
Bv

Bg
Bu

Bg
Bv

˛

‹

‹

‹

‚

pz0,w0q

is nonsingular because

det

¨

˚

˚

˚

˝

B f
Bu

B f
Bv

Bg
Bu

Bg
Bv

˛

‹

‹

‹

‚

“

ˇ

ˇ

ˇ

ˇ

BF
Bw

ˇ

ˇ

ˇ

ˇ

2

ą 0,

( we use only the analyticity in w of the function Fpz,wq). Thus, in some neighbourhood of
pz0,w0q there exist a smooth function φpz,szq “ φ1px, yq ` iφ2px, yq such that Fpz, φpz,szqq “ 0, with
φpz0,sz0q “ w0. Differentiating with respect to sz

0 “
d
dsz

Fpz, φpz,szqq “ Fw
d
dsz
φpz,szq.

Since Fw , 0, the above relation implies that
d
dsz
φpz,szq “ 0 which shows that φpzq is an analytic

function of z. �

Remark 1.8. A constructive way of obtaining the function φpzq is to apply the Residue Theorem.
Indeed let us consider the function Fpz,wq where z is treated as a parameter. Let D0 be a small
disk around w0 where Fpz0,w0q “ 0 and Fwpz0,wq|w“w0 , 0. Then the number of solutions of the
equation Fpz0,wq “ 0 counted with multiplicity is given by the integral

1
2πi

ż

BD0

Fwpz0,wq
Fpz0,wq

dw,

where BD0 is the boundary of D0. We assume D0 sufficiently small so that the equation Fpz0,wq “ 0
has only the solution w0 in the closure of D0. Then the above integral is equal to one. Furthermore
by the residue theorem one has

1
2πi

ż

BD0

w
Fwpz0,wq
Fpz0,wq

dw “ w0.

By continuity, for z sufficiently close to z0 there is a disk D centred at w such that the equation
Fpz,wq “ 0 has only one solution w “ φpzq in the closure of D and

1
2πi

ż

BD
w

Fwpz,wq
Fpz,wq

dw “ φpzq,

where φpz0q “ z0 and Fpz, φpzqq “ 0. Clearly the function φpzq is an analytic function of z.

Theorem 1.9. Let Γ be an irreducible affine plane curve defined in (1.5). If Γ is non singular, then Γ is a
Riemann surface.



1.1. DEFINITION OF A RIEMANN SURFACE AND BASIC EXAMPLES 11

Proof. Γ is connected since Fpz,wq is irreducible. Let us define a complex structure on Γ. Let

P0 “ pz0,w0q be a nonsingular point of the surface Γ. Suppose, for example, that the derivative
BF
Bw

is nonzero at this point. Then by the lemma 1.7, in a neighborhood U0 of the point P0, the surface
Γ admits a parametric representation of the form

pz,wpzqq P U0 Ă Γ, wpz0q “ w0, (1.7)

where the function wpzq is holomorphic. Therefore, in this case z is a complex local coordinate
also called local parameter on Γ in a neighborhood U0 of P0 “ pz0,w0q P Γ. For this kind of local
coordinate, the transition function is the identity.

Similarly, if the derivative
BF
Bz

is nonzero at the point P0 “ pz0,w0q, then we can take w as
a local parameter (an obvious variant of the lemma), and the surface Γ can be represented in a
neighborhood U0 of the point P0 in the parametric form

pzpwq,wq P Γ, zpw0q “ z0, (1.8)

where the function zpwq is, of course, holomorphic. For a local parameter of this second kind the
transition function is the identity map. For a nonsingular surface it is possible to use both ways
for representing the surface on the intersection of domains of the first and second types, i.e., at

points of Γ where
BF
Bw
, 0 and

BF
Bz
, 0 simultaneously. The resulting transition functions w “ wpzq

and, z “ zpwq are holomorphic and invertible. �

The preceding arguments show that such Riemann surfaces are complex manifolds (with
complex dimension 1).

The Riemann surface Γ in (1.5) is realized as an n-sheeted covering of the z-plane. The precise
meaning of this is as follows: let π : Γ Ñ C be the projection map from Γ to the complex z-plane
given by

πpz,wq “ z. (1.9)

Then for almost all z the preimage π´1pzq consists of n distinct points

pz,w1pzqq, pz,w2pzqq, , . . . pz,wnpzqq, (1.10)

of the surface Γ where w1pzq, . . . ,wnpzq are the n roots of (1.5) for a given value of z. For certain
values of z, some of the points of the preimage can merge. This happens at the ramifications
points pz0,w0q of the Riemann surface where the partial derivative Fwpz,wq vanishes (recall that
we consider only nonsingular curves so far). The point z0 P C is called branch point and it is
determined by the system of equations

Fpz0,wq “ 0
Fwpz0,wq “ 0

*

. (1.11)

For solving such system, we introduce the concept of resultant.

Definition 1.10. Let f pzq “ an ` an´1z ` ¨ ¨ ¨ ` a0zn and gpzq “ bm ` bm´1z ` ¨ ¨ ¨ ` b0zm be two
polynomials of degree n and m respectively with ai, b j P C with a0 , 0 and b0 , 0. The resultant Rp f , gq
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is given by the determinant of the pn`mq ˆ pn`mq matrix

Rp f , gq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

an an´1 . . . a0 0 0 . . . 0
0 an an´1 . . . a0 0 0 . . . 0
. . . . . . . . .
0 0 . . . . . . an an´1 a2 . . . a0

bm bm´1 . . . . . . b1 b0 0 . . . 0
0 bm bm´1 . . . . . . b1 b0 0 . . . 0
. . . . . . . . .
0 . . . bm bm´1 . . . . . . b1 b0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.12)

Lemma 1.11. Rp f , gq “ 0 if and only if f and g have a common zero.

Proof. The polynomials f and g have a non constant common root rpzq if and only if there exists
polynomials ψpzq and φpzq such that f pzq “ rpzqψpzq and gpzq “ rpzqφpzq. Here ψ and φ are
polynomials of degree n´ 1 and m´ 1 respectively. This implies that

f pzqφpzq “ gpzqψpzq (1.13)

where
φpzq “ α0 ` α1z` . . . αm´1zm´1

and
ψpzq “ β0 ` β1z` ¨ ¨ ¨ ` βn´1zn´1,

for some complex coefficients α0, . . . , αm´1 and β0, . . . , βn´1. Then (1.13) can be considered a system
of equations for the coefficients α0, . . . , αm´1 and β0, . . . , βn´1. The solvability of such a system is
equivalent to the vanishing of the determinant (1.12). �

Lemma 1.12.
Rp f , gq “ am

n bn
m

ź

pµ j ´ νkq

where µ j and νk are the roots of the polynomials f and g respectively.

For a proof of this lemma see [14].
The solutions of the system (1.11) are obtained by calculating the resultant of Fpz,wq and

Fwpz,wq. Such quantity coincides with the discriminant of Fpz,wq with respect to w. It can be
computed as the determinant of a p2n´ 1q ˆ p2n´ 1q matrix constructed from the coefficients of
the polynomials

F “ a0wn ` a1wn´1 ` ¨ ¨ ¨ ` an´1w` an

and
Fw “ n a0wn´1 ` pn´ 1qa1wn´2 ` ¨ ¨ ¨ ` an´1,

namely

RpF,Fwqpzq “ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a0 a1 a2 . . . an´1 an 0 . . . 0
0 a0 a1 . . . . . . an´1 an . . . 0
. . . . . . . . . . . . . . .
0 0 . . . . . . . . . an´1 an

na0 pn´ 1qa1 pn´ 2qa2 . . . an´1 0 . . . . . . 0
0 na0 pn´ 1qa1 . . . 2an´2 an´1 0 . . . 0

. . . . . . . . .
0 0 . . . . . . . . . 2an´2 an´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.14)
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From lemma 1.12, the discriminant is also equal to

RpF,Fwqpzq “ p´1q
npn´1q

2

n
ź

i“1

n´1
ź

j“1

pwipzq ´ w̃ jpzqq (1.15)

where wipzq, i “ 1, . . . ,n, are the roots of the polynomials Fpz,wq and rw jpzq, j “ 1, . . . ,n´ 1, are the
roots of the polynomials Fwpz,wqwhere z is considered as a parameter. Note that the total number
of branch points is finite since RpF,Fwq is a polynomial in z of finite degree.

The choice of the variables z or w as a local parameter is not always the most convenient. We
shall also encounter other ways of choosing a local parameter τ so that near the point pz,wq the
curve Γ can be represented locally in the form

z “ zpτq, w “ wpτq (1.16)

where zpτq and wpτq are holomorphic functions of τ, and
ˆ

dz
dτ
,

dw
dτ

˙

, p0, 0q. (1.17)

We study the structure of the mappingπ in (1.10) in a neighborhood of a branch point P0 “ pz0,w0q

of Γ defined in (1.5). Let τ be a local parameter on Γ in a neighborhood of P0. It will be assumed
that zpτ “ 0q “ z0, wpτ “ 0q “ w0. Then

z “ z0 ` akτ
k `Opτk`1q, ak , 0

w “ w0 ` cqτ
q `Opτq`1q, cq , 0,

(1.18)

where ak and cq are nonzero coefficients. Since w can be taken as the local parameter in a neigh-
borhood of P0 it follows that q “ 1. We get a parametrization of the surface Γ in a neighborhood
of a branch point:

z “ z0 ` akτ
k `Opτk`1q,

w “ w0 ` b1τ`Opτ2q,
(1.19)

where k ą 1.

Definition 1.13. The number bzpPq “ k´ 1 is called the ramification number of the map π at P.

It is easy to check that such number does not depend on the choice of the local parameter.

Exercise 1.14: Let P0 “ pz0,w0q be a ramification point for the curve (1.5) with respect to the
projection pz,wq Ñ z. Suppose that the local parameter in the neighbourhood of P0 is of the form
(1.19) with k ą 1. Show that

d jFpz,wq
dw j

ˇ

ˇ

ˇ

ˇ

pz0,w0q

“ 0, j “ 0, . . . , k´ 1.

Exercise 1.15: Prove that the total multiplicity of all the branch points on Γ over z “ z0 is equal to
the multiplicity of z “ z0 as a root of the discriminant of the polynomial Fpz,wq.
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Exercise 1.16: A partition µ of an integer n is a collection of integers µ “ pµ1, . . . , µsq such that
řs

j“1 µ j “ n. If z0 is not a branch point, the pre-image π´1pz0q can be identified with the partition
p1, . . . , 1q
looomooon

n

. Suppose that z0 is a branch point and

π´1pz0q “ pP1, . . . ,Plq, l ă n,

with bzpP jq “ k j ´ 1. Show that such branch point can be identified with the partition pk1, . . . , klq.

Lemma 1.17. Let P0 “ pz0,w0q be a branch point of the Riemann surface Γ defined in (1.5) with respect to
the projection pz,wq Ñ z and let bzpP0q “ k ´ 1 its branching number. Then there are k functions w1pzq,
. . . , wkpzq analytic on a sector Sρ,φ of the punctured disc

0 ă |z´ z0| ă ρ, argpz´ z0q ă φ

for sufficiently small ρ and any positive φ ă 2π such that

Fpz,w jpzqq ” 0 for z P Sρ,φ, j “ 1, . . . , k.

The functions w1pzq, . . . , wkpzq are continuous in the closure sSρ,φ and

w1pz0q “ ¨ ¨ ¨ “ wkpz0q “ w0.

Proof. By the nonsingularity assumption Fzpz0,w0q , 0. So the complex curve Fpz,wq “ 0 can be
locally parametrized in the form z “ zpwqwhere the analytic function zpwq is uniquely determined
by the condition zpw0q “ z0. Consider the first nontrivial term of the Taylor expansion of this
function

zpwq “ z0 ` αkpw´ w0q
k ` αk`1pw´ w0q

k`1 ` . . . , k ą 1, αk , 0,

or equivalently

z´ z0 “ αkpw´ w0q
kp1`

αk`1

αk
pw´ w0q `Oppw´ wq2qq k ą 1, αk , 0.

Introduce an auxiliary function

f pwq “ βpw´ w0q

„

1`
αk`1

αk
pw´ w0q `O

`

pw´ w0q
2˘


1
k

“ βpw´ w0q

„

1`
αk`1

kαk
pw´ w0q `O

`

pw´ w0q
2˘


,

(1.20)

where the complex number β is chosen in such a way that βk “ αk. The function f pwq is analytic
for sufficiently small |w´w0|. Observe that f 1pw0q “ β , 0. Therefore the analytic inverse function
f´1 locally exists. The needed k functions w1pzq, . . . , wkpzq can be constructed as follows

w jpzq “ f´1
´

e
2πi p j´1q

k pz´ z0q
1{k
¯

, j “ 1, . . . , k, (1.21)

where we choose an arbitrary branch of the k-th root of pz´ z0q for z P Sρ,φ. �



1.1. DEFINITION OF A RIEMANN SURFACE AND BASIC EXAMPLES 15

Example 1.18. Elliptic and hyperelliptic Riemann surfaces have the form

Γ “ tpz,wq P C2 |Fpz,wq “ w2 ´Qnpzq “ 0u, (1.22)

where Qnpzq is a polynomial of degree n. These surfaces are two-sheeted coverings of the z-plane.
The non singularity condition implies that gradient vector gradCF “ p´Q1npzq, 2wq , p0, 0q at any
point of Γ. A point pz0,w0q P Γ is singular if

w0 “ 0, Q1npz0q “ 0. (1.23)

Together with the condition (1.22) for a point pz0,w0q to belong to Γ we get that

Qnpz0q “ 0, Q1npz0q “ 0, (1.24)

i.e. z0 is a multiple root of the polynomial Qnpzq. Accordingly, the surface (1.22) is nonsingular if
and only if the polynomial Qnpzq does not have multiple roots:

Qnpzq “
n
ź

i“1

pz´ ziq, zi , z j, for i , j. (1.25)

The curve Γ is called an elliptic curve for n “ 3, 4 and it is called hyperelliptic for n ą 4. The
ramification points of the surface with respect to the map πpz,wq Ñ z are determined by the two
equations

w2 “ Qnpzq, w “ 0,

which gives n ramification points Pi “ pz “ zi,w “ 0q, i “ 1, . . . ,n. All the ramification points
have multiplicity one. In a neighborhood of any point of Γ that is not a ramification point, one
can take z as a local parameter, and w “

a

qnpzq is a holomorphic function. In a neighborhood of
a ramification point Pi it is convenient to take

τ “
?

z´ zi, (1.26)

as a local parameter. Then near the ramification point Pi, the Riemann surface (1.22) has the local
parametrization

z “ zi ` τ
2, w “ τ

d

ź

j,i

pτ2 ` zi ´ z jq (1.27)

where w “ wpτq is a single-valued holomorphic function and dw{dτ , 0 for sufficiently small
values of τ.

Exercise 1.19: Consider the collection of n-sheeted Riemann surfaces of the form

Fpz,wq “
ÿ

i` jďn

ai jziw j, ai j P C, (1.28)

the so-called planar curves of degree n. Prove that for a general surface of the form (1.28) there
are npn ´ 1q branch points and they all have multiplicity 1. In other words, conditions for the
appearance of branch points of multiplicity greater than one are written as a collection of algebraic
relations on the coefficients ai j.
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1.1.2 Smooth projective plane curves

We recall the the projective space Pn is the quotient of Cn`1zt0u by the equivalence relation that
identifies vectors v and αv in Cn`1zt0u with α P C˚. Namely Pn “ Cn`1zt0u{C˚. The space P0

is a singly point, P1 can be thought as the complex plane C plus a single point 8 and it can
be identified with the Riemann sphere. P2 can be thought as C2 together with a line at infinity,
namely a copy of P1 and so on.

The projective line is the simplest example of a compact Riemann surface.

Definition 1.20. The projective plane P2 is the set of one-dimensional subspaces in C3 or equivalently
P2 “ C3zt0u{C˚. Let pX,Y,Zq be a nonzero vector in C3. A point in P2 is denoted by rX : Y : Zs and

rX : Y : Zs “ rλX : λY : λZs, λ , 0, λ P C

As a quotient space, P2 is endowed with the quotient topology. Indeed let the projection map
π : C3zt0u Ñ P2 be defined as

πpX,Y,Zq “ rX : Y : Zs.

Then we can give to P2 the quotient topology induced from C3zt0u, namely a subset U of P2 is
open if and only if π´1pUq is open in C3zt0u. As a topological space, P2 is a Hausdorff space,
namely two distinct points have disjoint open neighbourhoods.

Proposition 1.21. The space P2 is compact.

Proof. Let
S5 “ tpX,Y,Zq P C3 | |X|2 ` |Y|2 ` |Z|2 “ 1u.

Then S5 is a sphere of real dimension 5. It is a closed and bounded subset of C3 and by the
Heine-Borel theorem is compact. The restriction of πS5 : S5 Ñ P2 is continuos. The image of a
compact set under a continuous mapping is compact. Next let us show that πS5 is also surjective.
Let rX : Y : Zs P P2, then

|X|2 ` |Y|2 ` |Z|2 “ λ, for some λ ą 0.

Then we also have
rX : Y : Zs “ rλ´

1
2 X : λ´

1
2 Y : λ´

1
2 Zs.

Combining the above two relations one has that

|λ´
1
2 X|2 ` |λ´

1
2 Y|2 ` |λ´

1
2 Z|2 “ 1

so that rX : Y : Zs P πpS5q. Namely the map π : S5 Ñ P2 is surjective and continuos which implies
that P2 is compact. �

Remark 1.22. The spaces Pn, n ě 0 are all compact. The proof of this statement is a simple
generalisation of the proof of proposition 1.21.

The space P2 can be covered with three open sets homeomorphic to C2 :

U0 “ trX : Y : Zs P P2 | X , 0u

U1 “ trX : Y : Zs P P2 | Y , 0u
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U2 “ trX : Y : Zs P P2 | Z , 0u.

The homeomorphism on U0 is given by the map rX : Y : Zs Ñ pY{X,Z{Xq P C2 and similarly for
the other open sets U1 and U2.

Definition 1.23. Let QpX,Y,Zq be a homogeneous non constant polynomial of degree d, in the complex
variables X, Y and Z with complex coefficients. The locus

Γ “ trX : Y : Zs P P2 | QpX,Y,Zq “ 0u (1.29)

is the projective curve defined by the polynomial Q.

Remark 1.24. Observe that the curve Γ is well defined since the condition QpX,Y,Zq “ 0 is inde-
pendent from the choice of homogeneous coordinates since QpλX, λY, λZq “ λdQpX,Y,Zq. Fur-
thermore Γ is a closed subset of P2 and therefore it is compact.

The intersection of Γ with any of the Ui is an affine plane curve. For example

Γ0 “ ΓXU0 “ tpu, vq P C2 | Qp1,u, vq “ 0u.

Now we show that under non singularity assumptions, Γ is a Riemann surface.

Definition 1.25. The curve (1.29) defined by the zeros of the homogeneous polynomial QpX,Y,Zq is
nonsingular if there are no non zero solutions to the equations

Q “
BQ
BX

“
BQ
BY

“
BQ
BZ

“ 0.

Exercise 1.26: Show that the projective curve Γ defined in (1.29) is non singular if and only if each
of the affine components Γi “ Γ X Ui, i “ 1, 2, 3 is non singular. Hint: use Euler equation that
is obtained differentiating the identity QpλX, λY, λZq “ λdQpX,Y,Zq with respect to λ and setting
λ “ 1, namely

XQX ` YQY ` ZQZ “ Qd. (1.30)

Suppose that Γ is a smooth projective curve. In order to give a complex structure on Γ let us recall
that each Γi is a smooth affine plane curve and hence a Riemann surface. The coordinate charts
are given by the projections. For example for the curve Γ0 the coordinate charts are y{x or z{x
and the transition functions are the same as the one obtained for smooth affine plane curves. One
needs to check that the complex structures given on each Γi are compatible.

Proposition 1.27. Suppose that the projective curve Γ in (1.29) is non singular. Then Γ is a Riemann
surface.

Proof. We will show that the complex structures given on each Γi are compatible. Let P P Γ0 X Γ1
where P “ rX : Y : Zs and X , 0 and Y , 0. Since each affine plane curve is non singular (see
exercise 1.26), we assume without loss of generality that QX and QZ are non zero. Let φ0 : Γ0 Ñ C

with φ0pPq “ Y{X and with inverse φ´1
0 pY{Xq “ r1 : Y{X : hpY{Xqs where h is a holomorphic

function. Let φ1 : Γ1 Ñ C with φ1pPq “ Z{Y with inverse φ´1
1 “ rgpZ

Y q, 1,
Z
Y s where gpZ

Y q is
holomorphic for Y , 0 and non zero since we assume X , 0. Then φ1 ˝ φ

´1
0 pY{Xq “ XhpY{Xq{Y

which is holomorphic because Y , 0, X , 0 and hpY{Xq is holomorphic. In the same way
φ0 ˝ φ

´1
1 pZ{Yq “

1
gpZ{Yq which is holomorphic because Y , 0 and g is nonzero. Similar checks can

be done with the other coordinate charts. �
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Lemma 1.28. Let QpX,Y,Zq and FpX,Y,Zq be two homogeneous polynomials of degree d and m respectively.
Suppose that Qp0, 0,Zq , 0 and Fp0, 0,Zq , 0. Then the resultant

RpQZ,FZqpX,Yq

is a homogeneous polynomial in X and Y of degree dm.

Proof. According to the assumptions, QpX,Y,Zq “ q0Zd ` q1pX,YqZd´1 ` ¨ ¨ ¨ ` qdpX,Yq where
q jpX,Yq are homogeneous polynomials of degree j in X and Y, j “ 0, . . . , d and FpX,Y,Zq “
f0Zm ` f1pX,YqZm´1 ` ¨ ¨ ¨ ` fmpX,Yq where f jpX,Yq are homogeneous polynomials of degree j,
j “ 0, . . . ,m.

Then according to the definition of resultant in (1.12)

RpQ,FqpX,Yq “ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q0 q1 . . . qd 0 0 . . . 0
0 q0 q1 . . . qd 0 0 . . . 0
. . . . . . . . .
0 0 . . . . . . q0 q1 q2 . . . qd
f0 f1 . . . . . . fm´1 fm 0 . . . 0
0 f0 f1 . . . . . . fm´1 fm 0 . . . 0
. . . . . . . . .
0 . . . f0 f1 . . . . . . fm´1 fm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (1.31)

We multiply the second row by λ , 0, the third row by λ2 and so on till the m ´ th row that is
multiplied by λm´1. Then we multiply the pm` 2q ´ th row by λ, the pm` 3q ´ th by λ2 and so on
till the pm` dq ´ th that is multiply by λd´1 one has

RpQ,FqpλX, λYq “
1

λ
1
2 pd´1qdλ

1
2 mpm´1q

ˆ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

q0 λq1 . . . λdqd 0 0 . . . 0
0 λq0 λ2q1 . . . . . . 0 0 . . . 0
. . . . . . . . .
0 0 . . . . . . λm´1q0 λmq1 . . . . . . λd`m´1qd
f0 λ f1 . . . . . . λm´1 fm´1 λm fm 0 . . . 0
0 λ f0 λ2 f1 . . . . . . λm fm´1 λm`1 fm . . . 0
. . . . . . . . .
0 . . . λd´1 f0 λd f1 . . . . . . λm`d´2 fm´1 λm`d´1 fm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ λmdRpQ,FqpX,Yq,

where we use the fact that and q jpλX, λYq “ λ jq jpX,Yq and f jpλX, λYq “ λ j f jpX,Yq. The above
relation shows that the resultant RpQ,FqpX,Yq is a homogeneous polynomial in X and Y of degree
md. �

Theorem 1.29 (Bezout’s theorem). Let Γ and M be two projective curves defined by the homogenous
polynomials QpX,Y,Zq and FpX,Y,Zq of degree d and m respectively. Then if Γ and M do not have a
common component, then they intersect in dm points counting multiplicity.

Proof. By Lemma 1.12, Γ and M have a common component if and only if their resultant is
identically zero. Next we consider the case in which Γ and M do not have a common component.
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Without loss of generality we assume that r0 : 0 : 1s does not belong to both curves. With this
assumption QpX,Y,Zq “ q0pX,YqZd`q1pX,YqZd´1`¨ ¨ ¨`qdpX,Yqwhere q jpX,Yq are homogeneous
polynomials of degree j in X and Y, j “ 0, . . . , d and q0p0, 0q , 0. In the same way FpX,Y,Zq “
f0pX,YqZm` f1pX,YqZm´1`¨ ¨ ¨` fmpX,Yqwhere f jpX,Yq are homogeneous polynomials of degree
j, j “ 0, . . . ,m and f0pp0, 0q , 0. Therefore the resultant is a homogeneous polynomial of degree
md by lemma 1.28 and it has md zeros counting their multiplicity. �

Lemma 1.30. If the projective curve Γ defined in (1.29) is non singular, then the polynomial QpX,Y,Zq is
irreducible. If Γ is irreducible, then it has at most a finite number of singular points.

Proof. Let us suppose that the polynomial is reducible, namely Q “ Q1Q2 where Q1 and Q2 are
homogeneous polynomials in X,Y and Z of degree d1 and d´d1. The condition of Γ being singular
takes the form

Q2Q1 “ 0, Q2BXQ1 `Q1BXQ2 “ 0, Q2BYQ1 `Q1BYQ2 “ 0, Q2BZQ1 `Q1BZQ2 “ 0.

Such system of equations has always a solution as long as there is a point P in the intersections
of the curves defined by Q1 “ 0 and Q2 “ 0. But this is always the case. Indeed let us consider
the resultant RpQ1,Q2qpX,Yq of the polynomials Q1pX,Y,Zq and Q2pX,Y,Zq with respect to Z.
Assuming that Q1p0, 0, 1q , 0 and Q2p0, 0, 1q , 0 the resultant RpQ1,Q2qpX,Yq is a homogeneous
polynomial of degree d1pd ´ d1q. Therefore the curves defined by the equations Q1pX,Y,Zq “ 0
and Q2pX,Y,Zq “ 0 intersects by Bezout’s theorem in d1pd´ d1q points counted with multiplicity.
We conclude that if Q is reducible, then Q is singular. Suppose that Γ is irreducible and defined
by the polynomial Q of degree n. Then Q and QZ do not have a common component so that the
resultant RpQ,QZqpX,Yq is a homogeneous polynomial of degree npn ´ 1q not identically zero.
Since the singular points of Γ are contained in the zeros of the resultant, the number is finite. �

The simplest example of projective curve is the projective line

αX ` βY` γZ “ 0

where pα, β, γq , p0, 0, 0q. The tangent line to a projective curve Γ defined by a homogeneous
polynomial QpX,Y,Zq at a non singular point pX0,Y0,Z0q has the form

pX ´ X0qQXpX0,Y0,Z0q ` pY´ Y0qQYpX0,Y0,Z0q ` pZ´ Z0qQZpX0,Y0,Z0q “ 0.

Exercise 1.31: Let QpX,Y,Zq be an irreducible homogeneous polynomial of degree d defining
a smooth projective curve Γ. Suppose that the equation QpX,Y, 1q “ 0 locally defines Y as a
holomorphic function of X. Show that

d2YpXq
dX2 “

1
Q3

Y

det

¨

˝

QXX QXY QX
QYX QYY QY
QX QY 0

˛

‚.

Observe that a point rX0 : Y0 : 1s is an inflection point for the curve Γ if and only if
d2YpXq

dX2

vanishes at X0. Calculate the number of inflection points of the cubic defined by the homogeneous
polynomial QpX,Y,Zq “ Y2Z “ pX ´ ZqpX ´ aZqX with a , 0, 1.
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1.1.3 Compactification of affine plane curve

Complex affine plane curves Γ :“ tpz,w P C2 |Fpz,wq “ 0u where F is a nonsingular polynomial,
are non compact Riemann surfaces. To compactify them one needs to add point(s)81,82, . . .8N

at infinity and introducing proper local parameters at these points in such a way that

Γ̂ “ ΓY81 Y82 Y ¨ ¨ ¨ Y 8N

is a compact Riemann surface.
The plane curve Γ, defined by the polynomial equation Fpz,wq “ 0, can be compactified by

embedding it in CP2. The mappings

pX : Y : Zq Ñ
ˆ

z “
X
Z
, w “

Y
Z

˙

and the inverse mapping
pz,wq Ñ pz : w : 1q

establish an isomorphism between an affine part of CP2 and C2. The whole projective plane is
obtained from the affine part C2 by adding the line at infinity of the form pX : Y : 0q » CP1

» S2.
An embedding of Γ in CP2 is defined as follows. Suppose that

Fpz,wq “ Fkpz,wq ` Fk´1pz,wq ` ¨ ¨ ¨ ` F0pz,wq,

where each F jpz,wq is a homogeneous polynomial of degree j. Then we define the homogeneous
polynomial

QpX,Y,Zq “ ZkF
ˆ

X
Z
,

Y
Z

˙

(1.32)

of degree k. A complex compact curve Γ̂ is given in CP2 by the homogeneous equation

Γ̂ :“ trX : Y : Zs P P2 | QpX,Y,Zq “ 0u. (1.33)

The affine part of the curve Γ̂ (where Z , 0) coincides with Γ. The associated points at infinity
have the form

QpX,Y, 0q “ 0. (1.34)

The surface Γ̂ is compact and is thus the desired compactification of the surface Γ.

Remark 1.32. Even if the curve Γ is non singular, the curve Γ̂ might be singular. If this is the case,
the compactification of Γ must be realized in a different way.

Example 1.33. Γ “ tpz,wq P C2 | w2 “ zu. A local parameter at the branch point pz “ 0,w “ 0q
is given by τ “

?
z, i.e. z “ τ2, w “ τ. The compactification Γ̂ has the form Γ̂ “ trX : Y :

Zs P P2 | Y2 “ XZu. The point at infinity is given by solving the equation (1.34), that gives
P8 “ r1 : 0 : 0s. We determine the local coordinates near the point P8. For X , 0 we introduce
the coordinates u, v

u “
Y
X
“

w
z
, v “

Z
X
“

1
z
, (1.35)
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which define the affine curve u2 “ v. The point at infinity is given by pv “ 0,u “ 0qwhich is clearly
a ramification point for the curve defined by the equation u2 “ v and

?
v is a local parameter near

this point. Therefore a parametrization of the Γ̂ in a neighborhood of P8 takes the form

z “
1
u2 , w “

1
u
.

Example 1.34. Γ “ tw2 “ z2 ´ a2u. The branch points are pz “ ˘a,w “ 0q and the corresponding
local parameters are τ˘ “

?
z˘ a. The compactification has the form Γ̂ “ tY2 “ X2 ´ a2Z2u. The

point at infinity is given by solving the equation (1.34), that gives P8
˘
“ r1 : ˘1 : 0s. Making the

substitution (1.35) we get the form of the curve Γ̂ in a neighborhood of the ideal line: u2 “ 1´a2v2.
For v “ 0 we get that u “ ˘1. We can take v “ 1{z as a local parameter in a neighborhood of each
of these points. The form of the surface Γ̂ in a neighborhood of these points P˘ is as follows:

z “
1
v
, w “ ˘

1
v

a

1´ a2v2, v Ñ 0 (1.36)

where
?

