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Chapter 1

Riemann surfaces

1.1 Definition of Riemann surface and basic examples

1.1.1 Complex manifolds. First examples of Riemann surfaces

Bernhard Riemann (1826-1866) introduced the concept of Riemann surface to make sense of
multivalued functions like the square root or the logarithm. For the geometric representation of
multi-valued functions of a complex variable w = w(z) it is not convenient to regard z as a point
of the complex plane. For example, take w = +/z. On the positive real semiaxisz € R, z > 0 the
two branches wy = + /z and w, = — +/z of this function are well defined by the condition w; > 0.
This is no longer possible on the complex plane. Indeed, the two values w;,, of the square root of
z=reY

L4271

wi = VreS, w, = —res = T, (1.1.1)

interchange when passing along a path

z(t) = ré W+, te|0,2n]

encircling the point z = 0. It is possible to select a branch of the square root as a function of z by
restricting the domain of this function for example, by making a cut along the negative real semi-
axis. The two functions w; (z) and w(z) defined as in (1.1.1) with — < ¢ < m are single-valued
on the cut plane C\(—o0,0]. Riemann’s idea was to combine the two branches of the function
vz to a single-valued fuction well-defined on a suitable geometric object S. To do this observe
that wq(z) — i+/r and wy(z) — —i+/r for z — —r from above the cut (—o0,0]. In a similar way
w1 (z) — —i+/rand wy(z) — i/ for z — —r from below the cut (—0,0]. So, the rules to construct
the space S are as follows: one has to take two copies of the complex plane cut along the negative
real semi-axis and join the two copies of the complex plane along the cuts glueing the upper side
of the cut on one copy with the lower side of the cut on another one. In other words the two sheets
have to be glued together in such a way that the branch of the function +/z on one sheet joins
continuously with the branch defined on the other sheet. The result of this operation is a complex
manifold S of complex dimension one (see below for the precise definition). It can also be treated
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6 CHAPTER 1. RIEMANN SURFACES

Figure 1.1: The imaginary part of the function /z

as a smooth real manifold of dimension two, that is, a surface. The surface shown on figure 1.1 is
the imaginary part of /z.

A similar procedure of cutting and glueing can be repeated for other multivalued analytic
functions. For example the logarithm logz is a single valued function on C\[0, +-00) with infinite
number of branches. Each adjacent branch differs by an additive term 2mi. The infinite set of
branches attached along the positive real line is shown on the figure 1.2.

T. Cancellerei la parte sotto
The Riemann surface of the multivalued function 1/z can also be constructed as the zero locus of
the polynomial F(z, w) = w? — z, namely

S = {(z,w) e C* | F(z,w) = w* —z = 0}

(a complex algebraic curve). The function w : S — C is defined as follows: for a point P = (z,w) €
S we put w(P) = w. We leave as an exercise to the reader to verify that the two constructions give
the same result. It will also be done below for a general class of algebraic multivalued functions.

In the theory of Riemann surfaces the techniques of working with complex manifolds or with
complex algebraic curves both played an important role.

Before doing this we remind that a complex function f : G — C where G is a domain in C, can
be written in the form f(z) = u(x, y) + iv(x, y), withz = x + iy, x, y € R and u(x, y) and v(x, y) real
functions of (x, ). The function f(z) is holomorphic in G if u and v are real differentiable in G and
their derivatives satisfy the Cauchy Riemann equations

Uy =0y, Uy, =-0y, forzeG.
Alternatively introducing the operators ¢/0z and 0/0z defined by
0o 1[0 0 0o 1[0 0
S — == (=+i= 1.1.2
oz 2<ax l&y)' oz 2<6x+16y>' (1.1.2)
the Cauchy Riemann equations can be written in the form

0
éf:O, forze G.
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Figure 1.2: The Riemann surface of the function log z

We also recall that a holomorphic function f : G — C can be expanded in convergent power series.
For this reason it is often called analyic function.
We now introduce some basic properties of complex manifolds.

Definition 1.1.1. A complex manifold of complex dimension n is a second-countable Hausdorff ' topological
space M with a collection of charts {(Uy, ¢q) }aesn where U, < M is an open subset in M and ¢, : U, — C"
such that

1. The sets U, are a covering of M

Jt.=m (1.1.3)
aeA

2. ¢o(Uy) is open in C" and ¢, : Uy — Po(Uy) is a homeomorphism onto an open subset in C".
3. IfUyp := Uy n Ug # I then both ¢o (U, p) and pg(U,p) are open sets in C" and

Gap = Ppo Py : Pa(Uap) = Pp(Uap) (1.1.4)
are holomorphic maps,

Gap(zi,.- . 2n) = (W1(2),...,wu(2)) € Pp(Uap) € C", z=(21,...,2n) € Pa(Uap) = C"
(77/0,‘ .o
— = =1,...,n.
2z; 0, ,j=1,...,n

The collection of charts is called an atlas for the manifold M. The image ¢o(P) = (z1(P),...,z,(P)) € C"
of a point P € U, defines local coordinates z(P),...,z,(P) of the point. The maps G, are called
transition functions.

IRecall that a Hausdorff topological space is a topological space such that for any pair of distinct points there exist
non-intersecting open neighbourhoods. A topogical space X is second-countable if there there exists a countable family
(Vi)ien such that any open subset in X can be represented as a union | J;¢; V; for some I < IN.



8 CHAPTER 1. RIEMANN SURFACES

Note that the transition functions G,z are invertible and the inverse maps G;; = Ggq are
holomorphic.

Given two atlases {(Ua, ¢a)}aca and {(V, 1) }ges on M, we say that they are equivalent if
their union is still an atlas. An equivalence class of atlas defines a complex analytic structure on
M.

The space C" is the simplest example of an n-dimensional complex manifold. One can also
take an arbitrary open subset M < C". In these cases it suffices to use atlases consisting just of one
chart. Let us consider a less trivial example.

Example 1.1.2. Points of the complex n-dimensional projective space IP" are defined as equivalence
classes of (1 + 1)-dimensional non-zero complex vectors € C"+1\0

(Zo,Zl,...,Zn)NA(Zo,Zl,...,Zn), 0+AeC.

The equivalence class of vectors (Zo, Z1,...,Z,) is denoted by (Zy:Zy : ---: Z,). The complex
numbers Z, are called homogeneous cordinates of the point.
An atlas consisting of n + 1 charts (U, ¢o)a=01,..» is defined as follows

Uy = {(Z0,Z1,...,Z4) € C"* | Zy # 0}

Zy 2y Za  Zy
20,21,...,2y) = == > s,
b (2021 20) (za Z) 2 Za
where the hat means that the corresponding term is omitted.
Let us consider the particular cases 7 = 1 and n = 2. On P! we have two charts Uy and U,
with the local coordinates
V4 Z
qbo(Zo,Zl) = Z—l =Z Oon UQ, (1)1(Zo,Z1) = Z—O =w on Ul.
0 1

On the intersection Uy n U; we have z # 0, w # 0 and the transition functions are

The map ¢ establishes a one-to-one correspondence between Uy and the complex plane C. The
complement P!\ Uj consists just of one point (0 : 1). It can be considered as the point at infinity in
the complex plane. Indeed, if a point P € Uy goes to (0 : 1) then z(P) — <. Thus

P! = Cu {0}.

That means that topologically IP! is a two-dimensional sphere. For this reason the manifold P! is

often called Riemann sphere. Another name for P is extended complex plane denoted by C.
In a similar way for IP* the chart U, is identified with C* and

PA\Up = {(0,Z1,Z,) #0, | (0,Z1,Z2) ~ A(0,Z1,Z5) |0# Ae C} =P.

Therefore
P> =C?uUPL



1.1. DEFINITION OF RIEMANN SURFACE AND BASIC EXAMPLES 9

Exercise 1.1.3: Consider the (21 + 1)-dimensional unit sphere $?**! defined in the space C"*! =
R?>'+2 by the equation

Zol? +|Z1P 4+ | Za =X+ V2 X+ Y2+ + X2+ YR =1
where Z; = X + i Y. The group S' = {A € C | |A| = 1} acts on $>**! by multiplication
(ZosZoy s 7o) ~ A(Zo, 71, ) Z)

Prove that the quotient manifold S?**!/S! carries a natural structure of a complex manifold of
complex dimension n. Prove that this manifold can be identified with IP". As a corollary derive
that the projective space IP" is compact for any 7.

Exercise 1.1.4: Prove that P! is diffeomorphic to the standard unit sphere S? in R

P+ =1

To define a real C*-smooth n-dimensional manifold, one has to replace C" with R" and the
transition functions are C*-smooth in their respective variables. An equivalence class of atlases
defines a CF-smooth structure on the manifold. When k = oo the manifold is simply called smooth
manifold or C*-smooth manifold.

A complex n-dimensional manifold is also a real C*-smooth’ manifold of dimension 2n. A
natural choice of local coordinates on the real manifold is given by the real and imaginary parts
of the complex coordinates

x;=Rez, yi=Imz, i=1,...,n

The transition function
z=(21,--.,2n) — (W1(2),...,wy(2))

is a holomorphic change of coordinates. In the new chart define the real coordinates
u;=Rew; vi=Imw;, i=1,...,n

Further the following identity between real and complex Jacobians holds true

6ui/axj 51«[,’/&%‘ . A 2
det( duifox, ouifdy, ) = ‘det (6wz/az])‘ ) (1.1.5)

We leave the proof of this identity as an exercise for the reader.
A real smooth manifold M is orientable if there exists an atlas such that all the transition maps

0Gj(x)

Xk

G(x1,...,x) = (G1(x),...,G,(x)) have positive Jacobian determinant det ( > > 0. A choice

of such an atlas is called an orientation on M.
From the relation (1.1.5) it follows that a complex manifold is always orientable.

We will be concerned with manifolds of complex dimension 1.

2Tt is even a real analytic manifold.
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Definition 1.1.5. A Riemann surface S is a connected’ one-dimensional complex manifold.

As it was explained above S is also a two-dimensional smooth orientable manifold.
Let {(Ua, @a) }aen define a complex structure on S and suppose that P € U, n Up # . Hence
the local charts
z=¢a(P), w=¢y(P)
will be complex-valued functions.
The transition function ¢ 0 ¢, ' : z — w = w(z) is bi-holomorphic, namely, holomorphic with
holomorphic inverse z = z(w)
w_o
oz ow
where the operators d/0w and d/0w are defined in a similar way as in (1.1.2). So, in a small
neighbourhood of any point Py € U, n Ug with zg = ¢o(Po) and wy = ¢g(Po) we have the power
series expansion

0,

w(z) = wo + Z a(z—z0)f, @ #0,
k>0

and
z(w) = zp + Z be(w — wo)k, by #0.

k>0

Example 1.1.6. Elementary examples of Riemann surfaces

(a) The simplest examples of Riemann surfaces are those defined by one single chart. Any
connected open subset of the complex plane is clearly a Riemann surface. Other interesting
examples include the complex plane C, the unit disk D = {z € C | |z| < 1} and the upper
half space H = {z€ C | Imz > 0}.

(b) The projective space IP!, the Riemann sphere or extended complex plane C = C U o and
the sphere S = {(x,y,t) € R®| x> + y* + t? = 1} are Riemann surfaces. In this case the atlas
consists of two charts. For the sphere S? the two charts are

.
Uy = $2\(0,0,1), 1 (x, y, ) = xl _lf (1.1.6)

@ B X iy 1t
uZ - S \(010/ 1)/(P1(xry/t) - 1 4t - x+1y (117)
(1.1.8)

On the intersection U; n U ~ C\{0} we have ¢ o ¢, Yz) = 1 where z = ¢y (x, y,1). Itis let
as an exercise to show that C and P! are Riemann surfaces.

Example 1.1.7. Riemann surface of /z.
Consider the complex algebraic curve

C={(zw)eC|w*—z=0}.

3In this book we use the word “connected’ for path-connected topological spaces. For manifolds these two notions are
equivalent, see e.g. [?].
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A chart in a neighbourhood of a point (zp, wp) € C with zy # 0 is defined on the domain U =
{(zzw = v/z) € C ||z — 20| < €} with € < |zp| where the branch of /z is uniquely defined by the
condition 1/zg = wy. The coordinate map U — C is given by the projection to the z-axis

(z,w) — z.

It remains to construct a chart in a neighbourhood of the point (0,0) € C. Define the domain
V = {(z = w?,w) € C| |w| < €} for some € > 0. The coordinate map V — C is given by the
projection to the w-axis

(z,w) — w.

On the intersection U n V we have holomorphic transition functions
z(w) =w® and w(z) = vz, w(z) = wy.

Example 1.1.8. Complex tori
Let w, ' be two complex numbers called half-periods satisfying

w/

Im — > 0.
@

Define the lattice of points on the complex plane by
Apw =2Zw + 2Z0" = {2mw + 2na’ | m,n € Z.}. (1.1.9)

The half-periods w, @ are linearly independent as vectors on the two-dimensional real plane

C = R2. Therefore two vectors 2miw + 2n1@’ and 2myw + 2ny@’ of the lattice coincide iff mqy = my

and n; = ny. In other words the lattice A, s = C as a subgroup of the additive group of complex
numbers is isomorphic to the group Z ® Z.

Consider the quotient ,

T

w,w’

= C/Awur (1.1.10)

as the set of equivalence classes of complex numbers, where the equivalence relation is as follows:
two complex numbers z and Z are equivalent if Z — z € Ay ..
The claim is that

e As a real smooth manifold the quotient is diffeomorphic to the two-dimensional torus

T2  ~ S x SL

w,w’ T

o It has a natural structure of compact connected one-dimensional complex manifold namely
a compact Riemann surface.

To prove the first statement introduce real coordinates on the complex plane by representing
a given complex number z in the form

z=2wx+2u'y.
Such a representation is unique. In these coordinates the quotient becomes equal to

C/Aw,m’ = ]R/Z X ]R/Z = Sl X Sl.
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In particular this implies compactness of (1.1.10).

To prove the second statement one needs to construct a complex analytic structure on TZW,.
Letm:C — wa, be the projection map. Endow Ti),w, with the quotient topology, namely, a set
uc Tf)/w, is open if 7~!(U) is open in C. This definition makes 7 continuous and since C is
connected so is Tiw,. Furthermore, it is easy to check that 7 is an open map. Indeed, let U be an
open set in C. Then by definition the set 1(U) is open if 7! (7(U)) is. But the latter is certainly
open since 1 (1t(U)) = Uy, pez (U + 20 m + 2w'n) is open.

In order to define a complex chart near a point p, € T2 o choose a representative z, € 7 (pa)
and consider the parallelogram

1
U(zg) = {za +20x + 20"y |x, ye R, x|, ly| <€}, 0<e< 7
centered at z,. The restriction 7ty : U(z4) — 7(U(24)) is a homeomorphism. So we will use the
natural complex coordinate on the parallelogram U(z,) < C for defining the homeomorphism ¢,
on7t(U(z,)) < T2 . The pair (1(U(z4)), o) defines a complex chart. For p € n(U(za)) n(U(zp))
let o (p) = z and ¢(p) = Z so that the transition function T(z) := ¢g 0 ¢, ' (z) = Z. Since z and 2
are the image of the same point p on the torus, it follows that

T(z) —z=0Q(z), Qz)e Apar-

Since the map T is continuous and A, is discrete, it follows that Q)(z) independent from z. We
conclude that the map T is holomorphic. An important remark is to be done. Namely, although
the complex tori (1.1.10) are all diffeomorphic as real smooth manifolds they in general define
different complex manifolds for different pairs of half-periods.In the next Section more details are
given.

1.1.2 Holomorphic maps of Riemann surfaces

We begin this section with the general definition of holomorphic maps between complex man-
ifolds. Let M and N be complex manifolds of complex dimensions m and n respectively. Let

(uar(Pa)aeﬂ
¢a(P) = (z1(P),...,zu(P)) e C" for PelU,cM

and (Vﬁr ¢ﬁ)ﬁ€$
Pp(Q) = (w1(Q),..., w,(Q)) eC" for QeVgc N
be atlases on these manifolds.

Definition 1.1.9. (i) Amap f : M — N is called holomorphic if for any Py € U, such that f(Py) € Vg
the superposition

Ypofody' iz=(z1,...,2m) = (wi(2),..., wn(2))
defined on a sufficiently small open neighbourhood of Py is a holomorphic map of an open subset in
C" to C™.

(ii) Holomorphic maps f : M — C are called holomorphic functions on M.
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(iii) The holomorphic map f : M — N is called biholomorphic equivalence if it is one-to-one and the inverse
map f~1 : N — M is also holomorphic. The notation M ~ N will be used for biholomorphically
equivalent complex manifolds.

We leave as an exercise for the reader to verify that the above definition depends only on the
complex analytic structures on the manifolds but not on the choice of atlases.

Example 1.1.10. The projective space P!, the Riemann sphere C and the sphere 2 = {(x, y,t) €
R®|x? + y* + #* = 1} are biholomorphic equivalent. The biholomorphic equivalence is given by

x+iy

— 4 ifz, #0 — — ifx#0, y#0
IIP] — C, : — {22 152 - C, Sy t) — o '
f [z1 : 22] {Oo ifz, = 0 fa (xy,) {oc ifx=y=0.

Straightforward computations shows that the maps f; and f, are biholomorphic.

Exercise 1.1.11: Prove that the superposition go f : M — L of two holomorphic maps f : M — N
and g : N — L between complex manifolds is holomorphic.

Exercise 1.1.12: Let M be a compact connected one dimensional complex manifold. Prove that any
holomorphic function f : M — C must be a constant. Hint: use the maximum modulus principle.

Example 1.1.13. Let P(z) and Q(z), z € C, be two polynomials of degrees m and n respectively.
Define a holomorphic map f : P! — P! by

f(Zo: 21)) = (Z5'Q(Z1/Z0) : ZYP(Z1/Zy)), N = max(m, n).
Note that the two homogeneous coordinates of the image, namely
QZ0,21) = 2y QZ1/Z0)  PlZo,n) i= Z{P(Za/Z0)

are homogeneous polynomials of degree N in the variables Zy, Z;. Without loss of generality we
can assume that the polynomials P(z) and Q(z) have no common roots. The point (Zy : Z;) € Uy =
C with coordinate z = % is mapped to

oL 1 gE) QR #0,
f(Zy:2Z1) = { 3 %( ) () - 0, (1.1.11)
while for Z; € C* we have
(0:1) if deg P > deg Q,
f(0:1) = { (1:0) N ifdeg P < deg Q, (1.1.12)
(Q(0,1) : P(0,1)) ifdeg P =deg Q.

Vice versa, the rational function % can be extended to a holomorphic map from P! to IP! by
(1.1.11) and (1.1.12).

The map f : P! — P! is biholomorphic iff
f(Zo : Z]) = (CZ1 +dZy:aZq + bZO), ad — bc # 0.

The inverse map

f_l(W() : Wl) = (—CWl +aWp : dWq — bWo) .

ad — bc
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Meromorphic functions on a Riemann surface S are defined as follows.

Definition 1.1.14. Let S be a Riemann surface. Holomorphic maps f : 8 — P! = C are called
meromorphic functions on S.

Denote by z the complex coordinate on the finite part of C and by Z = 1/z the complex
coordinate near infinity. Take a point Py € S and choose a local complex coordinate ¢(P) = 7 near
this point such that ¢p(Py) = 0. Let f(Py) = zo € C. Then we have a locally defined holomorphic
function

z :focp_l(f) =zy+ 2 at*, m=1, a, #0.

k=m

If zg = 0 then the number m is the multiplicity of the zero at Py of the meromorphic function f.
Consider now the case f(Py) = {0} = {Z = 0}. In this case Z is a holomorphic function of ©

£=>bt", n=1, b, #0.

k=n

Then for the function z = f o ¢~!(7) we obtain an expansion in Laurent series

-1
z=fo¢p (1) = [Z bﬂk} - ZCT;k", Con = bl #0,

k=m k<n

valid on a punctured disk 0 < |7| < ¢, for a sufficiently small €. The point Py is called a pole of
order n of the meromorphic function f. The multiplicity of a zero and the order of a pole do not
depend on the choice of local parameter. An alternative definition of a meromorphic function on
a Riemann surface is that the function f is holomorphic in S outside a discrete subset of points
that are poles of this function.

Exercise 1.1.15: Prove that, indeed, the set of poles of a meromorphic function must be discrete. In
particular prove that a meromorphic function on a compact connected one-dimensional complex
manifold has only a finite number of poles.

Exercise 1.1.16: Prove that any meromorphic function on the Riemann sphere C is a rational
function.

Remark 1.1.17. The space of meromorphic functions on a Riemann surface S is a field. That means
that the product fg of two meromorphic functions is meromorphic; the same is true for the ratio
f/g provided the function g is not an identical zero. This field will be denoted by M(S). For

example, according to the above Exercise M(C) is isomorphic to the field of rational functions of
one variable.

Example 1.1.18. Consider the Riemann surface
S = {(z,w) e C* | w* —z = 0}.
The projections n; : S — C and 7y, : S — C defined as

T,(z,w) =z and T,(z,w) = w



1.1. DEFINITION OF RIEMANN SURFACE AND BASIC EXAMPLES 15

define holomorphic functions on S.
The map 7, establishes a biholomorphic equivalence S ~ C. Indeed, the inverse to the map
Ty : S — Cis given by
w— (w?,w)eS.
Example 1.1.19. Let D = {|z] < 1} be the unit disk and H = {Im w > 0} the upper half-plane. The
map
11—z
YT
establishes a biholomorphic equivalence ID ~ IH between the unit disk ID and the upper half-plane
H. The inverse map is given by

i—w

i+w

Example 1.1.20. Any holomorphic map from C — ID must be a constant, due to the maximum
modulus principle. Therefore the complex plane and the unit disk are not biholomorphically
equivalent. Nevertheless C and D are diffeomorphic to each other by means of the smooth map
Y:C—->D

zZ
Y(z) = —T\Z\Z =w

w

V1= [w]?
Remark 1.1.21. Clearly the Riemann sphere is not biholomorphically equivalent either to C or to

H as it is compact. Indeed combining the results of Examples 1.1.19 and 1.1.20 we conclude that
there is no biholomorphic equivalence between C and H.

with inverse ¢~ (w) =

The following fundamental result proven in 1907 by Henri Poincaré and Paul Koebe provides
a complete classification of simply connected Riemann surfaces.

Uniformization Theorem. Any simply connected Riemann surface is biholomorphically equivalent
to one of these three:

1. complex plane C;

2. Riemann sphere P! = C;
3. upper half-plane H.

For the definition of simply connected topological spaces see below Section 1.3.1. The proof of
the Uniformization Theorem can be found in the book [27].

Example 1.1.22. Holomorphic maps of complex tori.
Recall (see Example 1.1.8 above) that a complex torus is a compact Riemann surface Ti o
defined as the quotient of the complex plane over a two-dimensional lattice
TZ

w,w’

=C/{2wom+2w'n|m, neZ}. (1.1.13)

Here w, '’ € C is a pair of half-periods of the lattice. They must satisfy the inequality

a)/

Im — > 0.
W
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Vectors 2w m + 2w'n of the lattice are called periods. A natural basis in the lattice is given by the
periods 2w, 2w’. All vectors of the lattice are linear combinations with integer coefficients of the
basic periods. There are other bases in the lattice that can be obtained in the following way.

Lemma 1.1.23. Let 2@, 2@’ be another basis of the lattice satisfying the inequality Im % > 0. Then

d=do+tca, & =bw+aa (1.1.14)

a b
det(c d)—l.

Conversely, any matrix from the group SL(2,Z) defines a change of basis in the lattice according to eq.
(1.1.14)

where the integers a, b, c, d satisfy

Recall that the group SL(2, Z) consists of 2 x 2 matrices with integer entries and determinant
one.
Proof Since the vectors 2@, 2@’ belong to the lattice with the basis 2w, 2w’ they must have the form

(1.1.14) with some integer coefficients. Interchanging the roles of the bases we conclude that the
inverse of the matrix ( lz Z > must also have integer entries hence det ( Z Z ) = +1. Using
the simple identity

~1/ d—b 2 /
m @ _ e =bo)lol ' (1.1.15)

@ Jew +dwl? w

we conclude that the determinant of the matrix must be positive. d

Let us proceed to studying functions on complex tori. First, we already know that any
holomorphic function on Ti,w' must be a constant, see Exercise 1.1.11 above. It is worthwhile to
present the proof of the statement about holomorphic functions on a complex torus in a slightly
modified way. Namely, a function f : C/{2wm + 2w'n} — C can be considered as a function on C
satisfying

fz+2w) = f(z), flz+2o") = f(z) (1.1.16)
for any z € C. Such functions are called doubly periodic. Any doubly periodic holomorphic
function will be bounded on the entire complex plane hence, due to Liouville theorem it must be
constant.

Definition 1.1.24. Doubly periodic meromorphic functions on the complex plane are called elliptic
functions.

We conclude that the set of holomorphic maps of the complex torus (1.1.13) to IP! is the same as
the set of elliptic functions on the complex plane. In Section ?? we will construct some important
examples of elliptic functions.

Let us now consider holomorphic maps between complex tori. Any such map

f:T? -T2 (1.1.17)

w,w’ @,0"

can be considered as a holomorphic function f(z), z € C satisfying

flz+2w) = f(z) +2s@+2rd', f(z+22")=f(z)+2q0+2pd’, pgqr,seZ (1.1.18)
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for any z € C. The derivative f’(z) will be a doubly periodic holomorphic function hence constant.
So f(z) = Az + zp for some A # 0, zg € C. Thus the holomorphic maps (1.1.17) correspond to pairs

A#0, M = ;; Z € Mat(2,Z). The matrix M must have positive determinant; this can be

proven by using the relation (1.1.15). Existence of such a map imposes the following constraint

on the periods of the tori
w/ CT)I
A <w> - ( ’; Z ) (w) (1.1.19)

The simplest case is M = ( (1) (1) ) . Then the lattice A ¢ is obtained from A, . by rescaling
&=\, & =Ao. (1.1.20)
The map
f : Ti),w’ - Tﬁw,/\w’/ f(Z) =Az (1121)
is biholomorphic, f~!(z) = z/A. By chosing A = 5 it follows that the tori
1 @’
T2 72 _ 1 _ W
filow =T, fl)=5-2 1=~ (1.1.22)

are biholomorphic equivalent. For simplicity the torus T? | is denoted by T2. Combining the

272
above observation with lemma 1.1.23 we arrive to the following Theorem.

Theorem 1.1.25. Let T and T be two tori defined by the lattices {m+nt |m,n € N} and {m+nt' |m,n €
IN} with 3(1) > 0and 3(t') > 0. The tori are isomorphic if and only if

, at+b <a b

- c d

U= ) e SL(2,Z). (1.1.23)

The proof is left as an exercise.

Holomorphic maps between complex tori will be considered up to superpositions with rescal-
ings. This allows to freely choose A in a suitable way.

One can also use the freedom in the choice of bases in the lattices A, ., Ag o in order to reduce

the matrix M = ( F; Z ) to some canonical form. In this way the matrix M is considered up to

transformations of the form
M — AMB, A,BeSL(2,7). (1.1.24)

The matrix A corresponds to a change of basis in A, and B comes from a change of basis in the
lattice Ag . The following algebraic statement describes the normal form of the matrix M wrt
transformations of the form (1.1.24).

Lemma 1.1.26. Any 2 x 2 matrix M with integer entries and det M > 0 by a transformation of the form
(1.1.24) can be reduced to the form

Mnormal == dl 0 ’ dl/ dZ > 0, dl ‘dz, (1125)
0 dy

where the symbol dy | dy, stands for di divides dy. The numbers dy and d, are determined uniquely.
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The proof of Lemma is left as an exercise for the reader.
Summarizing the above arguments we arrive at the following

Proposition 1.1.27. Any holomorphic map between complex tori modulo biholomorphic rescalings can be
reduced to the following standard form

STy =T fulz) =2 (1.1.26)
for some integer n > 0.

Holomorphic maps of the form (1.1.26) play an important role in the theory of elliptic functions.
For the first nontrivial case n = 2 they are related to Landen’s transformations that we will explain
in Example 1.4.11.

Exercise 1.1.28: Prove that the preimage of any point in the torus wrt the map (1.1.26) consists of

n points.

Example 1.1.29. We conclude this section by constructing a meromorphic function on the torus
T2 with J(t) > 0.
The Jacobi theta function is defined by the series

0(z;7) = Z exp (mitn® + 2minz) . (1.1.27)
—o0<n<oo
The function 95(z; 7)) in the standard notation for 6(z; 1), see e.g.[4]. Since
lexp (ritn® + 2minz)| = exp (—nItn* — 2nnJz))

the series (1.1.27) converges absolutely and uniformly in the strips |J(z)| < const and defines an
entire function of z.
The series (1.1.27) can be rewritten in the form common in the theory of Fourier series:

0(z) = Z exp (rtitn?)e*™ " (1.1.28)
—0<n<0
The function 6(z; 7) has the following periodicity properties:
O(z+1;7) = 0(2) (1.1.29)
0(z + mt;7) = exp(—mim?t — 2nimz)0(z), meZ (1.1.30)
The equality (1.1.29) is obvious. The equality (1.1.30) is also easy to prove:

2

O(z + mt;7) = Z exp (mit(n — m)* + 2mi(n — m)(z + mt)) = exp(—nim*t — 2mimz)0(z; 7).

nez

The integer lattice with basis 1 and 7 is called the period lattice of the theta function. The remaining
Jacobi theta-functions are defined with respect to the lattice 1, 7 as

. N 1 1
Vi(z; 1) = 7w;<wexp lm’c (n + E) + 2mi <z + E) (n + E)}
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8(z; 1) 1= Z exp lm”[ (n + %)2 + 2miz <n + %)1

—0O<n<oo

. . 1
Ou(z; 1) = 2 exp [mmz + 2mi (z + 5) n] .

—00<n<0

The functions 9,(z; 1), 93(z; 1) and 94(z; 7) are even functions of z while 9;(z; 7) is odd. For
simplicity we drop the t-dependence and write only 6(z) for 6(z; 7).
In the parallelogram I" defined by the lattice 1 and 7, namely

| —

lyl <

N —

1
r:= {—+E+x+y1|x,yelR, lx] <

2 2 2’

the function 6(z) has only one zero. Indeed let us consider the integral

— log O(z)dz = {# of zeros of O(z) in T}

1 0

1
(logO(1 + tt)) tdt — f (logO(t +t))'dt + J
0 1

f (log O(t))'dt + f (log 9(7t))’7dt> .

0

Using the periodicity properties (1.1.29) and (1.1.30) we obtain

27 or dz e 0

_ 1
2w

which shows that the number of zeros of 0(z) in the domain I' is equal to one. To determine this
zero, we use the parity and periodicity property of 0(z) so that

T 1) T 1Y) T 1 _mirniie b (T, 1Y T 1
6<2+2>—8< > 2>—9<2+2 T>—€ 2720 2+2 = -0 2+2

which implies that  + 1 is the only zero for the theta function 6(z) in the domain I'. Finally
it is left as an exercise to show that for 2m complex numbers v, ...,v, and cy,...,cy, such that
Z}il vj = 2311 ¢j the function

! d log O(z)dz = ZL (Jl (log O(t))'dt — f (log O(t + t))’dt)
0

0

1 1
J (log O(t))'dt —J [(log O(t))" — 27'ci]dt> =1,
0

H;nzl 0(z — v))

fle) = [1L0(z—c))

in meromorphic on the torus T? with zeros at the points z = v; + 1 + % and poles at the points
z=cj+ % +5,j=1...,mwitho; #¢,i,j=1,...,m.
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1.2 Algebraic curves and Riemann surfaces

1.2.1 Algebraic digression: resultant and discriminant

The resultant of two polynomials f(z) and g(z) in one variable is a polynomial in the coefficients
of f and g that provides a condition of compatibility of the system

flz) =0 }
8z) = 0
of two algebraic equations. More precisely,

Definition 1.2.1. Let f(z) = apz" + 12" ' + - -+ + a, and ¢(z) = bpz" + b1z" 1 + - -+ + by, be two
polynomials of degree n and m respectively with a;, b; € C with ag # 0 and by # 0. The resultant R(f, g)
is given by the determinant of the (n + m) x (n + m) matrix

ag ap ... dy 0 0 0
0 a m ... ay 0 0 0
B 0 0o ... ... ap ai a ay
R &) =det| o . b by O Lol (1.2.1)
0 b b ... ... by by O 0
0 ... by b ... byu—1 by

Lemma 1.2.2. R(f, g) = 0ifand only if f and g have a common zero. The co-rank of the matrix appearing
in the determinant is the number of common zeroes.

Proof. The polynomials f(z) and g(z) have a common root z = z; if and only if they are divisible
by r(z) = z — 2y, that is there exist polynomials ¢(z) and ¢(z) such that f(z) = r(z)i(z) and
g(z) = r(z)¢p(z). Here 1 and ¢ are polynomials of degree at most n — 1 and m — 1 respectively.

This implies that
f2)p(z) = g(2)¢(2) (1.2.2)
where
Gz) =z M a1z + ay
and

Y(z) = prz" 4+ fuaz + P

for some complex coefficients ay, ..., a;, and f1, . .., Bn.

To write the system in a matrix form we define the spaces V = span(zm‘l, e, 1)®span(z”‘1, 1)
and W = span(z"*"~1,...,1). The space of solutions to the system (1.2.2) coincides with the kernel
of the map M: V — W given by

Mo@Y) = fo—gpeW.

The matrix of the linear operator M in the indicated bases is (up to multiplication of the last n
rows by (—1)) precisely the matrix appearing in (1.2.1). Hence the vanishing of the determinant
is the necessary and sufficient condition for the solvability of (1.2.2).
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Note now that the smallest possible degrees of 1,  amongst the possible solutions of (1.2.2) are
precisely m —s, n —s where s is the number of common roots of the polynomials f and g (exercise).
Denoting (¢o, o) such a minimal solution we then observe that we have a s-dimensional freedom
of multiplying both sides of the equation f(z)¢po(z) = g(z)¢o(z) by an arbitrary polynomial of
degree < s — 1. This means that the kernel of the matrix in (1.2.1) has dimension s.

O

Lemma 1.2.3.
R(f,8) = agby | [(x; = i)
where x; and y are the roots of the polynomials f and g respectively.

Proof. We have
f@=a]JEz-x) s@=b]]Ez-w.
i=1 j=1
So A
a; = (—1)'ap x i—th elementary symmetric functionof xi,...,x,, i=1,...,n

and a similar representation holds for the coefficients of the polynomial g(z).

The resultant can be considered as a polynomial in the coefficients of f and g,

R(f,g) S C[ﬂo,tll, e, y, b(), bl, .. .,bm]

homogeneous of degree m in ag,ay,...,a, and degree n in by, by,...,by,. Using the elementary
symmetric functions we can represent it as an element of the ring of polynomials

R(f,8) €agby Clx1,..., X0, Y1,---, ]/m]s"xs'"

symmetricin xq,...,x, andin yi, ..., Yu. It vanishes if x; = Yj for some i, j. Therefore it is divisible
by x; — yj foreveryi = 1,...,nand j = 1,...,m. We conclude that R(f, g) is divisible by the
polynomial

Pi=ayby [ [(xi — y))- (1.2.3)
i
The polynomial (1.2.3) can be represented in the following way

P=ay ] [g).
i=1

Hence it is a homogeneous polynomial of degree n in by, by, ..., b, Its coefficients are symmetric
polynomials in xy, ..., x, times a;’. So they can be represented, in a unique way, as polynomials in
ap,a1, ..., a,. Alternatively P can be written as follows

P= ()" [ [y
j=1
Thus P is a homogeneous polynomial of degree m in ag, a1, . . .,a,. We conclude that
R(f,g) = constP.