1´ a2v2 is, for small v, a single-valued holomorphic function, and the branch of the
square root is chosen to have value 1 at v “ 0.
Example 1.35. Let us consider the class of hyperelliptic Riemann surfaces

Γ “ tpz,wq P C2 | Fpz,wq “ w2 ´ PNpzq “ 0u, (1.37)

where PNpzq “
śN

j“1pz´ a jq, and ai , a j for i , j.
If we consider the projective curve defined by the zeros of homogeneous polynomial

QpX,Y,Zq “ Y2ZN´2 ´ ZNPNpX{Zq “ 0

one can check that the curve is singular at the point r0 : 1 : 0s if N ě 4. Therefore, for N ě 4, the
embedding of Γ in P2 results in a singular surface. For N “ 3 the projective curve

Y2Z “ pX ´ a1ZqpX ´ a2ZqpX ´ a3Zq

is a compact smooth elliptic curve. By a projective transformation such curve can be reduced to
the form

Y2Z “ XpX ´ ZqpX ´ λZq, λ P Czt0, 1u.

The point at infinity is given by P8 “ r0 : 1 : 0s. For Y , 0 the substitution u “ X{Y and v “ Z{Y
gives the curve

Qpu, 1, vq “ v´ upu´ vqpu´ λvq “ 0

The point p0, 0q is a branch point for the above curve. Indeed for pu, vq , 0 the projection
π : pu, vq Ñ v is a local coordinate. The preimage π´1pvq consists of three points. At the point
p0, 0q one has Qup0, 1, 0q “ 0 and Quup0, 1, 0q “ 0 so that the preimage of π´1p0q consists of a single
point. Therefore a local coordinate near the point p0, 0q takes the form

u “ τp1` opτqq, v “ τ3p1` opτqq.

We look for the holomorphic tail of the above expansions in the form

u “ τgpτq, v “ τ3gpτq
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with gpτq analytic and invertible in a neighbourhood of τ “ 0. Plugging the above ansatz in the
equation Qpu, 1, vq “ v´ upu´ vqpu´ λvq “ 0 one obtains that

gpτq “
1

a

p1´ τ2qp1´ λτ2q
.

Since
z “

X
Z
“

u
v
, w “

Y
Z
“

1
v

one has that a local coordinate near the point at infinity for the curve Γ is given by

z “
1
τ2 , w “

1
τ3

b

p1´ τ2qp1´ λτ2q.

The above example shows that not all the affine plane curves can be compactified in a smooth
way by embedding them in P2. Below we are going to illustrate another way of compactifying
affine plane curves.

Definition 1.36. Let Γ be a Riemann surface such Γ “ Γ Y81 Y . . .8N is a compact surface. Suppose
that there exist open subsets

U81 YU82 Y ¨ ¨ ¨ YU8N “ U8 Ă Γ

such that U8n , n “ 1, . . . ,N, are homeomorphic to puncture disks

φn : U8n Ñ Dzt0u “ tz P C | 0 ă |z| ă c, c P R`u,

and the homeomorphism φn are holomorphically compatible with the complex structure of Γ. Then Γ is
called a compact Riemann surface with punctures.

The goal is to make the compact surface Γ a Riemann surface. Let us extend the homeomor-
phism φn to the whole neighbourhood U8n “ U8n Y8n by defining

φnp8
nq “ 0, n “ 1, . . . ,N.

In order to make Γ a compact Riemann surface one needs to define a complex atlas on it as the
union of the compatible coordinates charts on U8n and Γ. The result is a compact Riemann surface
Γ̂.
Example 1.37. We recall first how to compactify the complex z-plane C. It is necessary to add to
C a single ”point at infinity” 8. In this case U8 “ C and the map φ : U8 Ñ Dzt0u is defined by

φpzq “
1
z

with z , 0 and we extend φ to sU “ C Y8 by defining φp8q “ 0. A complex atlas on
sC “ C Y 8 is then defined as in example 1.4. We get a surface sC with the topology of a sphere
(the ”Riemann sphere”). Topological equivalence to the standard sphere is given by stereographic
projection, with one of the poles of the sphere passing into the point8.

Another description of sC is the complex projective line P1 :“ tpz1, z2q | |z1|
2 ` |z2|

2 , 0, pz1 :
z2q » pλz1 : λz2q, λ P C, λ , 0u. The equivalence fo P1 with sC is established as follows:

pz1 : z2q Ñ z “
z1

z2
. The affine part tz2 , 0u of P1 passes into C and the point p1 : 0q into8.
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Example 1.38. Let us consider the class of hyperelliptic Riemann surfaces

Γ “ tpz,wq P C2 | Fpz,wq “ w2 ´ PNpzq “ 0u, (1.38)

where PNpzq “
śN

j“1pz ´ a jq, N ě 4 and ai , a j for i , j. We need to consider separately the case
of N odd or even. Let us rewrite the curve in the form

´ w
zn`1

¯2
´

1
z

N
ź

j“1

p1´
a j

z
q “ 0, N “ 2n` 1,

´ w
zn`1

¯2
´

N
ź

j“1

p1´
a j

z
q “ 0, N “ 2n` 2.

For N odd the map

ψ : pz,wq Ñ
ˆ

1
z
,

w
zn`1

˙

(1.39)

describes a biholomorphic map from a punctured neighbourhood of infinity

U8 “ tpz,wq P Γ | |z| ą c ą |a j|, j “ 1, . . . , 2n` 1u

where c ą 0, to the punctured neighbourhood

V “ tpx, yq P Γ̃ | |0 ă |x| ă 1{cu

of the point px, yq “ p0, 0q of the curve Γ̃ defined by the equation

Γ̃ “ tpx, yq P C2 | y2 ´ x
N
ź

j“1

p1´ xa jq “ 0u, N “ 2n` 1. (1.40)

For N “ 2n ` 2 even, the map (1.39) describes a biholomorphic map from punctured neighbour-
hoods of infinity8˘

U˘8 “ tpz,wq P Γ | |z| ą c ą |a j|, j “ 1, . . . , 2n` 2, lim
w

zn`1 “ ˘1u

to the punctured neighbourhoods

V˘ “ tpx, yq P Γ̃ | 0 ă |x| ă 1{cu

of the points p0,˘1q of the curve

Γ̃ “ tpx, yq P C2 | y2 ´

N
ź

j“1

p1´ xa jq “ 0u, N “ 2n` 2. (1.41)

The local coordinate near p0, 0q of the curve Γ̃ in (1.40) is defined by the homeomorphism px, yq Ñ
?

x, while the local coordinate near the point p0,˘1q of the curve (1.41) is given by px, yq Ñ x.
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Therefore for N “ 2n ` 1 the curve (1.38) has one puncture at infinity and the local parameter in
its neighbourhood is given by

φpz,wq “
1
?

z
, φp8q “ 0

while for N “ 2n ` 2, the curve (1.38) has two punctures 8˘ “ p8,˘8q distinguished by the
conditions w

zn`1 Ñ ˘1 as pz,wq Ñ 8˘.

The local parameter near these points is given by the homeomorphism

φ˘pz,wq Ñ
1
z
, φ˘p8

˘q “ 0.

Proposition 1.39. The local parameters

pz,wq Ñ z near an ordinary point

pz,wq Ñ
a

z´ z j near a branch point pz j, 0q

pz,wq Ñ
"

1{
?

z near the point at infinity, N odd
1{z near the point at infinity, N even

describe a compact Riemann surface Γ̂ “ ΓY8 of the hyperelliptic curve (1.38) for N odd and Γ̂ “ ΓY8˘

for N even.

Quotients under Group action

Complex Tori. Let ω1 and ω2 be two complex numbers which are linearly independent over the
real numbers. Define the lattice

Lω1,ω2 “ Zω1 `Zω2 “ tmω1 ` nω2 | m,n P Zu. (1.42)

Two complex numbers z and z̃ are equivalent mod Lω1,ω2 if z´ z̃ P Lω1,ω2 . The set of all equivalence
classes is denoted by C{Lω1,ω2 and an element in C{Lω1,ω2 is denoted by rzs.

Proposition 1.40. The quotient Γ “ C{Lω1,ω2 is a compact Riemann surface that is topologically a torus.

Proof. To prove the statement one needs to construct a complex structure on Γ. Let π : C Ñ Γ be
the projection map. Let us endowed Γ with the quotient topology namely a set U Ă Γ is open
if π´1pUq is open in C. This definition makes π continuous and since C is connected so is Γ.
Furthermore, it is easy to check that π is an open mapping. Indeed let U be an open set in C,
then πpUq is open if π´1pπpUqq. But this is certainly the case since π´1pπpUqq “

Ť

ωPLpω ` Uq is
open. In order to define a complex structure on Γ, let Dα “ Dzα,ε be a disk centered at zα P C and
of radius ε where ε is chosen in such a way that |ω| ą ε for every non zero ω P L. Then the map
π|Dα : Dα Ñ πpDαq is a homeomorphism. Let φα : πpDαq Ñ Dα be the inverse of the map π|Dα . The
pairs pπpDαqq, φαqαPA defines a complex chart. We now must check that the charts are compatible.
Chose two distinct points z1 and z2 and consider two charts φ1 : πpD1q Ñ D1 and φ2 : πpD2q Ñ D2

with U :“ πpD1q X πpD2q ,H. We need to check that the transition function Tpzq “ φ2pφ
´1
1 pzqq is

holomorphic for z P φ1pUq. It is straightforward to check that Tpzq “ z` ω where ω P L so that T
is clearly holomorphic. �
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Remark 1.41. Let A P SLp2,Zq namely A is 2ˆ2 matrix with integer entries and det A “ 1. Suppose
that

ˆ

ω11
ω12

˙

“ A
ˆ

ω1
ω2

˙

.

Then the Lω1,ω2 “ Lω11,ω12 . Indeed for m,n P Z one has

Lω1,ω2 Q mω1 ` nω2 “ pn,mqA´1
ˆ

ω11
ω12

˙

“ m1ω11 ` n1ω12 P Lω11,ω12 ,

because m1,n1 P Z since the matrix A has integer entries and determinant equal to one.
The above relation shows that Lω1,ω2 Ď Lω11,ω12 . Repeating the same reasoning for a point in

Lω11,ω12 one obtains that Lω11,ω12 Ď Lω1,ω2 which shows that Lω1,ω2 “ Lω11,ω12 .

Remark 1.42. Let us consider an automorphism of the complex plane, namely a map F : CÑ C of
the form Fpzq :“ αz`βwith α , 0. We choose β “ 0 so that Fp0q “ 0. A lattice Lω1,ω2 is transformed
under F to the lattice Lαω1,αω2 . The corresponding tori are isomorphic, with the isomorphism given
by rzs Ñ rαzs. The map F projects to an automorphism of the torus if |α| “ 1. In general

• α “ ˘1, for a generic torus;

• α “ i, for the square torus;

• α “ ei π3 , for the rhombi torus.

Let us define τ “
ω1

ω2
with =pτq ą 0. Then the lattice Lω1,ω2 defined in (1.42) and

Lτ,1 “ tn`mτ | m,n P Zu, τ “
ω1

ω2

defined isomorphic toriC{Lω1,ω2 andC{Lτ,1 respectively. Combining the above remarks one arrives
to the following theorem.

Theorem 1.43. Let Tτ and Tτ1 be two tori defined by the lattices Lτ,1 and Lτ1,1 with =pτq ą 0 and
=pτ1q ą 0. The tori are isomorphic if and only if

τ1 “
aτ` b
cτ` d

,

ˆ

a b
c d

˙

P SLp2,Zq. (1.43)

The proof is left as an exercise.

Exercise 1.44: Consider the group 2πZ under addition and consider the quotient C{2πZ. This
surface is clearly homeomorphic to the cylinder S1 ˆR. Show that C{2πZ is a Riemann surface.

Exercise 1.45: Let G be the multiplicative group G :“ tan | n P Zu and a P R`. The quotient

Γ :“ C˚{G

is defined as the set of equivalence class with respect to the equivalence relation

z » z̃ ÐÑ zz̃´1 P G.
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(i) Prove that Γ is a Riemann surface.

(ii) Show that the Rieamann surface constructed in (i) is isomorphic to a torus

C{pZ` τZq, τ PH :“ tz P C | =pzq ą 0u.

Calculate τ.

The above construction of Riemann surface as quotients can be generalized

Definition 1.46. Let ∆ be a domain of C. A group G : ∆ Ñ ∆ of holomorphic transformations acts
discontinuously and fixed point free on ∆ if for any P P ∆ there exists a neighbourhood V Q P such that

gV X V “ H, @g P G, g , I

The action of G is called proper if the inverse image of compact subset is compact.

Introducing an equivalent relation between points of ∆, namely P » P1 if Dg P G so that P1 “ gP,
one can define the quotient space ∆{G of equivalent classes.

Theorem 1.47. If a group G acts on a domain ∆ of the complex plane properly discontinuously and the
action is fixed point free, then the quotient space ∆{G has the structure of a Riemann surface.

The proof of the above theorem is very similar to the proof given above for obtaining a complex
structure on the complex one-dimensional tori. In the frame of the uniformization theory, it is
proven that all compact Riemann surfaces can be described as quotients ∆{G.



Chapter 2

Topological properties of Riemann
surfaces

2.1 The genus of a a compact Riemann surface

An arbitrary Riemann surface is also a real two-dimensional manifold. What can be said about the
topology of this surface? From the topological point of view, Riemann surfaces are quite simple
as the following theorem shows.

Theorem 2.1. [17] Any compact Riemann surface is homeomorphic to a sphere with g ě handles. The
number of handles of the surface is called the topological genus of the surface. Riemann surfaces of different
genera are not homeomorphic.

Figure 2.1: A sphere with five handles

The notion of sphere with handles is left to the
common sense of the reader as shown in Figure 2.1

Each surface of genus g can be obtained from
a genus g ´ 1 surface by removing two discs and
connecting them with a cylender.

Let us compute the genus of the surfaces in the
examples 1.33-1.35. We begin with example 1.34
namely the curve Γ “ tpz,wq P C2 | w2 “ z2 ´ a2u.
Let sΓ be the compactification of Γ obtained by adding
two points at infinity8˘. We want to show that the
genus ofsΓ is equal to zero. For the purpose let us con-
sider sΓ as a double sheeted covering of sC. Delete the
segment r´a, as with endpoints at the branch points
from the z-plane sC. Off this segment it is possible
to distinguish the two branches w˘ “ ˘

?
z2 ´ a2 of

the two-values function wpzq “
?

z2 ´ a2. The pre-
imageπ´1psCzr´a, asq on Γ splits into two pieces, with
the mappingπ an isomorphism on each of them. The
branches w`pzq and w´pzq are interchanged in passing from one edge of the cut r´a, as to the other.

27
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Therefore, the surface is glued together from two identical copies of spheres with cuts according
to the rule indicated in the figure 2.2

Figure 2.2: The cuts of the algebraic function
?

z2 ´ a2

After the gluing we again obtain a sphere, i.e., the genus g is equal to zero. Example 1.33 is
analogous to Example 1.34, but the cut must be made between the points 0 and 8, i.e. the point
at infinity must be regarded as a branch point. Again the genus is equal to zero.

In Example 1.35 for the curve discribed by the equation w2 “
śn

j“1pz ´ z jq it is necessary
to split up the branch points arbitrarily into pairs and make cuts (arcs) in sC joining the paired
branch points. If n is odd one of the branch points is at 8. The surface Γ is glued together from
two identical copies of a sphere with such cuts, with the edges of the corresponding cuts glued
together in ”cross-wise” fashion (see figure 2.4 for n “ 4).

Figure 2.3: Opening of the cuts of the two branches of the function
a

pz´ z1qpz´ z2qpz´ z3qpz´ z4q

It is not hard to see that in the case n “ 4 one obtains a sphere with one handle, and, in the
general case one obtains a sphere with n{2´ 1 handles for n even and pn´ 1q{2 for n odd.
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Figure 2.4: The Riemann surface of w2 “ pz´ a1qpz´ a2qpz´ a3qpz´ a4q is glued from two copies
of the extended complex plane cut along the intervals rz1, z2s and rz3, z4s. The resulting surface is
topological a torus.

2.1.1 Genus of a Riemann surface and the Riemann-Hurwitz formula

We derive a formula for the computation of the genus of a compact connected Riemann surface
by computing first the Euler characteristic of the surface.

A triangulation of a two-dimensional compact surface M is a decomposition of M into closed
subsets homeomorphic to triangles such that each couple of them is

• disjoint

• meet at a vertex

• meet at an edge.

We state the following theorem.

Theorem 2.2. [17] Every compact connected orientable 2-dimensional manifold M can be triangulated.

Given a 2-dimensional compact manifold M (possibly with boundary) and a triangulation of
the manifold with

• e “ # of edges;

• v “ # of vertices;

• t “ # of triangles,

we can associate to such triangulation the Euler number.

Definition 2.3. The quantity
EpMq “ v´ e` t (2.1)

is called the Euler number of the manifold M with respect to the given triangulation.

Proposition 2.4. The Euler number is independent from the choice of the triangulation. For a compact
Riemann surface Γ of topological genus g the Euler number is

EpΓq “ 2´ 2g. (2.2)
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Proof. We consider compact surfaces with no boundaries. Given a triangulation, one can refine
the triangulation by adding a vertex inside a triangle and three edges. This operation replaces
one triangle with three triangles an it is easy to check that the Euler number remains unchanged.
Another way to refine the triangulation is to add a point on an edge, so that two triangles
are replaced by four triangles. Also in this case the Euler number remains unchanged. These
operations define elementary refinements. A general refinement is obtained by making a sequence
of elementary refinements. Therefore a given triangulation and any of its refinement have the
same Euler number. Now the main point is to show that two triangulations have a common
refinement. It is sufficient to superimpose two triangulations and add the necessary number
for points to make the union of these two triangulations a triangulation. Then the triangulation
obtained in this way is a refinement of both the triangulations. This is enough to show that the
Euler number does not depend on the triangulation. Now let us make the computation of the
Euler number for a compact Riemann surface of genus g. We use an inductive argument. For the
sphere Γ0, choosing a triangulation as shown in the figure 2.1.1, with 4 vertices, 4 triangles and
6 edges, one obtains that the Euler number is equal to 2. For the disc sD “ tz P C | |z| ď 1u , the
Euler number is equal to EpsDq “ 1 and for the cylinder Cylinder of finite length the Euler number
EpCylinderq “ 0, (see figure 2.5).

Figure 2.5: Triangulation of the sphere with 4 vertices, 6 edges and 4 triangles. Triangulation of
the disc with 3 vertices, 3 edges and one triangle.Triangulation of the cylinder with 6 vertices, 12
edges and 6 triangles.

The torus can be obtained from the sphere by removing two discs and connecting them with
a cylinder. It is simple to check that the Euler number of the torus Γ1 can be obtained as

EpΓ1q “ EpΓ0q ´ 2EpsDq ` EpCylinderq “ 2´ 2` 0 “ 0. (2.3)

Indeed removing two disks from a genus zero surface, the Euler number decreases by two, because
it is just sufficient to subtract from the Euler formula the two discs that are homeomorphic to two
triangles. Next we add a cylinder to connect the two discs. In order to compute the Euler number
of the resulting surface, it is sufficient to add the contribution of the cylinder (8 edges and 6
triangles for a triangulation like in figure 2.1.1). The resulting Euler characteristics then can be
written as in (2.3).
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This procedure can be iterate. Indeed the surface Γg of genus g can be obtained from the
surface of genus Γg´1 by removing two discs and connecting them with a cylinder. Therefore one
has

EpΓgq “ EpΓg´1q ´ 2EpsDq ` EpCylinderq

which implies
EpΓgq “ 2´ 2g.

�

We apply this result to calculate the genus of an affine plane curve.

Proposition 2.5. Let Γ “ tpz,wq P C2 | Fpz,wq “ anpzqwn`an´1pzqwn´1` . . . a0pzq “ 0u an irreducible
non singular affine plane curve and let sΓ be the compactification of Γ. Let z1, . . . , zM be the branch point for
sΓ with respect to the projection πpz,wq Ñ z with multiplicity b1, . . . , bm respectively. Then the genus of sΓ
is equal to

g “
1
2

m
ÿ

j“1

b j ´ n` 1. (2.4)

Proof. Consider a triangulation of sC so that the set of vertices of the triangulation contains the
points z1, . . . , zM. Suppose that for each triangle T in sC, the projection π restricted to the interior
of each preimage π´1pTq is homeomorphic to the interior of T. In this way the triangulation on sC
can be lifted to a triangulation on sΓ. Suppose the triangulation of C has v vertices, t triangles and
e edges. Then the triangulation of sΓ has

• t̃ “ nt triangles

• ẽ “ ne edges

• ṽ “ nv´ b vertices,

where b “
řm

j“1 b j. The Euler characteristic of the surface sΓ gives

2´ 2g “ nv´ b´ ne` nt “ npv´ e` tq ´ b

so that one obtains the statement. �

The relation (2.4) is a particular case of a more general formula known as Riemann-Hurwitz
formula that will be proved later. As an application of the proposition 2.5 we calculate the genus
of a smooth projective curve

Γ “ trX : Y : Zs P P2 |QpX,Y,Zq “ 0u

where Q is a homogeneous polynomial of degree n. Suppose that r0 : 0 : 1s < Γ so that Qp0, 0,Zq “
c Zn , 0 with c , 0. Then the map

φ : Γ Ñ P1, φpX,Y,Zq “ rX : Ys

realised Γ as a n-sheeted covering of P1. Let us calculate the total branching number of this map.
The branch points are obtained by solving the equations

QpX,Y,Zq “ 0, QZpX,Y,Zq “ 0
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The solution of the above two equations are given by the zeros of the resultant RpQ,QZq with
respect to Z. Since RpQ,QZq is a homogeneous polynomial of degree npn´ 1q in X and Y, the total
number of branch points counting their multiplicity is npn´ 1q.

Recall that the branching number of a branch point P0 “ rX0 : Y0 : Z0s indicated as bφpP0q is
the order of the zero of QpX0,Y0,Zq at Z “ Z0 minus one. We can write

QpX0,Y0,Zq “
ź

0ď jďs

pZ´ Z jq
m j

where
ř

j m j “ n and Z0, . . . ,Zs are distinct complex numbers, Z j “ Z jpX0,Z0q. With the above
notation the branching number of each branch point P j “ rX0 : Y0 : Z js is bφpP jq “ m j ´ 1. So
a regular point is simple zero of QpX0,Y0,Zq a branch point with branching number one is a
double zero, and in general a branch point with branching number m ´ 1 is a zero of order m
of QpX0,Y0,Zq. So if the number of distinct roots of the discriminant is npn ´ 1q it means that
the curve has npn ´ 1q branch points with multiplicity one, so that the total branching number
is npn ´ 1q. If the discriminant has for example npn ´ 1q ´ k distinct roots, k ą 0, it means that
some of the branch points have branching number bigger then one. However the total branching
number remains equal to npn´ 1q. Then we can apply formula 2.4 to obtain

g “
1
2
pn´ 1qn´ n` 1.

We summarise the above discussion with the following Lemma.

Lemma 2.6. The genus of a smooth projective curve of degree n is given by the relation

g “
1
2
pn´ 2qpn´ 1q. (2.5)

Exercise 2.7: Calculate the genus of the following surfaces

• w3 “ pz´ 1qpz´ 2qpz´ 3qpz´ 4q,

• wn “ zn ` an, a , 0.

2.2 Fundamental group and monodromy

Let M be a connected manifold.

Definition 2.8. A topolgical space M is said to be arc-connected if @x, y P M there is a continuous curve
γ : r0, 1s Ñ M such that γp0q “ x, γp1q “ y.

For general topological spaces the notions of arc-connectedness is stronger then the notion of
connectedness.

Exercise 2.9 (Exercise): A manifold M is connected iff it is arc-connected.

Let x P M be chosen arbitrarily (the ”basepoint”). We consider the collection of all closed
curves starting and ending at x

LpM, xq :“ tγ : r0, 1s Ñ M , γ P Cpr0, 1s,Mq, γp0q “ γp1q “ xu (2.6)

If two curves can be deformed continuously one into the other, the curves are called homotopic.
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Definition 2.10. Two curves γ and η are homotopic if there is a continuos map A : r0, 1s ˆ r0, 1s Ñ M
such

• Apt, 0q “ γptq,

• Apt, 1q “ ηptq,

• Ap0, sq “ Ap1, sq “ x, for all s P r0, 1s.

The notion of homotopic is an equivalence relation. It is easy to construct homotopic curves.
For example given a smooth map f : r0, 1s Ñ r0, 1s, the curves u and γ ˝ f are homotopic. In the
space of curves we can define a group structure.

Definition 2.11. Given two closed curves γ : r0, 1s Ñ M and η : r0, 1s Ñ M, with base point x the
product curve is

pγ ˝ ηqptq :“
"

γp2tq for 0 ď t ď 1
2

ηp2t´ 1q for 1
2 ď t ď 1 ,

the inverse of a curve is
γ´1ptq :“ γp1´ tq, t P r0, 1s,

and the constant curve is
Id : r0, 1s Ñ M, Idptq “ x.

Clearly γ ˝ γ´1 is homotopic to Id.

Definition 2.12. The fundamental group of M (or first homotopy group) is the set-theoretical
quotient of Lpx,Mq by the relation of homotopy equivalence at fixed end-points „

π1pM, xq :“ LpM, xq{ „ . (2.7)

The set π1pM, xq forms a group under the operation induced by the product of curves. We
denote its elements by rγs. It is easy to check that for arc-wise connected spaces M, the group
π1pM, xq is independent from the base point x. Indeed let π1pM, yq be the fundamental group
with base point y, and let η be a path from x to y. Then for any element rγs P π1pM, xq the loop
rη´1 ˝ γ ˝ ηs P π1pM, yq and this map is an isomorphism. This implies that the fundamental group
π1 is ”the same” no matter what base-point is used in the definition and hence we can refer just to
the manifold and omit the basepoint π1px,Mq ” π1pMq.

Exercise 2.13: Let M “ tz : |z| “ 1u with the standard topology. Prove that π1pMq » Z (the
additive group of integers).

Definition 2.14. An arc-wise topological space M is called simply connected if π1pMq “ Id.

In other words in a simply connected space all loops are homotopic to the identity loop. A
covering space ĂM of M is a continuous map f : ĂMÑ M such that f is surjective and for each point
x P M there is an open neighbourhood U Ă M such that f´1pUq consists of open sets U j Ă

ĂM

which map homeomorphically to U via f .

Definition 2.15. The covering space f : ĂMÑ M is called universal cover of M if ĂM is simply connected.
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Remark 2.16. The only Riemann surfaces with trivial fundamental group are the sphere, the
complex plane and the disk.

Exercise 2.17: Show that the only Riemann surface M with π1pMq “ Z is the punctured disk or
the punctured complex plane. Show that the fundamental group of the torus C{Lω1,ω2 is Z ˆ Z,
namely a free abelian group on two generators isomorphic to the lattice Lω1,ω2 . Here ω1 and ω2 are
two complex number linearly independent over the real numbers.

Exercise 2.18: Let M “ sCzpz1 Y ¨ ¨ ¨ Y zmq with zi , z j for i , j. Let z0 P M and let γk, k “ 1, . . . ,m
be a loop starting and ending in z0 and encircling the point zk, k “ 1, . . . ,m and denote by rγks the
homotopy class of this loop. Show that π1p

sCzpz1 Y ¨ ¨ ¨ Y zmq, z0q is generated by rγ1s, . . . rγms and
satisfy the constraint

rγ1s ˝ rγ2s ˝ ¨ ¨ ¨ ˝ rγns “ Id (2.8)

namely the trivial loop.

Now we are ready to define the monodromy group of a compact Riemann surface. Let us
consider a compact Riemann surface sΓ realised as the compactification of the smooth affine plane
curve

Γ “ tpz,wq P C2|Fpz,wq “ anpzqz2 ` an´1pzqwn´1 ` ¨ ¨ ¨ ` a0pzq “ 0u

and consider the projection π : sΓ Ñ sC, πpz,wq “ z and denote by z1, . . . , zm the branch point of
such map. Let us delete from sC the branch points z1, . . . , zm and delete from Γ the complete inverse
images π´1pz1q, . . . , π´1pzmq of these points. We get a surface Γ0 that is a n-sheeted covering of
the punctured sphere sCzpz1 Y ¨ ¨ ¨ Y zmq. The monodromy group of the Riemann surface is the
monodromy group of this covering. Fix a point z0 P

sCzpz1 Y ¨ ¨ ¨ Y zmq and number in an arbitrary
way the points in the fiber π´1pz0q as Pp1q0 , . . . ,Ppnq0 (these points are all distinct). Any closed
contour in π1p

sCztz1 Y ¨ ¨ ¨ Y zmu, z0q beginning and ending at z0 can be lifted to n contours on Γ0.
These n contours are in general not all closed contours. Indeed the contour starting at the point Ppiq0

can end at the point Pp jq
0 with i , j. The lift via π of any close contour in π1p

sCztz1 Y ¨ ¨ ¨ Y zmu, z0q

generates a permutation of the points Pp1q0 , . . . ,Ppnq0 in the fiber. We get a representation of the
fundamental group π1p

sCzpz1 Y ¨ ¨ ¨ Y zmq, z0q into the group Sn of permutations of n elements; this
is called the monodromy representation. The mondromy representation

ρ : π1p
sCzpz1 Y ¨ ¨ ¨ Y zMq, z0q Ñ Sn, ρprγksq “ σk

is a group homomorphism namely

ρprγks ˝ rγ jsq “ σkσ j, (2.9)

for any set of generators. The homotopy relation (2.8) implies

σ1σ2 . . . σM “ Id

the identity in Sn.

Definition 2.19. The image of the map ρ defined in (2.9) in Sn is called the monodromy group of the surface
Γ.
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Remark 2.20. For connected surfaces, the image of the monodromy group is a transitive subgroup
in Sn. Indeed a transitive subgroup G P Sn has the property that for every number i, j P t1, . . . ,nu
there exists a permutation τ P G such that j “ τpiq. If the Riemann surface is connected, for any
points Pi and P j in the fiber π´1pzq, z P C it is possible to find a path connecting these points.

Exercise 2.21: Show that for hyperelliptic Riemann surfaces the monodromy group coincides
S2 “ Z2. For curves of the form

wn “

N
ź

j“1

pz´ ziq

show that the monodromy group coincides with Zn.

In the general case the action of the generators of the monodromy group that correspond to
circuits about branch points is determined by the branching indices.

Exercise 2.22: Let z be a branch point, and let the complete inverse image π´1pzq on Γ consist
of the ramification points P1, . . . ,Pk of multiplicity b1, ..., bk, respectively (if some point Pi is not
a branch point, then we set bi “ 0) and assume that

řk
j“1 b j ` k “ n. Prove that to a cycle in sC

encircling z once, there corresponds an element in the monodromy group associated to a partition
of n of the form pb1 ` 1, ..., bk ` 1q.