In order to prove that const=1 we look at the terms of the highest degree in b,,. It is easy to see
that they are equal to a;'by, both in R and in P. The lemma is proved. m]
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Now we address the following question: how to check whether the polynomial
f(z) =apz" + mz" ' + -+ a, 1z +ay (1.2.4)

has multiple roots? It is well known that z = z is a mutiple root of f(z) if and only if it satisfies

the system
flzo) = 0}
fiz0) = 0 f°

Here f'(z) = df(z)/dz. The condition of compatibility of this system is the vanishing of the
resultant R(f, f’). We arrive at

Definition 1.2.4. The discriminant D(f) of the polynomial f(z) in (1.2.4) is equal to

n(n—1)

D() = (- TR 1) (12.5)

From eq. (1.2.1) we obtain the following expression for the discriminant

ap ay ap Cen Ap—1 ay 0 e 0
0 ay a ay_1 ay 0
B 1 n(n—1) 0 0 N ay
D(f) = %(71) 7 det nay (n—ag n—2)ay ... a1 0 ... ... 0
0 nag (m—1a; ... 2a,0 a1 O 0
0 0 e ce . 2{1”_2 Ay—1
(1.2.6)

We put the prefactor 1/ay since the polynomial R(f, f’) is divisible by ay. In this way we can see
that D(f) is a homogeneous polynomial in 4y, a1, . .., a, of degree 2n — 2.

For example, the discriminant of a degree two polynomial f = a¢z? + a1z + a» is equal to
D(f) = a% — 4agay. For a cubic polynomial f = agz® + a1z + a,z + a3 it is given by the formula

ap ay ap as 0

1 0 ap [Z51 ap as
D(f)=——det| 3ap 241y a, 0 0 |= a%a% - 4a0ag — 4a“;’a3 + 18apa1a2a3 — 27a(2)a§. (1.2.7)

o 0 3z 20, a, O

0 0 36!0 2[11 ar

Exercise 1.2.5: Prove that the discriminant as a symmetric polynomial in the roots zi, ..., z, of
f(z) can be written in the following form

D(f) =a*] [(zi — z))*

i<j
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1.2.2 Smooth affine plane curves as Riemann surfaces

Let us consider a polynomial F(z,w) = Y., 4;(z)w"~" in two complex variables z and w, a;(z) €
Clz],i=0, 1, ...,n. For simplicity let us assume” that 49(z) = 1. Then for any z € C the algebraic
equation

F(z,w) =0

has n roots wy(z), . . ., wy(z) counted with multiplicities. We obtain a n-valued function w = w(z)
of complex variable. The basic idea of Riemann surface theory is to replace the domain of the
multivalued function w(z) by its graph that is nothing but the complex algebraic curve

C:={(z,w)e C* | F(z,w) = Zn:ai(z)w”’i =0} (1.2.8)
i=0

and to deal with a single-valued holomorphic function (z,w) — w on C rather than with a
multivalued function on C. We have already considered above the example of the multivalued
function w(z) = +/z. It becomes single-valued on the algebraic curve w? — z = 0.

In the theory of functions of a complex variable one encounters also more complicated (nonal-
gebraic) curves, where F(z, w) is not a polynomial. For example, the equation e’ —z = 0 determines
the Riemann surface of the logarithm or sinw — z = 0 determines the Riemann surface of arcsine.
Such surfaces will not be considered here.

From the real point of view the algebraic curve (1.2.8) is a two-dimensional surface in C* = R*
given by the two equations

RF(z,w) =0
JF(z,w) =0 }

We will now formulate main conditions that guarantee that this surface is smooth and, moreover,
it admits a natural structure of a connected complex manifold of complex dimension one or,
according to Definition ?? it is a Riemann surface.

Definition 1.2.6. An affine plane curve C is a subset in C* defined by the equation (1.2.8 ) where F(z, w)
is polynomial in z and w. The curve C is non-singular if for any point Py = (zo,wo) € C the complex
gradient vector

ow

0F(z,w) 0F(z,w)
gradCF‘PO = ( oz s

(z=zp,w=mwy)

does not vanish. If the polynomial F(z,w) is irreducible’then the curve C is called irreducible affine plane
curve.

In order to define a complex structure on C we need the following complex version of the
implicit function theorem.

4This can be achieved by a transformation

w
w— ——, Feag(z)" 'E
e 0(2)

5A polynomial F(z,w) is called irreducible if it cannot be factorized into a product F(z,w) = F;(z,w)Fa(z,w) of two
nonconstant polynomials.
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Lemma 1.2.7. [Complex implicit function theorem] Let F(z, w) be an analytic function of complex variables
z and w in a neighbourhood of the point Py = (zo, wy) such that F(zo, wo) = 0 and 0,F(zo, wo) # 0. Then
there exists a unique function ¢(z) such that F(z, $(z)) = 0 and ¢(zo) = wy. This function is analytic in
z in some neighbourhood of zo.

Proof. Letz = x +iyand w = u + iv, F = f + ig. Then the equation F(z, w) = 0 can be written as
the system

{f(x,y,u,v) =0

gx,yu,v) = 0
The conditions of the real implicit function theorem are satisfied for this system: the matrix
o o
ou 0Jv
% 2

au (3?} (Zo,wl])

is non-singular because

of of

ou o 2
det = 0_1—" >0,

ou ov

(here we use only analyticity in w of the function F(z, w
there exists a unique smooth function ¢(z,z) = ¢1(x, y
®(20,Z0) = wy. Differentiating the identity F(z, ¢(z,2))

)). Thus, in some neighbourhood of (zo, wy)
) + ipa(x, v) such that F(z, ¢(z,2)) = 0, with
= 0 with respect to Z, we get that

o FF 0 _F
S0z owdz 0w 0z

. . OF ¢ .
due to analyticity of F(z,w). Using o # 0 we conclude that = 0. That means that ¢(z) is an

analytic function of z. ]

We arrive to the following main result of this Section.

Theorem 1.2.8. Let C be the irreducible affine plane curve (1.2.8). If C is non-singular then it has a
natural structure of a Riemann surface. Restriction of the coordinates z and w onto the curve defines two
holomorphic functions on the Riemann surface.

Proof. Since F(z,w) is irreducible the curve C is connected, see Theorem 1.3.47 below for the proof.
Let us define a complex structure on C. Let Py = (zo, wp) be a non-singular point of the surface C.
Suppose, for example, that the derivative — is nonzero at this point. Then by the Lemma 1.2.7, in

w
a neighbourhood Uy of the point Py, the points of the curve C admit a parametric representation
of the form

(z,w(z)) e Uy = C, w(zg) = wy, (1.2.9)
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where the function w(z) is holomorphic. Therefore, in this case z is a complex local coordinate
also called local parameter on C in a neighbourhood Uy of Py = (zp, wp) € C. For a pair of charts
with this type of local coordinate the transition function is the identity.

. . . .. OF . .
Similarly, if the derivative — is nonzero at the point Py = (zp, wp), then we can take w as

z
a local parameter (an obvious variant of the lemma), and the curve C can be represented in a
neighbourhood Uy of the point Py in the parametric form

(z(w),w) € C, z(wy) = z, (1.2.10)

where the function z(w) is, of course, holomorphic. Call Uy the domain of the second type.

For a non-singular surface it is possible to use both ways for representing the surface on the

OF
intersection of domains of the first and second types, i.e., at points of C where — # 0and — # 0

simultaneously. The resulting transition functions w = w(z) and, z = z(w) are Z}ll)olomorphic and
invertible.

Let us prove that the projections (z, w) — z and (z, w) — w are holomorphic on the constructed
Riemann surface. Indeed, on a domain of the first kind the first projection is given by the identity
function z — z while the second one is given by the holomorphic function w(z). In a similar way
on domains of the second kind we have z(w) and w — w respectively. m]

Remark 1.2.9. If the polynomial F(z, w) = >, 4;(z)w" " is not monic in w then the Riemann surface
associated with the algebraic curve F(z, w) = 0 can still be constructed but the function w will not
be holomorphic but meromorphic on this surface. Poles of this function can be located over zeros
of the coefficient ag(z).

Due to the above Theorem we will denote by S the Riemann surface corresponding to a non-
singular irreducible algebraic curve C = {(z,w) € C*|F(z,w) = 0}. It is equipped with a pair of
holomorphic functions z, w that establish a one-to-one correspondence

S3P— (z(P),w(P)) € C.

The Riemann surface S associated to the curve (1.2.8) is realized as an n-sheeted branched
covering of the z-plane. The precise meaning of this is as follows: let 7 : § — C be the projection
map from S to the complex z-plane given by the function z that here will be denoted by

n(z,w) = z. (1.2.11)
Then for almost all z the preimage 717! (z) consists of n distinct points

(z,w1(2)), (z,w2(z)), ..., (z,w,y(2)) (1.2.12)

of the surface S where w;(z),...,w,(z) are the n roots of (1.2.8) for a given value of z. For certain
values of z, some of the points of the preimage can merge. This happens at the ramifications
points (zo,wp) of the Riemann surface where the partial derivative F,,(z, w) vanishes (recall that
we consider only non-singular curves so far). The point zy € C is called branch point and it is
determined by the system of equations

F(Z rw) == 0
Fw(zg,w) =0 } (1.2.13)
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Let Ar(z) := D(F(z,.)) be the discriminant of F(z, w) considered as a polynomial in w depending
on the parameter z

Ar(z) = QOEZ) (—1)"“7 (1.2.14)
ao(z) a1(z) a(z) v ay1(z)  an(z) 0 o 0
0 ao(2) a1(z) e . a,-1(z) a,(2) e 0
N e e
nag(z) (m—1)ai1(z) (m—2)ax(z) ... ay—1(z) 0 ... . 0
0 nao(z) (n—Dai(z) ... 2a,-2(z) a,_1(z) O . 0
0 0 .. cee 2a,5(2) a,,:l.(z)

Proposition 1.2.10. If Py € 8 is a ramification point of the complex algebraic curve (1.2.8) with respect
to its projection onto the z-plane then its projection zog = m(Py) € C satisfies Ap(zo) = 0. If the curve is
smooth irreducible then also the converse statement holds true.

The proof easily follows from the results of the previous section.
It follows that the Riemann surface associated with a smooth irreducible affine algebraic curve
has a finite number of ramification points.

The choice of the variables z or w as a local parameter is not always the most convenient. We
shall also encounter other ways of choosing a local parameter 7 so that near the point (z, w) the
curve S can be represented locally in the form

z=2(1), w=w(T) (1.2.15)

where z(7) and w(7) are holomorphic functions of 7, and

dz dw
(E’E) £(0,0) (1.2.16)

on a sufficiently small neighbourhood of the point. We study the structure of the mapping n in
(1.2.12) in a neighbourhood of a ramification point Py = (zo, wy) of S defined in (1.2.8). Let 7 be a
local parameter on S in a neighbourhood of Py such that 7(Pg) = 0. Then

z =z + ;7 + O(T"Y), a4 #0

X (1.2.17)
w = wo + ¢t + O(t1), ¢; %0,

where a; and ¢; are nonzero coefficients. Since w can be taken as the local parameter in a
neighbourhood of Py it follows that g = 1. We get a parametrization of the surface S in a
neighbourhood of a ramification point:

z =29 + g 7" + O(THY),
) (1.2.18)
w = wy + b7 + O(77),

where k > 1. It is easy to check that the number k does not depend on the choice of the local
parameter.
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Definition 1.2.11. The number mult.(Py) = kis called the multiplicity and b.(Py) = k—1 the ramification
index of the point Py € Swrt themap : S — C, n(z,w) = z.

So, if Py is not a ramification point then mult,(Py) = 1 and b,(Py) = 0.

Exercise 1.2.12: Let Py = (zp, wp) be a ramification point for the curve (1.2.8) with respect to the
projection (z, w) — z. Suppose that the local parameter in the neighbourhood of Pj is of the form
(1.2.18) with k > 1. Show that

d'F(z,w)

=0, 7=0,...,k—1.
dw! ]

(zo,wo)

Exercise 1.2.13: Prove that the total multiplicity of all the ramification points on S over z = zj is
equal to the multiplicity of z = zy as a root of the discriminant of the polynomial F(z, w).

Exercise 1.2.14: Recall that a partition y of an integer n is a collection of positive integers y =
(41, ..., ) such that Zi’:l uj = n. To every smooth algebraic curve C in (1.2.8) of degree n in w

and a point zy € C, let ] < n be the number of pre-images n!(z9) = Py u--- U P, where 1 : C — C
is the projection m(z, w) = z. Assign positive integers (ki, ..., k) by

kj:multz(Pj), jZl,...,l.

This collection of integers is called the ramification profile of the smooth curve over z; € C. Note
that if zg is not a branch point then the preimage 7~(zo) consists of 1 distinct points of multiplicity
1. Show that the ramification profile over any point of the complex plane is a partition of .

Lemma 1.2.15. Let Py = (zo, wo) be a ramification point of the Riemann surface S defined in (1.2.8) with
respect to the projection (z,w) — z and let mult,(Py) = k be its multiplicity. Then there are k functions
w1(z), ..., wy(z) analytic on a sector S, of the punctured disc

0<|z—2zo| <p, arg(z—zy) <¢
for sufficiently small p > 0 and any positive ¢ < 27 such that
F(z,wj(z)) =0 for zeS,y, j=1,...,k
The functions w1 (z), . .., wi(z) are continuous in the closure SM, and
wi(zo) = -+ = wi(zo) = wo.

Proof. As Py is a ramification point we have Fy(zp,wg) = 0. Therefore, by the non-singularity
assumption F,(zg, wp) # 0. So the complex curve F(z,w) = 0 can be locally parametrized in the
form z = z(w) where the analytic function z(w) is uniquely determined by the condition z(wg) = zo.
Consider the first nontrivial term of the Taylor expansion of this function

k+1

z(w):zo+ak(w—wo)k+ak+1(w—w0) +..., k>1, ap #0,

or equivalently

z— 29 = ag(w — wo)F (1 + %(u)— wo) + O((w — w)z)) k>1, ap #0.
k
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Introduce an auxiliary function

f(w) = B(w — wp) [1 + a;—“(w —wg) + O ((w—wo)z)]k
k (1.2.19)
= B(w — wp) [1 + %(w —wg) + O ((w—wo)z)] ,

where the complex number f is chosen in such a way that g = a;. The function f(w) is analytic
for sufficiently small |w —wp|. Observe that f'(wy) = B # 0. Therefore the analytic inverse function
f~!locally exists. The needed k functions wy (z), .. ., wi(z) can be constructed as follows

2mi (j—1)

wi(z) = £ (eik (z— zo)l/k), j=1,...k (1.2.20)
where we choose an arbitrary branch of the k-th root of (z — zp) forz € S, 5. ]

The statement of Lemma shows that near a ramification point Py € S of multiplicity k there are
exactly k sheets of the Riemann surface that all merge together at the point Py.

Example 1.2.16. Elliptic and hyperelliptic Riemann surfaces have the form

S = {(z,w) € C* |F(z,w) = w* — Qu(z) = 0}, (1.2.21)

where Q,(z) is a polynomial of degree n with leading coefficient 1. These surfaces are two-
sheeted coverings of the z-plane. The non-singularity condition implies that gradient vector
grad F = (—Q;(z),2w) # (0,0) at any point of S. A point (zo, wo) € S is singular if

Wy = 0, Q; (Zo) =0. (1.2.22)
Together with the condition (1.2.21) for a point (zo, wp) to belong to S we get that

Qu(z0) =0, Qp(z0) =0, (1.2.23)

i.e. zg is a multiple root of the polynomial Q,(z). Accordingly, the surface (1.2.21) is non-singular
if and only if the polynomial Q,(z) does not have multiple roots:

n

Qu(z) = H(z —zi), z#zj fori#j (1.2.24)

i=1

The surface S is called elliptic for n = 3,4 and it is called hyperelliptic for n > 4. The ramification
points of the surface with respect to the map (z, w) — z are determined by the two equations

wZ = Qn(z)/ w = 0/

which gives n ramification points P; = (z = z;,w = 0),i = 1,...,n. All the ramification points have
ramification index equal to one. In a neighbourhood of any point of S that is not a ramification
point, one can take z as a local parameter, and w = +/Q,(z) is a locally defined holomorphic
function. In a neighbourhood of a ramification point P; it is convenient to take

T=+z-—2, (1.2.25)
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as a local parameter. Then near the ramification point P;, the Riemann surface (1.2.21) has the
local parametrization

z2=zi+7, w=1 I_I(T2 + zi — zj) (1.2.26)
i

where w = w(7) is a single-valued holomorphic function and dw/dt # 0 for sufficiently small
values of 7.

Exercise 1.2.17: Consider the family of n-sheeted Riemann surfaces of the form

F(z,w) = Z aijziwj (1.2.27)

it+j<n

(the so-called planar curves of degree n) for all possible values of the coefficients a;;. Prove that (1)
the generic surface of the form (1.2.27) is smooth; (2) there are n(n — 1) ramification points on the
curve and they all have ramification index 1. In other words, the conditions for the appearance of
ramification points of index greater than one are written as a collection of algebraic equations on
the coefficients 4;;.

We conclude this Section with a brief discussion of Riemann surfaces associated with singular
curves. Let C be the algebraic curve defined by an irreducible polynomial equation F(z, w) = 0.
The goal is to construct a Riemann surface S along with a map p : S — C that is biholomorphic
away from the singular points of C and their preimages on S. Here we will do it only locally near
one singular point and, moreover, only for the simplest case of a nodal singularity. The case of
arbitrary singularities will be treated in the next Section.

Let (zo, wp) be a singular point of the curve that is,

F(Zo,wO) = 0, FZ(Z(),ZU()) = 0, Fw(Zo,ZUO) = 0.

It is called a node if

F,, (ZO/ wO) Frw (ZOr wO)
det # 0.
sz (ZO/ wO) Fww (ZOI wO)

Using Taylor formula rewrite the polynomial F in the form

F(z,w) = = [a(z — 20)* + 2b(z — zo)(w — wp) + c(y — yo)*| + AF(z, w)

N —

where
a=F.(zo,wo), b=F.u(z0,wo), ¢ = Fuw(zo, wo)

and o
1 aH_]F(Zo, wo)

(+))  ozow

AF(z,w) = Z rij(z — zo) (w — wo)!, rij =

i+j=3

The quadratic term can be factorized into a product of two distinct linear functions. Near the
point (zp, wp) the term AF can be considered as a small perturbation of the leading quadratic
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term. Therefore, assuming c # 0 one obtains two solutions of equation F(z, w) = 0 in the form of

convergent series
b+ Vb* —ac
w4 (z) = wy — f(z —20) + 0 ((z — 20)%) .
We are now ready to describe the local structure of the Riemann surface S and themapp: S — C
near the node Py = (zg, wp). The surface will consist locally of two small disks D and D_ centred
at points Py respectively. The complex coordinates 74 on the disks can be chosen in such a way

that 74 (P+) = 0 and the map p(7+) = (z(t+), w4 (14)) reads

~—

z(ty) = zo+Ts
7+ € Dy

wy(t4) = wo— R ”Cbz_ucfi +0(1%) }/ - -

From the above calculations it follows that the map p : D, U D_ — C\Py of the punctured disks
Dy = Dy\Py is locally biholomorphic. But p(P1) = p(P-) = Po.