Remark 2.23. Suppose that one of the branch points, let say zM “ 8. Then the monodromy
corresponding to circuits about the point z “ 8 is uniquely determined by the monodromy
corresponding to circuits about the images of the finite branch points. Indeed, a contour encircling
only the point z “ 8 splits into a product of contours encircling all the finite branch points, and
we get the monodromy at infinity by multiplying the corresponding elements of the monodromy
groups at the finite points. For example, for the surface w2 “ P2n`2pzq the monodromy at infinity
is trivial (the corresponding contour in the z-plane encircles an even number of branch points), i.e.,
this surface has no branch points at infinity. But for the surface w2 “ P2n`1pzq the monodromy at
infinity is nontrivial, because here a contour encircling z “ 8 encircles an odd number of branch
points. We thus see once more that the point at infinity of the surface w2 “ P2n`1pzq is a branch
point.

Exercise 2.24: Prove that for a general surface of the form (1.28), namely

Fpz,wq “
ÿ

i` jďn

ai jziw j, ai j P C,

the monodromy group coincides with the complete symmetric group Sn . Hint. Show that the
branch points of such a surface can be labeled by pairs of distinct numbers i , j, pi, j “ 1, ...,nq in such a
way that a circuit about the images of the points Pi j and P ji gives rise to a transposition of the ith and jth
points of the fiber ( when these points are suitably numbered).

Exercise 2.25: Let us consider the reducible curve

Γ0 “ tpz,wq P C2 | pw´ p1pzqpw´ p2pzqqpw´ p3pzqq “ 0u

with
pipzq “ aiz` bi, i “ 1, 2, 3
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and ai and bi i “ 1, 2, 3 complex constants such aib j´ a jbi , 0 for i , j. Furthermore let us suppose
that the polynomials pipzq satisfy the relation

p1pzq ` p2pzq ` p3pzq “ 0.

Consider the curve

Γ :“ tpz,wq P C2 | w3`wrp1pzqp2pzq`p1pzqp3pzq`p2pzqp3pzqqs´p1pzqp2pzqp3pzqp1`hq “ 0u (2.10)

where h is a small complex constant. Let sΓ be the compactification of Γ. Determine

• how many points have been added to Γ to obtain sΓ;

• the genus of sΓ;

• the branch points (only the form of the expansion in h, namely ziphq “ zip0q ` hz1ip0q ` . . . );

• the monodromy of sΓ considered as a 3-sheeted covering of the z-plane.

Exercise 2.26: Let us consider the curve

Γ :“ tpz,wq P C2 | pw´ z2qpz´ w2q ` hzw “ 0u,

where h is a small non zero constant. Determine

• the compacification sΓ of Γ and the genus of sΓ;

• the monodromy of sΓ with respect to the projection to the z plane.

2.3 Singular curves

Let us consider an irreducible affine plane curve

Γ “ tpz,wq P C2|Fpz,wq “ anpzqwn ` an´1pzqwn´1 ` ¨ ¨ ¨ ` a0pzq “ 0u, (2.11)

with a0pzq, . . . , anpzq polynomials in z. A point P0 “ pz0,w0q P Γ is called singular if

Fpz0,w0q “ Fzpz0,w0q “ Fwpz0,w0q “ 0.

Since the polynomial F is irreducible the set of singular points is finite and coincides with the
common zeros of the equations RpF,Fzq “ 0 and RpF,Fwq “ 0 where R is the resultant with respect
to w of the polynomials F and Fz and F and Fw respectively. The singular point P0 “ pz0,w0q P Γ is

called a node if the Hessian

det
ˆ

Fzzpz0,w0q Fzwpz0,w0q

Fzwpz0,w0q Fwwpz0,w0q

˙

, 0.

The singular point is called a cusp if the parametrisation near the point pz0,w0q takes the form

z “ z0 ` a2t2 ` Opt3q, w “ w0 ` b3t3 ` Opt4q a2 , 0, b3 , 0.

The singular point is called a monomial singularity of type pm,nq with m and n co-prime if the
parametrisation of the curve near the singular point pz0,w0q takes the form

z “ z0 ` antn ` Optn`1q, w “ w0 ` bmtm ` Optm`1q, an , 0, bn , 0.
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Puiseux expansion

For a general curve Γ defined by the polynomial equation (2.11) it is not simple to classify its
singular points. For the purpose, one needs to determine the first term of the Puiseux expansion
near these points. Puiseux series are a generalisation of powers series. They were first introduced
by Newton and then they were rediscovered by Puiseux in 1850. Let us denote by Crrzss the
formal power series in the variable z with coefficients in C and by Cppzqq the field of formal
Laurent series in z with coefficients in C. The Puisex series are formal Laurent series in z with
fractional exponents.

Definition 2.27. A formal Puisex series in z is the field Cxxzyy “
Ť8

n“1 Cppz
1
n qq. The order of a Puisex

series f pzq is the smallest exponent of a term with non vanishing coefficient.

Let us consider the polynomial equation Fpz,wq “ 0 and suppose that Fpz0,w0q “ 0 and
Fwpz0,w0qq , 0. Then the implicit function theorem gives a local parametrisation of the curve near
pz0,w0q in the form

z Ñ pz, ψpzqq,

where ψpzq is an analytic function of z in the neighbourhood of z “ z0 with ψpz0q “ w0. If the
curve is singular in pz0,w0q, namely

grad F “ pFzpz0,w0q,Fwpz0,w0qq “ p0, 0q,

it is not possible to apply the implicit function theorem. For example the curve described by the
polynomial equation Fpz,wq “ w2´z3 “ 0 has a cusp in p0, 0q. However there is a parametrisation
of the form

t Ñ pt2, t3q, or z Ñ pz, z
3
2 q.

If we consider the polynomial Fpz,wq as a polynomial in w with coefficients in Cxxxyy, then Puisex
theorem asserts that it is always possible to solve the equation Fpz,wq “ 0 for w over the field
Cxxxyy.

Theorem 2.28. The field Cxxxyy is algebraically closed.

A proof of Puiseux’s theorem can be obtained constructively by applying the Newton method
that we explain below. Let us suppose that

Fpz,wq “ anpzqwn ` an´1pzqwn´1 ` ¨ ¨ ¨ ` a0pzq

with
akpzq “ αk1zk1 ` αk2zk2 ` higher order terms, 0 ď k1 ă k2 .

Let us suppose that Fp0, 0q “ 0 and we look for a solution of the equation Fpz,wq “ 0 in the
neighbourhood of the point p0, 0q of the form

w “ b1zγ1 ` w1pzq, w1pxq “ b2zγ2 ` b3zγ3 . . . (2.12)

with b1 , 0 and γ1 ă γ2 ă . . . and γi P Q. In order to determine γ1 and b1 we substitute (2.12) into
the equation Fpz,wq “ 0:

a0pzq ` a1pzqpb1zγ1 ` w1pzqq ` ¨ ¨ ¨ ` anpzqpb1zγ1 ` w1pzqqn “ 0. (2.13)
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The terms which have the lowest order must cancel, namely we can find at least two indices j, k
such that

α jpzqb
j
1z jγ1 “ α j1b j

1z jγ1` j1 ` higher order terms,

and
akpzqbk

1zkγ1 “ αk1bk
1zkγ1`k1 ` higher order terms,

have the same order and this order is the smallest possible. If there are exactly two indices j ą k
with the smallest possible order then we have the equations

jγ1 ` j1 “ kγ1 ` k1, Ñ γ1 “ ´
j1 ´ k1

j´ k
,

and

α j1b j
1 “ αk1bk

1 Ñ b1 “

ˆ

αk1

α j1

˙
1

j´k

.

Namely we have determined the first term of the Puiseux expansion. Let us observe that the
coefficient´ 1

γ1
is simply the slope of the line connecting the integer points p j1, jq and pk1, kq on the

cartesian plane and all other points pm1,mq associated to the powers of the polynomial equation
(2.13) must lie above this line. If there are other points pm1,mq on the line connecting the points
p j1, jq and pk1, kq then the coefficient b1 is determined from the equation

ÿ

m1`mγ1“η

αm1bm
1 “ 0, η “ k1 ` kγ1 .

The possible values of b1 are the non zero roots of the above equation.
One can recursively continue the procedure to determine the higher order terms of the Puiseux

expansion. Let us suppose that γ1 “
p
q where p, q P N and they are relatively prime. For

determining w1 in (2.12) one has to repeat the procedure to the polynomial F1pz1,w1q defined by
the equation

F1pz1,w1q :“ Fpzq
1, b1zp

1 ` w1q.

An efficient way to determine the exponents γ1 ă γ2 ă . . . in the Puiseux expansion is to use
the Newton polygon which we define below. For a polynomial

Fpz,wq “
ÿ

i j

ai jziw j, ai j P C,

the carrier C of F is defined as
CpFq “ tpi, jq P Z2 | ai j , 0u.

Definition 2.29. The Newton polygon of the polynomial Fpz,wq “
ř

i j ai jziw j, is the convex hull of the
points in the carrier CpFq.

We describe the Newton algorithm with an example.
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Example 2.30. Let Fpz,wq “ w5 ` w3z3 ´ z5 ´ z4 ´ w2z. Clearly the point p0, 0q is a singular point
for the curve determined by the equation Fpz,wq “ 0. The Newton polygon associated to this
polynomial is shown in figure 2.6. One can see that there are two lines on its left boundary

y “ ´3x` 5, y “ ´
2
3

x`
8
3
.

We first analyse the line with slope ´3, namely the case w “ b1z
1
3 ` w1pzq, which gives

Fpz, b1z
1
3 ` w1q “ z

5
3 pb5

1 ´ b2
1q ` opz

5
3 q,

so that b3
1 “ 1, namely b1 is one of the three roots of unity. For simplicity let us consider b1 “ 1.

The other roots will be considered at the end. Next we consider the parametrisation

z “ z3
1, w “ z1p1` w1q

so that

Fpz3
1, z1p1` w1qq “ z5

1F1pz1,w1q,

F1pz1,w1q “ w5
1 ` 5w4

1 ` pz
7
1 ` 10qw3

1 ` p3z7
1 ` 9qw2

1 ` p3z7
1 ` 3qw1 ´ z10

1 . (2.14)

The Newton polygon of the polynomial F1pz1,w1q is show in figure 2.6 and one can see that the

Figure 2.6: The Newton polygon for Fpz,wq on the left and F1pz1,w1q on the right.

line x1 ` 10y1 “ 10 is on the boundary of the Newton polygon. So we look for w1 “ b2z10
1

F1pz1, b2z10
1 q “ z10

1 p3b2 ´ 1q ` opz10
1 q,

which gives b2 “
1
3 . We conclude that the first two terms of the Puiseux expansion are

w “ z
1
3 `

1
3

z
11
3 ` . . . .
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Let us denote by ψ1pz
1
3 q the above Puiseux expansion. In a neighbourhood of p0, 0qwe have

Fpt3, ψ1ptqq “ 0,

for sufficiently small t. Repeating the same procedure for the coefficient µ “
3
2

one obtains the
equation

Fpz, b1z
3
2 ` w1q “ ´p1` b2

1qz
4 ` opz4q

so that b1 “ ˘i. Choosing b1 “ i and continuing the procedure we have

w “ ipzq
3
2 `

i
2

z
5
2 ` . . . .

Let us denote by ψ2pz
1
2 q the above Puiseux expansion. In a neighbourhood of p0, 0qwe have

Fpt2, ψ2ptqq “ 0,

for t sufficiently small. Summarising near p0, 0q the polynomial Fpz,wq can be factored in the form

Fpz,wq “
3
ź

s“1

´

w´ ψ1pe
2πis

3 z
1
3

¯

2
ź

s“1

´

w´ ψ2pe
2πis

2 z
1
2

¯

.

We conclude that the point p0, 0q is a cusp and a ramification point with branching number equal
to two.

Exercise 2.31: Consider the curve defined by the equation Fpz,wq “ w2 ´ z2pz` 1q. Show that the
point p0, 0q is a node and near such point the polynomial Fpz,wq can be factored in the form

Fpz,wq “ pw´ ψ1pzqqpw´ ψ2pzqq

where
ψ1pzq “ z`

1
2

z2 ´
1
8

z3 `
1

16
z4 ´

5
128

z5 ` . . .

and ψ2pzq “ ´ψ1pzq.

In the general case let us suppose that pz0,w0q is a singular point of the curve defined by
Fpz,wq “ 0. Furthermore we assume for simplicity that the pre-image of the point z0 with respect
to the projection πpz,wq Ñ z consists only of one point, namely π´1pz0q “ w0. We have the
following theorem [?].

Theorem 2.32. Let Fpz,wq be a polynomial such that Fpz0,wq “ cwn and c , 0. For each point near z0,
there are homolorphic functions ψ1ptq, . . . , ψlptq defined near t “ 0, such that ψ jp0q “ w0 and positive
integers m1, . . . ,ml with m1 ` ¨ ¨ ¨ `ml “ n such that

Fpz0 ` tm j , ψ jptqq “ 0, j “ 1, . . . , l.

In other words for z´ z0 in a sector

0 ď |z´ z0| ă ρ, argpz´ z0q ă φ,

for sufficiently small ρ and any positive φ ă 2π, the polynomial Fpz,wq can be factored in the form

Fpz,wq “ c
l

ź

j“1

m j
ź

s“1

ˆ

w´ ψ jpe2πis{m jpz´ z0q
1

mj q

˙

The Puiseux series ψi and ψ j are called essentially different for i , j.
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2.3.1 Resolution of singularities

Let Γ “ tpz,wq P C2 |Fpz,wq “ 0u and suppose that the curve is singular at the point pz0,w0q.
The type of singularity at this point is obtained from the Puiseux expansion near this point. The
resolution of the singularity consists in removing the singular point pz0,w0q so that one obtains a
curve pΓ that is smooth and has l punctured neighbourhoods, where l is the number of essentially
different Puiseux expansions near pz0,w0q. The next step is to compactify pΓ in these l punctured
neighbourhoods by adding a suitable local chart compatible with the complex structure of pΓ. We
illustrate the procedure for a node singularity.
Node singularity. Let us suppose that the point pz0,w0q is a node singularity for the curve Γ
defined by the equation Fpz,wq “ 0. Then by Theorem 2.32 near the point pz0,w0q the polynomial
Fpz,wq can be factored in the form

Fpz,wq “ pw´ ψ1pzqqpw´ ψ2pzqq

where ψ1 and ψ2 are holomorphic function of z in a neighbourhood of z0 and ψ jpz0q “ w0, j “ 1, 2.
Therefore near the node pz0,w0q the curve Γ is the locus of zeros of pw´ψ1pzqqpw´ψ2pzqqwhich is
the union of the locus of zeros of the functions w´ψ1pzq and the locus of zeros of w´ψ2pzq. Each
locus corresponds to the curves Γ1 and Γ2 respectively. These curves are nonsingular in pz0,w0q.
Next we call Γ̂ the curve obtained from the singular curve Γ by removing the point pz0,w0q. The
curve Γ̂ looks locally as the union Γ jztpz0,w0u, j “ 1, 2. Let us consider punctured open sets U j in
Γ jztpz0,w0u. Such open sets are homeomorphic to punctured disks. According to definition 1.36,
the surface Γ̂ is a Riemann surface with two punctures. Compactifying the curve Γ̂ according to
section 1.1.3, one obtains a smooth compact Riemann surface S. The smooth Riemann surface S
obtained in this way is called also the normalisation of Γ.

Exercise 2.33 (Plücker’s formula): . Let Γ be a projective curve of degree n with k nodes and no
other singularities. Show that the genus of S, the curve obtained by resolving the nodes of Γ is

g “
1
2
pn´ 1qpn´ 2q ´ k.

Monomial singularities

A curve Γ defined by the zero of the polynomial Fpz,wq “ 0 has a singularity of type pm,nq at the
point p0, 0q if locally the polynomial Fpz,wq is of the form

Fpz,wq “ wn ´ zm,

with m and n co-prime integers. Let us consider the puncture neighbourhood of p0, 0q in Γ, namely
the set

U “ tpz,wq P C2 : 0 ă |z| ă ρ, and Fpz,wq “ 0u

and the disc
D “ tt P C : |t| ă ρ

1
n u.

The map
Ψ : Dzt0u Ñ U, Φptq “ ptn, tmq
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is a biholomorphic map from Dzt0u to U. The inverse map is given by

Φpz,wq Ñ zawb “ t, an`mb “ 1

with a and b integers. The map Φ is compatible with the complex structure of Γ. So the curve
Γztp0, 0u is a Riemann surface with a puncture according to definition 1.36. We can extend the map
Φ : U Y tp0, 0qu Ñ D, by defining Φp0, 0q “ 0. The Riemann surface that we obtain is a smooth
compact Riemann surface S.

Singularities of projective curves can be treated in a similar way. For example the point
rX0 : Y0 : Z0s is a singular point for the irreducible projective curve

Γ “ trX : Y : Zs P P2 |QpX,Y,Zq “ 0u

if QpX0,Y0,Z0q “ 0 and for example Z0 , 0 and Qupu, v, 1q “ 0 and Qvpu, v, 1q “ 0 at u “ X0
Z0

and
v “ Y0

Z0
.

We can summarise the results of this subsection with the following theorem.

Theorem 2.34. For every irreducible algebraic curve Γ Ă P2 there exists a compact Riemann surface S
and a holomorphic map

φ : S Ñ Γ

with the properties

• let Γ̂ :“ ΓzSing Γ be the smooth part of Γ and let Ŝ :“ φ´1pΓ̂q. Then

φ̂ :“ φ|Ŝ : Ŝ Ñ Γ̂

is bi-holomorphic

• φ : S Ñ Γ is holomorphic and surjective.

For a singular point P P Sing Γ, the number of points in the preimage of φ´1pPq is given by the
number of essentially different Puiseux expansions of Γ near P. In the example 2.30 the number
of pre-images of the singular point p0, 0q consists of two points.

Exercise 2.35: Calculate the genus of the singular curves

1. w3 “ pz´ a1q
2pz´ a2qpz´ a3q

2pz´ a4q,

2. w3 “ z3pz´ a3q
2pz´ a4q.

For each singular point calculate the number of points in the preimage of the map φ defined in
theorem 2.34.

Exercise 2.36: For which value of λ the following curves are non singular?

1. X3 ` Y3 ` Z3 ` 3λXYZ “ 0,

2. X3 ` Y3 ` Z3 ` λpX ` Y` Zq3 “ 0.

Describe the singularities when they exist and calculate the genus of the corresponding Riemann
surface.
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2.4 Homology

In this section we define the homology of a compact Riemann surface Γ. Given a triangulation of
the Rieamnn surface Γ, we define the verteces as 0-simplex, the edges as 1-simplex and the triangles
as 2-simplex. The orientation on the manifold induces an orientation on the triangles that can be
used to orient the edges bounding each triangle.

Definition 2.37. A (simplicial) 0, 1, 2-chain is a formal sum of vertices P j, edges γ j or triangles T j

c0 “
ÿ

n jP j c1 “
ÿ

m jγ j c2 “
ÿ

k jT j, n j,m j, k j P Z .

The element ´c1 is the edge with opposite orientation and ´t is the triangle with opposite
orientation. The vertices P1, P2, P3, . . . can be used to identify edges and triangles. For example
xP1P2y is the oriented edge from P1 to P2 and xP1,P2,P3y is the oriented triangle with sides the
oriented edges xP1P2y, xP2P3y and xP3P1y. The sets of p–chains Cp have the (natural) structure of
free abelian groups (just by formal sums). A closed curve γ̃ can be homotopically deformed to a
chain of edges in the triangulation T thus defining a cycle (Exercise: prove that it is a cycle!); this
can be called a simple cycle.

With this notation we define the boundary operator δ.

Definition 2.38. The boundary operator δ : Cn Ñ Cn´1 with n “ 0, 1, 2 is defined as follows:

δc0 “ 0, c0 P C0

δxP1P2y “ P2 ´ P1

δxP1,P2,P3y “ xP1P2y ` xP2P3y ` xP3P1y.

The above relation defines δ on 1 and 2-simplex and it can be extend to 1 and 2-chain by linearity.

The fundamental property is that δ2 ” 0: indeed (we need to check this only for C2)

δδpTq “ δ pxP1P2y ` xP2P3y ` xP3P1yq “ P2 ´ P1 ` P3 ´ P2 ` P1 ´ P3 “ 0 . (2.15)

Definition 2.39. A p–chain cp such that δcp “ 0 P C0 is called a p–cycle. A chain which is the boundary
of another chain is called a p–boundary. Clearly any p-boundary is a p-cycle, but not viceversa.

In our case, being the manifold of real dimension 2, all the interesting information is contained
in C1; the 1–cycles and 1–boundaries are the following subgroups of C1:

Zn “ tcn P Cn | δcn “ 0u, Bn “ tcn P Cn | Dcn`1 P Cn`1, cn “ δcn`1u.

From the above definition it is clear that

Bn Ď Zn Ď Cn .

Definition 2.40. The first homology group of Γ is denoted by H1pΓ,Zq and is

H1pΓ,Zq :“
Z1pΓq

B1pΓq
. (2.16)
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Figure 2.7: The blue contour is not homotopic to the trivial loop but it is homologous to zero
because it separates the surface.

This homology group can be shown to be independent of the choice of triangulation T (more
precisely the homology groups corresponding to two triangulations are isomorphic).

Remark 2.41. The other homology groups are defined similarly: in particular H0pΓ,Zq is made of
the classes of points that cannot be joined by cycles. It is simple to show that H0pΓ,Zq “ Zk where
k is the number of connected components of Γ (hence for connected Riemann surfaces k “ 1).
The generator is the class of any vertex. Regarding H2pΓ,Zq we have that if Γ is compact, then
C2 consists of one 2-chain, namely the chain that covers all the surface and B2 “ H. Therefore
H2pΓ,Zq “ Z.

Therefore the only nontrivial group is H1pΓ,Zq. One has

Proposition 2.42. The first homology group H1pΓ,Zq is isomorphic to the Abelianization of the first
homotopy group, namely

H1pΓ,Zq »
π1pΓq

rπ1pΓq, π1pΓqs
, (2.17)

where r ., .s is the standard commutator. The group H1pΓ,Zq is a free Abelian group with 2g generators
and hence it is isomorphic to Z2g. These generators can be chosen as (classes of) simple cycles.
Any cycle can be written as sum of simple cycles (with coefficients in Z).

Let Γ be a compact Riemann surface of genus g and let rγ1s, . . . , rγ2gs be the set of generators
of π1pΓq. Then any element rγs P π1pΓq can be uniquely written as

rγsπ1 “ rγk1s
j1
π1
˝ rγk2s

j2
π1
˝ . . . rγkns

jn
π1
, k1, . . . kn P t1, 2, . . . , 2gu

with j1, . . . , jn P Z and we use the subscript π1 to denote the elements of the homotopy group.
Then the corresponding element rγsH1 in the homology class is obtained as

rγsH1 “ j1rγk1sH1 ` j2rγk2sH1 ` ¨ ¨ ¨ ` jnrγknsH1 , k1, . . . kn P t1, 2, . . . , 2gu.

This in particular also shows that the homology is independent from the triangulation.

Remark 2.43. A cycle may be homologous to the trivial cycle but not homotopic to a point, for
example the one in Fig. 2.7.
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In the rest of this section we simply denote asγ an element in the homology. Let a1, . . . , ag, b1, . . . , bg
be a basis in H1pΓ,Zq. Then any cycle γ is homologous to a linear combination of the basis with
integer coefficients:

γ »
g
ÿ

i“1

miai `

g
ÿ

i“1

nibi, mi, ni P Z.

Intersection number

The notion of intersection number is more general than the one given here as it applies to any two
submanifolds of complementary dimensions. In our case of complex one-dimensional manifold
(i.e. real surface) two submanifolds of complementary dimension must have both dimension 1
(i.e. they must be curves) or 0 and 2 (points and domains). The latter case is rather degenerate
(although not meaningless) and we focus only on the first case.

Given two simple cycles γ and η we represent them as smooth closed curves and we consider
their intersection: again, possibly by a small deformation of one or both contours we can reduce
to the situation that
(a) the intersection is finite and
(b) all intersections occur transversally, i.e. the tangents to γ and η at the point of intersection are
not parallel.

Given p P γ X η one such point of intersection, we associate a number νppq P t`1,´1u as
follows. Let z be a local coordinate at p: the two (arcs) of γ and η now are arcs in a neighbourhood
of zppq “ 0 crossing each other transversally. We denote by 9γ0 and 9η0 the two tangent vectors at
zppq “ 0; if the determinant of their components is positive we set νppq “ 1, if it is negative we
set νppq “ ´1. In other words the number νppq indicates the orientation of the axis spanned by 9γ0
and 9η0 (in this order!) relative to the orientation of the standard<pzq, =pzq axes.

Definition 2.44. The intersection number between γ and η is then defined by

γ ˚ η :“
ÿ

pPγXη
νppq . (2.18)

It follows immediately from the definition that γ ˚ η “ ´η ˚ γ and the intersection number is
an integer. One can also prove that:

Proposition 2.45. The intersection number is invariant under smooth homotopy deformations of γ and η.

Therefore the intersection number depends only on the homotopy classes of γ and η, which we
then denote by rγs ˚ rηs.

In particular it makes sense to compute the self-intersection of a cycle

rγs ˚ rγs “ 0 . (2.19)

This makes sense because in the actual computation one chooses two different representatives in
the same class of γ which intersect transversally: the fact that the result is zero then follows from
the antisymmetry.

Note also that the intersection number depends on the orientation of the contours: if we reverse
one contour the intersection number changes sign

rγs ˚ rηs “ ´rγs´1 ˚ rηs . (2.20)
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Moreover:

Lemma 2.46. The intersection number of any boundary β with any cycle γ vanishes γ ˚ β “ 0.

Proof. A boundary β is a collection of simple cycles that bound a domain. if γ is a symple cycle it
must traverse the boundary of this domain an even number of times, and two consecutive crossing
count with opposite sign, hence cancel out. �

This lemma implies that the intersection number is well defined as a pairing on the first
homology group. More in fact is true

Theorem 2.47. The intersection pairing

˚ : H1pΓ,Zq ˆH1pΓ,Zq Ñ Z (2.21)

is a bilinear skew–symmetric map. If Γ is a compact Riemann surface then it is nondegenerate.

+1

−1

+1

−1

γ1 γ2

Figure 2.8: Intersection of γ1 and γ2.

2.4.1 Homology of a compact Riemann surface of genus g

We have said that H1pΓ,Zq is isomorphic toZ2g and that the intersection pairing is antisymmetric
and nondegenerate. It can be shown that there are simple cycles

tα1, β1, α2, β2, . . . , αg, βgu (2.22)

that generate H1pΓ,Zq and such that

αi ˚ α j “ 0, βi ˚ β j “ 0 , αi ˚ β j “ δi j . (2.23)

Definition 2.48. A basis of H1pΓ,Zq satisfying (2.23) is called a canonical basis.
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Figure 2.9: Homology basis.

A canonical basis exists but it is not unique. Let α “ pα1, . . . , αgq
t and β “ pβ1, . . . , βgq

t denote
the column vectors of the 2g generators and let us suppose we make a transformation

ˆ

α1

β1

˙

“

ˆ

A B
C D

˙ˆ

α
β

˙

(2.24)

where the 2gˆ 2g matrix S “
ˆ

A B
C D

˙

is integer valued and nonsingular. The basis α1,β1 will be

a set of generators provided that S´1 is also integer–valued and hence the determinant of S must
be ˘1.

Moreover if we want that the new basis is also canonical this forces

J :“
ˆ

0 1g
´1g 0

˙

“

ˆ

α1

β1

˙

˚ pα1β1q “

ˆ

α
β

˙

˚ pα,βq (2.25)

so that
J “ SJSt (2.26)

Matrices of dimension 2g ˆ 2g satisfying (2.26) form a group, the symplectic group, denoted by
Sppg,Zq.
Example 2.49. Let us construct a canonical basis of cycles on the hyperelliptic surface w2 “
ś2g`1

i“1 pz ´ ziq, g ě 1. We represent this surface in the form of two copies of C (sheets) with cuts
along the segments rz1, z2s, rz3, z4s, . . . , rz2g`1,8s. A canonical basis of cycles can be chosen as
indicated on the figure for g “ 2 (the dashed lines represent the parts of a1 and a2 lying on the
lower sheet).

2.4.2 Canonical dissection of a compact Riemann–surface and Poincare poly-
gon

We take a basepoint P0 and consider the homotopy group π1pΓ,P0q of loops based at P0. Amongst
these there are 2g generators α1, β1, . . . , αg, βg whose homology classes form a canonical basis.
Although these loops are only identified by their homotopy classes, we will think of them as
concrete choices of (smooth) closed curves on the surface with basepoint P0.
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Figure 2.10: An example of a canonical dissection (genus 2)

Definition 2.50. The canonical dissection of Γ, called the Poincare’ polygon of Γ, is the simply connected
domain rΓ obtained by removing the 2g generators identified above.

The boundary BrΓ of this domain consists of both sides of each generator and hence consists of
4g arcs (see Fig. 2.10 and 2.11).

Viceversa we could start with a 4g–gon with sides α1, β1, α11, β
1
1, . . . and identify topologically

the sides α j, α1j, β j, β1j with opposite orientations. The result is a topological model of a Riemann
surface of genus g.

α

β

α

1

−1

1β
−1

β

β

1

1

1

1

2

2

−1
2

2
−1

1

1

α

α

αβ

β2
−1

−1α

Figure 2.11: Poincaré polygon for surfaces of genus one and two.

Further reading: Harer-Zagier formula??



Chapter 3

Meromorphic functions on a
Riemann surface.

3.1 Holomorphic mappings of Riemann surfaces

Definition 3.1. Let Γ be a Riemann surface. A function f : Γ Ñ C is said to be holomorphic, if for each
local chart the function

f ˝ φ´1
α : φαpUαq Ñ Vα Ă C

zα Ñ fαpzαq :“ f pφ´1
α pzαqq,

is holomorphic on the open subset φαpUαq.

The following theorem is inherited from complex analysis.

Theorem 3.2. If Γ is a connected compact Riemann surface, then the only holomorphic functions are
constants.

Proof. Since f is holomorphic, | f | is continuos on Γ compact. Therefore | f | achieves its maximum
value at some point of Γ. By the maximum modulus Theorem, f must be constant on Γ since Γ is
connected. �

In the same way one can define meromorphic functions.

Definition 3.3. A function f is a meromorphic function on a Riemann surface Γ if it is holomorphic in
a neighborhood of any point of Γ except for finitely many points Q1, . . . ,Qm. At the points Q1, . . . ,Qm
the function f has poles of respective multiplicities q1, . . . , qm i.e., in a neighborhood of the point Q j,
j “ 1, . . . ,m, it can be represented in the form

f “ τ´qi

j f̃ jpτ jq, (3.1)

where τ j is a local parameter centred at the point Q j, and f̃ jpτ jq is a holomorphic function for small τ j and
f̃ jpτ jq|τ j“0 , 0. The order of f in Q j denoted as ordQ jp f q is the first nonzero exponent in the Laurent series
of f in Q j, namely

ordQ jp f q “ ´q j.

49
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It is easy to verify that Definition 3.4 is unambiguous. i.e., is independent from the choice of
the local parameter, and also that the definition of the multiplicity of a pole is unambiguous.