We did the calculations assuming that c # 0. If c = 0 buta # 0 then everything goes in a similar
way after interchanging the roles of z and w. The picture slightly changes in the casea = ¢ = 0. In
this case the polynomial F(z, w) takes the form

F(z,w) = b(z — zo)(w — wp) + Z rij(z — z0)'(w — wo) + Z rij(z — 20)' (w — wy)/.

i+j=3 i+j=4
The map p has the form
z(ty) = zo+ T4
wy(ty) = -2 +0(3) }
on D, and
z(t-) = zp— 272 +0(%) }
w_(t-) = wo+1_

on D_. Observe that in the case ¢ = 0 the point P_ € S is a ramification point wrt the map
SsP—z(P)eC.

The above method for constructing the Riemann surface of an algebraic curve near a singular
point of the latter is a version of the procedure called resolution of singularities. The constructed
Riemann surface is called normalisation of the algebraic curve. The method is based on an
efficient algorithm for computing series expansions of all branches of the algebraic function near
the singular point. In full generality the algorithm will be explained in the next Section.

1.2.3 Newton polygons and Puiseux series

In this section we explain the use of an algebraic tool for studying the local structure of the
Riemann surface S associated with an algebraic curve C defined by an irreducible polynomial
equation

F(z,w) = ap(z)w" + a1 (2)w" ' + - +a,(z) =0 (1.2.28)

near a singular point Py = (zo, wp) of the curve. Here the problem will be treated only locally, near
one singular point; discussion of the global structure of the Riemann surface S is postponed till
Section 1.3.
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Recall (see the previous Section) that locally the Riemann surface S must consist of a finite
number of open disks S = D; U - - - U D with marked points P; € D;,i = 1,...,k and a map

p:8—C satisfying p(P;)) =Py, i=1,...,k

and establishing a biholomorphic equivalence between D; U - - - U Dy and a punctured neighbour-

hood of the point Py € C. Here Di = D;\P;. On every disk D; one can choose a local parameter t
such that 7(P;) = 0 and the restriction of p on the disk

p(7) = (z(1),w(7)), F(z(1),w(r)) =0, p(0)="Po

is given by a pair of holomorphic functions on D; of the form°

z(t) = zo+ 1
ZU(T) = wy+ apt’ + D(lTp’H + a27p+2 e, %0 } (1.2.29)

for some integers p # 0, g > 0. The integer p is positive unless z is a root of the leading coefficient
ao(z) of the polynomial F(z, w). It is understood that, in the second line of (1.2.29), the series
is convergent for sufficiently small |7|. In order to show that the map p is bi-holomorphic for
7 # 0, we build the inverse map by first assuming the vanishing of the coefficients ay,a»,... in
(1.2.29). Let y and B be integers such that yp + fg = 1. Then the inverse map is p~!(z,w) =

(z — 20)7/(%)5 = 7 that is clearly holomorphic for w # wy and z # zy. In the general case let us

define the function h(7) so that w(t) = wp + th(7). Then ¢(17) = 7(h(7))P is holomorphic invertible
and p~Y(z,w) = g7 ((z — z0)" (w — wp)F) = 7.

The Riemann surface S = Dy u- - - U Dy equipped with the holomorphic function z is a branched
covering of a disk |z—z| < € for a sufficiently small e. If, for example, on the disk D; the expansion
of z(7), has the form (1.2.29) then the point P; is ramification point of z of multiplicity 4.

If g = 1 then the expansion for w can be rewritten in the form of a convergent Taylor series

w=w+ag(z—z0) +a1(z—2z0)* +....

1 . : .
In the general case g > 1 eliminating 7 = (z — zp)? one obtains an alternative representation of
(1.2.29) as an expansion in fractional powers of z — z

p+1

w(z) = wo + ao(z —20)7 + 1z —20) T +.... (1.2.30)

In complex analysis the expansions of the form (1.2.30) are called Puiseux series. For p > 0 they

can be considered as power series in the variable (z — zo)% ;if p < 0 then they are Laurent series in
the same variable. We will present an algorithm of computing Puiseux expansions of all branches
of the algebraic function w(z) near a singular point of the curve. Clearly the branches of the
algebraic function w(z) obtained one from another by analytic continuation around the point z
on the complex plain are identified, namely:

2mimj

7 am_p(z—zo)% for j=0,1,...,9—1.

wo + Z am_p(z—zo)% ~ Wy + Z e

mz=p mz=p

The integers p, q as well as the coefficients ag, a; certainly depend on the label i of the disk. We do not put this
dependence explicitly in the formulae in order to avoid too complicated notations.
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It is understood that the numbers p, q are chosen in the minimal way i.e., there exists an integer
m = p not divisible by g such that a;,_, # 0.
Let the polynomial (1.2.28) have the form

F(z,w) = Z aijz'w. (1.2.31)
i, j=0
Without loss of generality we may assume that the singular point in question is the origin,
F(0,0) = F-(0,0) = F,(0,0) = 0.

It will be always assumed that the partial derivative F,,(z, w) does not vanish identically at the
points of the curve F(z,w) = 0.

Definition 1.2.18. The Newton polygon of the polynomial (1.2.31) is the convex hull of the set of points
(i, j) on the (x,y)-plane defined by
{(i, j) € R?|a;; # 0}.

The Newton polygon is a convex set belonging to the first quadrant of the plane. Without
loss of generality we may assume that it touches the coordinate axes. In the opposite case we can
factor out some powers of z or of w. Actually, for the algorithm only the sides of the polygon

o

_P
tan@-q>0 tanf =L <0

Figure 1.3: Newton polygon

looking towards the y-axis will be relevant, see Fig. 3.1 for an example.

To each side of the Newton polygon looking towards the y axis we associate two numbers, a
positive integer m that equals the length of the projection of the side onto the y-axis, and a rational
number £ that is equal to the tangent of the angle between the side and the negative direction of
the y-axis. With such a side we will associate m convergent Puiseux expansions of the algebraic
function w(z) of the form

w=az +az" +... (1.2.32)
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for rational numbers p < p’ < .... The exponent of the leading term is equal to the slope of the
corresponding side
p=" (1.2.33)
q
The leading coefficient « # 0 is determined as a nonzero root of the polynomial
Plw)= >, ajwl. (1.2.34)
(i,j)ethe side

Observe that the number of nonzero roots of the polynomial (1.2.34), counted with multiplicities,
is equal to m=lenght of the projection of the side onto the y-axis.

Remark 1.2.19. The number of solutions, counted with multiplicities, of the equation F(z,w) = 0
written in the form of Puiseux series (1.2.32) is equal to n = deg, (F) (the degree of F with respect
to the variable w). If the Newton polygon has k sides that faces the y-axis and we denote by m;,

., my the lengths of their projections onto the y-axis, since the height of the Newton polygon is
equal to n we have my + - - - + my = n.

Choose a nonzero root w = «a of (1.2.34). Further inspection shows that the set of nonzero
roots of the polynomial P(w) is invariant with respect to multiplication by the g-th root of unity
(assuming the numbers p, g to be coprime): this follows from the representation

P(w) = @"Q (w7) (1.2.35)

for some polynomial Q and a nonnegative integer ]0 (see eq. (1.2.41) below).
In order to determine the next term w; = &’z of the expansion (1.2.32), consider the new
polynomial
Fi(z1,wy) :=F (z’i,az’f + wy) (1.2.36)

and repeat the above procedure applying it to the side closest to the x-axis. And so on and so
forth.
Before explaining the motivations for such an algorithm let us consider an example.

Example 1.2.20. Consider polynomial
F(z,w) = 22" =28 2w+ (422 + 22 )w* + (22 — 2w’ —dzw* + 72°w° + (1 - 2%)w® + 52°w7 + 2°uw®. (1.2.37)

There are four sides in the Newton polygon of F looking towards the y-axis (see Fig. 1.4); only
they will be relevant for determining the Puiseux expansions of various branches of the solutions
w(z) near z = 0. For the first one with the vertices (7,0) and (3,1) one has m = 1, Z = 4. The

corresponding part of the polynomial reads 2z7 — z3w. Solving the equation 2z7 — z>w = 0 we

obtain w = 2z*. This is the leading term of the branch of solution corresponding to the first side of
the polygon. In order to compute the first correction let us substitute w = 2z* +w; in F(z, w). Then
wy is determined from the equation Fi(z, w1) := F(z, 2z* + wi) = 0. In the Newton polygon of F;
(see Fig. 1.5) take the edge connecting the points (8,0) and (3,1). The corresponding equation
—z8 — 8w, = 0 yields w; = —z°. So, the first two terms of expansion of the branch of w(z)

associated with the first side of the Newton polygon read w = 2z* — z° + O(z°). Higher order
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Figure 1.4: Newton polygon of the polynomial (1.2.37).

terms can be obtained by iterating the above procedure. This is an ordinary point of the Riemann
surface with respect to the map z: § — C.

In a similar way to the second side (3,1)—(2,2) of the Newton polygon in Figure 1.4, with
m=1, Z = 1, one associates the leading term w = %z. From the side (5,0)—(3,1) of the Newton
polygon of F1(z,wq) := F (z, }12 + wl) (see Fig. 1.6) one finds the next correction etc. This gives the
second branch of w(z) near another ordinary point of the Riemann surface w = 1z — 22% + O(z%).

1

For the third side of the polygon in Figure 1.4, one has m = 4, s = 5. It corresponds the

equation 4z%w? — 4zw* + w® = w?(w? — 22)° = 0. So, at the leading order one has two pairs of

double roots w) = w® = /222 and w® = w® = —/2z2. We will see now that these double
roots split at the next approximation. Indeed, in order to treat the pair w™ and w® we have
to substitute w = /227 + w; and obtain a new polynomial in z; = z2 and wy. For the side
(7,0)—(4,2) of the Newton polygon (see Fig. 1.7) of such a new polynomial it corresponds the

1o
equation — \/EZZ + 16z{w? = 0 that yields w; = +%-z?. One obtains the following pair of distinct
expansions

1 1
w(l):\@z%+%z%+... w(Z):\@z%—%z%j&.
Similarly for w® and w*) one has
3) 1 2% 3 (4) 1 2‘11 3
w® = — V22 +izi 4 w® = —v2z7 —izi 4

It can be shown that the higher order terms will contain integer powers of z'/#; all four expansions
z, ..., z® are four branches of the same algebraic function. These branches merge at z = 0. One
obtains one ramification point of multiplicity 4 of the Riemann surface (S, z).
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Figure 1.5: Newton polygon of the polynomial F(z, 2z* + wy).

Figure 1.6: Newton polygon of the polynomial F(z, 1z + wy).

The fourth side of the Newton polygon in Figure 1.4, with m = 2, Z = —3 yields the equation

w® + Z%w® = 0 that is, w("? = +iz~2. At the next order one has to analyze the equation
F(22,i z > +w;) = 0 (here, like above we denote z; = z'/?). To obtain a polynomial equation one
has to multiply the result by z1°, see the corresponding Newton polygon on Fig. 1.8. For the first

correction one obtains the equation z; — 2w, = 0. This gives a ramification point of multiplicity 2:
. i . i
w(l):zz_%—iz%Jr... w(2)=—lz_%+52%+....

Actually, when z goes to zero these two branches tend to infinity. So, the last point is an infinite
point of the Riemann surface (S, z). Note that the leading term a(z) = z° vanishes at the singular
point.
Remark 1.2.21. To compute the branches of w(z) at z — o0 one can use the above algorithm applied
at the right-looking sides of the Newton polygon. For the example (1.2.37) of an algebraic curve
we obtain two expansions, namely, a Laurent series in 1/z

12 _,

1
3 6
w(z) 5z 752 + 5% +...
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Figure 1.8: Newton polygon of the polynomial z°F(z2,iz; > + wy) .

for the side (3,8)—(6,7) and a Laurent-Puiseux series in z~'/7

ooF 2 1
wiz 517 77557

along with 6 other branches wy(z) = w (ze*™*), k = 1,...,6 for the side (6,7)—(8,0). So we have
two infinity points P;, P, on the Riemann surface. The function z has a simple pole at P; and a
pole of order 7 at P,. In other words, P; is an ordinary point of the Riemann surface with respect
to its projection onto the extended z-plane C. The point P; is a ramification point of multiplicity
7. The function w has poles of order 3 and 2 at the points P;, P, respectively.

In order to justify the above algorithm let us first make a digression about zeroes of families of
analytic functions. Let f(x) be an analytic function in x with a simple zero at x = xj,

flxo) =0, f'(x0) #0.

Consider the perturbed equation
flx)=¢€ (1.2.38)
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where € is a small parameter. The claim is that the solution to (1.2.38) remains close to xg. Moreover,
such a solution is an analytic function in € for sufficiently small |e|. Indeed, the inverse function
f~!such that f~1(0) = xo is well defined due to the assumption f’(xp) # 0 and it is analytic on a
neighborhood of 0. Then

x=f"1e)=x0+ + O0(?).

£

f'(xo0)

All terms of the expansion in powers of € are uniquely determined from eq. (1.2.38).
Consider now the case of a multiple zero. Let x( be a root of f(x) of multiplicity k,

fxo) = f'(x0) = -+ = fE D (x0) =0, fO(x0) #0.

Then, after adding of a small perturbation the multiple root splits in k different roots that are
analytic functions in €% . Indeed, the Taylor expansion of f(x) at x = x starts from a term of degree

k
f® (x0)
k!

fx) = ce(x — x0)" + e (x —x0) M + ..., = #0.

Denote f the k-th root of f(x)

1

fx) = br(x — xo) 1+(:};:—+1(x—x0)+...]k
k

1
for some choice of by = ¢;. This function is analytic and invertible on a neighborhood of xy. Thus
the equation

fx) =[f@)] =e

can be solved by a convergent Puiseux series
F—1 1 -1 1 2
x=f (ek):onrbk ek+0(ek).

Choosing various branches of et one obtains expansions of all k distinct roots of the perturbed
equation.

For more complicated perturbations the splitting of the multiple root of the equation f(x) = 0
may not take place. Consider, for example, a more general perturbation of the form

where
gle) =die! +di e + ..., d#0

is analytic near € = 0. Then the deformation of a k-multiple root xj of the unperturbed equation
f(x) = 0 will be determined from an equivalent equation
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Ifi= ,% where ki and [; are coprime integers then solutions to the equation f(x) = g(e) are

1
represented by convergent Puiseux series in €. In the case k; < k we conclude that the function
x(€) lives on a Riemann surface with k/k; ramification points of order k;.
The above considerations can also be applied to the more general equations of the form

flx) = eglxe€)

where the function g(x, €) is analytic near the point (xo,0). We leave the details as an exercise for
the reader.

Let us apply the above ideas to the derivation of the Newton polygon algorithm. Let us fix a
side of the Newton polygon facing the y-axis with the lowest vertex (iy, jo) and the slope i—;. For
simplicity we will only consider the sides with positive slope p/g. Any point on the side can be
written in the form

i=iy—pl
j=Jo+ql
(1.2.39)
for some integer / = 0, 1, .... So, the terms of the polynomial F corresponding to the vertices on
the side can be written as follows
.. i1 w J 9ip+pjo
Z ajizw = 20"l Z aj| - | =z 7 P(w) (1.2.40)
(i,j)ethe side (i,j)ethe side z1
where we put
w
W=
Zq

and the polynomial P(w) was defined in (1.2.34). Observe that the polynomial Q in (1.2.35) is
equal to
Qx) = D tip—pl X (1.2.41)
=0

We will now rewrite other terms of the polynomial F(z, w) in the variables z, w. In this way it
will become clear that the sum of other monomials in F(z, w) can be considered as a perturbation
of the leading term (1.2.40). The small parameter of the perturbation will be some fractional power
of z.

Consider a monomial ayz'w in F for a point (I, ]) sitting inside the Newton polygon. The
points on the side of the Newton polygon satisfy the equation

Q+M:0.
P q

Hence the coordinates (I, ]) satisfy

Ifi0+]*]'0
p

=r>0,
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for some rational number r = r(I, J). Thus

4

J
ZIZU] _ Zlo+,]]0+P7 <_> _ Zlo+q]0+p7w]‘
Zaq

We arrive at the following representation of the polynomial F(z, w)

i +pi
Few) =zt [P(a)) - Zmzfﬂy@wl

L]

where the sum is taken for (I, ]) inside the Newton polygon and the exponents r(I,]) > 0 for all
terms in the sum. As there is a finite number of terms one can choose an integer t such that the
numbers

s(L]):==r(L])tp

are all integers. Introducing new variable € = z' we apply the above perturbative procedure to
solve the equation

P(w) + ZaUeS(”)a)] =0
L]
in the form of a Puiseux series of the form

w=a+ae +..., 0>0

for every root w = a of a multiplicity k of the polynomial P(w). This gives a branch of the algebraic
function w(z)

~Ia

14 4
w=azi +a'ziTt 4 ...,

Summarizing the above considerations we arrive to the following.

Theorem 1.2.22. Let us consider the algebraic curve C described by the zero locus of the polynomial
F(zyw) = w" + a1 (z2)w" ' + -+ +a,(z) =0, (1.2.42)

where the coefficients a1(z), .. .a,(z) are polynomials in z. Let us suppose that (zo,wo) € C is a singular
point such that 7=1(zp) = (zo, wo) with 1t the projection to the z- plane. Then there exist positive integers
my, ..., my satisfying

my 4 - +mg=n

and k functions fi, ... fr analytic on a neighborhood of zo such that all solutions w(z) to (1.2.42) for
sufficiently small |z — zo| can be written in the form

w(z) = wo +fj<(z—zo)mlf), j=1,...k (1.2.43)

Observe that, for m; > 1 the formula (1.2.43) defines m; series due to ambiguity up to conjuga-

tion
2mil

2nit 1
w(z) ~ W(z) = wo +f]-<e'”f (z—zo)"‘i>, t=0,1,...,m—1.
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Remark 1.2.23. It follows from the theorem that near the singular point (zg, wp), the polynomial
equation (1.2.42) can be written in the form

mj

F(z,w) = nn <w—wo — fi (ez’zy(z—zo)"l’f>> /

j=1¢=1

for |z — zo| sufficiently small.

Remark 1.2.24. Let (z9,wp) € C be a singular point for the curve C. In the situation described in
the theorem 1.2.22 we obtain k points Py, ..., Px on the Riemann surface S of the algebraic curve
C. The holomorphic map p : & — C with local structure near the point P; given by (1.2.29) is

1
obtained from the Puiseux expansion f; <(z —zo)" ) .

We conclude this Section with an elegant algebraic statement. Consider the space

) = | (b

q=1
of Puiseux Laurent series with arbitrary fractional exponents. It is easy to see that this is a field.
Theorem 1.2.25 (Puiseux). The field C{(z)) is algebraically closed.

That is, all solutions of a polynomial equation with coefficients in the field C{(z)) belong to
the same field. The theorem of Puiseux is a generalization of the fundamental theorem of algebra.
The constructive proof is obtained by extending the Newton-Puiseux method developed in this
section to the case when the coefficients a;(z) are not polynomials in z but Puiseux Laurent series
with arbitrary fractional exponents. Details of the proof can be found in [28].

1.2.4 Smooth projective curves as compact Riemann surfaces
In this subsection we define Riemann surfaces as algebraic curves in IP2.

Definition 1.2.26. Let Q(X, Y, Z) be a homogeneous non-zero polynomial of degree d in the variables X, Y
and Z. The locus
C={X:Y:2)eP?|Q(X,Y,Z) =0} (1.2.44)

is the projective curve defined by the polynomial Q.

Remark 1.2.27. Observe that the curve C is well defined since the condition Q(X,Y,Z) = 0 is
independent from the choice of homogeneous coordinates due to Q(AX, A, AZ) = A‘Q(X, Y, Z).
Furthermore C is a closed subset of P? and therefore it is compact.

Recall that the space IP? can be covered with three open subsets homeomorphic to C? :
Up={(X:Y:Z)eP?| X #0}

U ={(X:Y:Z)eP?|Y #0}
U, ={(X:Y:Z)eP?*|Z#0}.
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The homeomorphism on Uy is given by the map (X : Y : Z) — (Y/X,Z/X) € C? and similarly for
the other open subsets U; and Us,.
The intersection of C with any of the U, is an affine plane curve. For example

Co=Cn Uy = {(u,0) € C*|Q(1,u,0) = 0}.
Now we show that under non-singularity assumptions, C is a compact Riemann surface.

Definition 1.2.28. The curve (1.2.44) is non-singular if there are no non-zero solutions to the following
system of four equations

Q_0_w0_,

0X oY 0z

Exercise 1.2.29: Show that the projective curve C defined in (1.2.44) is non-singular if and only
if its intersections C; = C n U;, i = 1,2,3 with the charts U; are all non-singular. Hint: use Euler
identity for homogeneous functions of degree d

Q=

XQx + YQy + ZQy = Qd. (1.2.45)

Suppose that C is a smooth projective curve. In order to define a complex manifold structure
on C let us recall that each C; is a smooth affine plane curve and hence a Riemann surface. The
coordinate charts are given by the projections onto coordinate axes. For example for the curve Cy
the coordinate charts are Y/X or Z/X and the transition functions are the same as those obtained
for smooth affine plane curves. One needs to check that the complex structures given on each C;
are compatible.

Proposition 1.2.30. Suppose that the projective curve C in (1.2.44) is non-singular. Then C is a compact
Riemann surface.

Proof. We will show that the complex structures given on each C; are compatible. Let P € Cy n Cy
where P = (X:Y:Z)and X # 0 and Y # 0. Since each smooth affine plane curve is non-singular
(see exercise 1.2.29), we can assume without loss of generality that Qx and Qz are non-zero on C.
Let ¢ : Cy — C with ¢o(P) = Y/X and with locally defined inverse qbo_l(Y/X) =[1:Y/X:h(Y/X)]
where &1 is a holomorphic function on some open domain in C. Let ¢ : C; — C with ¢1(P) = Z/Y
with locally defined inverse ¢, - [¢(%),1, £] where g(£) is holomorphic for Y # 0 and non-zero
since we assume X # 0. Then ¢ o ¢ L(Y/X) = Xh(Y/X)/Y which is holomorphic because Y # 0,
X # 0 and h(Y/X) is holomorphic. In the same way ¢ o ¢, Y(Z/Y) = =45~ which is holomorphic

8(Z/Y)
because Y # 0 and g is nonzero. Similar checks can be done with the other coordinate charts. O

Lemma 1.2.31. Let Q(X, Y, Z) and F(X, Y, Z) be two homogeneous polynomials of degree d and m respec-
tively. Suppose that Q(0,0,Z) # 0and F(0,0,Z) # 0. Then the resultant

RQ F)(X,Y)
is a homogeneous polynomial in X and Y of degree dm.

Proof. According to the assumptions, Q(X,Y,Z) = qoZd + (X, YZ3 T 4 44(X,Y) where
7j(X,Y) are homogeneous polynomials of degree jin X and Y, j = 0,...,d and F(X,Y,Z) =
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foZ" + AX,Y)Z" 1 + -+ + fu(XY) where f;(X,Y) are homogeneous polynomials of degree j,
j=0,...,m.
Then according to the definition of resultant in (1.2.1)

G g1 92 ... 44 0 0 ..
0 g ¢ ... Jd 0 ... 0
RQEXY) =det| O = - O @@ qa | (1.2.46)
’ ’ fo A fo v oo fu1 fm O ...
0 fo A i i i fud fu O
O cee fo f] cee e fmfl fm

We multiply the second row by A # 0, the third row by A% and so on till the m-th row that is
multiplied by A”~!. Then we multiply the (m + 2)-th row by A, the (m + 3)-th by A% and so on till
the (m + d)-th that is multiplied by A%~! one has

1

RQFYAX,AY) =~

q0 A ... Algy 0 0 o 0

0 0 . Amlgy AMgy . AdFm=1g,
<detl e AR . . A" AME 0 0

0 Afo A2 .. M AmHg 0

0 e /\d_lfo /\dfl e e Am+d_2fm,1 /\m-&-d—lfm
= A"R(Q F)(X,Y),

where we use the fact that and ¢;(AX,AY) = A/g;(X,Y) and fj(AX,AY) = Afj(X,Y). The above
relation shows that the resultant R(Q, F)(X, Y) is a homogeneous polynomial in X and Y of degree
md. o

Theorem 1.2.32 (Bézout’s theorem). Let C and D be two projective curves defined by the homogenous
polynomials Q(X,Y,Z) and F(X,Y,Z) of degree d and m respectively. If C and D do not have common
components then they intersect in dm points counted with multiplicity.

Proof. By Lemma 1.2.3, C and D have a common component if and only if their resultant is
identically zero. Consider the case in which C and D do not have common components. With-
out loss of generality we assume that [0 : 0 : 1] does not belong to both curves. With this
assumption Q(X, Y, Z) = qo(X,Y)Z% + q1(X, Y)Z%"! + -+ + g4(X,Y) where g;(X,Y) are homoge-
neous polynomials of degree jin X and Y, j = 0,...,d and 49(0,0) # 0. In the same way
FX,Y,Z) = (X, Y)Z"+ A(X,Y)Z" 1+ + fu(X,Y) where fi(X,Y) are homogeneous polynomi-
als of degree j, j=0,...,mand fy(0,0) # 0. Therefore the resultant is a homogeneous polynomial
of degree md by lemma 1.2.31 and it has md zeros counting their multiplicity. m]

Lemma 1.2.33. If the projective curve C defined in (1.2.44) is non-singular, then the polynomial Q(X, Y, Z)
is irreducible. If C is irreducible, then it has at most a finite number of singular points.
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Proof. Let us suppose that the polynomial is reducible, namely Q = Q:Q, where Q; and Q, are
homogeneous polynomials in X, Y and Z of degree d; and d —d;. The condition of C being singular
takes the form

201 =0, Q20xQ1 + Q10xQ2 =0, Q2dyQ1 + Q10yQ2 =0, Q207Q1 + Q192Q2 = 0.

Such system of equations has always a solution as long as there is a point P in the intersection
of the curves defined by Q; = 0 and Q, = 0. But this is always the case. Indeed let us consider
the resultant R(Q1,Q2)(X,Y) of the polynomials Q1(X,Y,Z) and Q»(X, Y, Z) with respect to Z.
Assuming that Q1(0,0,1) # 0 and Q»(0,0,1) # 0 the resultant R(Q1,Q»)(X, Y) is a homogeneous
polynomial of degree d; (d —d;). Therefore the curves defined by the equations Q1 (X, Y, Z) = 0 and
Q(X, Y, Z) = 0 intersect by Bézout’s theorem in d;(d — d1) points counted with multiplicity. We
conclude that if Q is reducible, then C is singular. Suppose that C is irreducible and defined by a
polynomial Q of degree n. Then Q and Q7 do not have a common component so that the resultant
R(Q,Qz)(X,Y) is a homogeneous polynomial of degree n(n — 1) not identically zero. Since the
singular points of C are contained among the zeros of the resultant, their number is finite. O

Example 1.2.34. The simplest example of a projective curve is a projective line P! = IP? given by
a linear equation
aX+pY +yZ =0

where (a,8,7) # (0,0,0). Every such line is uniquely specified by the homogeneous coordinates
(a: p:y). We obtain an isomorphism

{lines in P?} ~ P2

A line in P? is uniquely specified by a pair of points on it assuming the points to be in
general position. In this case “general position” simply means that the points are distinct. In the
multidimensional case we say that the points Py, ..., P, in IP" are not in general position if there
exists a subspace IP"~2 c IP" containing all these points.

Exercise 1.2.35: Prove that equation of the tangent line to a projective curve C defined by a
homogeneous polynomial Q(X, Y, Z) at a non-singular point (Xo, Yo, Zo) can be written in the form

X Qx(Xo, Yo, Zo) + Y Qy(Xo, Yo, Zo) + ZQz(Xo, Yo, Zo) = 0.

Example 1.2.36. The next example is a conic defined by a homogeneous equation of degree 2

ain app a3\ (X
Ca=3(X:Y:Z)eP?*||Qa(X,Y,2) = (X Y X)|a an ap||[Y|=0

a1z a3 az) \Z
a1 a2 ai13
A= |anp axn ax3].
a13 a3 4asz

In order to spell out the condition of smoothness it suffices to observe that the three partial
X

derivatives Qx, Qy, Qz are equal to 2A (Y) so that the condition of smoothness is
Z

detA # 0.

where the matrix
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Now let O be a nonsingular 3 x 3 matrix. Then the matrix B = O'AO is a non singular matrix that
defines the conic Cp as the zero locus of the polynomial equation

X
Q(X,Y,Z)= (X Y X)0'A0[Y|=o.
Z

Clearly the conic C4 and Cp are isomorphic, the isomorphism is the linear map (X,Y,Z) —
(X,Y,Z2)0".

Exercise 1.2.37: Show that any conic is determined by five points belonging to it. Further show
that five points in IP? uniquely determine a conic if their images w.r.t the Veronese map

P? > 1P°, (X:Y:Z)— (X*:Y?>:Z%:XY:YZ:ZX).
are in general position (see exercise 1.2.34).
Exercise 1.2.38: Prove that the tangent line to a smooth conic intersects with it only at the tangency
point.

Exercise 1.2.39: Let Q(X, Y, Z) be an irreducible homogeneous polynomial of degree d defining
a smooth projective curve C. Suppose that the equation Q(X,Y,1) = 0 locally defines Y as a
holomorphic function of X.

(1) Show that

2 Qxx Qxr Ox
T - Laet(0n O Q. (1247)
Qy Qx Qv 0

2
vanishes

(2) A point (X : Yp : 1) is an inflection point for the curve C if and only if e

at Xo. Calculate the number of inflection points of the cubic defined by the homogeneous
polynomial Q(X, Y, Z) = Y?Z — (X — Z)(X — aZ)X witha # 0, 1.

(8) Prove that a smooth point P of a projective curve is an inflection point iff it has multiplicity
at least three as the intersection point of the curve with its tangent line at the point P.

(4) Prove that the tangent line at a smooth inflection point of a cubic has no other intersections
with the curve but the tangency point.

(5) Prove that inflection points on the projective curve Q(X, Y, Z) = 0 can be determined by the

hessian equation
Oxx QOxy QOxz
det | Qyx Qyy Qyz |=0. (1.2.48)

Qzx Qzy Qzz

Derive that on any smooth plane cubic there are 9 distinct inflection points.
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(6) Prove that the inflection points of the projectivization of the smooth elliptic curve w? =

473 — ¢»z — g3 are at the infinite point and at the points (z;, +w;),i = 1,...,4 where z; are the
roots of the equation
48z — 249,77 — 48g3z — g5 = 0.

Exercise 1.2.40: Let C be a smooth plane cubic and Py € C a point on it. (1) Prove that there exists
a unique structure of an abelian group on C such that

e P+ Q + R = 0 for any triple of points in the intersection of C with a line.
e Py+ P =Pforany PeC.

(2) Let P € C be such that the line tangent to C at the point P passes via Py. Prove that P is an
element of order 2 in the group.
(3) Prove that the inflection points of the curve have order 3 in the group.

Compactification of an affine plane curve

At the beginning of this Section we have seen that the intersection of a projective curve C in P?
with any of the open charts U; ~ C? is an affine plane curve. For example

C,=Cnly={(z,w)eC*| Q(z,w,1) = 0}.

Clearly we can proceed also in the opposite direction. Namely given an affine plane curve C; in
C? defined by the polynomial equation F(z, w) = 0,

Cy = {(z,w) € C*|F(z,w) = 0},

we can compactify such a curve in the projective space P? in the following way. Let
F(z,w) = Z ai]-ziwj.
i+j<k

Define the homogeneous polynomial of degree k by

XY
= k —_——
QX Y,Z)=ZF <Z' Z) . (1.2.49)
A complex compact curve C is given in P? by the homogeneous equation

C:={(X:Y:2)eP* | Q(X,Y,Z) =0} (1.2.50)

The affine part of the curve C n U, (where Z # 0) coincides with C,. The projective curve C is
compact and thus we have compactified the affine plane curve C, by adding the points at infinity
given by the equation

Q(X,Y,0) = 0. (1.2.51)

Remark 1.2.41. Even if the curve C; is non-singular, the projective curve C might be singular.
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Example 1.2.42. C, = {(z,w) € C* | w* = z}. A local parameter at the branch point (z = 0,w = 0)
is given by 1 = 4/z,ie. z = 12, w = 1. The compactification C has the form C = {(X : Y :
Z) € P> | Y?> = XZ}. The point at infinity is given by solving the equation (1.2.51), that gives
P® =11:0:0]. We determine the local coordinates near the point P*. For X # 0 we introduce
the coordinates u, v

u=x=2 H=_2__ (1.2.52)

which define the affine curve u? = v. The point at infinity is given by (v = 0, = 0) which is clearly
a ramification point for the curve defined by the equation > = v and /v is a local parameter near
this point. Therefore a parametrization of the C in a neighbourhood of P* takes the form

Example 1.2.43. C; = {w? = z> — a*}, a # 0. The branch points are (z = +a,w = 0) and the
corresponding local parameters are 7. = +/z = a. The compactification is the conic C = {Y? =
X2 — a*Z?}. The points at infinity are given by solving the equation (1.2.51), that gives P = [1 :
+1 : 0]. Making the substitution (1.2.52) we get the form of the curve C in a neighbourhood of the
ideal line: u? = 1 —a*v?. For v = 0 we get that u = +£1. We can take v = 1/z as a local parameter in
a neighbourhood of each of these points. The form of the surface C in a neighbourhood of these

points Py is as follows:
1, w= izl—)\/l—azvz, v—0 (1.2.53)

z= -
v

where v1 — a?0? is, for small v, a single-valued holomorphic function, and the branch of the
square root is chosen to have value 1 atv = 0.

Example 1.2.44. Let us consider the class of hyperelliptic Riemann surfaces
C> = {(z,w) € C* | F(z,w) = w* — Pn(z) = 0}, (1.2.54)

where Py(z) = ]_[;\]:1(2 —aj),and a; # a; fori # j.
If we consider the projective curve defined by the zeros of homogeneous polynomial

QX Y,Z) = Y*ZN"2 - ZNPy(X/Z) =0

one can check that the curve is singular at the point [0 : 1: 0] if N > 4. Therefore, for N > 4, the
embedding of C, in P? results in a singular surface. For N = 3 the projective curve

Y?Z = (X —mZ)(X — a2 Z)(X — a3 Z)

is a compact smooth elliptic curve. By a projective transformation such curve can be reduced to
the form

Y?Z = X(X - Z)(X - AZ), AeC\{0,1}.

The point at infinity is given by P® = [0:1: 0]. For Y # 0 the substitution u = X/Y andv = Z/Y
gives the curve
Qu,L,v)=v—u(u—ov)(u—Av)=0
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The point (0,0) is a branch point for the above curve. Indeed for (u,v) # 0 the projection
7 : (u,v) — v is a local coordinate. The preimage 71~!(v) consists of three points. At the point
(0,0) one has Q,(0,1,0) = 0 and Q,,(0,1,0) = 0 so that the preimage of 7~ !(0) consists of a single
point. Therefore a local coordinate near the point (0, 0) takes the form

u=11+o0(1)), v=r1(1+o0(1)).
We look for the holomorphic tail of the above expansions in the form
u=1g(t), v=r1g(1)

with ¢(7) analytic and invertible in a neighbourhood of t = 0. Plugging the above ansatz in the
equation Q(u,1,v) = v — u(u — v)(u — Av) = 0 one obtains that

(r) = L
NV (T
Since
X Y 1
S Z v 7 Z v

one has that a local coordinate near the point at infinity for the curve C is given by

z= é, W= % (1—12)(1- A1?).