Definition 3.4. Let Γ be a compact Riemann surface defined as Γ “ tpz,wq P C2 | Fpz,wq “ 0u , Fpz,wq
polynomial. A function f “ f pz,wq is meromorphic on Γ if it is a rational function of z and w, i.e., it has
the form

f pz,wq “
Ppz,wq
Qpz,wq

, (3.2)

where Ppz,wq and Qpz,wq are polynomials, and Qpz,wq is not identically zero on Γ.

The meromorphic functions on the surface Γ form a field whose algebraic structure actually
bears in itself all the information about the geometry of the Riemann surface.

A similar definition of meromorphic functions can be given for a projective curve Γ :“ trX :
Y : Zs P P2|QpX,Y,Zq “ 0u where now QpX,Y,Zq is a homogeneous polynomial. Meromorphic
functions on the projective curve Γ take the form

RpX,Y,Zq “
GpX,Y,Zq
HpX,Y,Zq

where G and H are homogeneous polynomials of the same degree and Q does not divide H.
It is not hard to verify that the conditions of Definition 3.3 follow from the conditions of

Definition 3.4. The following result turns out to be true.

Theorem 3.5. Definitions 3.4 and 3.3 are equivalent.

We do not give a proof of this theorem; see, for example, [?] or [6].
Holomorphic mappings of Riemann surfaces are defined by analogy with meromorphic func-

tions on Riemann surfaces.

Definition 3.6. Let Γ and rΓ be Riemann surfaces. A map f : Γ Ñ Γ̃ is called holomorphic at a point P P Γ

if and only if there is exists charts from a neighbourhood U of P and a neighbourhood rU of f pPq, namely
φ : U Ñ V Ă C and rφ : rU Ñ rV Ă C such that the composition

rφ ˝ f ˝ φ´1

is holomorphic. The map f is holomorphic, if it is holomorphic everywhere on Γ.

In other words, if τ is a local parameter on Γ and rτ a local parameter in a neighborhood of the
point f pPq, then f must be written locally in the form rτ “ ψpτq, where ψ is a holomorphic function
of τ.

If Γ “ tpz,wq P C2 | Fpz,wq “ 0u, rΓ “ tprz, rwq P C2 | rFprz, rwq “ 0u, then a holomorphic mapping
f : Γ Ñ rΓ is defined by a pair of meromorphic functions rz “ f1pz,wq, rw “ f2pz,wq. It follows from
Theorem 3.5 that this definition is equivalent to (3.6).

Remark 3.7. Let f : Γ Ñ C be a meromorphic function on Γ. Then f can be extended to an
holomorphic function from Γ to sC in the following way:

FpPq “
"

f pPq, if P is not a pole for f
8 if P is a pole for f .
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Let us verify that the map F is holomorphic. This is obvious in a neighborhood of regular
points. Let z be a local coordinate in the finite part of C, and ζ “ 1{z the local coordinate at8 P sC.
Assume that the function has a pole of order k at the point P0 P Γ, i.e., it can be written in terms of
a local coordinate τ centred in P0 in the form

z “ f pPq “
c
τk
`Opτ´k`1q, c , 0,

Then ζ “
1

f pPq
“ c´1τk `Opτk`1q, i.e., the mapping has a zero of multiplicity k at P0.

Example 3.8. A meromorphic function f from P1 to C is of the form

f pX,Yq “
PpX,Yq
QpX,Yq

where P and Q are homogeneous polynomials of the same degree. One can extend f to a
holomorphic function F : P1 Ñ P1 in the form

FpX,Yq :“ rPpX,Yq : QpX,Yqs.

Theorem 3.9. Let Γ and Γ̃ be connected Riemann surfaces and Γ be compact. Let f : Γ Ñ Γ̃ be a non
constant holomorphic map. Then Γ̃ is compact and f is onto.

Proof. Since f is holomorphic, it is also an open mapping. Therefore, f pΓq is open in Γ̃. Since Γ is
compact, f pΓq is compact in Γ̃. Since Γ̃ is Hausdorff and connected, f pΓq is open and close in Γ̃,
therefore f pΓq “ Γ̃ and Γ̃ is compact. �

The following lemma characterizes the local behaviour of a holomorphic mapping.

Lemma 3.10. let f : Γ Ñ rΓ be a non constant holomorphic function between compact Riemann surfaces.
Then there exists local parameters τ and rτ centered in P P Γ and Q “ f pPq P rΓ respectively, such that the
map f takes the form

rτ “ τk, k PN. (3.3)

Proof. Let s and s̃ be local coordinates centered at P P Γ and f pPq P rΓ. Then in local coordinates
the holomorphic non constant function f : Γ Ñ rΓ takes the form

rs “ ψpsq

with ψ holomorphic and ψp0q “ 0. The function ψ can be written in the form

ψpsq “ skhpsq (3.4)

with h holomorphic, hp0q , 0 and k non negative integer. The number k does not depend on the
choice of the local parameters s and rs. Let us define the new local coordinate τ as

τ “ sgpsq, gkpsq “ hpsq.

Such map is biholomorphic. In terms of the local coordinate τ, the map f takes the form (3.3). �
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Definition 3.11. The number k defined (3.4) is called the multiplicity of f in P, and denoted by multPp f q.
A point P P Γ is called ramification point for f if multPp f q ě 2. The point f pPq “ Q P Γ̃ is called branch
point. The number

b f pPq “ multPp f q ´ 1

is called the branch number of f in P. The map f : Γ Ñ Γ̃ is called a holomorphic unramified (ramified)
covering if f does not (does ) have branch points.

Lemma 3.12. Non constant holomorphic mappings f : Γ Ñ rΓ are discrete. Namely the pre-image of a
point Q P rΓ is a discrete set f´1pQq in Γ. In particular, if Γ and rΓ are compact, f´1pQq is finite.

Proof. Let Q P rΓ and P P f´1pQq. Let τ and rτ local coordinates centered at P and Q respectively. In
these coordinates the function f takes the form rτ “ hpτq with hp0q “ 0 and h holomorphic. Since
the set of zeros of a non constant holomorphic function is discrete, it follows that P is the only
pre-image of Q. Therefore f´1pQq forms a discrete subset. The second statement follows from the
fact that discrete subsets of compact space are finite. �

Lemma 3.13. Let f : Γ Ñ rΓ be a non constant holomorphic map. Then the set of branch points

B “ tP P Γ | b f pPq ą 0u

is discrete and it is finite if Γ is compact.

The proof of the Lemma is similar to the proof of Lemma 3.12

Example 3.14. A hyperelliptic nonsingular Riemann surface w2 “ P2n`1pzq, P2n`1pzq “
ś2n`1

i“1 pz´
ziq. Here the coordinates z and w are single-valued functions on Γ and holomorphic in the finite
part of Γ. These functions have poles at the point of Γ at infinity: z has a double pole, and w
has a pole of multiplicity 2n ` 1. This follows immediately from the proposition (1.39). The
function 1{pz ´ ziq has for each i a unique second order pole on Γ at the branch points. This
follows from (1.27). We mention also that the function z has on Γ two simple zeros at the points
z “ 0, w “ ˘

a

P2n`1p0q which merges into a single double zero if P2n`1p0q “ 0. The function w
has 2n ` 1 simple zeros on Γ at the branch points. (The multiplicity of a zero of a meromorphic
function is defined by analogy with the multiplicity of a pole.)
Example 3.15. A hyperelliptic Riemann surface w2 “ P2n`2pzq. Here again the functions z and
w are holomorphic in the finite part of Γ. But these functions have two poles at infinity (in the
infinite part of the surface Γ): z has two simple poles, and w has two poles of multiplicity n ` 1.
This follows from proposition (1.39).

Exercise 3.16: Prove Theorem 3.5 for P1.

Exercise 3.17: Prove Theorem 3.5 for hyperelliptic Riemann surfaces. Hint. Let f “ f pz,wq be
a meromorphic (in the sense of Definition 3.3) function on the hyperelliptic Riemann surface
Γ defined by the equation w2 “ Ppzq. Show that the functions f` “ f pz,wq ` f pz,´wq and

f´ “
f pz,wq ´ f pz,´wq

w
are rational functions of z, so that any meromorphic function on on Γ is

of the form f pz,wq “ r1pzq ` r2pzqw where r1 and r2 are rational functions.

To prove the simplest properties of meromorphic functions on Riemann surfaces it is useful to
employ arguments connected with the concept of the degree of a mapping.
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Proposition 3.18. Let f : Γ Ñ Γ̃ be a nonconstant holomorphic mapping between compact Riemann
surfaces. For each Q P Γ̃ let us define degQp f q to be the sum of the multiplicities of f at the point of Γ
mapping to Q:

degQp f q “
ÿ

PP f´1pQq

multPp f q.

Then degQp f q is constant independent from Q.

Proof. We show that the function Q Ñ degQp f q is locally constant. Let P1, . . .P j be the number of
pre-images of Q under f . Let τi be local coordinates centered at Pi and τ̃ local coordinate centered
in Q so that locally near Pi the function f takes the form

τ̃ “ τmi
i , i “ 1, . . . , j.

The above map has constant degree in a small neighbourhood of τi “ 0 for i “ 1, . . . , j. What
is left to prove is that near Q there are no other pre-images of Q left unaccounted which are
not in a neighbourhood of P1, . . .P j. Suppose by contradiction that arbitrary close to Q there are
pre-images which are not contained in any of the neighbourhood of the Pi. Since Γ is compact
we may extract a convergent sub-sequence of points in Γ, say P1n which are not contained in any
of the neighbourhood of the Pi. This subsequence has the property that f pP1nq Ñ Q because f
is holomorphic, therefore, the limit point of P1n must be one of the Pi, i “ 1, . . . j. We obtained
a contradiction since we assumed that none of the Pn’s lie in a neighbourhood of the Pi, i “
1, . . . , j. �

Exercise 3.19: Prove that for any meromorphic function on a Riemann surface Γ the number of
zeros is equal to the number of poles (zeros and poles are taken with multiplicity counted).

Remark 3.20. A single non constant meromorphic function on a Riemann surface Γ completely
determines the complex structure of Γ. Indeed let P P Γ and n “ b f pPq`1. Then a local coordinate
vanishing at P is given by

p f ´ f pPqq1{n if f pPq , 8

f pPq´1{n if f pPq “ 8.
(3.5)

Exercise 3.21 (Riemann-Hurwitz formula): Let f : Γ Ñ Γ̃ be a nonconstant holomorphic map
between compact Riemann surfaces. Prove the following generalization of the Riemann-Hurwitz
formula (see Lecture 2)

2´ 2gpΓq “ deg f p2´ 2gpΓ̃q ´
ÿ

PPΓ

pmultP f ´ 1q (3.6)

where gpΓq and gpΓ̃q is the genus of the Riemann surface Γ and rΓ respectively and deg is the degree
of the function f .

Exercise 3.22: Let Γ be a nonsingular projective curve defined as Γ :“ trX : Y : Zs P P2 |QpX,Y,Zq “
0uwhere Q is an irreducible homogenueos polynomial of degree n. Show that the map

rX : Y : Zs Ñ rQX : QY : QZs

from P2 to P2 is well defined. The image of such map is called the dual curve Γ̂ to Γ. Show that
the map is holomorphic but it does not have a holomorphic inverse if n ě 3.
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Definition 3.23. A map f : Γ Ñ rΓ is called a biholomorphic isomorphism if it is a bijective holomorphic
map with holomorphic inverse. If rΓ “ Γ, then the map is called an automorphism.

It is not hard to derive from Theorem 3.5 that the class of biholomorphic isomorphisms of
Riemann surfaces coincides with the class of birational isomorphisms (the mapping itself and
its inverse are given by rational functions. Namely let Γ :“ tpz,wq P C2 |Fpz,wq “ 0u and
rΓ :“ tprz, rwq P C2 | rFprz, rwq “ 0u, then a birational isomorphism is of the form rz “ r1pz,wq, rw “

s1pz,wq and z “ r2prz, rwq, w “ s2prz, rwq, with r1pz,wq, r2prz, rwq, s1pz,wq and s2prz, rwq rational functions.
In what follows we use the terms bi-holomorphic isomorphism and birational isomorphism
interchangeably.

The following is obvious but important.

Lemma 3.24. If the surfaces Γ and Γ̃ are biholomorphically (birationally) isomorphic, then they have the
same genus.

Proof. A biholomorphic isomorphism is clearly a homeomorphism. But the genus is invariant
under homeomorphisms [9]. The assertion is proved. �

Definition 3.25. A Riemann surface Γ is said to be rational if it is biholomorphically isomorphic to P1.

The genus of a rational surface is equal to zero. It turns out that this condition is also sufficient
for rationality.

Exercise 3.26: Let Γ be a Riemann surface of genus g ą 1. Prove that there is no meromorphic
function on Γ with a single simple pole.

Example 3.27. The surface w2 “ z. This surface is rational. A birational isomorphism onto P1 is
given by the projection pz,wq Ñ w.

Exercise 3.28: Consider the Riemann surface Γ :“ tpz,wq P C2 |wn “ Pmpzqu where Pmpzq is a
polynomial of degree m in z with distinct roots. Consider the automorphism

J : pz,wq Ñ pz, e2π j{nwq, j “ 1, . . . ,n

and define the equivalence relation pz1,w1q » pz2,w2q if z1 “ z2 and w1 “ e2π j{nw2 for some j.
Show that the quotient surface Γ{J is well defined and it is rational. Determine the branch points
of the projection map

π : Γ Ñ Γ{J.

Example 3.29. A surface with w2 “ P2g`2pzq with g ą 1 is nonrational. We show that any such
surface is birationally isomorphic to some surface of the form rw2 “ rP2g`1przq. Let z0 be one of the
zeros of the polynomial P2g`2pzq, and let

rz “
1

z´ z0
, rw “

w
pz´ z0q

g`1 .

The inverse mapping has the form

z “ z0 `
1
z̃
, w “

rw
rzg`1 .

If P2g`2pzq “ pz ´ z0q
ś2g`1

i“1 pz ´ ziq, then rP2g`1przq “
ś2g`1

i“1 p1 ` pz0 ´ ziqrzq. Thus, both ”types” of
hyperelliptic Riemann surfaces considered in Lecture 1 give the same class of surfaces.
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Differentials on a Riemann surface.

4.1 Holomorphic differentials

We consider a complex-one dimensional manifold M with with an atlas of charts tUα, φαuwith

φα : Uα Ñ Vα Ă C

and φαpPq “ zα P Vα and P P Uα. Here we are identifying CwithR2 by writing zα “ xα` iyα with
xα and yα standard coordinates on R2.

Definition 4.1. A smooth one 1-form (also called differential) ω on M is an assignment of a collection of
two smooth functions uαpxα, yαq and vαpxα, yαq to each local coordinate zα “ xα ` iyα in Uα such that

ω “ uαpxα, yαqdxα ` vαpxα, yαqdyα (4.1)

transform under change of coordinates as a (1,0)-tensor. Namely if zβ “ xβ` iyβ is another local coordinate
such that Uα XUβ ,H then

ˆ

uβpxβ, yβq
vβpxβ, yβq

˙

“

¨

˚

˚

˝

Bxα
Bxβ

Byα
Bxβ

Bxα
Byβ

Byα
Byβ

˛

‹

‹

‚

ˆ

uαpxα, yαq
vαpxα, yαq

˙

with xα “ xαpxβ, yβq and yα “ yαpxβ, yβq.

Using the basis dzα “ dxα ` idyα, dszα “ dxα ´ idyα, we can rewrite ω in the form

ω “ hαpzα,szαq dzα ` gαpzα,szαq dszα, (4.2)

where
hα “

1
2
puα ´ ivαq, gα “

1
2
puα ` ivαq.

The two parts hpzα,szαq dzα and gpzα,szαq dszα of the expression (4.2) will be called p1, 0q- and
p0, 1q-forms respectively. The above expression shows that the decomposition of ω in p1, 0q and
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p0, 1q form is invariant under local change of coordinates, if and only if the change of coordinates
is holomorphic, namely

Bszα
Bzβ

“ 0,
Bzα
Bszβ

“ 0.

The above conditions in real coordinates are equivalent to the Cauchy-Riemann equation. For a
one-complex dimensional manifold M that has a complex structure ( namely a Riemann surface),
the decomposition of a one form in p1, 0q and p0, 1q form is invariant under local change of
coordinates. From now on we will consider only holomorphic change of coordinates.

Definition 4.2. A one form ω is called holomorphic is the functions hαpzα,szαq in (4.2) are all holomorphic
functions and gα ” 0, namely

ω “ hpzαqdzα.

A one form ω is called antiholomorphic if

ω “ gpszαqdszα.

In a similar way to one form we can define two-forms.

Definition 4.3. A smooth two form η on M is an assignment of a smooth function fαpzα,szαq such that

η “ fαpzα,szαqdzα ^ dszα

is invariant under coordinate change.

The exterior multiplication satisfies the conditions

dzα ^ dzα “ 0, dszα ^ dszα “ 0, dzα ^ dszα “ ´dszα ^ dzα.

Under holomorphic change of coordinates zβ “ zβpzαq, szβ “ szβpszαq one has

η “ fβpzβ,szβqdzβ ^ dszβ “ fαpzα,szαqdzα ^ dszα

where

fβpzβ,szβq “ fαpzα,szαq
ˇ

ˇ

ˇ

ˇ

dzα
dzβ

ˇ

ˇ

ˇ

ˇ

2

.

We define Ωk for k “ 0, 1, 2 as the set of smooth functions, smooth one forms and smooth two-forms
on M respectively. We define the exterior derivative

d : Ωk Ñ Ωk`1, k “ 0, 1, 2

as follows. For f P Ω0,
d f pz,szq “ fzdz` f

szdsz,

For one forms ω P Ω1, with ω “ hpz,szqdz ` gpz,szqdsz in a given coordinate chart, the exterior
derivative takes the form

dω “ dh^ dz` dg^ dsz

and for two forms, η P Ω2pMq
dη “ 0.
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Clearly the fundamental property of the exterior differentiation is

d2 “ 0.

We can decompose the exterior derivative operator d according to the decomposition of 1-form in
p0, 1q and p1, 0q forms

d “ B ` sB

so that for h P Ω0,0 :“ Ω0 in a local chart

B : Ω0 Ñ Ω1,0, Bhpz,szq “ hzdz,

and
sB : Ω0 Ñ Ω0,1, sBhpz,szq “ h

szdsz.

In general we get the diagram

Ω0,1 B // Ω2

Ω0

sB

OO

B

// Ω1,0

sB

OO

where Ω2 “ Ω1,1. Also in this case B2 “ 0 and sB2 “ 0.

Definition 4.4. A one form ω is called exact if there is a function f P Ω0 such that d f “ ω. A one form
ω P Ω1 is called closed if dω “ 0.

Lemma 4.5. A p1, 0q-form ω “ hpz,szq dz is closed if and only if the function hpz,szq is holomorphic.

It follows that all the holomorphic differentials, locally can be written in the form ω “ hpzqdz
where hpzq is a holomorphic function. Holomorphic differentials are closed differentials.

Definition 4.6. The first de Rham cohomology group is defined as

H1
deRhampΓq “

Closed 1-forms
Exact 1-forms

“
kerpd : Ω1 Ñ Ω2q

Impd : Ω0 Ñ Ω1q
.

A similar definition can be obtained for the Dolbeault cohomology groups H1,0pΓq and H0,1pΓq
with respect to the operator sB:

H1,0pΓq :“
kerpsB : Ω1,0 Ñ Ω2q

psB : Ω0 Ñ Ω1,0q
“ kerpsB : Ω1,0 Ñ Ω2q,

H0,1pΓq :“
kerpsB : Ω0,1 Ñ Ω2q

psB : Ω0 Ñ Ω0,1q
“

Ω0,1

ImagepsB : Ω0 Ñ Ω0,1q
.

A non trivial result shows that there are isomorphisms among the above three groups [16]. By
denoting H0,1pΓq the complex conjugate of the group H0,1pΓq, one has the following theorem.
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Theorem 4.7. The Dolbeault cohomology groups H1,0pΓq and H0,1pΓq are isomorphic

H1,0pΓq » H0,1pΓq (4.3)

and the first de-Rham cohomology group is isomorphic to

H1
deRhampΓq » H1,0pΓq ‘H0,1pΓq. (4.4)

The relation (4.3) shows that the complex vector spaces H1,0pΓq and H0,1pΓq have the same
dimension. The relation (4.4) shows that the dimension of the complex vector space H1,0pΓq and
H0,1pΓq is half the dimension of the complex vector space H1

deRhampΓq.

4.1.1 Integration

We can integrate one forms on curves of the Rieamnn surface Γ, two-forms on domains of Γ and
0-forms on zero dimensional domains of Γ, namely points. Let c0 be a 0-chain,

c0 “
ÿ

i

niPi, Pi P Γ

then for f P Ω0pΓq the integral of f over a 0-chain c0 is
ż

c0

f “
ÿ

i

ni f pPiq

A one formω can be integrated over a one-chain c. If the piece-wise differentiable path c : r0, 1s Ñ Γ
is contained in a single coordinate disc with coordinates z “ x` iy, then the integral of ω over the
one-chain c takes the form

ż

c
ω “

ż 1

0
hpzptq,szptqq

dz
dt

dt`
ż 1

0
gpzptq,szptqq

dszptq
dt

dt

By the transition formula forω the above integral is independent from the choice of the coordinate
chart z. In a similar way a two-form η can be integrated over two chains D. Again restricting to a
single coordinate chart one has

ż ż

D
η “

ż ż

D
f pz,szqdzdsz.

The integral is well defined and extends in a obvious way to an arbitrary two-chain.

Theorem 4.8 (Stokes theorem). Let D be a domain of Γ with a piece-wise smooth boundary BD and let
ω be a smooth one-form. Then

ż

D
dω “

ż

BD
ω. (4.5)

As a consequence of Stokes theorem, the integral of closed forms ω on any closed oriented
contour (cycle) γ on Γ does not depend on the homology class of γ. Recall that two cycles γ1 and
γ2 are said to be homologous if their difference γ1´γ2 “ γ1Yp´γ2q (where (´γ2) is the cycle with
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the opposite orientation) is the oriented boundary of some domain D on Γ with BD “ γ1 ´ γ2.
Then for a close differential ω and from Stokes theorem we obtain

0 “
ż

D
dω “

ż

BD
ω “

ż

γ1´γ2

ω “

ż

γ1

ω´

ż

γ2

ω.

In addition, the integral of a close differential ω on a close cycle γ is independent from the
cohomology class. Let ω1 “ ω` d f for some smooth function f , then

ż

γ
ω “

ż

γ
pω1 ´ d f q “

ż

γ
ω1.

We summarise the above discussion with the following proposition.

Proposition 4.9. The integration is a paring between the first homology group H1pΓ,Zq and the first
cohomology group H1

deRhampΓ,Cq
ż

: H1pΓ,Zq ˆH1
deRhampΓ,Cq Ñ C

The pairing is non-degenerate.

Proof. We need to prove that the pairing is non-degenerate. Consider a smooth one-form ω such
that

ż

γ
ω “ 0

for all γ P H1pΓ,Zq. It follows that the function

f pPq “
ż P

P0

ω

is well defined and it does not depend on the path of integration between P0 and P. Therefore
d f “ ω, namely the equivalent class of ω in the de-Rham cohomology is zero, rωs “ 0 in
H1

deRhampΓ,Cq. �

As a consequence of the above proposition we have the following lemma.

Lemma 4.10. The dimension of the space H1
deRhampΓ,Cq is less then or equal to 2g where g is the genus of

the compact Riemann surface Γ.

Proof. Suppose by contradiction, that there are ω1, . . . , ωs, s ą 2g independent closed differentials
in H1

deRhampΓ,Cq. Then let us consider a basis of the homology γ j, j “ 1 . . . , 2g and construct the
matrix with entries

c jk “

ż

γ j

ωk, j “ 1, . . . 2g, k “ 1, . . . s.

Such matrix has rank at most equal to 2g, and therefore one can find nonzero constants a1, . . . , as
such that the differential ω “

řs
k“1 akωs has all its periods equal to zero, namely

ż

γ j

ω “ 0, j “ 1, . . . 2g.

By proposition 4.9 it follows that rωs “ 0 and we arrive to a contradiction. �
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As a consequence of the above lemma we have the following corollary for the dimension of
the space of holomorphic differentials.

Corollary 4.11. The space of holomorphic differentials on a Riemann surface of genus g is no more than
g-dimensional.

Actually the number of independent holomorphic differentials is indeed equal to g.

Theorem 4.12. The space of holomorphic differentials on a Riemann surface Γ of genus g has dimension g.

We do not give a proof of the above theorem that is constructive (see [17] or [16]). However
for a Riemann surface given as the zeros of a polynomial equation one can determine explicitly
the holomorphic differentials.
Example 4.13. Let us consider holomorphic differentials on a hyperelliptic Riemann surface

Γ “ tw2 “ P2g`1pzqu, P2g`1pzq “
2g`1
ź

k“1

pz´ zkq

of genus g ě 1. Let us check that the differentials

ηk “
zk´1dz

w
“

zk´1dz
b

P2g`1pzq
, k “ 1, . . . , g (4.6)

are holomorphic. Indeed, holomorphicity at any finite point but branch point is obvious as the
denominator does not vanish. We verify holomorphicity in a neighborhood of the i-th branch
point Pi “ tz “ zi, w “ 0u. Choosing the local parameter τ in a neighborhood of Pi in the form
τ “

?
z´ zi, we get from (1.27) that ηk “ ψkpτqdτ, where the function

ψkpτq “
2pzi ` τ2qk´1

b

ś

j,ipτ
2 ` zi ´ z jq

is holomorphic for small τ.
At the point at infinity the differentials ηk can be written in terms of the local parameter τ “ z´

1
2

in the form ηk “ φkpτqdτ, where the functions

φkpτq “ ´2τ2pg´kq

«2g`1
ź

i“1

p1´ ziτq

ff´ 1
2

, k “ 1, . . . , g

are holomorphic for small τ.
In the same way it can be verified that the differentials ηk “ zk´1dz{w, k “ 1, . . . , g are holomor-

phic on the Riemann surface w2 “ P2g`2pzqwith P2g`2pzq an even polynomial with 2g` 2 distinct
roots.

In general for a nonsingular Riemann surface Γ :“ tpz,wq P C2, |Fpz,wq “ 0u, where Fpz,wq is
a polynomial in z and w, the differential

ω “
ziw jdz

Fwpz,wq
, i, j ě 0, (4.7)
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is holomorphic for all finite values of z and w. Indeed the only possible points where such
differential might have poles are the zeros of Fw, namely the branch points with respect to the
projection π : Γ Ñ C such that πpz,wq “ z. At the branch points with respect to the projection π
one needs to take w as local coordinate. Since Fzdz` Fwdw “ 0 one has

dz
Fw
“ ´

dw
Fz
.

Therefore at the branch points where Fw “ 0 one can write the differential ω in the form ω “

´
z jwkdw

Fz
. Since we assume that the surface Γ is nonsingular, Fz , 0 at the branch points.

In order to determine for which coefficients pi, jq the differentialω in (4.7) remains holomorphic
also at infinity, we explain the following rule, that is true for nonsingular Riemann surfaces.
Consider the carrier of the polynomial Fpz,wq “

ř

i, j ai jziw j, namely the set of all integral points
in Z2 such that

CpFq “ tpi, jq P Z2|ai j , 0u.

The Newton polygon NpFq of Fpz,wq is defined as the convex hull of the carrier CpFq. Then the
holomorphic differentials associated to the curve given by the equation Fpz,wq “ 0 are

zi´1w j´1dz
Fwpz,wq

, pi, jq P NpFq

where pi, jq are the points strictly inside the Newton polygon NpFq.
This fact can be easily verified for hyperelliptic Riemann surfaces. Now let us check it for a

smooth projective curves.
Consider the smooth compact Riemann surface

Γ :“ trX : Y : Zs P P2, |QpX,Y,Zq “
ÿ

0ďi` jďn

ai jXiY jZn´i´ j “ 0u.

Let us consider the affine part of Γ given by the equation Fpz,wq “
ř

i` jďn ai jziw j. The point(s) at
infinity of the affine curve are determined by the equation QpX,Y, 0q “

ř

i` j“n ai jXiY j “ 0. For
simplicity we assume that there are no branch points at infinity so that the homogenous equation
QpX,Y, 0q “ 0 has n distinct roots. From this it follows that deg QpX, 0, 0q “ deg Qp0,Y, 0q “ n.

Then the holomorphic differentials are

ηi j “
zi´1w j´1dz
BFpz,wq{Bw

, i` j ď n´ 1. (4.8)

Indeed the above expression is holomorphic for finite values of z and w. The only points we need
to consider are the points at infinity 81, . . . ,8n. By the above assumptions we have that a local
coordinate at infinity is

z “
1
ξ
, w “

c j

ξ
j “ 1, . . . ,n

where c j are the solutions of the homogeneous equation Qpc j, 1, 0q “ 0. In these coordinates ω
takes the form

ω “ ´c
dξ
ξi` j

1

Fw

´

1
ξ ,

c j

ξ

¯ “ ´c
ξn´1p1`Opξqqdξ

ξi` j
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where c is a nonzero constant. The above differential is holomorphic if i ` j ď n ´ 1. The curve
Γ is non singular in p0, 0q if at least one of the coefficients a10 and a01 is non zero. For simplicity
we assume that both are not zero. Then the Newton polygon associated to F is the polygon with
vertices p0, 1q, p1, 0q p0,nq and pn, 0q. Then all the integral points strictly inside this polygon satisfy
the rule 0 ă i` j ď n´ 1. Therefore the integral points inside the Newton polygon are in one to
one correspondence with the holomorphic differentials (4.8).

Exercise 4.14: Show that the differentials obtained using the Newton polygon formula for the
polynomial Fpz,wq are holomorphic without assuming that both a01 and a10 are non zero and that
at infinity there are no branch points. (Study the conditions on the shape of the Newton polygon
so that the curve Γ is non singular in p0, 0q or at infinity.)

4.1.2 Riemann bilinear relations

In this section we prove several technical assertions regarding the periods of close differential and
holomorphic differentials. Such relations are known as Riemann bilinear relations

Lemma 4.15. Let ω1 and ω2 be two closed differentials on a surface Γ of genus g ě 1. Denote their periods
with respect to a canonical basis of cycles α1, . . . , αg, β1, . . . , βg, by Ai, Bi and A1i , B1i :

Ai “

ż

αi

ω, Bi “

ż

βi

ω, A1i “
ż

αi

ω1, B1i “
ż

βi

ω1. (4.9)

Denote by f “
ş

ω the primitive of ω, then

ż ż

Γ
ω^ ω1 “

¿

BΓ̃

fω1 “
g
ÿ

i“1

pAiB1i ´ A1iBiq. (4.10)

Proof. The first of the equalities in (4.10) follows from Stokes’ formula, since dp fω1q “ ω^ω1. Let
us prove the second. We have that

−1

i

i

i

Qi
i

Q’i

P’i

P β
α

α

β−1

i
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¿

BΓ̃

fω1 “
g
ÿ

i“1

˜

ż

αi

`

ż

α´1
i

¸

fω1 `
g
ÿ

i“1

˜

ż

βi

`

ż

β´1
i

¸

fω1.

To compute the i-th term in the first sum we use the fact that f pPq “
şP

P0
ω where P0 is a point in

the interior of Γ̃:

f pPiq ´ f pP1iq “

Pi
ż

P0

ω´

P1i
ż

P0

ω “

Pi
ż

P1i

ω “ ´Bi (4.11)

since the cycle P1iPi, which is closed on Γ, is homologous to the cycle βi (see the figure; a fragment
of the boundary BΓ̃ is pictured). Similarly, the jump of the function f in crossing the cut βi has the
form

f pQiq ´ f pQ1iq “

Qi
ż

Q1i

ω “ Ai (4.12)

since the cycle Q1iQi on Γ is homologous to the cycle ai. Moreover, ω1pP1iq “ ω1pPiq and ω1pQ1iq “
ω1pQiq because the differential ω1 is single-valued on Γ. We have that

ż

αi

f pPiqω
1pPiq `

ż

α´1
i

f pP1iqω
1pP1iq “

ż

αi

f pPiqω
1pPiq ´

ż

αi

p f pPiq ` Biqω
1pPiq

“ ´Bi

ż

αi

ω1pPiq “ ´BiA1i

where the minus sign appears because the edge a´1
i occurs in BΓ̃ with a minus sign. Similarly,

˜

ż

βi

`

ż

β´1
i

¸

fω1 “ AiB1i .

Summing these equalities, we get (4.10). The lemma is proved. �

We derive some important consequences for periods of holomorphic differentials from the
lemma 4.15. Everywhere we denote by α1, . . . , αg, β1, . . . , βg the canonical basis of cycles on Γ.

Corollary 4.16. . Let ω be a nonzero holomorphic differential on Γ, and A1, . . . ,Ag, B1, . . . ,Bg its
corresponding periods with respect to the canonical homology basis α1 . . . , αg and β1 . . . , βg, then

=

˜ g
ÿ

i“1

AksBk

¸

ă 0. (4.13)

Proof. Take ω1 “ sω in the lemma 4.15. Then A1i “
sAi and B1i “

sBi for i “ 1, . . . , g. We have that

i
2

ż ż

Γ
ω^ ω1 “

i
2

ż ż

| f |2dz^ dsz “
ż ż

Γ
| f |2dx^ dy ą 0.
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Here z “ x` iy is a local parameter, and ω “ f pzqdz. In view of (4.10) this integral is equal to

i
2

g
ÿ

k“1

AksBk ´
sAkBk “ ´=

˜ g
ÿ

k“1

AksBk

¸

.

The corollary is proved. �

Corollary 4.17. If all the α-periods of a holomorphic differential are zero, then ω “ 0.

This follows immediately from Corollary 4.16.

Corollary 4.18. On a surface Γ of genus g there exists a basis ω1, . . . , ωg of holomorphic differentials such
that

¿

α j

ωk “ δ jk, j, k “ 1, . . . , g. (4.14)

Proof. Let η1, . . . , ηg be an arbitrary basis of holomorphic differentials on Γ. The matrix

A jk “

¿

α j

ηk (4.15)

is nonsingular. Indeed, otherwise there are constants cl, . . . , cg such that
ř

k A jkck “ 0. But then
ř

k ckηk “ 0, since this differential has zero a-periods. This contradicts the independence of the
differentials ηi, . . . , ηk.

ω j “

g
ÿ

k“1

Ãkjηk, j “ 1, . . . , g, (4.16)

where the matrix pÃkjq is the inverse of the matrix pA jkq,
ř

k ÃikAkj “ δi j, we get the desired basis.
The corollary is proved. �

A basis ω1, . . . , ωg satisfying the conditions (4.14) will be called a normal basis of holomorphic
differentials (with respect to a canonical basis of cycles α1, . . . , αg, β1, . . . , βgq .

Corollary 4.19. Let ω1, . . . ωg be a normalized basis of holomorphic differentials, and let

B jk “

¿

β j

ωk, j, k “ 1, . . . , g. (4.17)

Then the matrix pB jkq is symmetric and has positive-definite imaginary part.

Proof. Let us apply the lemma 4.15 to the pair ω “ ω j and ω1 “ ωk. By (4.10) we have that

0 “
ÿ

i

pδi jBik ´ δikBi jq “ pB jk ´ Bkjq.

The symmetry is proved. Next, we apply Corollary 4.16 to the differential
řg

j“1 x jω j where all the
coefficients x1, . . . , xg are real. We have that Ak “ xk, Bk “

ř

j x jBkj which implies

=p
ÿ

k

xk

ÿ

j

x jsBkjq “
ÿ

k, j

=psBkjqxkx j ă 0.

The lemma is proved. �
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Figure 4.1: Homology basis.

Definition 4.20. The matrix pB jkq is called a period matrix of the Riemann surface Γ.

Example 4.21. We consider a surface Γ of the form w2 “ P3pzq of genus g “ 1 (an elliptic Riemann
surface). Let P3pzq “ pz´ z1qpz´ z2qpz´ z3q and choose a basis of cycles as shown in the figure 2.8.
We have that

ω1 “ ω “
adz

a

P3pzq
, a “

¨

˝

¿

α1

dz
a

P3pzq

˛

‚

´1

.

Note that
¿

α1

dz
a

P3pzq
“ 2

ż z2

z1

dz
a

P3pzq
.

The period matrix is the single number

B “
¿

β1

adz
a

P3pzq
“

şz3

z2

dz
a

P3pzq
şz2

z1

dz
a

P3pzq

, =pBq ą 0. (4.18)

Example 4.22. . Consider a hyperelliptic Riemann surface w2 “ P2g`1pzq “
ś2g`1

i“1 pz ´ ziq for
genus g ě 2, and choose a basis of cycles as indicated in the figure 4.2 (there g “ 2). A normal
basis of holomorphic differentials has the form

ω j “

śg
k“1 c jkzk´ldz
b

P2g`1pzq
, j “ 1, . . . , g. (4.19)

Here pc jkq is the matrix inverse to the matrix pA jkqwhere

A jk “ 2
ż z2 j

z2 j´1

zk´1dz
b

P2g`1pzq
, j, k “ 1, . . . , g. (4.20)
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Figure 4.2: Homology basis.

4.1.3 Meromorphic differentials, their residues and periods

Meromorphic (Abelian) differentials on a Riemann surface differ from holomorphic differentials
by the possible presence of singularities of pole type. If a surface is given in the form Fpz,wq “ 0,
then the Abelian differentials have the form ω “ Rpz,wqdz or, equivalently, ω “ R1pz,wqdw, where
Rpz,wq and R1pz,wq are rational functions. For example, on a hyperelliptic Riemann surface
w2 “ P2g`1pzq the differential w´1zk´1dz has for k ą g a unique pole at infinity of multiplicity
2pk´ gq (see Example 4.13). Suppose that the differential ω has a pole of multiplicity k at the point
P0 i.e., can be written in terms of a local parameter z, zpP0q “ 0, in the form

ω “

ˆ

c´k

zk
` ¨ ¨ ¨ `

c´1

z
`Op1q

˙

dz (4.21)

(the multiplicity of the pole does not depend on the choice of the local parameter z).

Definition 4.23. The residue ResP“P0 ωpPq of the differential ω at a point P0 is defined to be the coefficient
c´1.

Lemma 4.24. The residue ResP“P0 ωpPq does not depend on the choice of the local parameter z.

Proof. This residue is equal to

c´1 “
1

2πi

¿

C

ω

where C is an arbitrary small contour encircling P0. The independence of this integral on the
choice of the local parameter is obvious. The lemma is proved. �

Theorem 4.25 (The Residue Theorem). . The sum of the residues of a meromorphic differential ω on a
Riemann surface, taken over all poles of this differential, is equal to zero.

Proof. Let P1, . . . ,PN be the poles of ω. We encircle them by small contours C1, ...,CN such that

Resω “
1

2πi

¿

Ci

ω, i “ 1, . . . ,N,
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(the contours Ci run in the positive direction), and cut out the domains bounded by C1, . . . ,CN from
the surface Γ. This gives a domain Γ1 with oriented boundary of the form BΓ1 “ ´C1´¨ ¨ ¨´CN (the
sign means reversal of orientation). The differential ω is holomorphic on Γ1. By Stokes’ formula,

N
ÿ

j“1

Res
P j
ω “

1
2πi

N
ÿ

j“1

¿

C j

ω “ ´
1

2πi

¿

BΓ1

ω “ ´
1

2πi

ż ż

Γ1
dω “ 0,

since dω “ 0. The theorem is proved. �

We present the simplest example of the use of the residue theorem: we prove that the number
of zeros of a meromorphic function is equal to its number of poles (counting multiplicity). Let
P1, . . . ,Pk, be the zeros of the meromorphic function f , with multiplicities m1, . . . ,mk a nd let
Q1, ...,Ql be the poles of this function, with multiplicities n1, . . . ,nk. Consider the logarithmic
differential dpln f q. This is a meromorphic differential on Γ with simple poles at P1, . . . ,Pk with
residues m1, . . . ,mk and at the points Q1, . . . ,Ql with residues´n1, . . . ,´nl. By the residue theorem:
m1 ` ¨ ¨ ¨ ` mk ´ n1 ´ ¨ ¨ ¨ ´ nk “ 0 , which means that the assertion to be proved is valid. One
more example. For any elliptic function f pzq on the torus T2 “ C{t2mω ` 2nω1u the residues at
the poles are defined with respect to the complex coordinate z (in C). These are the residues of
the meromorphic differential f pzqdz, since dz is holomorphic everywhere. Conclusion: the sum of
the residues of any elliptic function (over all poles in a lattice parallelogram) is equal to zero. We
formulate an existence theorem for meromorphic differentials on a Riemann surface Γ (see [?] for
a proof).

Theorem 4.26. Suppose that P1, . . . ,PN are points of a Riemann surface Γ and z1, . . . , zN are local
parameters centered at these points, zipPiq “ 0, and the collection of principal parts is

¨

˝

cpiq
´ki

zki
i

` ¨ ¨ ¨ `
cpiq
´1

zi

˛

‚dzi, i “ 1, . . . ,N. (4.22)

Assume the condition
N
ÿ

i“1

ci
´1 “ 0. (4.23)

Then there exists on Γ a meromorphic differential with poles at the points P1, . . . ,PN, and principal parts
(4.22).

Any meromorphic differential can be represented as the sum of a holomorphic differential and
the following elementary meromorphic differentials.

1. Abelian differential of the second kind Ωn
P has a unique pole of multiplicity n` 1 at P and a

principal part of the form

Ωn
P “

ˆ

1
zn`1 `Op1q

˙

dz (4.24)

with respect to some local parameter z, zpPq “ 0, n “ 1, 2, . . . .

2. An Abelian differential of the third kind ΩPQ has a pair of simple poles at the points P and
Q with residues `1 and ´1 respectively.
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Example 4.27. We construct elementary Abelian differentials on a hyperelliptic Riemann surface
w2 “ P2g`1pzq. Suppose that a point P which is not a branch point takes the form P “ pa,wa “
b

P2g`1paqq. An Abelian differential of the second kind Ω
p1q
P has the form

Ω
p1q
P “

˜

w` wa

pz´ aq2
´

P12g`1paq

2wapz´ aq

¸

dz
2w

(4.25)

(with respect to the local parameter z-a). The differentials Ω
pnq
P can be obtained as follows:

Ωn
P “

1
n!

dn´1

dan´1 Ω1
P. (4.26)

If P “ pzi, 0q is one of the branch points, then

Ωn
P “

dz
2pz´ ziq

k`1
for n “ 2k, Ωn

P “
dz

2pz´ ziq
k`1w

for n “ 2k` 1. (4.27)

Finally, if P “ 8, then

Ω
pnq
P “ ´

1
2

zk´1dz for n “ 2k, Ωn
P “ ´

1
2

zg`k´1 dz
w

for n “ 2k` 1. (4.28)

We now construct differentials of the third kind. Suppose that the point P and Q have the form

P “ pa,wa “

b

P2g`1paqq and Q “ pb,wb “

b

P2g`1pbqq. Then

ΩPQ “

ˆ

w` wa

z´ a
´

w` wb

z´ b

˙

dz
2w

(4.29)

If Q “ `8 then

ΩPQ “
w` wa

z´ a
dz
2w
. (4.30)

Accordingly, we see that for a hyperelliptic Riemann surface it is possible to represent all the
Abelian differentials without appealing to Theorem 4.26.

Exercise 4.28: Deduce from Theorem 4.26 that a Riemann surface Γ of genus 0 is rational. Hint.
Show that for any points P, Q P Γ the function f “ exp

ş

ΩPQ is single valued and meromorphic
on Γ and gives a biholomorphic isomorphism f : Γ Ñ CP1.

The period of a meromorphic differential ω along the cycle γ is defined if the cycle does not
pass through poles of this differential. The period

ş

γ ω depends only on the homology class of
γ on the surface Γ, with the poles of ω with nonzero residue deleted. For example, the periods
of the differential ΩPQ of the third kind along a cycle not passing through the points P and Q
are determined to within integer multiples of 2πi. In speaking of the periods of meromorphic
differentials we shall assume that the cycles do not pass through the poles of the differential, and
we also recall that the dependence of the period on the homology class of Γ is not single-valued
(for differentials of the third kind).
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Lemma 4.29. Suppose that the differentials Ω1 and Ω2 on a Riemann surface Γ have the same poles and
principal parts, and the same periods with respect to the cyclesα1, . . . , αg, β1, . . . , βg. Then these differentials
coincide.

Proof. The difference ω1´ω2 is a holomorphic differential that has zero α-periods. Therefore, it is
identically zero (see Lecture 4.1.2). The lemma is proved. �

Definition 4.30. A meromorphic differential ω is said to be normalized with respect to a basis of cycles
α1, . . . , αg, β1, . . . , βg if it has zero α-periods.

Any meromorphic differential ω can be turned into a normalized differential by adding a
holomorphic differential

řg
k“1 ckωk. Indeed the condition that Ω “ ω `

ř

ckωk is normalised,
namely

ż

α j

ω`
g
ÿ

k“1

ck

ż

α j

ωk “ 0, j “ 1, . . . , g,

defines the constants c1, . . . , cg uniquely.
By Lemma 4.29, a normalized meromorphic differential is uniquely determined by its poles

and by the principal parts at the poles. In what follows we assume that meromorphic differentials
are normalized. We obtain formulas that will be useful for the β-periods of such differentials by
arguments like those in the proof of Lemma 4.15.

Lemma 4.31. The following formulas hold for the β-periods of normalized differentials Ω
pnq
P and ΩPQ

¿

βk

Ω
pnq
P “ 2πi

1
n!

dn´1

dzn´1ψkpzq|z“0, k “ 1, . . . , g, n “ 1, 2, . . . , (4.31)

where z is a particular local parameter in a neighborhood of P, zpPq “ 0, and the functions ψkpzq are
determined by the equality ωk “ ψkpzqdz and ω1, . . . , ωg is a normalized basis of holomorphic differentials
with respect to the canonical homology basis α1, . . . , αg, β1, . . . , βg,

¿

βk

ΩPQ “ 2πi
ż P

Q
ωk, i “ 1, . . . , g, (4.32)

where the integration from Q to P in the last integral does not intersect the cycles α1, . . . , αg, β1, . . . , βg.

Proof. We encircle the point P with a small circle C oriented anti-clockwise; deleting the interior
of this circle from the surface Γ, we get a domain Γ1 with BΓ1 “ ´C. Let us apply the arguments of
Lemma 4.15 to the pair of differentials ω “ ωk, ω1 “ Ω

pnq
P . Denote by ui the primitive

ukpQq “
ż Q

P0

ωk (4.33)

which is single-valued on the Poincare’ polygon Γ̃ of the surface Γ. We have that

0 “
ż ż

Γ1
ω^ ω1 “

ż

BΓ̃1
ukΩ

pnq
P “

g
ÿ

j“1

pA jB1j ´ A1jB jq ´

¿

C

ukΩ
pnq
P (4.34)
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(the boundary BΓ̃1 differs from the boundary BΓ̃ by p´Cqq. Here the α and β-periods of ωk and ΩN
P

have the form
A j “ δkj, B j “ Bkj, A1j “ 0, B1j “

¿

β j

Ω
pnq
P .

From this,
¿

βk

Ω
pnq
P “

¿

C

ukΩ
pnq
P “ 2πi Res

P
pukΩ

pnq
P q “ 2πi Res

z“0

„ˆ
ż P

P0

`

ż z

0
ψkpτqdτ

˙

dz
zn`1



(4.35)

Computation of the residue on the right-hand side of this equality leads to (4.31).
We now prove (4.32). Let C and C1 small circles around P and Q respectively. Deleting the interior
of this circles from the surface Γ, we get a domain Γ1 with BΓ1 “ ´C ´ C1. Let us apply the
arguments of Lemma 4.15 to the pair of differentials ω “ ωk, ω1 “ ΩPQ. Denote by ui the primitive
of ωi. By analogy with (4.34) and (4.35) we have that

¿

βk

ΩPQ “ 2πi
¿

C

ukΩPQ ` 2πi
¿

C1

ukΩPQ

Since the differential ΩPQ has a simple pole in P and Q with residue ˘1 respectively, the above
integrals are equal to

¿

βk

ΩPQ “ ukpPq ´ ukpQq “
ż P

P0

ωk ´

ż Q

P0

ωk “

ż P

Q
ωk

where we assume that the point P0 lies in the interior of Γ1. The lemma is proved. �

Exercise 4.32: Prove the following equality, which is valid for any quadruple of distinct points
P1, . . . ,P4 on a Riemann surface:

ż P1

P2

ΩP3P4 “

ż P3

P4

ΩP1P2 . (4.36)

Exercise 4.33: Consider the series expansion of the differentials Ω
pnq
P in a neighborhood of the

point P

Ω
pnq
P “

¨

˝

1
zn`1 `

8
ÿ

j“0

cpnqj z j

˛

‚dz. (4.37)

Prove the following symmetry relations for the coefficients cpkqj :

kcpkqj´1 “ jcp jq
k´1, k, j “ 1, 2 . . . . (4.38)

Exercise 4.34: Prove that a meromorphic differential of the second kind ω is uniquely determined
by its poles, principal parts, and the real normalization condition

=

¿

γ

ω “ 0 (4.39)
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for any cycle γ. Formulate and prove an analogous assertion for differentials of the third kind
(with purely imaginary residues).

Elliptic curve and elliptic functions

Let’s come back to the example 4.21 and consider the function (”elliptic integral”)

upPq “
ż P

P0

ω1, (4.40)

which is single-valued and holomorphic on the surface Γ̃ which is obtained by cutting Γ along
the cycles α1 and β1. This function is not single-valued on Γ. When the path of integration in the
integral (4.40) is changed, the integral changes according to the law upPq Ñ upPq `

ş

γ ωi where γ
is a closed contour (cycle). Decomposing it with respect to the basis of cycles, γ “ mα1 ` nβ1, m
and n integers we rewrite the last formula in the form

upPq Ñ upPq `m` Bn, =pBq ą 0. (4.41)

We define the two-dimensional torus T2 as the quotient of the complex planeC “ R2 by the integer
lattice generated by the vectors 1 and B,

T2 “ C{tm` Bn | m,n P Zu (4.42)

(the vectors 1 and B are independent overR because=pBq ą 0). The torus T2 is a one-dimensional
compact complex manifold. By (4.41) the function upPqunambiguously defines a mapping Γ Ñ T2.
It is holomorphic everywhere on Γ: du “ ω and du vanishes nowhere (verify!). It is easy to see
that this is an isomorphism. The meromorphic functions on the Riemann surface Γ are thereby
identified with the so-called elliptic functions – the meromorphic functions on the torus T2. The
latter functions can be regarded as doubly periodic meromorphic functions of a complex variable.
The absence of nonconstant holomorphic functions on Γ (see Lecture 3) leads to the well-known
assertion that there are no nonconstant doubly periodic holomorphic functions. For comparison
with the standard notation of the theory of elliptic functions we note that usually B is denoted
with the letter τ and =τ ą 0. We give the construction of the mapping T2 Ñ Γ inverse to (4.40).
Let ω1 and ω2 be two complex numbers linearly independent over the real numbers and consider
the torus T2 defined as

T2 “ C{L, L “ t2mω1 ` 2nω2 | m,n P Zu. (4.43)

The Weierstrass elliptic function, ℘puq, u P C is defined by

℘puq “
1
u2 `

ÿ

ωPLzt0u

„

1
pu´ ωq2

´
1
ω2



(4.44)

It is not hard to verify that the function ℘puq converges absolutely and uniformly on compact
sets not containing nodes of the period lattice. Therefore, it defines a meromorphic function of u
having double poles at the lattice nodes. Its derivative ℘1puq can be obtained by differentiating
the series term by term ( check!)

℘1puq “ ´2
ÿ

ωPL

1
pu´ ωq3

.
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The function℘puq is obviously doubly periodic: ℘pu`2mω1`2nω2q “ ℘puq, m,n P Z. The Laurent
expansions of the functions ℘puq and ℘1puq have the following forms as u Ñ 0

℘puq “
1
u2 `

g2u2

20
`

g3u4

28
` . . . , (4.45)

℘1puq “ ´
2
u3 `

g2u
10

`
g3u3

7
` . . . , (4.46)

where

g2 “ 60
ÿ

ωPLzt0u

ω´4

g2 “ 140
ÿ

ωPLzt0u

ω´6,
(4.47)

(verify!). This gives us that the Laurent expansion of the function p℘1q2puq ´ 4℘3puq ` g2℘puq ` g3
has the form Opuq as u Ñ 0. Hence, this doubly periodic function is constant, and thus equal to
zero. Conclusion: the Weierstrass function ℘puq satisfies the differential equation

p℘1q2 “ 4℘3 ´ g2℘´ g3. (4.48)

Proposition 4.35. The function ℘ : C{L Ñ C is surjective. If

℘puq “ ℘pu0q, then u P L˘ u0. (4.49)

Proof. For any c P C consider the function f puq “ ℘puq ´ c. This function is meromorphic with a
double pole on the lattice points. Consider the parallelogram

Π :“ tξ` 2sω1 ` 2tω2, s, t P r0, 1su.

Since the function f has only a double pole in Π, it has two zeros counting multiplicity. Let u0 be one
of the two zeros, f pu0q “ ℘pu0q´c “ 0. Since℘p´uq “ ℘puq, it follows that 0 “ f p´u0q “ ℘p´u0q´c
and this shows that the function ℘puq is surjective. From the above argument and the periodicity
of ℘, it follows that for any u P L˘ u0, one has ℘puq “ ℘pu0q. �

Let us now consider the curve

ΓL :“ trX : Y : Zs P P2 |ZY2 “ 4X3 ´ g2XZ2 ´ g3Z3u (4.50)

Lemma 4.36. The curve ΓL is non singular.

Proof. Consider the affine curve (4.48). By the periodicity properties of ℘puq one has

℘1pu` 2ω1q “ ℘1puq

which is true in particular for u “ ´ω1 so that ℘1pω1q “ ℘1p´ω1q. Since ℘1puq is odd it follows that

℘1pω1q “ 0.
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Repeating the same reasoning for ω2 one has

℘1pω2q “ 0, ℘1pω2 ` ω1q “ 0.

Using (4.48) the zeros of the polynomial 4℘3puq ´ g2℘puq ´ g3 are given by u “ ω1, u “ ω2 and
u “ ω1 ` ω2 so that one has

4℘3puq ´ g2℘puq ´ g3 “ 4p℘puq ´ ℘pω1qqp℘puq ´ ℘pω2qqp℘puq ´ ℘pω1 ` ω2qq.

By proposition 4.35 the values ℘pω1q, ℘pω2q and ℘pω1 ` ω2q are distinct so that the curve (4.48) is
non singular. �

The following theorem can be proved as an exercise

Theorem 4.37. The map
φ : T2 Ñ ΓL

defined by

φpu` Lq “
"

r℘puq : ℘1puq : 1s u P CzL
r0 : 1 : 0s u P L, (4.51)

is biholomorphic.

In particular the map (4.51) is the inverse of the map (4.40). We observe that from lemma 4.36
the discriminant ∆pω1, ω2q of the curve (4.48) is different from zero, namely

∆pω1, ω2q “ g3
2pω

1, ω2q ´ 27g2
3pω

1, ω2q , 0

furthermore under the dilatation ω1 Ñ λω1 and ω2 Ñ λω2 the discriminant scales as

∆pλω1, λω2q “
1
λ12 ∆pω1, ω2q.

In particular, choosing λ “ 1
2ω1 and defining τ “

2ω2

2ω1
, with =pω2{ω1q ą 0, we obtain that

g2 “ g2pτq, and g3 “ g3pτq, ∆ “ ∆pτq with τ P H, H :“ tτ P C, =τ ą 0u. Regarding the
Weierstrasse ℘ function it is easy to check that

℘pλu;λω1, λω2q “
1
λ2℘pu, ;ω

1, ω2q

so that choosing λ “ 1
2ω1 one can consider the Weierstrasse function normalised as

℘pũ; τq “
1
ũ2 `

ÿ

m,nPZ,pm,nq,p0,0q

„

1
pũ´m´ nτq2

´
1

pm` nτq2



, ũ “
u

2ω1
.

Exercise 4.38: Show that

℘p
ũ

cτ` d
;

aτ` b
cτ` d

q “ pcτ` dq2℘pũ; τq,
ˆ

a b
c d

˙

P SLp2,Zq. (4.52)
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Definition 4.39. The Klein J function J :HÑ C is defined as

Jpτq “ 1728
g2pτq3

∆pτq
. (4.53)

The Klein J function is an an analytic function fromH to C. The choice of the number 1728 is
due to the fact that defining q “ e2πiτ the expansion of J as q Ñ 0 takes the form

Jpqq “
1
q
` 744` 196884q` 21493760q2 ` . . .

namely all the coefficients of the expansion are integers.
We consider the action of the modular group

PSLp2,Zq “ SLp2,Zq{tI,´Iu

namely the set of 2 ˆ 2 matrices with integer entries and determinant equal to one where the
matrices A and ´A are identified. Such group has two generators

τÑ τ` 1, τÑ ´
1
τ
.

In order to determine isomorphism classes of elliptic curves given by (4.50), the following lemma
and theorem will be useful.

Lemma 4.40. Let τ and τ1 PH. Then
Jpτ1q “ Jpτq.

if and only if

τ1 “
aτ` b
cτ` d

,

ˆ

a b
c d

˙

P PSLp2,Zq. (4.54)

Proof. Suppose that (4.54) holds. From the definition one has

g2pτ
1q “ 60

ÿ

m,nPZ,pm,nq,p0,0q

¨

˚

˚

˝

1

m` n
aτ` b
cτ` d

˛

‹

‹

‚

4

“ 60pcτ` dq4
ÿ

m1,n1PZ,pm1,n1q,p0,0q

1
pm1 ` n1τq4

“ pcτ` dq4g2pτq.

In the same way we obtain
g3pτ

1q “ pcτ` dq6g3pτq

so that

Jpτ1q “ 1728
g3

2pτ
1q

g3
2pτ

1q ´ 27g2
3pτ

1q
“ 1728

pcτ` dq12g3
2pτq

pcτ` dq12pg3
2pτq ´ 27g2

3pτq
“ Jpτq.

Viceversa, let us assume that Jpτq “ Jpτ1q “ µ. Suppose µ , 0 and µ , 1728. Then

µ´ 1728 “ 1728
27g2

3pτq

∆pτq
“ 1728

27g2
3pτ

1q

∆pτ1q
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so that
µ

µ´ 1728
“

27g2
3pτ

1q

g3
2pτ

1q
“

27g2
3pτq

g3
2pτq

which shows that
ˆ

g3pτq

g3pτ1q

˙2

“

ˆ

g2pτq

g2pτ1q

˙3

.

Defining σ2 :“
g2pτq

g2pτ1q

g3pτ1q

g3pτq
, it is straightforward to obtain the identity

σ4 “

ˆ

g2pτq

g2pτ1q

g3pτ1q

g3pτq

˙2

“
g2pτ1q

g2pτq

and

σ6 “
g3pτ1q

g3pτq
.

Therefore the curves defined by w2 “ 4z3 ´ g2pτqz ´ g3pτq and y2 “ 4x3 ´ g2pτ1qx ´ g3pτ1q are
isomorphic. Indeed the dilatation

x “ zσ2, y “ wσ3

maps one curve into the other one. Therefore the two tori defined by the above two curves are
isomorphic. By theorem 1.43 it follows that their corresponding periods τ and τ1 are related by
a modular transformation (4.54). In the case µ “ 1728 one has g3pτq “ g3pτ1q “ 0. In this case

defining σ in such a way that σ4 “
g2pτ1q

g2pτq
one can prove the statement in a similar way. For the

case µ “ 0 one has g2pτq “ g2pτ1q “ 0. In this case defining σ in such a way that σ6 “
g3pτ1q

g3pτq
one

can prove the statement in a similar way. �

The above lemma shows that the Klein J function is a modular function of weight zero. We
recall that an analytic function f : H Ñ C is a modular function of weight k with respect to the
modular group PSLp2,Zq if

f
ˆ

aτ` b
cτ` d

˙

“ pcτ` dqk f pτq,
ˆ

a b
c d

˙

P PSLp2,Zq.

Remark 4.41. The upper half spaceH can be naturally identified with the Teichmüller space Tp1, 0q
of compact surfaces of genus one. The quotient H{PSLp2,Zq is the moduli space of Riemann
surfaces of genus one.

Combining theorem 1.43 and lemma 4.40 we conclude that

Theorem 4.42. Given two lattices L “ tn ` mτ, m,n P Zu and L1 “ tn ` mτ1, m,n P Zu with
τ, τ1 PH, the tori

C{L, C{L1

are isomorphic if and only if
Jpτq “ Jpτ1q.
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Doing some algebra we can express the Klein J invariant using the branch points℘pτ{2q, ℘p1{2q
and ℘p 1`τ

2 q of the elliptic curve (4.48). For simplicity we define

e1 “ ℘pτ{2q, e2 “ ℘p1{2q, e3 “ ℘p
1` τ

2
q. (4.55)

It is easy to check that

∆ “ 16pe2 ´ e1q
2pe3 ´ e1q

2pe3 ´ e2q
2, g2 “

4
3
`

pe2 ´ e1q
2 ´ pe3 ´ e1qpe2 ´ e1q ` pe3 ´ e1q

2˘

so that Jpτq can be written in the form

Jpτq “ 256

ˆ

1´
e3 ´ e1

e2 ´ e1
`
pe3 ´ e1q

2

pe2 ´ e1q
2

˙3

pe3 ´ e1q
2

pe2 ´ e1q
2

pe3 ´ e2q
2

pe2 ´ e1q
2

. (4.56)

Introducing the function λ :HÑ Czt0, 1u

λ “
e3 ´ e1

e2 ´ e1
“
℘p 1`τ

2 q ´ ℘pτ{2q
℘p1{2q ´ ℘pτ{2q

(4.57)

and the function j : Czt0, 1u Ñ C defined as

jpλq “ 256
p1´ λ` λ2q3

λ2p1´ λq2
(4.58)

it follows that the Klein J invariant is the composition of the maps

J “ j ˝ λ.