The above examples show that a smooth affine plane curve can sometimes be made into a
compact Riemann surface by embedding the affine curve into the projective space. In general
such embedding produces a singular projective curve that can still be turned into a compact
Riemann surface once the problems with the singular points have been fixed. In the next Section
we will show how to do it by using simple topological arguments about covering spaces.

1.3 Compact Riemann surfaces: a topological viewpoint

1.3.1 Topological digression: coverings, fundamental group and monodromy

Let X, Y be two topological spaces and p : X — Y a surjective continuous map. We additionally
assume the space Y to be connected”.

Definition 1.3.1. The triple (X,Y,p) is called a covering if for any point P € Y there exists an open
neighbourhood Up > P such that the preimage p=! (Up) is a disjoint union of open subsets U, < X, a € F
such that the restriction of p onto Uy is a homeomorphism p : U, — Up for any a € F. Here F is an at most
countable discrete set.

X is called the covering space, Y the base of the covering, p the covering map. The set F can be
naturally identified with the preimage p~—!(P) of the point P. It is called the fiber over P.

7Recall that in this book ‘connected’ means ‘path-connected’, cf. footnote 3.
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Our first claim is that the fiber over P does not depend on P. Indeed, let Q be another point
in the base. If the intersection of Up with Ug is not empty then there is an obvious one-to-one
correspondence between the fibers over P and over Q. In general we connect the points by a path

y:[0,1] =Y, y(0)=P y(1)=0Q.

Due to compactness of the path there exists a finite sequence t; = 0 < t, < --- < ty = 1 such that
the open domains Uy, i = 1,..., N cover the path y([0, 1]). Then passing from U, to U,
step by step we obtain a one-to-one correspondence between the fibers over the end points.

If the fiber is a finite set of n points then we say that the covering is of degree 1 or also n-sheeted
covering.

i+l)

Example 1.3.2. The Cartesian product X = Y x F for an arbitrary discreet set F with the covering
map p(P,a) = P is an example of trivial covering.

Definition 1.3.3. Two coverings (X,Y,p) and (X', Y,p’) are called equivalent if there exists a homeomor-
phism f : X — X' such that p' o f = p. A covering equivalent to the trivial one will itself be called
trivial.

Exercise 1.3.4: Let (X, Y, p) be a covering of degree n # 1 with connected covering space X. Prove
that it is not trivial.

Example 1.3.5. Define a map of the punctured disk D={zeC|0< |z] <1} toitself by

p(z) =2".

This is a covering of degree n.
Example 1.3.6. The map
p:C—C* pz)=¢
is a covering. The fiber can be identified with the set of integers since ¢*™" = 1 for any 1 € Z.

Before we proceed to further constructions from the theory of coverings we need to recall
the notion of homotopy. It formalizes the idea of deformations of continuous maps between
topological spaces.

Definition 1.3.7. Let X, Y be two topological spaces and fy, fi : X — Y two continuous maps. These
maps are homotopic if there exists a continuous map F : X x [0,1] — Y called homotopy between fy and f;
such that

E(P,0) = fo(P), F(P1)=f(P) VPeX

We will use notation fy ~ f; for homotopic maps. Clearly it is an equivalence relation.

Example 1.3.8. A path on a topological space is a continuous map of the segment [0, 1] to this
space. Let yg,1 : [0,1] — Y be two paths on the topogical space Y. A homotopy between these
paths is a continuous map of the square I : [0,1] x [0,1] — Y such that

[(t,0) =yo(t), T(t1)=y1(f) VO<t<l.
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In the particular case where the end points of the two paths coincide

70(0) =71(0) =P, yo(1) =y1(1) =Q

for P, Q € Y it is convenient to consider homotopies with fixed end points imposing the following
boundary conditions

ro,s)=P I'(l,s)=Q VvV0O<s<l
In the more specific case P = Q we are dealing with loops on the space Y with the base point P. In
this case I is a homotopy between the two loops with fixed base point.
We now return to coverings.

Lemma 1.3.9. Let (X,Y,p) be a covering and y : [0,1] — Y be a path on the base of the covering.

1. Then for any P € p='(y(0)) there exists a unique path y : [0,1] — X on the covering space with
prescribed initial point Y(0) = P such that p(p(t)) = y(t) for all t € [0,1]. The path y is called the lift of y
with prescribed initial point.

2. Let yo : [0,1] — Y and y1 : [0,1] — Y be two homotopic paths on the base with the same
initial and end points. Denote Yo : [0,1] — X, Yo : [0,1] — X their lifts with the same initial point
90(0) = 71(0). Then

Po(1) = 71 (1).
Proof Let us first assume that the entire path y belongs to the open domain Up < Y from the
definition of a covering where P = y(0). Denote Up — X the component of the preimage p~' (Up)
containing P. Then the lift is obtained by

P = (plg,)” (1) (1.3.1)

In the general case we split [0,1] in small segments [t;_1,t],i =1,..., N, tp = 0, ty = 1 such
thaty; := y|p_, ) © U, q,_,)- Such spltting always exists due to compactness of the segment [0, 1].
Then, following the above procedure we construct the lift of y; with the initial point P, the lift of
y2 with the initial point = the end point of y; etc.

Let us now consider a homotopy I'(t, s) between the paths y, and y; with fixed end points

I(t,0)=yo(t), T(t1)=mw(), I0s)=P TI(,s) =Q.
We represent it as a family of curves depending on the parameter s € [0, 1]
ys(t) =T(ts), tel0,1].
All these curves have their initial point at P and the end point at Q. Denote 95 : [0,1] — X the lift
of the path y; with the initial point P and define amap I': [0,1] x [0,1] — X by
Bt,s) = 9u(t).
By definition it satisfies
pol'=T
Let us prove continuity of this map. First, it is continuous for sufficiently small ¢. Indeed, since
I'(0,5) = P there exists € > 0 such that I'(¢,s) € Up for 0 < t < e and any s € [0, 1]. So the lift of the
curves y;(t) for 0 < t < € can be obtained by

P(t) = (plg,) " (rs(1))
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(cf. eq. (1.3.1)) hence the continuity on [0,€) x [0,1].

Suppose that the set of points (t,s) € [0,1] x [0,1] where T fails to be continuous is non-empty.
Denote t; the lower bound of those values of ¢ for which I is not continuous for some s = s;.
We already know that ty > € > 0. Denote R = T(ty,s0) = s, (f0), R = f(to,so) = P, (t0). Let
Ug = Y and Ug = X be open neighbourhoods of the points R and R respectively such that the
map p : Ug — Ugisa homeomorphism. Choose € > 0 such that I'(t,s) € Ug for |t — ty| < €,
|s — so| < €. As the curve y,(t) passes through the point R it must have the form

7750<f) = (P I:IR)_l (yS(J(t))

for |t — ty| < €. Takety — €’ < t; < tg so that Y5, (t1) € Ur. The map I is continuous at the point
(t1,50). So there exists 6 > 0 such that y;(t1) = I'(t1,s) € Ug for |s — so| < 6. Assume additionally

that 6 < €. Then . )
P(t,s) = (pla,)  (T(ts)

for [t — to| < €, |s — so| < 6 hence it is continuous in this region. This contradicts the assumption
about (g, sp). Thus I is continuous everywhere on [0, 1] x [0, 1].

It remains to prove that ['(1,s) = Q for s € [0,1]. Indeed, (1, 5) is a continuous path but it must
belong to p~1(T(1,5)) = p~1(Q). The latter set is discrete hence T'(1,s) = (1) = Q that implies
that I'(1,1) = $1(1) = Po(1). O

Remark1.3.10. The above Lemma is a particular case of the Covering Homotopy Theorem. Namely,
given a covering (X,Y,p) and two continuous maps f : Z — Y and f : Z — X of a topological
space Z in a suitable class satisfying p o f = f and, moreover, a homotopy

F:Zx[0,1] =Y, Flzxo=f

then there exists a unique covering homotopy
F:Zx[0,1] > X satisfying Flz.q) = f.

For the proof see e.g. [26].

Using the operation of lifting paths from the base of a covering to the covering space we now
define monodromy transformations acting on the fiber over a given point in the base.

Definition 1.3.11. Let (X, Y, p) be a covering and Py € Y a point on the base. Monodromy transformations
are bijections o, of the fiber F = p~'(Py) defined for any loop y : [0,1] — Y with y(0) = y(1) = Po.
Namely, for any given point Q € p~1(Py) we put 0,(Q) = Q' € p~(Py) if Q' = P(1) is the end point of
the lift Y of the loop y with the initial point $(0) = Q.

Due to Lemma the monodromy transformation o, depends only on the homotopy class of the
loop y with the base point Py. To put this observation into a proper algebraic setting we need to
recall the definition of fundamental group of a topological space.

Elements of the fundamental group m1(Y, Py) are equivalence classes of loops y : [0,1] — Y,
y(0) = ¥(1) = Py wrt homotopies with fixed base point Py. The product of two loops y1, 2 is the
loop that we denote )1y, defined in the following way

(2 for0 <t
(y2)() = { 722t —1) forl <t
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The inverse of a loop y is the same loop run in the opposite direction

y Uty :=y(1—1t), tel0,1].

The unit of the group is the homotopy class of the constant loop y(t) = Py.

According to the definition the fundamental group depends on the choice of the base point.
But for a connected space Y the fundamental groups 7t1(Y, Py) and 71 (Y, Qo) are isomorphic for
any pair of points Py, Qp. Anisomorphism 7t1(Y, Qo) — m1(Y, Po) is established by choosing a path
from Py to Qp. It depends only on the homotopy class of the path with fixed end points.
Example 1.3.12. The fundamental group of the unit disk D = {|z| < 1} is trivial, 71 (ID, {0}) = 1. A
homotopy of a loop with the base point 0 to the trivial one can be obtained by using the contraction
z — tz, t € [0,1] of the unit disk to the central point. In a similar way the complex plane can be
contracted to one point so 11 (C, {0}) = 1.

Contractions appear as the simplest example of homotopy equivalence between topological
spaces.

Definition 1.3.13. Two topological spaces X and Y are homotopy equivalent if there are two continuous
maps f : X — Yand g:Y — Xsuch that f o g ~idy and go f ~ idx.

Homeomorphic spaces are homotopy equivalent but not vice versa. The simplest example is
the unit disk an the space consisting of one point. The map f : ID — pt maps the disk to the point
and g : pt — {0} € D is an embedding of the point in the disk. The superposition f o g is the
identity map of the point to itself. The homotopy F : D x [0, 1] — ID between go f and the identity
map ID — ID can be constructed as F(z,t) = ¢t z.

Exercise 1.3.14: Prove that the punctured plane C* is homotopy equivalent to the unit circle
St ={|z| =1}.

Exercise 1.3.15: Let f : X — Y be a continuous map of topological spaces. Choose a point Py € X
and let Qp = f(Py). Define a map

fe i (X, Po) = (Y, Qo) fuy(t) = f(y(H))-
Prove that the map f, is well defined and it is a group homomorphism.

Exercise 1.3.16: Let (X, Y,p) be a covering. Choose a point Py € Y in the base and let Qg € p~1(Py).
Prove that

ps - (X, Qo) — 71 (Y, Po)

is a monomorphism.

Exercise 1.3.17: Letthemaps f : X — Yand g : Y — X establish a homotopy equivalence between
the spaces X and Y. Prove that the fundamental groups 71 (X, Py) and 71 (Y, Qo) where Qo = f(Po)
are isomorphic.

Definition 1.3.18. A connected topological space is called simply connected if its fundamental group
consists only of the unit element.

In other words, every loop on a simply connected space is homotopic to the constant one.

The Riemann surfaces C, ID, H are all simply connected. More generally, if a space is homotopy
equivalent to a point then it is simply connected. The Riemann sphere P! is an example of simply
connected space that is not homotopy equivalent to a point, see [26] for the proof.
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Example 1.3.19. The simplest example of a non-simply connected space is the circle S! = {z €
C | |z| = 1}. Take the loop
Y01 =S, () =&, p(0) = y(1) = 1.
The homotopy classes of this loop and of its powers
YI(t) =M, neZ
are pairwise distinct and any other loop on S! is homotopic to one of these. Thus
m(S',{1}) ~ Z.
Proofs of the above statements using universal coverings will be given below, see Example 1.3.29.

Let us return to monodromy transformations. Recall that for any loop y on the base Y of the
covering (X, Y, p) with the base point Py we have constructed a bijection of the fiber F = p~1(Py)
onto itself. Denote it u(y) € Aut(F). The monodromy transformation 1(y) depends only on the
homotopy class of the loop y with fixed base point Py. We obtain a map

p: (Y, Py) — Aut (F). (1.3.2)

Here and below Aut(F) is the set of bijections F — F. It has a natural group structure defined by
superposition of bijections.

Proposition 1.3.20. The map (1.3.2) is an anti-homomorphism of the groups that is, forany a, b € 11 (Y, Py)
we have

u(ab) = p(b)p(a). (1.33)

Proof easily follows from the above definitions. O

We will often omit “anti” if there is no confusion.
Definition 1.3.21. The (anti)homomorphism (1.3.2) is called the monodromy of the covering (X, Y, p).

Example 1.3.22. To compute the monodromy of the covering p : D — D of the punctured disk
D = {0 < |z| < 1} toitself, p(z) = 2" (see Example 1.3.5 above) we have to study the behaviour
of branches of the algebraic function p~!(z) = {/z under analytic continuation along the loop
y(t) = re?™, 0 < t < 1 for some 0 < r < 1 that is a generator of the fundamental group
m1(D, {r}) = Z. Choose the first branch in such a way that

2mit

(P (1)), =rMre.

Passing from t = 0 to ¢t = 1 we obtain the second branch

(P (1)), =r"e

2mi(t+1)
n

and so on up to the n-th branch
_ n 2ni(t+n—1)
P o)), = e
One more step in the analytic continuation takes us back to the first branch. We conclude that,
with the chosen labelling of the branches the monodromy p(y) is the cyclic permutation 1 — 2,
2—3,...,n—1—n,n+— 1. In the theory of symmetric group S, such a permutation is called a
cycle of length n. It is denoted by (12...1) € S,,.
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Example 1.3.23. For the covering p : C — C*, p(z) = €* over the punctured complex plane (see
Example 1.3.6 above) we have p~!(z) = logz. Using the well known formula log(ze*™) = log z+2mi
we conclude that monodromy p(y) along the generator y(t) = ¢*™ of the fundamental group
n1(D, {1}) = Z acts on the fiber F = Z by shifts n — n+1Yn € Z.

Definition 1.3.24. The monodromy representation (1.3.2) is called reducible if there exists a nonempty
subset in the fiber p=1(Py) different from the fiber itself and invariant wrt to the image of u. Otherwise it
is called irreducible.

It is easy to see that reducibility/irreducibility of monodromy does not depend on the choice
of the point Py in the base of the covering.

Remark 1.3.25. Irreducibility of the monodromy representation u implies that the bijections from
the image of u act transitively on the fiber, and vice versa. Recall that action of a group on a set
is called transitive if for any pair of points x, y in the set there exists an element of the group that
maps x to y.

Let (X, Y, p) be a covering of finite degree n and y its monodromy representation.
Lemma 1.3.26. The covering space X is connected if and only if the monodromy (1.3.3) is irreducible.

Proof. Assuming irreducibility of the monodromy let us prove the connectivity of X. It suffices
to prove that any point Qy € p~!(Py) can be connected with any other point Q € p~!(P) for an
arbitrary P € Y. To this end let us choose a path y < Y in the base from P to Py. Denote 7 the lift
of y to the covering space X with the initial point Q. Denote Q € p~!(Py) the final point of y. Due
to transitivity of the monodromy there exists a loop 6 < Y starting and ending at Py such that its
lift 4 that begins from Q has Qp as its end point. The composition 5 connects Q with Q.
Conversely, assume that X is connected. Choose a pair of points Qo, Q) € p~!(Py). Leto ¢ X
be a path connecting Qo with Q[. The projection p(c) is a loop on Y such that the monodromy
t (p(0)) interchange Qo with Q. O

Definition 1.3.27. A covering (X, Y, p) is called universal if the covering space X is connected and simply
connected.

Let (X, Y, p) be auniversal covering. We will now establish a one-to-one correspodence between
points of its fiber and elements of the fundamental group of the base.

Proposition 1.3.28. Choose a point Py € Y on the base of the universal covering and another point Qg € X
satisfying p(Qo) = Po. For any loop y € 11 (Y, Py) define a point Q,, € p~'(Py) by the monodromy action
on Qo
Qy = #(¥)(Qo)-

The map

mi(Y,Po) —p~'(Po), 7~ Q, (1.3.4)
is one-to-one. It satisfies

V(Vl)(Q)/z) = Qyzyl- (1~3~5)

Proof Let Q € p~!(Py) be any point. It can be connected with Qp by a path 9, 9(0) = Qo, (1) = Q.
The projection y = p(y) is a loop on the base with the base point Py. Then Q = Q,. So the map
(1.3.4) is surjective.
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Let us now prove injectivity of the map (1.3.4). Suppose Q, = Qo for some y € 111(Y, Py). That
means that the lift y < X of the loop y with the initial point Qp returns to Qy, i.e. it is a loop. As
the covering space X is simply connected the loop y is homotopic to the constant one. Projecting
this homotopy to Y we obtain a homotopy between y and the constant loop. That is, y ~ e.

The last point is about eq. (1.3.5). It easily follows from the property (1.3.3) of the monodromy
representation. O

Example 1.3.29. The covering

p:R S, x ¥

of the real line over the unit circle {|z| = 1} < Cis universal. The fiber over the point z = 1 consists
of all integers Z — R. Use this point as a marked point Py on the base and choose the point x = 0
as the marked point Qp in the fiber over Py. For the loop y(t) = ¢*™,t € [0,1] we havep~ ! (y(t)) = t
as the lift starting at Qp. Hence Q, = 1. In a similar way for the n-th power of the loop y

7/n(t) _ eZnint, neZ7

we have Q,» = n. This gives a one-to-one correspondence between the infinite cyclic group
generated by the loop y and the fiber over the point z = 1. According to Proposition this
implies that the fundamental group of the circle coincides with this infinite cyclic group i.e.,
m (S {1}) ~ Z.

Exercise 1.3.30: Compute the fundamental group of the n-dimensional torus T" = S' x S' x - - - x S!
(n times).

Example 1.3.31. The covering p : C — C*, p(z) = ¢ over the punctured complex plane (see
Example 1.3.6) is universal. Repeating the arguments from the previous Example we conclude
that 711 (C*, {1}) ~ Z. This is not a big surprise as the punctured complex plane is homotopy
equivalent to the unit circle; we leave as an exercise for the reader to construct explicitly such a
homotopy equivalence.

The story becomes much more involved for the complex plane with two or more punctures.
The fundamental group of the complex plane with K punctures is the free group with K generators.
We will denote it by Fx. Elements of the group are words made of symbols a1, ..., ax and a; L

. alzl. The product of two words is defined by concatenation: we write the first word on the
left then continue with the second one on the right. One rule is to be imposed: having in a word
two neighboring symbols 4; al._l or al,_lai we just erase them. For example,

5 a1 X al_lazal = may.

aia
The unit is the empty word and the inverse to the word ”f ... a;f” isal .. .af. For K = 1 one obtains
the infinite cyclic group 1 >~ Z. For K > 2 the group ¥k is non-abelian.
So, the claim is that

m (C\({z1} v - U {zx}), z4) =~ Fk (1.3.6)

where z; # zj fori # j, zy # z; forany i = 1,...,K. To establish the isomorphism (1.3.6) we choose
loops a, . . ., ag on the punctured plane as follows. The loops must have no pairwise intersections
either self-intersections except for the common point z.; the loop «; has inside only one puncture
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z;; it goes around it in the anticlockwise direction. The homotopy classes of these loops correspond
to the generators of the free group

111 (C\({z1} U -~ U {zk}),24) 3 @i < a; € Fk.

To justify the above statement for K > 2 we will construct a universal covering over the
complex plane with K punctures and describe the action of the fundamental group on the fiber.
We will do like it was done above for the case of complex plane with one puncture, namely, we
replace the complex plane with K punctures by a homotopy equivalent space that is bouquet of
K circles, see Figure 1.9 for the case K = 2. Construction of the homotopy equivalence is left as
an exercise to the reader. The fundamental groups of the punctured plane and of the bouquet are
isomorphic so we will be computing the latter.

Figure 1.9: Generators of the fundamental group of complex plane with two punctures

The bouquet is not a manifold for K > 2. Nevertheless Proposition 1.3.28 remains valid also
in this case. The universal cover of the bouquet of K circles is an infinite graph with no cycles
(such graphs are called trees) with all vertices of valency 2K, see Figure® 1.10 for K = 2. The edges
of the graph are oriented and labelled by symbols a3, . .., ax (on Figures 1.9 and 1.10 for K = 2).
At every vertex there are K incoming edges labelled by a4, ..., ax and K outgoing edges with the
same labels. The covering map from the graph to the bouquet of oriented circles acts as follows:
the vertices of the graph go to the common point z,., any edge labelled by a; goes to the i-th circle
according to the orientation. Choose a vertex of the graph. Then the lift of a product a— oz of s
loops with the initial point at the marked vertex will be a walk of length s on the graph that starts
from the marked vertex and goes successively along the edges aT i in positive or negative

directions according to the signs +. The isomorphism (1.3.6) readily follows from this description
of the lift.

Exercise 1.3.32: Compute the fundamental group of the Riemann sphere with K punctures.

Remark 1.3.33. From Theorem 1.3.34 it follows that the universal covering of the complex plane
with K punctures is a simply connected Riemann surface. So, according to the Uniformization
Theorem (see Section 1.1.2 above) it must be biholomorphically equivalent to the one of three:
P!, C or the upper half plane H. For K = 1 we already know that the universal covering of the
punctured complex plane is C. It turns out that the universal covering of the complex plane with
K = 2 punctures is IH. For more details see below Section ??.

8This graph is perhaps the most known example of Cayley graphs. There are many ways to draw this graph; we have
chosen the one found in the book by W.Fulton [26] as the most appropriate one to illustrate ideas of topology of coverings.
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Figure 1.10: Universal covering of figure-eight

Theorem 1.3.34. Let M be a smooth connected manifold. Then there exists a smooth manifold M and a
smooth locally diffeomorphic map p : M — M such that the triple (M, M, p) is a universal covering. Sucha
covering is unique up to an equivalence in the sense of Definition 1.3.3. A similar statement holds true for
connected complex manifolds M. Then the covering space M is a complex manifold as well and the covering
map p is holomorphic and locally biholomorphic.

Proof Let Py € M be an arbitrary point. We define M as the set of equivalence classes of paths
y : [0,1] — M such that y(0) = Py. Two paths y and 7 are called equivalent if (1) = y(1) and
they are homotopic with fixed end points. Denote [y] the equivalence class of a path y. The map
p: M — M is defined as follows

p(ly]) = y().

Observe that the preimage p~1(Py) of the point Py can be naturally identified with the fundamental
group 7t1(M, Py). Therefore it is at most countable as it follows from the following Lemma.

Lemma. The fundamental group of any manifold is at most countable.

For the proof see e.g. [21].
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We now continue the proof of Theorem 1.3.34 by introducing a topology on the set M. For
any point P € M we define a family of admissible pairs (U, €) where U is a chart of an atlas on M
with local coordinates x,.. ., x, such that P € U and a positive number € satisfies the following
condition: the ball B.(P) of radius € centered at P

Be(P):={>.(xi— ) <€}, ) =x(P), i=1,...,n
i=1

is entirely contained in U. Here # is the dimension of the manifold M. Now, let y be a path on M
with y(0) = Py and let (U, €) be an admissible pair for the point y(1). Define a subset V (;¢)(y) M
consisting of the equivalence classes of the paths of the form yp where p is a radial path inside
the e-ball centered at y(1) with the initial point y(1). Here the product of the paths y and p is
defined like it was done above for the product of loops, namely, we first go along y from y(0) = Py
to y(1) = p(0) then proceed along p till p(1). Clearly the subset V(¢ (y) depends only on the
equivalence class of the path y. For any pair (U, €) admissible for (1) the subset V ;¢ (y) will be
considered as an open neighbourhood of the point [y]. We leave as an exercise for the reader to
verify that this collection of open subsets defines a base” of topology on M.

For any pair (U, €) admissible for a point P € M the full preimage of the e-ball centered at P is
equal to

p ' BP)= | Ve (1.3.7)
[ylep=1(P)

where by definition p~}(P) = {[y] | 7(0) = Po, y(1) = P}. Itis easy to see that

Ve (r1) n Ve (y2) = & it ] # [r2l-

Thus the full preimage (1.3.7) is a disjoint union of open subsets V¢ () with y € p~'(P). Finally
we observe that the map

P Ve () — Be(y(0))

is one-to-one and, therefore it is a homeomorphism. We conclude that (M, M, p) is a covering
indeed.

Let us now prove that the space M is connected. We have to show that any pair of points [y1],
[2] can be connected by a path. It suffices to prove it for the particular case of constant path
y1 = yiqa where yiq(t) = Py. Then the needed path T : [0,1] — M has the form T'(s) = [y2(st)].

It remains to prove that M is simply connected. A loop with the base point at the constant path
¥id can be considered as a map of the square to M

I'(t,s)eM, (ts)e[0,1] x[0,1] satisfying TI'(t,0)=T(t,1)=Py and TI(0,s)= Py.
Take the map of the unit cube with the coordinates (t,s,r) given by

I(t,s,r)=T(rt,s), re]l0,1].

9 A base of topology on a set X is a collection of subsets V,, X covering X such that for any pair V, V with non-empty
intersection and any point x € V, n Vj there exists V), such that x € V), © V,; n V. Using a base one can introduce
topology on the set X defining the open subspaces as unions of arbitrary families of elements of the base. We refer the
reader to the book [?] for further details.



58 CHAPTER 1. RIEMANN SURFACES

It provides a homotopy between the original loop (for r = 1) and the constant loop I'(t,s,0) = Py.
Thus m1 (M, [yid]) = 1.
Uniqueness of the universal covering follows from

Lemma 1.3.35. Let (Ml,M,pl) and (M, M, p2) be two universal coverings. Fix a point Py in the base

and choose points Py € M, and P, € M, such that p1(P1) = p2(P2) = Po. Then there exists a unique map
f: My — M, satisfying p, o f = p1 such that f(P1) = P,. Moreover, this map is a homeomorphism.

Proof Let P € M, be an arbitrary point. Choose a path y; < M; connecting P; with P and let
y = p1(y1) = M be its projection to the base. Its initial point is (0) = Py. Denote y, < M, the lift
of y to M, with the initial point y,(0) = P,. Put f(P) := y2(1). The choice of the lift y is unique
due to the condition f(P;) = P,.

Due to connectedness and simply-connectedness of M; the construction of f works for any
point P € M; and it does not depend on the choice of the path y;. Observe that p;(P) = pa2(f(P)).
That is the map f : M; — M, satisfies the condition p o f = p; from Definition 1.3.3 of equivalence
of coverings. The inverse map f~' : M, — M can be constructed in a similar way. Therefore the
map f is one-to-one. Let us now prove that it is continuous.

Let U, = M, be an open neighbourhood of f(P). For a sufficiently small € > 0 we can find an
open e-ball B.(Q) < M centered at the point Q := p1(P) = p»(f(P)) and two open neighbourhoods
V1 < M and V, < M, containing the points P and f(P) respectively such that the projections

p1: V1 g BG(Q) and p2: Vz g BG(Q)

are homeomorphisms. Put
U1 = V1 M pl_l(PZ(UZ)) C Ml.

It is an open subset in M;. Obviously it contains the point P. We will now prove that f(U;) < U,.
Let P’ € U; be an arbitrary point. In order to compute f(P') we choose a path ¥, = M,
connecting P; with P’ in the following way

Y1 =71,

where p; < Vj is the lift of the radial path p in B(Q) from Q = p1(P) to p1(P’) with the initial point
P. Recall that p;(P’) € p2(Uz). Now we have to lift the path p;(y]) = yp to M, with the initial
point P,. The resulting lift has the form

yy = y2p2 where p, = pz_l(p) N Vs.

Hence the end point p,(1) = f(P’) belongs to V, n Ua.
The continuity of the inverse map f~! can be proved in a similar way. This completes the proof
of Lemma. O

We have completed the construction of the topological space M of the universal covering as
well as of the covering map p : M — M that is a local homeomorphism. We have now to prove
that the universal covering space over a smooth manifold is a smooth manifold itself. Similarly if
the base is a complex manifold then so is the universal covering space. This follows from
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Lemma 1.3.36. A covering space X over a complex'’ manifold Y inherits a structure of complex man-
ifold. With respect to the constructed complex structure the covering map p : X — Y becomes locally
biholomorphic.

Proof Let (Vg, ¢pg)pep be a complex atlas on Y. For any point P € Y and any § € B such that P € Vg

denote Upg = Up n V3. We obtain a new complex atlas (Up, 8 Pp on Y. The components

|Up,,; PeY, peB
of the preimages p~! (Upg) with the coordinate maps Q — ¢plups (P(Q)) provide a complex atlas
on X. This structure is second-countable since the fiber of the covering is at most countable. The
Lemma and, therefore the Theorem 1.3.34 is proved. O

Exercise 1.3.37: Let G < m1(M, Py) be a subgroup of the fundamental group of a connected
manifold M. Prove that there exists a covering (Mg, M, p) such that 11(Mg, Qo) ~ G where

Qo € p~'(Po).

We will now define an action of the fundamental group of the base on the universal covering
space. Let us first recall some basics about group actions.
Let G be a group and X a topological space.

Definition 1.3.38. 1. We say that the group G acts on the space X if for any g € G there is a homeomorphism
T,: X — X satisfying T 0Ty, =Tgq, Vg1, 8€G. (1.3.8)

In particular T,=id. Here e is the unit of the group.

2. A point x € X is fixed for the map T if T¢(x) = x. The action (1.3.8) is called fixed points free if T
has no fixed points for g + e.

3. The group G acts discontinuously on the space X if for any x € X there exists an open neighbourhood
Vi 3 x such that To(Vy) n Vi = & forany g # e.

Exercise 1.3.39: Let the group G act discontinuously and fixed points free on the space X. Define
the quotient space X/G in the following way. Points of X/G are orbits

O, = | T(x).

8eG

To introduce a base of topology on X/G define subsets

Vv=|Jo,=x/G

yeVy

for any x € X. Here the open neighbourhood V, of the point x is as in the part 3 of the above
Definition. Prove that the triple (X, X/G, p) where the map p : X — X/G is given by

p(x) = Ox

is a covering.

10Needless to say that the construction works for smooth real manifolds as well.
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Example 1.3.40. Define an action of the group of integers on the real line by
Rax—x+n neZ. (1.3.9)

Clearly this group action is fixed point free. For any interval I of the length less than 1 and any
nonzero integer n we have I n I +n = (. So the group Z acts on R discontinuously. The quotient
of the real line over this action coincides with the quotient IR/Z of the additive group of real
numbers over the subgroup of integers. As a real one-dimensional manifold it can be identified
with the unit circle |z| = 1 on the complex z-plane by the map

7 = eZnix.
So the factorization map R — R/Z coincides with the covering of Example 2?.

Another way for the identification of the quotient IR/Z with the circle is the following one.
Consider the segment [0,1]. In the equivalence class of any non-integer real number there is a
unique representative belonging to the inner part of the segment. Integers have two equivalent
representatives at the end points of the segment. Thus to obtain the set of equivalence classes wrt
the action (1.3.9) one has to identify the end points of the segment resulting in a circle.

The above construction is the simplest example of a fundamental domain for a group action
on a topological space X. Roughly speaking a fundamental domain is a subset D < X of unique
representatives of all orbits of the group action. For the group action (1.3.9) the choice D = [0,1)
is fine. In many cases however it is more convenient to slightly modify the definition assuming
that D is a closed subset containing representatives of all orbits containing no equivalent pairs
of points in the internal part of D but some repetitions allowed on the boundary. The segment
D = [0, 1] fits into this modified definition. In sequel all examples of fundamental domains will
also be treated according to the modified version of the definition.

Example 1.3.41. An action of the group Z @ Z on the real plane R? will be defined by
(xy)— (x+my+mn), mneZ. (1.3.10)
The quotient R?/Z @ Z can be identified with the two-dimensional torus T? = S! x S' by
(x, y) — (27, ¢2).
For the fundamental domain (see the previous Example) one can choose the unit square [0, 1] x
[0,1] = R?. The points on the opposite sides of the square must be identified as
(x,0)~(x1), 0<x<1l, Oy ~1y, 0<y<l

in order to obtain the set of all orbits of the action (1.3.10). After gluing together the opposite sides
of the square we again obtain a torus.
The above construction can be easily generalised to multidimensional tori.

We will now explain an important construction of an action of the fundamental group of a
manifold on its universal covering space.

Theorem 1.3.42. Let M be a connected smooth manifold and (M, M, p) its universal covering. Then the
fundamental group of M acts on M by diffeomorphisms

Ty:M—M Yyemn(M,P)

discontinuously and fixed points free. Here Py € M is an arbitrary point. If M is a complex manifold then
the maps T, are biholomorphic.
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Proof Choose a point Qg € M such that p(Qo) = Py. Connect Qo with a given point Q € M by a
path yo. Let yg = p(Yo) be its projection to M. For any loop y € 1t1(M, Py), define a new path

Yo =770

Let y(, be the lift of y, with the initial point Qp. Denote Q' the end point of 7, and put

Ty(Q) = Ql~

As the space M is simply connected the resulting point T, (Q) does not depend on the choice of
the path . It depends only on the homotopy class of the loop y. The superposition T,,(T,,(Q))
for two loops y1, 2 in 71 (M, Py) can be obtained by lifting the path y1y,yq. Therefore

T

noTly,=T

nya

In particular T,-+ = (T,)~!. Thus for any y € n1(M,Py) the map T, : M — M is a bijection.

Contiinuity of this map as well as of the inverse map can be proved in the way similar to the proof
of continuity of the map f in Lemma 1.3.35. If Q is a fixed point of T, then the paths yg and y yg
are homotopic with fixed end points. Hence y is homotopic to the constant loop. This implies that
the action of the fundamental group 7t;(M, Py) on the universal covering space M is fixed points
free.

It remains to prove that it acts discontinuously. To this end for a given point Q € ]\71 we choose
an open neighbourhood V/q) of its projection p(Q) such that the full preimage p~—' (V,(q)) is
homeomorphic to V) x F. Points of the fiber F of the universal covering can be 1dent1fled via
the monodromy action, with elements of the fundamental group. Let Ug be the component of the
preimage p~' (V,(q)) containing the point Q. Then the images T, (Ug) for y € 711 (M, Py) will have
no intersections. O

We will return to these constructions in Section ?? considering universal coverings of Riemann
surfaces.

1.3.2 Riemann surface of an algebraic function: the general case

Let us return to the study of Riemann surfaces of algebraic functions. For an irreducible monic
polynomial
F(z,w) = w" + a1 (2)w" ' + - -+ + a,(2) (1.3.11)

of degree n in w introduce a finite set of critical points Crit — C taking zeros of the discriminant of
F

Crit = {z € C| Ar(z) = 0}.

Denote .
C =C\n ! (Crit) (1.3.12)

where C is the complex algebraic curve

C = {(z,w) e C* | F(z,w) = 0} (1.3.13)
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and
n:C—->C, mn(zw)=z (1.3.14)

is the projection. The punctured curve C has a natural structure of a one-dimensional complex
manifold.

Lemma 1.3.43. C is a n-sheeted covering space of C\Crit with respect to the projection
n:C — C\Crit. (1.3.15)

The map 7 is defined in (1.3.14).