Remark 4.43. Since the function J as defined in (4.53) is invariant under the action of the permutation
group S3 on e1, e2 and e3, such invariance must be preserved for the function jpλq. Indeed one has
the following relations between the action of S3 on e1, e2 and e3 and transformations of λ:

123 Ñ 213 then λÑ 1´ λ, 123 Ñ 321 then λÑ
λ

1´ λ
, 123 Ñ 132 then λÑ

1
λ

123 Ñ 231 then λÑ
1

1´ λ
, 123 Ñ 312 then λÑ 1´

1
λ

and the function jpλq is invariant under the above five transformations of λ (six including the
identity).

The curve w2 “ 4pz´ e1qpz´ e2qpz´ e3q is mapped under the linear transformation

x “
z´ e1

e2 ´ e1
, y “

w

2pe2 ´ e1q
3
2

to the curve
y2 “ xpx´ 1qpx´ λq.

So using the j-invariant (4.58), we have the following corollary.
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Corollary 4.44. Two curves y2 “ xpx´ 1qpx´ λq and y2 “ xpx´ 1qpx´ λ1q are isomorphic if and only
jpλq “ jpλ1q.

We will see later that any Riemann surface of genus one can be realised as a double covering
of the sphere branched over four points e1, e2, e3 and8. We can use a linear transformation to map
the points e1, e2 and e3 to 0, 1 and λ respectively. Any other linear transformation obtained from
the permutation of the points e1, e2 and e3 will give an isomorphic Riemann surface. So we can
identify the moduli space of genus one Riemann surface as the quotient pCzt0, 1uq{S3. In remark
(4.41) we identify the moduli space of Riemann surfaces of genus one with H{PSLp2,Zq. Below
we are going to sketch an argument which shows that the spaces

pCzt0, 1uq{S3 and H{PSLp2,Zq

are isomorphic.

Lemma 4.45. The map λ :HÑ Czt0, 1u is a universal covering of Czt0, 1u. This map is invariant under
the action of the subgroup Γ2 Ă PSLp2,Zq

Γ2 “

"ˆ

a b
c d

˙

P PSLp2,Zq | a ” d ” 1 pmod 2q, b ” c ” 0 pmod 2q
*

.

Proof. Suppose τ1 “
aτ` b
cτ` d

and l et us consider λpτ1q and use the relation (4.52)

λpτ1q “
℘p τ

1`1
2 ; τ1q ´ ℘p τ

1

2 ; τ1q

℘p 1
2 ; τ1q ´ ℘p τ12 ; τ1q

“
℘p 1

2 pb` d` pa` cqτq; τq ´ ℘p 1
2 paτ` bq; τq

℘p d`cτ
2 ; τq ´ ℘p 1

2 paτ` bq; τq
.

It is straightforward to check that λpτ1q “ λpτq if and only if the modular transformation belongs
to Γ2. �

Remark 4.46. The group Γ2 is the group of deck transformations of the covering λ :HÑ Czt0, 1u,
namely the set of homeomorphism f : HÑ H preserving the fibers of the covering. Such group
is isomorphic to the fundamental group of Czt0, 1u and therefore [13]

H{Γ2 » Czt0, 1u.

Furthermore, the following identity is satisfied [11] PSLp2,Zq{Γ2 » S3. Namely the quotient of
the modular group under the group Γ2 is isomorphic to the group of permutation S3. The above
identity and the lemma 4.45 explain the identification of the spaces pCzt0, 1uq{S3 and H{PSLp2,Zq
.

Exercise 4.47: Prove that any elliptic function with period lattice t2mω2`2nω1u can be represented
as a rational function of ℘pzq and ℘1pzq.

Exercise 4.48: Show that if τ is pure imaginary then the branch points e1, e2 and e3 are real.

Exercise 4.49: Consider the curve

Γ :“ tpz,wq P P2 | w2 “ zpz´ 1qpz´ λqu
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with 0 ď λ ď 1 and consider the lattice L “ t2mω1 ` 2nω2, m,n P Zuwhere
ż 0

8

dz
w
“ L` ω2,

ż 1

8

dz
w
“ L` ω1 ` ω2,

ż λ

8

dz
w
“ L` ω1.

Show that the curve Γ is isomorphic to the curve w2 “ 4z3 ´ g2z´ g3 where g2 and g3 are defined
in (4.47).

Exercise 4.50: Consider the Korteweg-de Vries (KdV) equation

ut “ 6uux ´ uxxx (4.59)

(here u “ upx, tq, and ut stands for the derivative with respect to t, and ux for derivative with
respect to x. Show that any (complex) periodic solution of it with the form of a traveling wave has
the form

upx, tq “ upx´ ctq “ 2℘px´ ct´ x0q ´
c
6
, (4.60)

where the Weierstrass function ℘ corresponds to some elliptic curve (4.50), and the velocity c and
the phase x0 are arbitrary.

Exercise 4.51: (see [7]). Look for a solution of the KdV equation in the form

upx, tq “ 2℘px´ x1ptqq ` 2℘px´ x2ptqq ` 2℘px´ x3ptqq. (4.61)

Derive for the functions x jptq the system of differential equations

:x j “ 12
ÿ

k, j

℘px j ´ xkq, j “ 1, 2, 3, (4.62)

and its integrals
ÿ

k, j

℘1px j ´ xkq “ 0, j “ 1, 2, 3. (4.63)

Integrate this system in quadratures.

We define the Weierstrass ζ and σ functions (which are useful in the theory of elliptic functions)
from the conditions

ζ1pzq “ ´℘pzq,
σ1pzq
σpzq

“ ζpzq. (4.64)

The series expansion of ζpzq has the form

ζpzq “
1
z
`

ÿ

ωPLzt0u

„

1
z´ ω

`
1
ω
`

z
ω2



. (4.65)

This function has simple poles at the nodes of the period lattice. The function σpzq is entire. It has
simple zeros at the nodes of the period lattice and can be expanded in the infinite product

σpzq “ z
ź

ωPLzt0u

"

´

1´
z
ω

¯

exp
„

z
ω
`

z2

2ω2

*

(4.66)



4.1. HOLOMORPHIC DIFFERENTIALS 79

The functions ζpzq and σpzq are not elliptic; under a translation of the argument by a vector of the
period lattice they transform according to the law

ζpz` 2mω1 ` 2nω2q “ ζpzq ` 2mη` 2nη1, η “ ζpω1q, η1 “ ζpω2q, (4.67)
σpz` 2ω1q “ σpzq expr2ηpz` ω1qs, σpz` 2ω2q “ ´σpzq expr2η1pz` ω2qs (4.68)

where η and η1 are constants depending on the period lattice.

Exercise 4.52: Prove the following identity:

σpu` vqσpu´ vq
σ2puqσ2pvq

“ ℘puq ´ ℘pvq. (4.69)

Other properties of the functions,℘, ζ and σ and of other elliptic functions as well, can be found,
for example, in the texts [2] and [?], or in the handbook [3].

4.1.4 The Jacobi variety, Abel’s theorem

Let e1, . . . , eg be the standard basis in the space Cg, e j “ p0, . . . , 1, . . . , 0q, with one on the j-entry.
Given 2g row vectors λk P C

g, k “ 1, . . . , 2g, with λk “
řg

j“1 λkje j, we construct the 2g ˆ g matrix
Λ having in the k-row the vector λk

Λkj “ pλkq j. (4.70)

The matrix Λ generates a lattice in Cg of maximal rank, if its row vectors are linearly independent
over the real numbers.

Consider in Cg the integer period lattice L generated by the vectors (4.70). The vectors in this
lattice can be written in the form

L “ tv P Cg | v “
2g
ÿ

k“1

mkλk, pm1, . . . ,m2gq P Z
2gu (4.71)

We assume that L generates a lattice of maximal rank in Cg. Then the quotient of Cg by this lattice
is the 2g-dimensional torus

T2g “ Cg{L (4.72)

namely a g-dimensional complex manifold. Changing the basis in Cg, namely ek Ñ ekM, with
M P GLpg,Cq, the matrix Λ Ñ ΛM. Furthermore, the same lattice is given by vectors pλ̃1, . . . , λ̃2gq

with

λ̃k “

2g
ÿ

k“1

nkjλ j

with N “ tnkju
2g
k, j“1 P SLp2g,Zq. Therefore Λ Ñ NΛ. Summarizing, two matrices Λ and Λ̃

represent the same torus if

Λ̃ “ NΛM, M P GLpg,Cq, N P SLp2g,Zq. (4.73)

If we assume that the lattice generated by Λ has maximal rank, we can always choose Λ in such a
way that

Λ “

ˆ

Λ1
Λ2

˙
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with Λ1 P GLpg,Cq. Therefore, by (4.73) the two matrices Λ and ΛΛ´1
1 “

ˆ

Ig

Λ2Λ
´1
1

˙

with Ig the

g-dimensional identity, represent the same torus.
Let B “ pB jkq be an arbitrary complex symmetric gˆ g matrix with positive-definite imaginary

part (as shown in Lecture 4.1.2, the period matrices of Riemann surfaces have this property). We
consider the vectors

e1, . . . , eg, e1B, . . . , egB. (4.74)

Lemma 4.53. The vectors (4.74) are linearly independent over R.

Proof. Assume that these vectors are dependent over R:

pρ1e1 ` ¨ ¨ ¨ ` ρgegq ` pµ1e1 ` ¨ ¨ ¨ ` µgegqB “ 0, ρi, µ j P R.

Separating out the real part of this equality we get that=ppµ1e1` ¨ ¨ ¨`µgegqBq “ 0. But the matrix
=pBq is nonsingular, which implies µ1 “ ¨ ¨ ¨ “ µg “ 0. Hence also ρ1 “ ¨ ¨ ¨ “ ρg “ 0. The lemma
is proved. �

Consider in Cg the integer period lattice generated by the vectors (4.74). The vectors in this
lattice can be written in the form

m` nB, m,n P Zg. (4.75)

By Lemma 4.53 the quotient of Cg by this lattice is a torus of maximal rank:

T2g “ T2gpBq “ Cg{tm` nBu. (4.76)

Definition 4.54. Suppose that B “ pB jkq is a period matrix of a Riemann surface Γ of genus g. The torus
T2gpBq in (4.76), constructed from this period matrix is called the Jacobi variety (or Jacobian) of the surface
Γ and denoted by JpΓq.

Remark 4.55. What happens with the torus JpΓq when the canonical basis of cycles on Γ changes?
Let α “ pα1, . . . , αgq

t and β “ pβ1, . . . , βgq
t be the column vectors of the canonical homology basis.

Letα1 and β1 be a new canonical homology basis related toα and β by the symplectic transformation
ˆ

α1

β1

˙

“

ˆ

a b
c d

˙ˆ

α
β

˙ ˆ

a b
c d

˙

P Spp2g,Zq.

Let ω “ pω1, . . . , ωgq be the canonical homology basis of holomorphic differentials with respect to
the basis α and β, namely

ż

α
ω “ Ig,

ż

β
ω “ B

where Ig is the g dimensional identity matrix. Then
ż

α1
ω “

ż

aα`bβ
ω “ aIg ` bB,

ż

β1
ω “

ż

cα`dβ
ω “ cIg ` dB.
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So the canonical basis of holomorphic differentials ω1 “ pω11, . . . , ω
1
gq with respect to the basis α1

and β1 is given by
ω1 “ ωpaIg ` bBq´1

This implies that the corresponding period matrix

B1 “
ż

β1
ω1 “ pcIg ` dBqpaIg ` bBq´1. (4.77)

From (4.73) it follows that the tori T2gpBq and T2gpB1q are isomorphic. Accordingly, the Jacobian
JpΓq changes up to isomorphism when the canonical basis changes.

We consider the primitives (”Abelian integrals”) of the basis of holomorphic differentials:

ukpPq “
ż P

P0

ωk, k “ 1, . . . , g, (4.78)

where P0 is a fixed point of the Riemann surface. The vector-valued function

ApPq “ pu1pPq, . . . ,ugpPqq (4.79)

is called the Abel mapping (the path of integration is chosen to be the same in all the integrals
u1pPq, . . . ,ugpPqq.

Lemma 4.56. The Abel mapping is a well-defined holomorphic mapping

Γ Ñ JpΓq. (4.80)

Proof. (cf. Example 4.27). A change of the path of integration in the integrals (4.78) leads to a
change in the values of these integrals according to the law

ukpPq Ñ ukpPq `
¿

γ

ωk, k “ 1, . . . , g,

where γ is some cycle on Γ. Decomposing it with respect to the basis of cycles, γ »
ř

m ja j`
ř

n jb j
we get that

ukpPq Ñ ukpPq `mk `
ÿ

j

Bkjn j, k “ 1, . . . , g.

The increment on the right-hand side is the kth coordinate of the period lattice vector 2πiM`NB
where M “ pm1, . . . ,mgq, N “ pn1, . . . ,ngq. The lemma is proved. �

The Jacobi variety together with the Abel mapping (4.80) is used for solving the following
problem: what points of a Riemann surface can be the zeros and poles of meromorphic functions?
We have the Abel’s theorem.

Theorem 4.57 (Abel’s Theorem). The points P1, . . . ,Pn and Q1, . . . ,Qn (some of the points can repeat)
on a Riemann surface Γ are the respective zeros and poles of some function meromorphic on Γ if and only if
the following relation holds on the Jacobian:

ApP1q ` ¨ ¨ ¨ `ApPnq ” ApQ1q ` ¨ ¨ ¨ `ApQnq. (4.81)
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Here and below, the sign ” will mean equality on the Jacobi variety (congruence modulo the
period lattice (4.75)). We remark that the relation (4.81) does not depend on the choice of the initial
point P0 of the Abel map (4.78).

Proof. 1) Necessity. Suppose that a meromorphic function f has the respective points P1, . . . ,Pn
and Q1, . . . ,Qn as zeros and poles, where each zero and pole is written the number of times
corresponding to its multiplicity. Consider the logarithmic differential Ω “ dplog f q. Since
f “ const exp

şP
P0

Ω, is a meromorphic function, the integral in the exponent does not depend on
the path of integratio. It follows that all the periods of this differential Ω are integer multiples of
2πi. On the other hand, we represent it in the form

Ω “

n
ÿ

j“1

ΩP jQ j `

g
ÿ

s“1

csωs, (4.82)

where ΩP jQ j are normalized differentials of the third kind (see Lecture 4.1.3) and c1, . . . , cg are
constant coefficients. Let us use the information about the periods of the differential. We have
that

2πink “

¿

ak

Ω “ ck, nk P Z,

which gives us ck “ 2πink. Further,

2πimk “

¿

bk

Ω “ 2πi
n
ÿ

j“1

P j
ż

Q j

ωk ` 2πi
g
ÿ

s“1

nsBsk

(we used the formula (4.32)). From this,

ukpP1q ` ¨ ¨ ¨ ` ukpPnq ´ ukpQ1q ´ ¨ ¨ ¨ ´ ukpQnq “

n
ÿ

j“1

P j
ż

Q j

ωk “ mk ´

g
ÿ

s“1

nsBsk. (4.83)

The right-hand side is the kth coordinate of the vector m ` nB of the period lattice (4.75), where
m “ pm1, . . . ,mgq, n “ pn1, . . . ,ngq. The necessity of the condition (4.81) is proved.

2) Sufficiency. Suppose that

ukpP1q ` ¨ ¨ ¨ ` ukpPnq ´ ukpQ1q ´ ¨ ¨ ¨ ´ ukpQnq “ mk ´

g
ÿ

s“1

nsBsk. (4.84)

Consider the function

f pPq “ exp

»

–

g
ÿ

j“1

ż P

P0

ΩP jQ j `

g
ÿ

j“1

c j

ż P

P0

ω j

fi

fl

where ΩP jQ j are the normalised third kind differentials with poles in P j and Q j and c j are constants.
The function is a single valued meromorphic function if the integrals in the exponent do not depend
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on the path of integration. Let us study the behaviour of f when P Ñ P` αk:

f pPq Ñ f pPq exp

»

–

g
ÿ

j“1

c j

ż

αk

ω j

fi

fl .

In order to have a single valued function the constant ck “ 2πnk, nk PN. Next let us consider the
behaviour of f when P Ñ P` βk:

f pPq Ñ f pPq exp

»

–

g
ÿ

j“1

ż

βk

ΩP jQ j `

g
ÿ

j“1

n j

ż

βk

ω j

fi

fl “ f pPq exp

»

–2πi
g
ÿ

j“1

ż P j

Q j

ωk ` 2πi
g
ÿ

j“1

n j

ż

βk

ω j

fi

fl

Using the relation (4.84) one obtains that f pPq Ñ f pPq expr2πimks “ f pPq which shows that f pPq
is a meromorphic function on Γ. �

Example 4.58. We consider the elliptic curve

w2 “ 4z3 ´ g2z´ g3. (4.85)

For this curve the Jacobi variety JpΓq is a two-dimensional torus, and the Abel mapping (which
coincides with (4.40)) is an isomorphism (see Example 4.21). Abel’s theorem becomes the following
assertion from the theory of elliptic functions: the sum of all the zeros of an elliptic function is
equal to the sum of all its poles to within a vector of the period lattice.

Example 4.59. (also from the theory of elliptic functions). Consider an the elliptic function of the
form f pz,wq “ az ` bw ` c, where a, b, and c are constants. It has a pole of third order at infinity
(for b , 0). Consequently, it has three zeros P1,P2, and P3. In other words, the line az` bw` c “ 0
intersects the elliptic curve (4.85) in three points (see the figure). We choose 8 as the initial point
for the Abel mapping, i.e., up8q “ 0. Let ui “ upPiq, i “ 1, 2, 3. In other words,

Pi “ p℘puiq, ℘
1puiqq, i “ 1, 2, 3,

where℘puq is the Weierstrass function corresponding to the curve (4.85). Applying Abel’s theorem
to the zeros and poles of f , we get that

u1 ` u2 ` u3 “ 0.

Conversely, according to the same theorem, if u1 ` u2 ` u3 “ 0, i.e. u3 “ ´u2 ´ u1 then the points
P1,P2 and P3 lie on a single line. Writing the condition of collinearity of these points and taking
into account the evenness of ℘ and oddness of ℘1, we get the addition theorem for Weierstrass
functions:

det

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ℘pu1q ℘1pu1q

1 ℘pu2q ℘1pu2q

1 ℘pu1 ` u2q ´℘1pu1 ` u2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0. (4.86)
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4.1.5 Divisors on a Riemann surface. The canonical class. The Riemann-Roch
theorem

Definition 4.60. A divisor D on a Riemann surface is defined to be a (formal) integral linear combination
of points on it:

D “

n
ÿ

i“1

niPi, Pi P Γ, ni P Z. (4.87)

For example, for any meromorphic function f the divisor p f q of its zeros P1, . . . ,Pk and poles
Q1, . . . ,Ql of multiplicities m1, . . . ,mk, and n1, . . . ,nl, respectively is defined

p f q “ m1P1 ` ¨ ¨ ¨ `mkPk ´ n1Q1 ´ ¨ ¨ ¨ ´ nlQl. (4.88)

Observe that given f and g two meromorphic functions

p f gq “ p f q ` pgq, p f {gq “ p f q ´ pgq.

Definition 4.61. Divisors of meromorphic functions are also called principal divisors.

Another useful notation for the divisor of a meromoprhic function is given by

p f q “
ÿ

P

ordPp f q ¨ P

where we recall that the order of f in P is the minimum coefficient present in the Laurent expan-
sion in a neighbourhood of the point P namely ordP f “ minnPZtn, |αn , 0u where the Laurent
expansion of f in P is

ř

n αnzn. Such definition does not depend on the choice of the local coordi-
nates. The set of all divisors on Γ, DivpΓq, obviously form an Abelian group (the zero is the empty
divisor).

Definition 4.62. The degree deg D of a divisor of the form (4.87) is defined to be the number

deg D “

N
ÿ

i“1

ni. (4.89)

The degree is a linear function on the group of divisors. For instance,

degp f q “ 0. (4.90)

Two divisors D and D1 are said to be linearly equivalent, D » D1 if their difference is a principal
divisor. Linearly equivalent divisors have the same degree in view of (4.90). For example, on CP1

any divisor of zero degree is principal, and two divisors of the same degree are always linearly
equivalent.
Example 4.63. The divisor pωq of any Abelian differentialω on a Riemann surface Γ is well-defined
by analogy with (4.88). If ω1 is another Abelian differential, then pωq » pω1q. Indeed, their ratio
f “ ω{ω1 is a meromorphic function on Γ, and pωq ´ pω1q “ p f q. We remark that any differential
in a coordinate chart φα : Uα Ñ Vα, with φαpPq “ zα take the form

ω “ hαpzαqdzα, ω1 “ h1αpzαqdzα
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where hα and h1α are meromorphic functions. The ratio gα “ hα{h1α is a meromorphic function of
Vα. Now define f :“ gα ˝ φα which is a meromorphic function on Uα. It is easy to check that f is
well defined and independent from the coordinate chart.

Definition 4.64. The linear equivalence class of divisors of Abelian differentials is called the canonical
class of the Riemann surface. We denote it by KΓ.

For example, the divisor ´28 “ pdzq can be taken as a representative of the canonical class
KCP1 .

We reformulate Abel’s theorem in the language of divisors. Note that the Abel map extends
linearly to the whole group of divisors. Abel’s theorem obviously means that a divisor D is
principal if and only if the following two conditions hold:

1. deg D “ 0;

2. ApDq ” 0 on JpΓq,

where

ApDq “
M
ÿ

j“1

pApP jq ´ApQ jqq, D “

M
ÿ

j“1

pP j ´Q jq,

withA the Abel map defined in (4.79).
Let us return to the canonical class. We compute it for a hyperelliptic surface w2 “ P2g`2pzq. Let

P1, . . . ,P2g`2 be the branch points of the Riemann surface, and P8` and P8´ its point at infinity.
We have that

pdzq “ P1 ` ¨ ¨ ¨ ` P2g`2 ´ 2P8` ´ 2P8´ .

Thus the degree of the canonical class on this surface is equal to 2g ´ 2. We prove an analogous
assertion for an arbitrary Riemann surface.

Lemma 4.65. Let f : Γ Ñ X a holomorphic map between Riemann surfaces Γ and X and ω a meromorphic
one form on X, then for any fixed point P P Γ

ordP f˚ω “ p1` ord f pPqpωqqmultPp f q ´ 1 (4.91)

where f˚ω denotes the pull back of ω via f . We recall that the multiplicity of f in P is the unique integer
m such that there is local coordinatea near P P Γ and f pPq P X such that f takes the form z Ñ zm.

Proof. Suppose that the map f can be represented near the point P and f pPqwith local coordinates
τ and τ1 as τ Ñ τ1 “ τm. Suppose that near the point f pPq the one form ω takes the form
ω “ gpτ1qdτ1 with gpτ1q “

ř

kěn αkτ1k. Then, the one form f˚ω, near the point P, takes the form

f˚ω “ gpτmqmτm´1dτ “
ÿ

kěn

αkτ
mk`m´1dτ.

Looking at the coefficient in the exponent, one has the claim of the lemma. �

Definition 4.66. Let f : Γ Ñ X a holomorphic map between Riemann surfaces. The branch point divisor
W f is the divisor on Γ defined by

W f “
ÿ

PPΓ

rmultPp f q ´ 1sP. (4.92)
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Definition 4.67. Let f : Γ Ñ X be a holomoprhic map between Riemann surfaces and let Q P X. The
inverse image of the divisor Q denoted f˚pQq is defined as

f˚pQq “
ÿ

PP f´1pQq

multpp f q ¨ P.

Applying (4.91) and (4.92) we arrive to the relation between divisors

p f˚ωq “ W f ` f˚pωq, (4.93)

where f˚pωq is the inverse image of the divisor pωq of the one form ω.
Suppose that the Riemann surface Γ is given by the equation Fpz,wq “ 0. Further, let P1, . . . ,PN

be the branch points of this surface with respective multiplicities f1, . . . , fN with respect to the
meromorphic function z : Γ Ñ CP1. (see Lecture 1). The branch point divisor Wz “ f1P1`. . . fNPN.

Lemma 4.68. The canonical class of the surface Γ has the form

KΓ “ Wz ` z˚pKCP1q. (4.94)

Here z˚ denotes the inverse image of a divisor in the class KCP1 with respect to the meromorphic function
z : Γ Ñ CP1.

Proof. This follows immediately from (4.93). �

Corollary 4.69. The degree of the canonical class KΓ of a Riemann surface Γ of genus g is equal to 2g´ 2.

Proof. We have from (4.94) that deg KΓ “ deg Wz ´ 2 deg z, where deg Wz is the total multiplicity
of the branch points of the map z. By the Riemann-Hurwitz formula (2.4), deg Wz “ f “
2g` 2 deg z´ 2. The corollary is proved. �

The divisor (4.87) is positive if all multiplicities n are positive. An effective divisor is a divisor
linearly equivalent to a positive divisor. Divisors D and D1 are connected by the inequality D ą D1

if their difference D´D1 is a positive divisor.
With each divisor D we associate the linear space of meromorphic functions

LpDq “ t f | p f q ě ´Du. (4.95)

If D is a positive divisor, then this space consists of functions f having poles only at points of D,
with multiplicities not greater than the multiplicities of these points in D. If D “ D` ´D´, where
D` and D´ are positive divisors, then the space LpDq consists of the meromorphic functions with
poles possible only at points of D`, with multiplicities not greater than the multiplicities of these
points in D , and with zeros at all points of D´ (at least), with multiplicities not less than the
multiplicities of these points in D.

Lemma 4.70. If the divisors D and D1 are linearly equivalent, then the spaces LpDq and LpD1q are
isomorphic.

Proof. Let D ´ D1 “ pgq, where g is a meromorphic function. If f P LpDq, then f 1 “ f g P LpD1q.
Indeed,

p f 1q `D1 “ p f q ` pgq `D1 “ p f q `D ą 0.

Conversely, if f 1 P LpD1q, then f “ g´1 f 1 P LpDq. The lemma is proved. �
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We denote the dimension of the space LpDq by

lpDq “ dim LpDq. (4.96)

By Lemma 4.70, the function lpDq (as well as the degree deg D) is constant on linear equivalence
classes of divisors. We make some simple remarks about the properties of this important function.

Remark 4.71. A divisor D is effective if and only if lpDq ą 0. Indeed, replacing D by a positive
divisor D1 linearly equivalent to it, we see that the space LpD1q contains the constants. Conversely,
if lpDq ą 0, then D is effective. Indeed, if the meromorphic function f is such that D1 “ p f q`D ą 0,
then the divisor D1, which is linearly equivalent to D is positive.

Remark 4.72. For the zero (empty) divisor, lp0q “ 1. If deg D ă 0, then lpDq “ 0.

Remark 4.73. The number lpDq ´ 1 is often denoted by |D|. According to Remark 4.71 |D| ě 0
for effective divisors. The number |D| admits the following intuitive interpretation. We show
that |D| ě k if and only if for any points P1, . . . ,Pk there is a divisor D1 » D containing the points
P1, . . . ,Pk (the presence of coinciding points among P1, . . . ,Pk is taken into account by their multiple
occurrence in D1). If lpDq ě k ` 1, then there are linearly independent functions f1, . . . , fk P LpDq
such that the function f “

řk
i“1 ci fi ´ c0, where ci, i “ 1, . . . , k are arbitrary constants, has zeros in

P1, . . . ,Pk, namely
f pP jq “ 0, j “ 1, . . . , k.

This is a system of inhomogeneous linear equation for the constants c1, . . . , ck which has a solution
for any choice of the points P1, . . . ,Pk. So it follows that the divisor D1 of zeros of f contains the
point P1, . . . ,Pk, which implies that D ` p f q “ D1, or equivalently D1 » D and D1 contains the
points P1, . . . ,Pk.

Viceversa suppose that there is a positive divisor D1 containing the arbitrary points P1, . . . ,Pk
and such that D1 » D. Then there is a meromorphic function f such that p f q “ D1 ´ D, or
p f q `D “ D1 ą 0. It follows that f P LpDq and f has zeros in arbitrary points P1, . . . ,Pk. We write
f is the form f “

řk
j“1 ck fk ´ c0 where f j P LpDq. If the function f has zeros in arbitrary points

P1, . . . ,Pk it follows that the system of equations

f pP jq “ 0, j “ 1, . . . , k,

must be solvable for any set of points P1, . . . ,Pk, but this is possible only if the functions f1, . . . , fk
are linearly independent and different from the constant, which means that lpDq ě k ` 1. One
therefore says that |D| is the number of mobile points in the divisor D.

Remark 4.74. Let K “ KΓ, be the canonical class of a Riemann surface. We mention an interpretation
that will be important later for the space LpK ´Dq for an arbitrary divisor D. First, if D “ 0, then
the space LpKq is isomorphic to the space of holomorphic differentials on Γ. Indeed, choose a
representative K0 ą 0 in the canonical class, taking K0 to be the zero divisor of some holomorphic
differential ω0, K0 “ pω0q. If f P LpK0q, i.e. p f q ` pω0q ě 0, then the divisor p fω0q is positive,
i.e., the differential fω0 is holomorphic. Conversely, if ω is any holomorphic differential, then the
meromorphic function f “ ω{ω0 lies in LpK0q.

It follows from the foregoing and Theorem 4.12 that

lpKq “ g.
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Lemma 4.75. For a positive divisor D the space LpK ´Dq is isomorphic to the space

ΩpDq “ tω P H1pΓq | pωq ´D ě 0u

Proof. We choose a representative K0 ą 0 in the canonical class, taking K0 to be the zero divisor
of some holomorphic differential ω0, K0 “ pω0q. If f P LpK0 ´ Dq, then the differential fω0 is
holomorphic and has zeros at the points of D, i.e., fω0 P ΩpDq. Conversely, if ω P ΩpDq, then
f “ ω{ω0 P LpK0 ´Dq. The assertion is proved. �

The main way of getting information about the numbers lpDq is the Riemann-Roch Theorem.

Theorem 4.76 (Riemann Roch Theorem). For any divisor D

lpDq “ 1` deg D´ g` lpK ´Dq. (4.97)

Proof. For surfaces Γ of genus 0 (which are isomorphic toCP1 in view of Problem 6.1) the Riemann-
Roch theorem is a simple assertion about rational functions (verify!). By Remarks 4.72 and 4.74
(above) the Riemann-Roch theorem is valid for D “ H.

We first prove (4.97) for positive divisors D ą 0. Let D “
řm

k“1 nkPk where all the nk ą 0. We
first verify the arguments when all the nk are “ 1, i.e., m “ deg D. Let f P LpDq be a nonconstant
function.

We consider the Abelian differentialω “ d f . It has double poles and zero residues at the points
P1, . . . ,Pm and does not have other singularities. Therefore, it is representable in the form

Ω “ d f “
m
ÿ

k`1

ckΩ
p1q
Pk
` ψ

where Ω
p1q
Pk

are normalized differentials of the second kind (see Lecture 4.1.3), c1, . . . , cm are con-

stants, and the differential ψ is holomorphic. Since the function f pPq “
şP

P0
Ω is single-valued on

Γ, the integral
şP

P0
Ωis independent from the path of integration. This implies that

¿

αi

Ω “ 0,
¿

bi

Ω “ 0, i “ 1, . . . , g. (4.98)

From the vanishing of the α-periods of the meromorphic differentials Ω
p1q
Pk

we get that ψ “ 0 (see
Corollary 4.17). From the vanishing of the β-period we get, by (4.31) with n “ 1, that

0 “
¿

βi

Ω “

m
ÿ

k“1

ckψikpzkq|zk“0, i “ 1, . . . , g, (4.99)

where zk is a local parameter in a neighborhood of Pk, zkpPkq “ 0, k “ 1, . . . ,m, and the basis of
holomorphic differentials are written in a neighborhood of Pk in the form ωi “ ψikpzqdzk. Defining
ωipPkq :“ ψikp0q, we write the system (4.99) in the form

¨

˚

˚

˝

ω1pP1q ω1pP2q . . . ω1pPmq

ω2pP1q ω2pP2q . . . ω2pPmq

. . . . . . . . . . . .
ωgpP1q ωgpP2q . . . ωgpPmq

˛

‹

‹

‚

¨

˚

˚

˝

c1
c2
. . .
cm

˛

‹

‹

‚

“ 0, (4.100)
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We have obtained a homogeneous linear system of m “ deg D equations in the coefficients
c1, . . . , cm. The nonzero solutions of this systems are in a one-to-one correspondence with the
nonconstant functions f in LpDq, where f can be reproduced from a solution c1, . . . , cm of the
system (4.99) in the form

f pPq “
m
ÿ

k“1

ck

ż P

P0

Ω
p1q
Pk
.

Thus lpDq “ 1` deg D´ rankAwhereA is the matrix of holomorphic differentials in (4.100) (the
1 is added because the constant function belong to the space LpDq). On the other hand the rank
of the matrixA has another interpretation. Consider the holomorphic differential ω “

řg
j“1 a jω j.

Such differential ω belongs to the space ΩpDq if

ωpPkq “ 0, k “ 1, . . . ,m.

The above system of equations can be written in the equivalent form

`

a1 a2 . . . ag
˘

¨

˝

ω1pP1q . . . ω1pPmq

. . . . . . . . .
ωgpP1q . . . ωgpPmq

˛

‚“ 0. (4.101)

The number of solutions of this system is equal to g´rankA and it is in one to one correspondence
with the linearly independent holomorphic differentials in ΩpDq. Therefore dimΩpDq “ g ´
rankA. On the other hand we have obtained that

lpDq “ 1` deg D´ rankA

so that combining the two equations we obtain

lpDq “ 1` deg D´ g` dimΩpDq “ 1` deg D´ g` lpK ´Dq

where the second identity is due to the fact that the space ΩpDq and LpK ´Dq are isomorphic for
positive divisors. Accordingly the Riemann-Roch theorem has been proved in this case.

We explain what happens when the positive divisor D has multiple points. For example
suppose that D “ n1P1` . . . . Thenω “ d f “

řn1
j“1 c j

1Ω
p jq
P1
` . . . and the system (4.99) can be written

in the form
n1
ÿ

j“1

c j
1

1
j!

d j´1ψi1

dz j´1
1

ˇ

ˇ

ˇ

ˇ

ˇ

z1“0

` ¨ ¨ ¨ “ 0

If the rank of the coefficient matrix of this system is denoted (as above) by rankA, the dimension
of the space LpDq is equal to lpDq “ 1` deg D´ rankA while the dimension of the space ΩpDq is
equal to g´rankA. We have proved the Riemann-Roch theorem for all positive divisors and hence
for all effective divisors, which (accordingly to Remark 4.71) are distinguished by the condition
lpDq ą 0. Next we note that the relation in this theorem can be written in the form

lpDq ´
1
2

deg D “ lpK ´Dq ´
1
2

degpK ´Dq, (4.102)

which is symmetric with respect to the substitution D Ñ K ´D. Therefore the theorem is proved
for all divisors D such that D or K´D is equivalent to a positive divisor. If neither D nor K´D are
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equivalent to a positive divisor, then lpDq “ 0 and lpK ´ Dq “ 0 and the Riemann-Roch theorem
reduces in this case to the equality

deg D “ g´ 1. (4.103)

Let us prove this equality. We represent D in the form D “ D` ´ D´, where D` and D´ are
positive divisors and deg D´ ą 0. It follows from the validity of the Riemann-Roch theorem
for D` that lpD`q ě deg D` ´ g ` 1 “ deg D ` deg D´ ´ g ` 1. Therefore if deg D ě g, then
lpD`q ě 1 ` deg D´. Then the space LpD`q contains a nonzero function vanishing on D´, i.e.
belonging to the space LpD` ´ D´q “ LpDq. This contradicts the condition lpDq “ 0. Similarly,
the assumption degpK ´ Dq ě g leads to a contradiction. This implies (4.103). The theorem is
proved. �

4.1.6 Some consequences of the Riemann-Roch theorem. The structure of
surfaces of genus 1. Weierstrass points. The canonical embedding

Corollary 4.77. If deg D ě g, then the divisor D is effective.

Corollary 4.78. The Riemann inequality

lpDq ě 1` deg D´ g, (4.104)

holds for deg D ě g.

Definition 4.79. A positive divisor D is called special if

dimΩpDq ą 0.

We remark that any effective divisor of degree less then g is special since lpDq ą 0 and by
Riemann-Roch theorem this implies dimΩpDq ą 0.

Corollary 4.80. If deg D ą 2g´ 2, then D is nonspecial.

Proof. For deg D ą 2g ´ 2 we have that degpK ´ Dq ă 0, hence lpK ´ Dq “ 0 (see Remark 4.72).
The corollary is proved. �

Exercise 4.81: Suppose that k ě g; let the Abel mapping A : Γ Ñ JpΓq (see Lecture 4.1.4) be
extended to the kth-power mapping

Ak : Γˆ ¨ ¨ ¨ ˆ Γ
looooomooooon

k times

Ñ JpΓq

by setting AkpP1, . . . ,Pkq “ ApP1q ` ¨ ¨ ¨ ` ApPkq (it can actually be assumed that Ak maps into JpΓq
the kth symmetric power SkΓ, whose points are the unordered collections pP1, . . . ,Pkq of points of
Γ). Prove that the special divisors of degree k are precisely the critical points of the Abel mapping
Ak. Deduce from this that a divisor D with deg D ě g in general position is nonspecial.

Remark 4.82. Let deg D “ 0, then if D is equivalent to a divisor of a meromorphic function, then
lpDq “ 1 otherwise lpDq “ 0. Let deg D “ 2g ´ 2, then if D is equivalent to the canonical divisor,
then lpDq “ g otherwise lpDq “ g ´ 1. Furthermore if deg D ą 2g ´ 2, then by Riemann Roch
theorem one has lpDq “ 1 ` deg D ´ g. If 0 ď deg D ď g ´ 1 the minimum value of lpDq is zero
while for g ď deg D ď 2g´ 2, minplpDqq “ 1´ g` deg D.
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The values of lpDq for 0 ď deg D ď 2g´ 2 are estimated by the Clifford theorem.

Theorem 4.83. If 0 ď deg D ď 2g´ 2, then

lpDq ď 1`
1
2

deg D. (4.105)

Proof. If lpDq “ 0 or lpK´Dq “ 0, the proof of the theorem is straightforward. Let us assume that
lpDq ą 0 and lpK ´ Dq ą 0 and consider the map LppDq ˆ LpK ´ Dq Ñ LpKq given by p f , hq Ñ f h
where p f , hq P LppDq ˆ LpK ´ Dq. Let V be the subspace in LpKq which is the image of this map.
Then one has

g “ lpKq ě dim V “ lpDqlpK ´Dq ě lpDq ` lpK ´Dq ´ 1

where in the last equality we use the identity which holds for real numbers a and b bigger then
one: pa´ 1qpb´ 1q ě 0 and so ab ě a` b´ 1.

Therefore
g ě lpDq ` lpK ´Dq ´ 1 “ 2lpDq ` g´ 2´ deg D,

which implies (4.105). �

Let us make a plot of the possible values of lpDq using Clifford theorem and the above obser-
vations.

g−1 2g−2

g−1

1

g

deg(D)

l(D)

1+deg(D)/2

non special 

divisors

Figure 4.3: The values of lpDq as a function of deg D. One can see that the value of lpDq of a special
divisors is located between the two lines.

We now present examples of the use of the Riemann-Roch theorem in the study of Riemann
surfaces.
Example 4.84. Let us show that any Riemann surface Γ of genus g “ 1 is isomorphic to an elliptic
surface w2 “ P3pzq. Let P0 be an arbitrary point of Γ. Here 2g ´ 2 “ 0, therefore, any positive
divisor is nonspecial. We have that lp2P0q “ 2, hence there is a nonconstant function z in lp2P0q, i.e.,
a function having a double pole at P0. Further lp3P0q “ 3, hence there is a function w P lp3P0q that
cannot be represented in the form w “ az` b. This function has a pole of order three at P0. Finally,
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since lp6P0q “ 6, the functions 1, z, z2, z3,w,w2,wz which lie in lp6P0q are linearly independent. We
have that

a1w2 ` a2wz` a3w` a4z3 ` a5z2 ` a6z` a7 “ 0. (4.106)

The coefficient a1 is nonzero (verify). Making the substitution

w Ñ w´
ˆ

a2

2a1
z`

a3

2a1

˙

we get the equation of an elliptic curve from (4.106).
Example 4.85 (Riemann count of the moduli space of Riemann surface). Consider a Riemann
surface Γ of genus g and a meromorphic function of degree n ą 2g´ 2. Such function represents
Γ as a n-sheeted covering of the complex plane, branched over a number of points with total
branching number b f equal to

b f “ 2n` 2g´ 2

where the Riemann-Hurwitz formula has been used. Generically the branch points have branching
number equal to one so that b f is also equal to the branch points of the Riemann surface. From the
Riemann existence theorem, given the branch points and a permutation associated to each branch
point such that the corresponding monodromy group is a transitive sub-group of Sn, then one can
construct a Riemann surface Γ. Let f : Γ Ñ P1 be the obvious projection map. To any set of branch
points it correspond a finite number of Riemann surface of genus g together with a meromorphic
function of degree n.

Any meromorphic function of degree n on Γ will represent Γ as a n-sheeted covering of the
complex plane. Let D8 be the divisor of poles of f . Since the degree of f is equal to n then
deg D8 “ n. Furthermore from Riemann-Roch theorem

lpD8q “ n` 1´ g.

So the freedom of choosing the function f is given by the position of the poles, and this gives n
parameters, and the number of functions having poles in D8, which is equal to n ` 1 ´ g. The
total number of parameters in choosing the meromorphic function of degree n is 2n ` 1 ´ g. So
the total number of parameters for describing a curve of genus g is the number of branch points
b f minus the parameters for describing the meromorphic function f , namely

2n` 2g´ 2´ p2n` 1´ gq “ 3g´ 3.

Definition 4.86 (Weierstrass points). A point P0 of a Riemann surface Γ of genus g is called a Weierstrass
point if lpkP0q ą 1 for some k ď g.

It is clear that in the definition of a Weierstrass point it suffices to require that lpgP0q ą 1 when
g ě 2. There are no Weierstrass points on a surface of genus g “ 1. On hyperelliptic Riemann
surfaces of genus g ą 1 all branch points are Weierstrass points, since there exist functions with
second-order poles at the branch points (see Lecture 3).

Definition 4.87. A Riemann surface is called hyperelliptic if and only if it admits a non constant mero-
morphic function of degree 2.

The use of Weierstrass points can be illustrated in the next exercise.
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Exercise 4.88: Let Γ be a Riemann surface of genus g ą 1, and P0 a Weierstrass point of it, with
lp2P0q ą 1. Prove that Γ is hyperelliptic. Prove that the surface is also hyperelliptic if lpP`Qq ą 1
for two points P and Q.

Exercise 4.89: Let Γ be a hyperellitpic Rieamnn surface and z a function of degree two. Prove that
any other function f of degree two is a Moebius transformation of z.

We show that there exist Weierstrass points on any Riemann surface Γ of genus g ą 1.

Lemma 4.90. Suppose that z is a local parameter in a neighborhood P0, zpP0q “ 0; assume that locally the
basis of holomorphic differentials has the form ωi “ ψipzqdz, i “ 1, . . . , g. Consider the determinant

Wpzq “ det

¨

˚

˝

ψ1pzq ψ11pzq . . . ψpg´1q
1 pzq

. . . . . . . . .

ψgpzq ψ1gpzq . . . ψpg´1q
g pzq

˛

‹

‚
. (4.107)

The point P0 is a Weierstrass point if and only if Wp0q “ 0.

Proof. If P0 is a Weierstrass point, i.e., lpgP0q ą 1, then lpK´gP0q ą 0 by the Riemann-Roch theorem.
Hence, there is a holomorphic differential with a g-fold zero at P0 on Γ. The condition that there
be such a differential can be written in the form Wp0q “ 0 (cf. the proof of the Riemann-Roch
theorem). The lemma is proved. �

Lemma 4.91. Under a local change of parameter z “ zpwq the quantity W transforms according to the

rule W̃pwq “
ˆ

dz
dw

˙
1
2 gpg`1q

Wpzq.

Proof. Suppose that ωi “ ψipzqdz “ ψ̃ipwqdw. Then each ψ̃i “ ψi
dz
dw

, i “ 1, . . . , g. This implies that

the derivatives dkψ̃i{dwk can be expressed for each i in terms of the derivatives dlψi{dzl by means
of a triangular transformation of the form

dkψ̃i

dwk
“

ˆ

dz
dw

˙k`1 dkψi

dzk
`

k´1
ÿ

j“1

c j
d jψi

dz j , i “ 1, . . . g

(the coefficients cs in this formula are certain differential polynomials in zpwq). The statement of
the Lemma readily follows from the transformation rule. �

Let us define the weight of a Weierstrass point P0 as the multiplicity of zero of Wpzq at this
point. According to the previous Lemma the definition of weight does not depend on the choice
of the local parameter.

The proof of existence of Weierstrass points for g ą 1 can be easily obtained from the following
statement.

Lemma 4.92. The total weight of all Weierstrass points on the Riemann surface Γ of genus g is equal to
pg´ 1q g pg` 1q.
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Proof. Let us consider the ratio
Wpzq{ψN

1 pzq.

Here N “ 1
2 gpg ` 1q. According to lemma (4.91), the above ratio does not depend on the choice

of the local parameter and, hence, it is a meromorphic function on Γ. This function has poles of
multiplicity N at the zeroes of the differential ω1 (the total number of all poles is equal to 2g´ 2).
Therefore this function must have N p2g ´ 2q “ pg ´ 1q g pg ` 1q zeroes (as usual, counted with
their multiplicities). These zeroes are the Weierstrass points. �

Let us do few more remarks about the Weierstrass points. Given a point P0 P Γ, let us consider
the dimension lpk P0q as a function of the integer argument k. This function has the following
properties. According to figure (4.3) we have

1 ď lpk P0q ď g, 1 ď k ď 2g´ 1.

In particular l pp2g´ 1qP0q “ g. It follows that while k increases 2g ´ 2 times the function lpk P0q

increases only g´ 1 times. The next lemma shows that the function lpk P0q is a piece-wise constant
function where each step has size equal to one.

Lemma 4.93.

lpk P0q “

"

l ppk´ 1qP0q ` 1, if there exists a function with a pole of order k at P0
l ppk´ 1qP0q , if such a function does not exist

Proof. The space Lpk P0q is larger then the space Lppk ´ 1qP0q therefore lpk P0q ě lppk ´ 1qP0q. On
the other hand, dimΩpkP0q ď dimΩppk´ 1qP0q. From the Riemann Roch theorem one has

lpk P0q ´ lppk´ 1qP0q “ 1` dimΩpkP0q ´ dimΩppk´ 1qP0q

which, when combined with the above two inequalities, gives the statement. �

When lpk P0q “ lppk ´ 1qP0q we will say that the number k is a gap at the point P0. From the
previous remarks it follows the following Weierstrass gap theorem:

Theorem 4.94. There are exactly g gaps 1 “ a1 ă ... ă ag ă 2g at any point P0 of a Riemann surface of
genus g.

The gaps have the form ai “ i, i “ 1, . . . , g, for a point P0 in general position (which is not a
Weierstrass point). Namely for a non Weierstrass point the function lpkP0q is non zero only for
k ą g and one has lpkP0q “ 1 ` k ´ g for k ą g. A Weierstrass point P0 is called normal if the
Weierstrass gap sequence takes the form 1, 2, . . . , g ´ 1, g ` 1 where g is the genus of the surface.
Namely a meromorphic function with only a pole in P0 has order at least equal to g. Normal
Weierstrass points are generic. A Weierstrass point P0 is called hyperelliptical is the Weierstrass
gap sequence takes the form 1, 3, 5, . . . , 2g ´ 1. In this case a meromorphic function with only a
pole in P0 has order equal to two.

Exercise 4.95: Show that every compact Riemann surface of genus g is conformally equivalent to
a pg` 1q´sheeted covering surface of the complex plane.
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Exercise 4.96: Prove that for branch points of a hyperelliptic Riemann surface of genus g the gaps
have the form ai “ 2i ´ 1, i “ 1, . . . , g. Prove that a hyperelliptic surface does not have other
Weierstrass points. Next suppose that the hyperelliptic Riemann surface has genus 2 and let P0
be a Weierstrass point. Show that there exist meromorphic functions z and w with only a pole in
P0 and such that

w2 ` a1wz` a2wz2 ` a3z5 ` a4z4 ` a5z3 ` a6z2 ` a7z` a8 “ 0.

Exercise 4.97: Prove that any Riemann surface of genus 2 is hyperelliptic.

Exercise 4.98: Let Γ be a hyperelliptic Riemann surface of the form w2 “ P2g`lpzq. Prove that any

birational (biholomorphic) automorphism Γ Ñ Γ has the form pz,wq Ñ p
az` b
cz` d

,˘wq, where the

linear fractional transformation leaves the collection of zeros of P2g`2pzq invariant.

Example 4.99 (The canonical embedding). . Let Γ be an arbitrary Riemann surface of genus g ě 2.
We fix on Γ a canonical basis of cycles a1, . . . , ag, b1, . . . , bg; let ω1, . . . , ωg be the corresponding
normal basis of holomorphic differentials. This basis gives a canonical mapping Γ Ñ CPg´1

according to the rule
P Ñ pω1pPq : ω2pPq : ¨ ¨ ¨ : ωgpPqq. (4.108)

Indeed, it suffices to see that all the differentials ω1, . . . , ωg cannot simultaneously vanish at some
point of the surface. If P were a point at which any holomorphic differential vanished, i.e.,
lpK ´ Pq “ g, (see Remark 4.74), then lpPq would be “ 2 in view of the Riemann-Roch theorem,
and this means that the surface Γ is rational (verify!). Accordingly (4.108) really is a mapping
Γ Ñ CPg´1; it is obviously well-defined.

Lemma 4.100. If Γ is a nonhyperelliptic surface of genus g ě 3, then the canonical mapping (4.108) is a
smooth embedding. If Γ is a hyperelliptic surface of genus g ě 2, then the image of the canonical mapping
is a rational curve, and the map itself is a two-sheeted covering.

Proof. We prove that the mapping (4.108) is an embedding. Assume not: assume that the points
P1 and P2 are merged into a single point by this mapping. This means that the rank of the matrix

¨

˝

ω1pP1q ω1pP2q

. . . . . .
ωgpP1q ωgpP2q

˛

‚

is equal to 1. But then lpP1 ` P2q ą 1 (see the proof of the Riemann-Roch theorem). Hence,
there exists on Γ a nonconstant function with two simple poles at P1 and P2 i.e., the surface Γ is
hyperelliptic. The smoothness is proved similarly: if it fails to hold at a point P, then the rank of
the matrix

¨

˝

ω1pPq ω11pPq
. . . . . .
ωgpPq ω1gpPq

˛

‚

is equal to 1. Then lp2Pq ą 1, and the surface is hyperelliptic. Finally, suppose that Γ is hyperelliptic.
Then it can be assumed of the form w2 “ P2g`1pzq. Its canonical mapping is determined by the
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differentials (5.42). Performing a projective transformation of the space CPg´1 with the matrix
pc jkq (see the formula (5.42)), we get the following form for the canonical mapping:

P “ pz,wq Ñ p1 : z : ¨ ¨ ¨ : zg´1q (4.109)

Its properties are just as indicated in the statement of the lemma. The lemma is proved. �

Exercise 4.101: Suppose that the Riemann surface Γ is given in CP2 by the equation
ÿ

i` j“4

ai jξ
iη jζ4´i´ j “ 0, (4.110)

and this curve is nonsingular in CP2 (construct an example of such a nonsingular curve). Prove
that the genus of this surface is equal to 3 and the canonical mapping is the identity up to a
projective transformation of CP2. Prove that Γ is a non hyperelliptic surface. Prove that any non
hyperelliptic surface of genus 3 can be obtained in this way.

The range Γ1 Ă CPg´1 of the canonical mapping is called the canonical curve.

Exercise 4.102: Prove that any hyperplane in CPg´1 intersects the canonical curve Γ1 in 2g ´ 2
points (counting multiplicity).



Chapter 5

Jacobi inversion problem and
theta-functions

5.1 Statement of the Jacobi inversion problem. Definition and
simplest properties of general theta functions

In Lecture 4.1.2 we saw that inversion of an elliptic integral leads to elliptic functions. For a surface
of genus g ą 1 the Inversion of integrals of Abelian differentials is not possible since any such
differential has zeros (at least 2g ´ 2zeros). Instead of the problem of inverting a single Abelian
integral, Jacobi proposed for hyperelliptic surfaces w2 “ P5pzq the problem of solving the system

P1
ż

P0

dz
a

P5pzq
`

P2
ż

P0

dz
a

P5pzq
“ η1

P1
ż

P0

zdz
a

P5pzq
`

P2
ż

P0

zdz
a

P5pzq
“ η2

(5.1)

where η1, η2 are given numbers from which the location of the points P1 “ pz1,w1q, P2 “ pz2,w2q

is to be determined. It is clear, moreover, that P1 and P2 are determined from (5.1) only up to
permutation. Jacobi’s idea was to express the symmetric functions of P1 and P2 as functions of η1
and η2. He noted also that this will give meromorphic functions of η1 and η2 whose period lattice
is generated by the periods of the basis of holomorphic differentials dz{

a

P5pzq and zdz{
a

P5pzq.
This Jacobi inversion problem was solved by Göepel and Rosenhain by means of the apparatus of
theta functions of two variables. The generalization of the Jacobi inversion problem to arbitrary
Riemann surfaces and its solution are due to Riemann. We give a precise statement of the Jacobi
inversion problem. Let Γ be an arbitrary Riemann surface of genus g, and fix a canonical basis of
cycles α1, . . . , αg, β1, . . . , βg on Γ; as above letω1, . . . , ωg be be the corresponding basis of normalized
holomorphic differentials. Recall (see Lecture 4.1.4) that the Abel mapping has the form

A : Γ Ñ JpΓq, ApPq “ pu1pPq, . . . ,ugpPqq, (5.2)

97
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where JpΓq is the Jacobi variety,

uipPq “

P
ż

P0

ωi, (5.3)

P0 is a particular point of Γ, and the path of integration from P0 to P is the same for all i “ 1, . . . , g.
Consider the gth symmetric power SgΓ of Γ. The unordered collections pP1, . . . ,Pgq of g points of
Γ are the points of the manifold SgΓ. The meromorphic functions on SgΓ are the meromorphic
symmetric functions of g variables P1, . . . ,Pg, P j P Γ. The Abel mapping (5.2) determines a
mapping

Apgq : SgΓ Ñ JpΓq, AgpP1, . . . ,Pgq “ ApP1q ` ¨ ¨ ¨ ` ApPgq, (5.4)

which we also call the Abel mapping.

Lemma 5.1. If the divisor D “ P1`¨ ¨ ¨`Pg is nonspecial, then in a neighborhood of a point ApgqpP1, ...,Pgq P

JpΓq the mapping Apgq has a single-valued inverse.

Proof. Suppose that all the points are distinct; let z1, . . . , zg be local parameters in neighborhoods
of the respective points P1, . . . ,Pg with zkpPkq “ 0 andωi “ ψikpzkqdzk the normalized holomorphic
differentials in a neighborhood of Pk. The Jacobi matrix of the mapping (5.4) has the following
form at the points pP1, . . . ,Pgq

¨

˝

ψ11pz1 “ 0q . . . ψ1gpzg “ 0q
. . . . . . . . .

ψg1pz1 “ 0q . . . ψggpzg “ 0q

˛

‚.

If the rank of this matrix is less than g, then lpK´Dq ą 0, i.e., the divisor D is special by the Riemann-
Roch theorem. The case when not all the points P1, . . . ,Pg are distinct is treated similarly. We now
prove that the inverse mapping is single-valued. Assume that the collection of points pP11, . . . ,P

1
gq

is also carried into ApgqpP1, . . . ,Pgq. Then the divisor D1 “ P11 ` ¨ ¨ ¨ ` P1g is linearly equivalent to D
by Abel’s theorem. If D1 , D, then there would be a meromorphic function with poles at points
of D and with zeros at points of D1. This would contradict the fact that D is nonspecial. Hence,
D1 “ D, and the points P11, . . . ,P

1
g differ from P1, . . . ,Pg only in order. The lemma is proved. �

Since a divisor P1 ` ... ` Pg in general position is nonspecial (see Problem 4.81), the Abel
mapping (5.4) is invertible almost everywhere. The problem of inversion of this mapping in
the large is the Jacobi inversion problem. Thus, the Jacobi inversion problem can be written in
coordinate notation in the form

$

&

%

u1pP1q ` ¨ ¨ ¨ ` u1pPgq “ η1
. . . . . . . . .
ugpP1q ` ¨ ¨ ¨ ` ugpPgq “ ηg

(5.5)

which generalizes (5.1). To solve this problem we need the apparatus of multi-dimensional theta
functions.
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5.2 Theta-functions

The g-dimensional theta-functions are defined by their Fourier serie. Let B “ pB jkq be a symmetric
gˆ g matrix with positive-definite Imaginary part and let z “ pz1, . . . , zgq and N “ pN1, . . . ,Ngq be
g-dimensional vectors. The Riemann theta function is defined by its multiple Fourier series,

θpzq “ θpz; Bq “
g
ÿ

NPZ

exp pπixNB,Ny ` 2πixN, zyq , (5.6)

where the angle brackets denote the Euclidean inner product:

xN, zy “
g
ÿ

k“1

Nkzk, xNB,Ny “
g
ÿ

j,k“1

BkjN jNk.

The summation in (5.6) is over the lattice of integer vectors N “ pN1, . . . ,Ngq. The obvious estimate
<pixNB,Nyq ď ´bxN,Ny, where b ą 0 is the smallest eigenvalue of the matrix =pBq, implies that
the series (5.6) defines an entire function of the variables z1, . . . , zg.

Proposition 5.2. The theta-function has the following properties.

1. θp´z ; Bq “ θpz ; Bq.

2. For any integer vectors M,K P Zg,

θpz` K `MB; Bq “ exp p´πixMB,My ´ 2πixM, zyqθpz; Bq. (5.7)

3. It satisfies the heat equation

B

BBi j
θpz ; Bq “

1
2πi

B2

Bziz j
θpz ; Bq, i , j

B

BBii
θpz ; Bq “

1
4πi

B2

Bz2
i

θpz ; Bq.
(5.8)

Proof. The proof of properties 1. and 3. is straightforward. Let us prove property 2. In the series
for θpz ` K ` MBq we make the change of summation index N Ñ N ´ M. The relation (5.7) is
obtained after this transformation. �

The integer lattice tN `MBu is called the period lattice.

Remark 5.3. It is possible to define the function θpzq as an entire function of z1, . . . , zg satisfying the
transformation law (5.7) (this condition determines θpzq uniquely to within a factor).

The theta-function is an analytic multivalued function on the g-dimensional torus Tg “ Cg{tN`
MBu. In order to construct single valued functions, i.e. meromorphic functions on the torus, one
can take for example, for any two vectors e1, e2 P Cg the product

θpz` e1qθpz´ e1q

θpz` e2qθpz´ e2q
.
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Indeed the above expression is by (5.7) a single valued function on the g-dimensional torus. In
general for any two sets of g vectors e1, . . . eg P Cg, v1, . . . vg P Cg satisfying the constraint

e1 ` . . . eg “ 0, v1 ` . . . vg “ 0

the product
g
ź

j“1

θpz` e jq

θpz` v jq
,

is a meromorphic function on the torus (verify this!).
Let p and q be arbitrary real g-dimensional row vectors. We define the theta function with

characteristics p and q:

θrp, qspzq “ exp pπixpB, py ` 2πixz` q, pyqθpz` q` pBq

“
ÿ

NPZg

exp pπixpN ` pqB,N ` py ` 2πixz` q,N ` pyq . (5.9)

For p “ 0 and q “ 0 we get the function θpzq. The analogue of the law (5.7) for the functions
θrp, qspzq has the form

θrp, qspz` K `MBq “ θrp, qspzqexp r´πixMB,My ´ 2πixM, z` qy ` 2πixK, pys. (5.10)

Observe that all the coordinates of the characteristics p and q are determined modulo 1.

Definition 5.4. The characteristics p and q with all coordinates equal to 0 or 1{2 are called half periods. A
half period rp, qs is said to be even if 4xp, qy ” 0 p mod 2q and odd if 4xp, qy ” 1 p mod 2q.

Exercise 5.5: Prove that the function θrp, qspzq is even if rp, qs is an even half period and odd if
rp, qs is an odd half period.

In particular the function θpzq is even. For e “ q` Bp with 4xp, qy ” 1 p mod 2q one has

θpeq “ 0.

Example 5.6. For g “ 1 the theta-function reduces to the Jacobi theta-function. Let τ be an
arbitrary number with =τ ą 0. The Jacobi theta function is defined by the series

θpz; τq “
ÿ

´8ănă8
exp

`

πiτn2 ` 2πinz
˘

. (5.11)

Since
ˇ

ˇexp
`

πiτn2 ` 2πinz
˘
ˇ

ˇ “ exp
`

´π=τn2 ´ 2πn=zq
˘

the series (5.11) converges absolutely and uniformly in the strips |=pzq| ď const and defines an
entire function of z.

The series (5.11) can be rewritten in the form common in the theory of Fourier series:

θpzq “
ÿ

´8ănă8
exppπiτn2qe2πizn (5.12)
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(the function ϑ3pz ; τq) in the standard notation; see [[3]). The function θpzq has the following
periodicity properties:

θpz` 1q “ θpzq (5.13)
θpz` τq “ expp´πiτ´ 2πizqθpzq (5.14)

The integer lattice with basis 1 and τ is called the period lattice of the theta function. The remaining
Jacobi theta-functions are defined with respect to the lattice 1, τ “ b{2πi as

ϑ1pz ; τq :“ θr
1
2
,

1
2
spzq “

ÿ

´8ănă8
exp

«

πiτ
ˆ

n`
1
2

˙2

` 2πi
ˆ

z`
1
2

˙ˆ

n`
1
2

˙

ff

ϑ2pz ; τq :“ θr
1
2
, 0spzq “

ÿ

´8ănă8
exp

«

πiτ
ˆ

n`
1
2

˙2

` 2πiz
ˆ

n`
1
2

˙

ff

ϑ4pz ; τq :“ θr0,
1
2
spzq “

ÿ

´8ănă8
exp

„

πiτn2 ` 2πi
ˆ

z`
1
2

˙

n


.

The functions ϑ2pz ; τq, ϑ3pz ; τq and ϑ4pz ; τq are even functions of z while ϑ1pz ; τq is odd. So for

g “ 1, the theta-function θpz ; τq “ ϑ3pz ; τq “ 0 for z “
1` τ

2
.

Exercise 5.7: Prove that the zeros of the function θpzq form an integer lattice with the same basis

1, τ and with origin at the point z0 “
1` τ

2
.

By multiplying theta function (5.9) we obtain higher order theta functions. The function f pzq
is said to be a nth order theta function with characteristics p and q if it is an entire function of
z1, . . . , zg and transforms according to the following law under translation of the argument by a
vector of the period lattice

f pz`N `MBq “ exp r´πinxMB,My ´ 2πinxM, z` qy ` 2πixp,Nys f pzq. (5.15)

Exercise 5.8: Prove that the nth order theta functions with given characteristics q, p form a linear
space of dimension ng. Prove that a basis in this space is formed by the functions

θr
p` γ

n
, qspnz ; nBq, (5.16)

where the coordinates of the vector γ run independently through all values from 0 to n´ 1.

Under a change of the homology basis α1, . . . , αg and β1, . . . , βg under a symplectic transforma-
tion

ˆ

α1

β1

˙

“

ˆ

a b
c d

˙ˆ

α
β

˙

,

ˆ

a b
c d

˙

P Spp2g,Zq.

The period matrix transforms as (see 4.77)

B1 “
ż

β1
ω1 “ pcIg ` dBqpaIg ` bBq´1.
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Denote by R the matrix
R “ aIg ` bB (5.17)

The transformed values of the argument of the theta-function and of the characteristics are deter-
mined by

z “ z1R
ˆ

p1

q1

˙

“

ˆ

d ´c
´b a

˙ˆ

p
q

˙

`
1
2

diag
ˆ

cdt

abt

˙

.
(5.18)

Here the symbol diag means the vectors of diagonal elements of the matrices abt and cdt. We have
the equality

θrp1, q1spz1 ; B1q “ χ
?

det R exp

$

&

%

1
2

ÿ

iď j

ziz j
B log det R
BBi j

,

.

-

θrp, qspz ; Bq, (5.19)

where χ is a constant independent from z and B. See [18] for a proof.

Exercise 5.9: Prove the formula (5.19) for g “ 1. Hint. Use the Poisson summation formula (see
[19],[18]: if

f̂ pξq “
1

2π

8
ż

´8

f pxqe´iξxdx

is the Fourier transform of a sufficiently nice function f pxq, then

8
ÿ

n“´8
f p2πnq “

8
ÿ

n“´8
f̂ pnq

Theta function are connected by a complicated system of algebraic relations, which are called
addition theorems. These are basically relations between formal Fourier series (see [18]). We
present one of these relations. Let

θ̂rnspz; Bq “ θr
n
2
, 0sp2z ; 2Bq,

according to (5.16) this is a basis of second order theta functions.

Lemma 5.10. The following identity holds:

θpz` wqθpz´ wq “
ÿ

nPpZ2q
g

θ̂rnspzqθ̂rnspwq. (5.20)

The expression n P pZ2q
g means that the summation is over the g-dimensional vectors n whose

coordinates all take values in 0 or 1.

Proof. Let us first analyze the case g “ 1. The formula (5.20) can be written as

θpz` wqθpz´ wq “ θ̂pzqθ̂pwq ` θ̂r1spzqθ̂r1spwq (5.21)
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where
θpzq “

ÿ

k

exppπibk2 ` 2πikzq, θ̂pzq “
ÿ

k

expp2πibk2 ` 4πikzq,

θ̂r1spzq “
ÿ

k

expp
„

2πibp
1
2
` kq2 ` 4πipk` 1{2qz



, =pbq ą 0.

The left-hand side of (5.21) has then the form
ÿ

k,l

exp
“

πibpk2 ` l2q ` 2πikpz` wq ` 2πilpz´ wq
‰

. (5.22)

We introduce new summation indices m and n by setting m “ pk ` lq{2 and n “ pk ´ lq{2. The
numbers m and n simultaneously are integers or half integers. In these variables the sum (5.22)
takes the form

ÿ

expr2πibm2 ` 4πimz` 2πibn2 ` 4πinws. (5.23)

We break up this sum into two parts. The first part will contain the terms with integers m and n,
while in the second part m and n are both half-integers. In the second part we change the notation
from m to m` 1

2 and from n to n` 1
2 . Then m and n are integers, and the expression (5.19) can be

written in the form
ÿ

m,nPZ

expr2πibm2 ` 4πimzs expr2πibn2 ` 4πinws`

ÿ

m,nPZ

expr2πibpm`
1
2
q2 ` 4πipm`

1
2
qzs expr2πibpn`

1
2
q2 ` 4πipn`

1
2
qws “

θ̂pzqθ̂pwq ` θ̂r1spzqθ̂r1spwq.

The lemma is proved for g “ 1. In the general case g ą 1 it is necessary to repeat the arguments
given for each coordinate separately. The lemma is proved. �

Exercise 5.11: Suppose that the Riemann matrix B has a block-diagonal form B “

ˆ

B1 0
0 B2

˙

,

where B1 and B2 are k ˆ k and lˆ l Riemann matrices, respectively with k ` l “ g. Prove that the
corresponding theta function factors into the product of two theta function

θpz ; Bq “ θpz1 ; B1qθpz2 ; B2q,
z “ pz1, . . . , zgq, z1 “ pz1, . . . , zkq, z2 “ pzk`1, . . . , zgq.

(5.24)

Notte that the period matrix of a Riemann surface never has a block diagonal structure.

5.2.1 The Riemann theorem on zeros of theta functions and its applications

To solve the Jacobi inversion problem we use the Riemann θ-function θpzq “ θpz ; Bq on the
Riemann surface Γ. As usual we assume that α1, . . . αg and β1, . . . , βg is a canonical homology
basis. The basis of holomorphic differentials ω1, . . . , ωg is normalized

ż

α j

ωk “ δ jk,

ż

β j

ωk “ B jk.
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Even though θpz |Bq is not single-valued on JpΓq, the set of zeros is well defined because of (5.7).
The set of zeros of θpz |Bq is an analytic set of codimension one in JpΓq. Let e “ pe1, . . . , egq P Cg be
a given vector. We consider the function F : Γ Ñ C defined as

FpPq “ θpApPq ´ eq, (5.25)

where the Abel map A

ApPq “
ˆ
ż P

P0

ω1, . . . ,

ż P

P0

ωg

˙

,

is a holomorphic map of maximal rank of Γ into JpΓq. Because of the periodicity properties of the
theta-function (5.7), the function FpPq transforms in the following way:

‚ FpP` α jq “ FpPq (5.26)

‚ FpP` β jq “ FpPq exp
„

´πiB j j ´ 2πi
ż P

P0

ω j ` 2πie j



. (5.27)

The study of the zeros of FpPq is thus the study of the intersection of ApΓq Ă JpΓq with the set of
zeros of θpz ; Bq which form a well defined compact analytic sub-variety of the torus JpΓq. Since
Γ is compact, there are only two possibilities. Either FpPq is identically zero on Γ or else FpPq has
only a finite number of zeros. The function FpPq is single-valued and analytic on the cut surface Γ̃
(the Poincaré polygon). Assume that it is not identically zero. This will be the case if, for example
θpeq , 0.

Lemma 5.12. If FpPq . 0, then the function FpPq has g zeros on Γ̃ (counting multiplicity).

Proof. To compute the number of zeros it is necessary to compute the logarithmic residue

1
2πi

¿

BΓ̃

d log FpPq (5.28)

(assume that the zeros of FpPq do not lie on the boundary of BΓ̃). We sketch a fragment of BΓ̃ (cf.
the proof of lemma 4.15). The following notation is introduced for brevity and used below: F`

denotes the value taken by F at a point on BΓ̃ lying on the segment αk or βk and F´ the value of F
at the corresponding point α´1

k or β´1
k (see the figure 5.1).

The notation u` and u´ has an analogous meaning. In this notation the integral (5.28) can be
written in the form

1
2πi

¿

BΓ̃

d log FpPq “
1

2πi

g
ÿ

k“1

˜

ż

αk

`

ż

βk

¸

rd log F` ´ d log F´s. (5.29)

Note that if P is a point on αk then

u´j pPq “ u`j pPq `
ż

βk

ω j “ u`j pPq ` B jk, j “ 1, . . . , g, (5.30)
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−1

α

α

−1

F(P)
−

F(P)  
+

k

βk

k

β
k

Figure 5.1: A fragment of Γ̃.

(cf. (4.11)), while if P lies on βk, then

u`j pPq “ u´j pPq `
ż

αk

ω j “ u´j pPq ` δ jk, j “ 1, . . . , g, (5.31)

(cfr. (4.12)). We get from the law of transformation (5.7) of the theta function or from (5.27), that
for P on the cycle αk one has

log F´pPq “ ´πiBkk ´ 2πiu`k pPq ` 2πiek ` log F`pPq; (5.32)

while on the cycle βk from (5.26) one has

log F` “ log F´. (5.33)

From this on αk
d log F´pPq “ d log F`pPq ´ 2πiωkpPq, (5.34)

and on βk
d log F´pPq “ d log F`pPq. (5.35)

Accordingly, from (5.34) and (5.34) the sum (5.29) can be written in the form

1
2πi

¿

BΓ̃

d log F “
ÿ

k

¿

αk

ωk “ g,

where we have used the normalization condition
ű

αk
ωk “ 1. The lemma is proved �

Note that although the function FpPq is not a single-valued function on Γ, its zeros P1, . . . ,Pg
do not depend on the location of the cuts along the canonical basis of cycles. Indeed, if this basis
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cycles is deformed then the path of integration from P0 to P can change in the formulas for the
Abel map. A vector of the form p

ű

γ ω1, . . . ,
ű

γ ωgq is added to the argument of the theta-function
θpzq in (5.25). This is a vector of period lattice tN `MBu. As a result of this the function FpPq can
only be multiplied by a non zero factor in view of (5.7).

Now we will show now that the g zeros of FpPq give a solution of the Jacobi inversion problem
for a suitable choice of the vector e.

Theorem 5.13. Let e P Cg, suppose that FpPq “ θpApPq ´ eq ı 0 and P1, . . . ,Pg are its zeros on Γ. Then
on the Jacobi variety JpΓq

AgpP1, . . . ,Pgq “ e`K , (5.36)

whereK “ pK1, . . . ,Kgq is the vector of Riemann constants,

K j “ ´
1` B j j

2
`
ÿ

l, j

¨

˝

¿

αl

ωlpPq
ż P

P0

ω j

˛

‚, j “ 1, . . . , g. (5.37)

Proof. Consider the integral

ζ j “
1

2πi

¿

BΓ̃

u jpPqd log FpPq. (5.38)

This integral is equal to the sum of the residues of the integrands i.e.,

ζ j “ u jpP1q ` ¨ ¨ ¨ ` u jpPgq, (5.39)

where P1, . . . ,Pg are the zeros of FpPq of interest to us. On the other hand, this integral can be
represented by analogy with the proof of Lemma 5.12 in the form

ζ j “
1

2πi

g
ÿ

k“1

˜

ż

αk

`

ż

βk

¸

´

u`j d log F` ´ u´j d log F´q
¯

“
1

2πi

g
ÿ

k“1

ż

αk

ru`j d log F` ´ pu`j ` B jkqpd log F` ´ 2πiωkqs

`
1

2πi

g
ÿ

k“1

ż

βk

u`j d log F` ´ pu`j ´ δ jkqd log F`s

“
1

2πi

g
ÿ

k“1

„
ż

αk

2πiu`j ωk ´ B jk

ż

ak

d log F` ` 2πiB jk



`
1

2πi

ż

b j

d log F`,

in the course of computation we used formula (5.30)-(5.35). The function F takes the same values
at the endpoints of αk, therefore

ż

αk

d log F` “ 2πink,

where nk is an integer. Further let Q j and Q̃ j be the initial and terminal point of β j. Then
ż

β j

d log F` “ log F`pQ̃ jq ´ log F`pQ jq “

“ logθpApQ j ` β jq ´ eq ´ logθpApQ jq ´ eq “ ´πiB j j ` 2πie j ´ 2πiu jpQ jq,
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The expression for ζ j can now be written in the form

ζ j “ u jpP1q ` ¨ ¨ ¨ ` u jpP jq “

“ e j ´
1
2

B j j ´ u jpQ jq `
ÿ

k

ż

ak

u jωk `
ÿ

k

B jkp´nk ` 1q. (5.40)

The last two terms can be thrown out, they correspond to the j-coordinate of some vector of the
period lattice. Thus the relation (5.40) coincides with the desired relation (5.36) if it is proved that
the constant in this equality reduces to (5.37), i.e.

´
1
2

B j j ´ u jpQ jq `
ÿ

k

ż

αk

u jωk “ K j, j “ 1, . . . , g.

To get rid of the term u jpQ jqwe transform the integral
¿

α j

u jω j “
1
2
ru2

j pQ jq ´ u2
j pR jqs,

where R j is the beginning of α j and Q j is its end (which is also the beginning of b j). Further
u jpQ jq “ u jpR jq ` 1. We obtain

¿

α j

u jω j “
1
2
r2u jpQ jq ´ 1s,

hence

´u jpQ jq `

g
ÿ

k“1

ż

αk

u jωk “ ´
1
2
`

g
ÿ

k, j,k“1

ż

αk

u jωk.

The theorem is proved. �

Remark 5.14. We observe that the vector of Riemann constant depends on the choice of the base
point P0 of the Abel map. Indeed let KP0 be the vector of Riemann constants with base point P0.
ThenKQ0 is related toKP0 by

KQ0 “ KP0 ` pg´ 1q
ż P0

Q0

ω. (5.41)

Example 5.15. The vector of Riemann constants can be easily calculated for hyperelliptic Riemann
surfaces. In particular let us consider the curve w2 “

ś5
i“1pz ´ ziq of genus g “ 2, and choose a

basis of cycles as indicated in the figure 5.2. A normal basis of holomorphic differentials has the
form

ω j “

ś2
k“1 c jkzk´ldz

w
, j “ 1, 2, (5.42)

where the constants c jk are uniquely determined by
ż

αk

ω j “ δ jk .
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βα
5

1 2
3
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1

1

2

2

Figure 5.2: Homology basis.

We chose as base point of the Abel map the point P0 “ p8,8q. We need to compute

¨

˝

¿

α2

ω2pPq
ż P

P0

ω1

˛

‚,

¨

˝

¿

α1

ω1pPq
ż P

P0

ω2

˛

‚.

Using the fact that

¿

α2

ω2pPq
ż P

P0

ω1 “

¿

α2

ω2pPq
ż z4

P0

ω1 `

ż z4

z3

ω2pz,wq
ż pz,wq

z4

ω1 ´

ż z4

z3

ω2pz,´wq
ż pz,´wq

z4

ω1

“

¿

α2

ω2pPq
ż z4

P0

ω1 “

ż z4

P0

ω1 “ p´
1
2
´

B12

2
q

one obtains

K1 “ ´
1` B11

2
´

1
2
´

B12

2
“ ´1´

B11 ` B12

2

In the same way calculating

¿

α1

ω1pPq
ż P

P0

ω2 “

¿

α1

ω1pPq
ż z2

P0

ω2 `

ż z2

z1

ω1pz,wq
ż pz,wq

z2

ω2 ´

ż z2

z1

ω1pz,´wq
ż pz,´wq

z2

ω2

“

¿

α1

ω1pPq
ż z2

P0

ω2 “ ´B21{2

one obtains that

K2 “ ´
1` B22 ` B21

2

Observe that the vectorK can be written in the form

K “

ˆ

0,
1
2

˙

`

ˆ

1
2
,

1
2

˙

B
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Namely, given the odd characteristic

p “
ˆ

1
2
,

1
2

˙

, q “
ˆ

0,
1
2

˙

,

one has thatK “ q` pB. From this expression it follows that

θpKq “ 0.

It is a general result not restricted to this particular example that θpzq|z“K “ 0.

Corollary 5.16. Let D a positive divisor of degree g. If the function

θpApPq ´ ApDq `Kq

does not vanish identically on Γ then its divisor of zeros coincides with D.

Accordingly, if the function θpApPq´ eq is not identically equal to zero on Γ, then its zeros give
a solution of the Jacobi inversion problem (5.5) for the vector η “ e`K . We have shown that the
map (5.4) Ag : SgΓ Ñ JpΓq is a local homeomorphism in a neighborhood of a non special positive
divisor D of degree g. Since θpzq ı 0 for z P JpΓq, then θpAgpDqq does not vanish identically on
open subsets of SgΓ. In the next subsection, we characterize the zero set of the θ-function. The
zeros of the theta-function form an analytic subvariety of JpΓq. The collection of these zeros forms
the theta divisor in JpΓq.

5.3 The Theta Divisor

In this section we study the set of zeros of the theta functions and in particular the Riemann
vanishing theorem which prescribes in a rather detail manner the set of zeros of the theta-function
on Cg.

Theorem 5.17. Let e P Cg, then θpeq “ 0 if and only if e “ ApDg´1q´K where Dg´1 is a positive divisor
of degree g´ 1 andK is the vector of Riemann constants (5.37).

Remark 5.18. For D P Spg´1qΓ the expression ApDq ´K does not depend on the base point of the
Abel map. The theorem 5.17 says that the theta-function vanishes on a g´ 1-dimensional variety
parametrized by g ´ 1 points of Γ. Defining ApSg´1Γq “ Wg´1 the theta function vanishes on
Wg´1 ´K .

Proof. We first prove sufficiency. Let P1 ` ¨ ¨ ¨ ` Pg be a non special divisor and v “ ApP1 ` ¨ ¨ ¨ `

Pgq´K . Let us consider FpPq “ θpApPq´ vq. Either F is identically zero or not. In the former case
for each k “ 1, . . . g

FpPkq “ θpApP1 ` ¨ ¨ ¨ ` P̂k ` ¨ ¨ ¨ ` Pgq ´Kq “ 0,

where we use the symbol P̂k to mean that Pk does not appear in the divisor. So for e “ ApP1 `

¨ ¨ ¨ ` P̂k ` ¨ ¨ ¨ ` Pgq ´K we have θpeq “ 0.
In the latter case FpPq . 0, we have that F has precisely g zeros on Γ due to lemma 5.12. Let

Q1, . . .Qg be the zeros of F, then according to theorem 5.13 one has

ApQ1 ` ¨ ¨ ¨ `Qgq “ v`K “ ApP1 ` ¨ ¨ ¨ ` Pgq.
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Since P1 ` ¨ ¨ ¨ ` Pg is not special, it follows from the Riemann-Roch and the Abel theorems that
Q1`¨ ¨ ¨`Qg “ P1`¨ ¨ ¨`Pg. Therefore also in this case FpPkq “ θpApP1`¨ ¨ ¨`P̂k`¨ ¨ ¨`Pgq´Kq “ 0
for k “ 1, . . . , g. Since the set of non-special divisor of degree g is dense in SpgqΓ, the divisors of the
form P1` ¨ ¨ ¨ ` P̂k ` ¨ ¨ ¨ `Pg form a dense subset of Spg´1qΓ. Since the function θpzq is continuous,
it follows that θpzq is identically zero on Wg´1´K , where in general Wn Ă JpΓq, is the Abel image
of SpnqΓ for n ě 1.

Conversely, let θpeq “ 0. Then by Jacobi inversion theorem, since θ is not identically zero on
JpΓq. Then there exists an integer s, 1 ď s ď g, so that

θpApD̃1 ´ D̃2q ´ eq “ 0, @D̃1, D̃2 P Sps´1qΓ

but
θpApD1 ´D2q ´ eq , 0, D1,D2 P SpsqΓ.

Let D1 “ P1` ¨ ¨ ¨ `Ps and D2 “ Q1` ¨ ¨ ¨ `Qs where we assume that the points of the divisors are
mutually distinct. Now let us consider the function

FpPq “ θpApPq ` ApP2 ` ¨ ¨ ¨ ` Psq ´ ApQ1 ` ¨ ¨ ¨ `Qsq ´ eq

Since FpP1q , 0, this function is not identically zero on Γ. Therefore, by theorem 5.13 it has g zeros
on Γ. These zeros are by construction Q1, . . . ,Qs plus some other g ´ s points Ts`1, . . . ,Tg. By
theorem 5.13 one has

ApQ1 ` ¨ ¨ ¨ `Qs ` Ts`1,` ¨ ¨ ¨ ` Tgq ´K “ ApQ1 ` ¨ ¨ ¨ `Qsq ´ ApP2 ` ¨ ¨ ¨ ` Psq ` e

or equivalently
e “ ApP2 ` ¨ ¨ ¨ ` Ps ` Ts`1,` ¨ ¨ ¨ ` Tgq ´K

which is a point in Wg´1 ´K . �

Regarding the zeros of the theta-function it is possible to prove a little bit more then stated in
the previous theorems. Let D P Spg´1qΓ and let e “ ApDq ´K . Then

multz“eθpzq “ lpDq.

where lpDq is the dimension of the space LpDq. The proof of this identity can be found in [19].

Remark 5.19. The vector of Riemann constants has a characterisation in terms of divisors. Indeed
there is a non positive divisor ∆ of degree g´ 1 such that its Abel image coincides withK , namely
Ap∆q “ K . Furthermore let D be a positive divisor of degree g´ 1, then the vector

e “ ApDq ´K

is a zero of the theta-function, namely θpeq “ 0. By the parity of the theta-function one has
θp´eq “ 0. It follows by theorem 5.17 that

´e “ ApD1q ´K

where D1 is a positive divisor of degree g´ 1. Then summing up the two relations we obtain

2K “ ApD`D1q
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where D`D1 is a positive divisor of degree 2g´ 2. It can be proved that the divisor D`D is the
divisor of a holomorphic differential, namely the vector 2K is the Abel image of the divisor of a
differential. More precisely a divisor D is canonical if and only if ApDq “ 2K (see [18] for a proof
of these results).

Using the characterization of the theta-divisor one can complete the description of the function
FpPq.

Lemma 5.20. Let FpPq “ θpApPq ´ eq where e “ ApDq ´K , D P SpgqΓ and K the vector of Riemann
constants defined in (5.37). Then

1. FpPq ” 0 iff the divisor D is special;

2. FpPq ı 0 iff dimΩpDq “ 0, i.e. the divisort D is not special. In this last case D is the divisor of zeros
of FpPq.

Proof. Let’s prove part 1. of the lemma. Let FpPq ” 0, then by theorem 5.17 there is a positive
divisor D̃ of degree g´ 1 so that

ApDq ´K ´ ApPq “ ApD̃q ´K .

By Abel theorem, the identity holds if and only if D and D̃`P are linearly equivalent, that is there
is a meromorphic function in LpDq with a zero in an arbitrary point P P Γ. This is possible only if
lpDq ą 1 or equivalently dimΩpDq ą 0, namely D is special. Conversely, if D P SgΓ is special then
lpDq ą 1 and therefore there is a function f P LpDq with an arbitrary zero in a point P P Γ so that
p f q “ P`D̃´D. where D̃ P Spg´1qΓ. It follows by Abel theorem that ApPq´ApDq`K “ ´ApD̃q`K ,
then by theorem 5.17, one has θpApD̃q ´Kq “ 0.

Now let us prove part 2. of the lemma. Suppose now that D is not special, then FpPq ı 0 and
by theorem 5.13, the divisors of zeros of FpPq coincides with D. �

Corollary 5.21. Let e “ ApDq ´K with D P Sg´1Γ. Them the function FpPq “ θpApPq ´ eq vanishes
identically if and only if dimΩpD` P0q ě 1 (Check!!) where P0 is the base point of the Abel map.

Proof. Let P0 be the base point of the Abel map, then ApP ´ P0q “ ApPq. Suppose FpPq ” 0, then
by theorem 5.17 there exists a positive divisor D̃ of degree g´ 1 such that

ApP´ P0q ´ ApDq `K “ ´ApD̃q `K

which implies that ApD ` P0q “ ApD̃ ` Pq. By Abel theorem, there is a nontrivial meromorphic
function h with divisor

phq “ D̃` P´D´ P0

for all P P Γ. This implies that lpD` P0q ě 2 or equivalently, D` P0 is a special divisor. Viceversa
suppose that dimΩpD` P0q ě 1, then lpD` P0q ą 1 so that LpD` P0q is generated by t1, huwhere
h is a meromorphic function. So there is a nontrivial meromorphic function with poles in D` P0
and having zero in an arbitrary point P ( take for example the function h´ hpPq) and some other
g´ 1 points given by the divisor D̃. It follows that

ApD` P0q “ ApD̃` Pq
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or equivalently
ApP´ P0q ´ ApDq `K “ ´ApD̃q ´K

which implies by theorem 5.17 that 0 “ θp´ApD̃q ´ Kq “ θpApP ´ P0q ´ ApDq ´Kq “ θpApPq ´
ApDq ´Kqwhere we recall that P0 is the base point of the Abel map. �

The zeros of the theta function (the points of the theta divisor) form a variety of dimension
2g´2 (for g ě 3). If we delete from JpΓq, the theta divisor, then we get a connected 2g-dimensional
domain. We get that the Jacobi inversion problem is solvable for all points of the Jacobian JpΓq and
uniquely solvable for almost all points. Thus the collection pP1, . . . ,Pgq “ pApgqq´1pηq of points
of the Riemann surface Γ (without consideration of order) is a single valued function of a point
η “ pη1, . . . ηgq P JpΓq (which has singularities at points of the theta divisor.) To find an analytic
expression for this function we take an arbitrary meromorphic function f pPq on Γ. Then the
specification of the quantities η1, . . . , ηg uniquely determines the collection of values

f pP1q, . . . , f pPgq, ApgqpP1, . . . ,Pgq “ η. (5.3.43)

Therefore, any symmetric function of f pP1q, . . . , f pPgq is a single-valued meromorphic function
of the g variables η “ pη1, . . . , ηgq, that is 2g-fold periodic with period lattice t2πiM ` BNu. All
these functions can be expressed in terms of a Riemann theta function. The following elementary
symmetric functions has an especially simple expression:

σ f pηq “
g
ÿ

j“1

f pP jq. (5.3.44)

From Theorem 5.36 and the residue formula we get for this function the representation

σ f pηq “
1

2πi

¿

BΓ̃

f pPqd logθpApPq ´ η`Kq

´
ÿ

f pQkq“8

Res
P“Qk

f pPqd logθpApPq ´ η`Kq,
(5.3.45)

the second term in the right hand side is the sum of the residue of the integrand over all poles if
f pPq. As in the proof of Lemma 5.12 and Lemma 5.13, it is possible to transform the first term in
(5.3.45) by using the formulas (5.34) and (5.35). The equality (5.3.45) can be written in the form

σ f pηq “
1

2πi

ÿ

k

ż

ak

f pPqωk ´
ÿ

f pakq“8

Res
P“Qk

f pPqd logθpApPq ´ η`Kq. (5.3.46)

Here the first term is a constant independent of η. We analyze the computation of the second term
(the sum of residue) using an example.
Example 5.22. Γ is an hyperelliptic Riemann surface of genus g given by the equation w2 “

P2g`1pzq, and the function f has the form f pz,wq “ z, the projection on the z-plane. This function
on Γ has a unique two-fold pole at8. We get an analytic expression for the function σ f constructed
according to the formula (5.3.44). In other words if P1 “ pz1,w1q, . . . ,Pg “ pzg,wgq is a solution of
the inversion problem ApP1q ` ¨ ¨ ¨ ` ApPgq “ η, then

σ f pηq “ z1 ` ¨ ¨ ¨ ` zg. (5.3.47)



5.3. THE THETA DIVISOR 113

We take 8 as the base point P0 (the lower limit in the Abel mapping). According to (5.3.46) the
function σ f pηq has the form

σ f pηq “ c´ Res
8
rzd logθpApPq ´ η`Kqs .

Let us compute the residue. Take τ “ z´
1
2 as a local parameter in a neighborhood of 8. Suppose

that the holomorphic differentials ωi have the form ωi “ ψipτqdτ in a neighborhood of8. Then

d logθpApPq ´ η`Kq “
g
ÿ

i“1

rlogθpApPq ´ η`KsiωipPq “

“

g
ÿ

i“1

rlogθpApPq ´ η`Kqsiψipτqdτ

where r. . . si denotes the partial derivative with respect to the ith variable. By the choice of the
base point point P0 “ 8, the decomposition of the vector-valued function ApPq in a neighborhood
of8 has the form

ApPq “ τU `Opτ2q,

where the vector U “ pU1, . . . ,Ugq has the form

U j “ ψ jp0q, j “ 1, . . . , g.

From these formulas we finally get

σ f pηq “ ´plogθpη´Kqqi, jUiU j ` c “ ´B2
x logθpxU ` η´Kq|x“0 ` c, (5.3.48)

where plogθpη ´ Kqqi, j denotes derivative with respect to the i ´ th and j ´ th argument of the
theta-function and c is a constant.

We shall show in the next Section that the function

upx, tq “
B2

Bx2 logθpUx`Wt´ η`Kq ` c

where Wk “
1
3
ψ2p0q solves the Korteweg de Vries equation

ut “
1
4
p6uux ` uxxxq.

Exercise 5.23: Suppose that a hyperelliptic Riemann surface of genus g is given by the equation
w2 “ P2g`2pzq. Denotes its points at infinity by P´ and P`. Chose P´ as the base point P0 of the
Abel mapping. Take f pz,wq “ z as the function f . Prove that the function σ f pηq has the form

σ f pηq “

ˆ

log
θpη´K ´ ApP`qq

θpη´Kq

˙

j
U j ` c (5.3.49)

where the vector U “ pU1, . . . ,Ugq has the form

U j “ ψ jp0q, j “ 1, . . . , g, (5.3.50)

where the basis of holomorphic differentials have the form

ω jpPq “ ψ jpτqdτ, τ “ z´1, P Ñ8.
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Exercise 5.24: Let Γ be a Riemann surface w2 “ P5pzq of genus 2. Consider the two systems of
differential equations:

dz1

dx
“

a

P5pz1q

z1 ´ z2
,

dz2

dx
“

a

P5pz2q

z2 ´ z1
(5.3.51)

dz1

dt
“

z2
a

P5pz1q

z1 ´ z2
,

dz2

dt
“

z1
a

P5pz2q

z2 ´ z1
. (5.3.52)

Each of these systems determined a law of motion of the pair of points

P1 “ pz1,
b

P5pz1qq, P2 “ pz2,
b

P5pz2qq

on the Riemann surface Γ. Prove that under the Abel mapping (5.1) these systems pass into the
systems with constant coefficients

dη1

dx
“ 0,

dη2

dt
“ 1

dη1

dt
“ ´1,

dη2

dt
“ 0.

In other words, the Abel mapping (5.1) is simply a substitution integrating the equations (5.3.51)
and (5.3.52).
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