Proof Let zp be a point in C\Crit. Then for every point P € t~!(zy) one can use z as a local
coordinate. In other words, there exists a positive number ep and a neighbourhood Up of P such
that the map
7: Up — {|z — 2| < €p}
is biholomorphic. Put
€= min €p

Pen—1(zp)

and denote U = {|z — zo| < €}. Order the points Py, ..., P, in 7~ !(zp). Then the preimage 7t~ (U)
has the form

nHU) = U u, U= U{(eri(z))}
i=1

zel

where w;(z) is the branch of the algebraic function w(z) near P;. The biholomorphic map
p:n N U) - Ux{1,2,...,n}, (z,wi(z))~ (i)
is the needed homeomorphism. O

Choose a complex number z, € C\Crit.
Definition 1.3.44. The monodromy (anti)homomorphism
p 7 (C\Crit, zy) — Aut (17 (z4)) (1.3.16)

of the covering (1.3.15) (see the Definition 1.3.21) is called the monodromy of the algebraic function w(z)
defined by the polynomial equation F(z,w) = 0.

The preimage 7!(z,) consists of n distinct points. Ordering them in an arbitrary way
(Za, W1(24)), -+, (24, Wi (24))
we can rewrite (1.3.16) as a homomorphism into symmetric group
p: 71 (C\Crit, zy) — Sy (1.3.17)

Recall that a change of the base point z, gives rise to an equivalent representation.
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Example 1.3.45. For the hyperelliptic curve

k
C:{(z,w)eC2|w2:n(z—ai)}, a;#a; for i#j

i=1

the set Crit consists of the branch points

k
Crit = U{ai}.
i=1
The punctured curve
k
¢ =\t 0)
i=1

is a two-sheet covering of C\Crit.
For a loop y < C\Crit encircling just one branch point the monodromy along y changes the

sign of w(z) = \/T]_;(z — a;). Thus

uy)=(12) e S,

is the permutation between 1 and 2. For a loop encircling two branch points the monodromy is
trivial. More generally, for a loop y encircling m branch points

[ (12)eS;, m =odd
Hy) = { ide S,, m = even.

Let f = f(z,w) be a function on C. Restricting it at the points of the preimage 7! (z4) ordered
in some way we obtain n numbers f(zy, w1(zx)), - .., f(Zs, Wn(2x)). We say that f is monodromy
invariant over z,, if, for any loop y € ©t;(C\Crit, z,.) we have

f(ze, Wup) i) (24)) = f(ze,wi(z4)) Vie{l,2,...,n}.

For example the symmetric functions
wl(z*)k ++ wn(z*)k

for any integer k are always monodromy invariant. If f(z,w) is locally holomorphic near the
points in 7~ !(z,) then the above invariance holds true over z in some neighbourhood of z.
Finally, if f(z, w) is meromorphic on C then, applying analytic continuation we obtain monodromy
invariance over any pointz € C\Crit. In this case we will simply say that the meromorphic function
f is monodromy invariant.

Proposition 1.3.46. Assume irreducibility of the monodromy (1.3.16). Let f = f(z, w) be a meromorphic
function on C growing at most polynomially at the punctures in =" (Crit) as well as at infinity. Suppose
f is invariant with respect to the monodromy representation. Then f = f(z) and this is a rational function
of the complex variable z.
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Proof Because of the monodromy invariance and transitivity of the monodromy, the function
f(z,w) depends only on z. Therefore it is a meromorphic function on C\(Crit U {o0}). Due to
the assumptions about the polynomial growth, it has removable singularities (See e.g. []) at the
points of the set Crit U {o0}. Hence it can be extended to a meromorphic function C. So it must be
a rational function. O

We will now prove connectedness of C.
Theorem 1.3.47. For an irreducible polynomial F(z, w) the manifold C is connected.

Proof Suppose C is not connected. According to Lemma 1.3.26 it implies that the monodromy
action is not transitive. That means that there exists a partition

(1,2,...,n} =1u]

into two nonempty sets I = {iy,...,i,} and | = {ji,..., j;}, p + g = n such that, for a given point
z € C\Crit after a suitable ordering of the points in the preimage 71~!(z) the subsets

(G, @), (2 w,(2)} and {(zw,(E)),..., (2w, (2)
are both invariant with respect to the monodromy
1 (C\Crit, z) — Aut (n™'(z)) .

Let us assume the action of the monodromy on both subsets I and ] to be irreducible. Consider
two polynomials

Fi=(w—w;(z)...(w—w;,(z)) and Fj=(w—wj(z))...(w—wj(z)).

They are locally well defined and monodromy-invariant. We will now extend them onto C\Crit.
Let z’ ¢ Crit be another point. Connect it by a path y < C\Crit with z. The n lifts of y establish
a one-to-one correspondence between the sets 7~!(z) and 7~!(z’). Denote I’ and ]’ the images of
the subsets I and | with respect to this correspondence. They have the same cardinalities p and g
respectively. These subsets are monodromy-invariant with respect to the representation

71 (C\Crit,z') — Aut (n'(')) .

Analytically continuing the roots w;, (z), ..., w;,(z) of the polynomial F; along the lifts of ) that
start at the points of I we obtain the needed extension of F; to the point z’. In a similar way
we extend the polynomial F;. Due to the above arguments about monodromy-invariance the
resulting extensions do not depend on the choice of the path y. So, according to Proposition
1.3.46 the coefficients of these polynomials are rational functions in z. Clearly F = a¢(z)F;F;. This
contradicts irreducibility. In the more general case where the action of monodromy on I and/or |
is reducible we split them into smaller subsets such that the monodromy acts irreducibly on each
of them. Repeating the above arguments we arrive at a factorization of F(z, w) into a product of
more than two factors. U

We now pass to the main point of this Section: to the construction of Riemann surface of an
algebraic function. We do it in the following way. Start from the open manifold C asin eq. (1.3.12).
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Then add to it a finite number of points and introduce local coordinates on neighbourhoods of
these points. The last step is to compactify the resulting Riemann surface. To this end we add a
finite number of points at infinity. Remarkably all prescriptions for this construction are encoded
in the monodromy of the covering C — C\Crit.

Theorem 1.3.48. Let C be the complex algebraic curve F(z,w) = 0 defined by an irreducible monic
polynomial of degree n in w. Then there exists a compact Riemann surface S and two holomorphic maps

2:8 - C,and ® : 8 — C,, onto the extended complex z- and w-plane respectively such that

(i)
F(&(P),®(P)) =0 VYPeS;

(ii) the map
p:S\& N (Crit u{x}) > C, P (z=2P),w=n(P))

is biholomorphic;
(iii) if the algebraic curve C is smooth then S\2~1({=0}) = C.

Let us begin with constructing the finite part Sgnite 0f the Riemann surface; the infinite points
will be added later. We will follow the notations introduced in the beginning of this section. Let
2z be a zero of the discriminant Ar(z). Choose a point z; close to zg but away from Crit. Order
in an arbitrary way the points in the preimage 7~'(z;). Consider the monodromy transformation
og€ES,

o:m Yz) - nl(z))

generated by lifting the anticlockwise loop around zy. Decompose the permutation ¢ into product
of cycles

0 = (il,...,ip)<j1,...,jq)"'(l],...,ls)

of the lengths p, g, ..., s,
p+q+--+s=n

corresponding to a partition of the set {1,2,...,n} into disjoint union of subsets {iy,...,i,},
{ji,---rjgts -+, {li,..., I}, Such a decomposition always exists and is unique [3]. For every
such cycle we add to C a point. It will be a ramification point with respect to £ of the new Riemann
surface Sginite Of the ramification index = length of the cycle - 1. We will explain the construction
for the first cycle (i, ..., 1,).

In a sufficiently small neighbourhood of z; we have p branches w;, (z), .. ., wi, (z). Anticlockwise
analytic continuation around zy permutes them cyclically

wi, (zo + (z —20)e®") = w; (2)
wi, (z0 + (z —20)€*™) = w;, (2)

wi,_, (zo+ (z — zo)e%”i)
wi, (20 + (z—20)e*™) = w; (2)

Il
S
-
—~
N
~
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Take a punctured disk
={teC|0<|t| <€}

for a sufficiently small € and consider the function
(1) = wj, (zo + 7)

on D. Since w;, (z0 + (z — z0)e¥™) = wj, (z) we conclude that @(7) is a single valued holomorphic
function on D. We obtain a holomorphic map

D—>C, 1 (z0+ 7, m(1)). (1.3.18)

Dy={zeC|0<|z—2z <€}

and-the-degree-of the-through-map

D — Dy
equalsp— It remains to observe that w;, (z) — wo when z — z; along radial directions, for any
k=1,...,p. Here w = wy is a root of the equation F(zy,w) = 0. Therefore T = 0 is a removable

singularity for the function @(t). We define it as the new point P; € Sginite added to C. The map

_ (zo + 7, @0(7)), T+#0
={teC||t|<e} > S T'—>{ P, =0

provides a chart on a neighbourhood of P;. Put

2(P)=z, P=(zw)eC
2(zop+ 7, @0(7)) =20+ 7, 2(P1) =

and

®(P)=w, P=(zw)eC
W (zo + v, @(7)) = @(1), @(P1) = wo.

It is easy to see that all properties of these maps formulated in the Theorem hold true. This
completes the construction for the first cycle in the decomposition of the monodromy o . For other
cycles the construction is identical, so we obtain a new point P, € Sginie for the second cycle etc.
Then we proceed to other zeros of the discriminant.

The last step is in compactification of the Riemann surface Sgnite. Denote { = 1/z the local
coordinate near the infinite point of C.. Let us rewrite the algebraic equation F(z,w) = 0 in the

variables C, w taking
E(C,w) = CNF (%w)

where N = max{degay(z),...,dega,(z)}. This polynomial is not monic in w so we do one more
substitution (cf. footnote 4 above) by introducing a new variable

w

N
w=wl" =—
N
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and define a new polynomial

Foo(C, ) = (NO-DF (C C_N> C"NF <C CN> ; )N

monic of degree n in w. We can now proceed with analysis of the local monodromy o, € S,
interchanging the branches of the algebraic function (C) as the result of the anticlockwise analytic
continuation along a small loop around the point ¢ = 0. Factorizing 0, into a product of cycles we
obtain the prescription for adding to Senite SOme points over the infinite point C = 0 of the extended
complex plane C,. One important observation about the local monodromy ¢, has to be taken into
account. Namely, to the small loop |(| = € around infinity running in the anticlockwise direction
it corresponds the big loop |z| = 1/e running in the clockwise direction. Hence the monodromy
0« describes the clockwise analytic continuation of the branches of the algebraic function w(z)
along such a big loop. Let € be so small that the circle |z| = 1/e contains inside all zeros zy, ...,
zk of the discriminant. Choose a point z,. on the circle such that the segments connecting z,. with
Z1, ..., zx do not have common internal points. Order the zeros of the discriminant in such a
way that the segments follow in the anticlockwise direction, looking from their common point z,
. Running along the i-th segment from z., to a point close to z; then along a small loop around z;
in the anticlockwise direction and finally returning back to z along the same segment we obtain
a loop y; € 1 (C\Crit, z.). Denote g; = u(y;) the monodromy along the loop y;. Our claim is that

0w = [y1y2...yx] 7. (13.19)

Indeed, the loop given by the circle |z| = 1/e run in the anticlockwise direction is homotopic
to the product y1)>...ykx. Inverting the direction we obtain the inverse of this element in the
fundamental group 71 (C\Crit, z,.). This proves eq. (1.3.19).

We are now to prove that the constructed one-dimensional complex manifold S is connected
and compact. Connectednes immediately follows from Theorem 1.3.47. Let us prove compactness.

Let Q1, Qz, ...be an infinite sequence of points in S. Due to compactness of the Riemann
sphere there exists a subsequence Q;,, Qj,, . .. such that 2(Q;,) converges to some point zg € C for
s — oo (it may happen that zg = co. Let us first consider the case where z is not a branch point wrt
the map 2 that is at all points Py, Py, ..., P, of the preimage 271(zp) the derivative of 2 wrt the local
parameter does not vanish. Then Z is locally biholomorphic near every point Py, ..., P,. There
exists at least one point P; such that its neighbourhood contains an infinite number of points Q;..
This subsequence of subsequence converges to P;.

Consider now the case where z is a branch point. Then the preimage consists of m < n points
Py, ..., P, of multiplicities ki, ..., k;, respectively. Therefore for every j = 1,...,m there exists a
neighbourhood U; of P; such that the map

U\P; — {0 < |z — 29| < €}

for some € > 0 is a covering of degree k;. Repeating the above arguments we obtain a subsequence
of subsequence of points Q; € S convergent to P; for some j = 1,...,m. This completes the proof
of compactness of S.

It remains to consider the case of smooth algebraic curves C. Let (z9,wp) € C be a ramifica-
tion point of the ramification index p — 1. One can use the w-coordinate as a local parameter
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near this point. Another coordinate is a holomorphic function of the local parameter on some
neighbourhood of wy

zZ=12zy+ Z cr(w — wo)k.
k=1

Due to our assumptions the first nonzero coefficient is c,. Introduce a holomorphic function

1

C
1/p(w—wo) 1+ Z ﬂ(w—wo)k

T(w) = ¢, .
k=1 P

The inverse function is also holomorphic for sufficiently small |7|; denote it @(7). We have
z=z0+ 1, w=wy+D(1). (1.3.20)

So in this case we do not need to add new points as the function @(7) is holomorphic at T = 0 and
@(0) = 0. As the projection (z, w) — z has degree p near (zo, wy) the local monodromy around zy
of the function w(z) defined by (1.3.20) is a cycle of length p. The Theorem is proved. O

Example 1.3.49. Consider the algebraic function w(z) defined by equation
w?* =22 (z + 1).

The discriminant is equal to 4z?(z + 1), so Crit = {0} U {—1}. The point (z = —1,w = 0) is a smooth
point of the corresponding algebraic curve C; it is a ramification point of the ramification index
1. Another point (z = 0,w = 0) is a singular point of C. Near z = 0 the function w(z) has two
branches w1,(z) = +z+/z + 1. The analytic continuation along the circle |z| = r, ¥ < 1 does not
interchange these two branches. Therefore the corresponding monodromy is the identity

id = (1)(2) € S,.
So we have to add two points Py, P, to the punctured curve
Stinite = (C\{(0,0)}) L {P1} L {P2}
fi(P12) =0€C, p(P12)=(0,00eC

and these points are not ramification points of S with respect to ft : S — C.

As we have only one branch point on C then, due to (1.3.19) there is also a branch point at
infinity. The monodromy around infinity interchanges the two branches of the algebraic function
w(C) defined by equation

w* =+

Here
S
o e

Observe that this curve has a cuspidal singularity at (C = 0, w = 0). According to the constructions
of the Theorem we have to add one point P, to Sknite and introduce a local parameter 7 near this
point by

=12
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We obtain a function
(1) =T V1+12
holomorphic for |7| < 1. In the original coordinates we have
Z = —
2

and the function w has a pole of order 3 at Py,

w:%\/1+12.

It is easy to find a realization of the Riemann surface Sginite as a smooth algebraic curve. To this
end consider the curve defined by the equation

@’ =z+ 1.

Obviously it is smooth. It has two points P, = (z = 0, = +1) above z = 0. Define a map
p: Stinite = C,  p(z, ) = (z,z0).
It is biholomorphic for z # 0, co and it maps both the points P; and P; to (0,0). Adding, like above

a point P, to Shinite We obtain a realization of S.
Example 1.3.50. Consider the hyperelliptic curve

2n+1
w? =z g 4 ag = H (z—zi), zi#zj for i#]
i=1

It has 2n + 1 branch points z = z1, ..., z = z2,11. The monodromy around every of these points is
the permutation (12) € S,. Fromeq. (1.3.19) using the obvious identity (12)? = id it follows that the
monodromy around infinity is the same permutation (12). Therefore the Riemann surface of the
algebraic function w(z) has one infinite point P, and it is a ramification point of the ramification
index 1. Like in the previous example we introduce the local parameter near P, by

z==.
2

The function z has a pole of order 2 at Py, and the function

1

_ 2 4n+2
w poTES) \/1 + a7 + A2y 41T

has a pole of order 2n + 1.
Example 1.3.51. Consider now a hyperelliptic curve with even number of branch points
2n+2

w? = 22" g L g, = H (z—2z), zi#z; for i#]
i=1
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Applying again eq. (1.3.19) we conclude that the monodromy around infinity is trivial. Therefore
the Riemann surface of the algebraic function w(z) in this case has two infinite points PZ and these
are not ramification points. That means that the local parameter 7 near this points coincides with
C=1/zor

1

z=-.

T
Thus the function z has two simple poles at the infinite points PZ and w has two poles of order
n+1

1 +
w=t- \/1 +@mT A+ AT, (z,w) — P

We conclude this section with three remarks.

Remark 1.3.52. The constructions we used in the proof of Theorem 1.3.48 are close to the Riemann’s
original approach to the idea of Riemann surface. Taking #n copies of complex plane with cuts
between the critical points he glues the copies along the cuts where the rules of glueing are
prescribed by the action of monodromy. The simplest example of this procedure was already
considered above in Section 1.1.1 in the construction of Riemann surface of +/z. Further examples
will be considered below in Section ??.

On this way Riemann arrived at the following important result.

Riemann Existence Theorem. Let z1, . .., zx be distinct points of complex plain and
[J : 7:[( - Sn

an (anti)homomorphism of the free group with K generators to the symmetric group S, such that the image
acts transitively on the set {1,2,...,n}. Then there exists a n-sheeted Riemann surface with branch points
at zi, ..., zx and, possibly, at infinity (see eq. (1.3.19) above) with the monodromy .

Exercise 1.3.53: Prove Riemann Existence Theorem for n = 2 and arbitrary K.

Exercise 1.3.54: Prove Riemann Existence Theorem for K = 1 and arbitrary n.

Remark 1.3.55. In this Section we have started from an irreducible polynomial equation F(z, w) = 0
to construct what was called compact Riemann surface of the algebraic function w(z) defined by
this equation. It turns that any compact Riemann surface can be obtained in this way. The precise
statement is given by the following theorem.

Theorem. Let S be a compact Riemann surface. Then there exist two meromorphic functions z, w :
S — C satisfying the identity
F(z(P),w(P)) =0 VYPeS
for some irreducible polynomial F(z,w). S coincides with the Riemann surface of the algebraic function
w(z) defined by the equation F(z,w) = 0.

The Theorem will be proven in Section 3.1.5 below.
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Remark 1.3.56. The most powerful tool for computing the local monodromy of an algebraic function
around a critical point uses Newton polygons to obtain expansions of the branches of this function
in Puiseux series. Let us illustrate this procedure using the results of Example 1.4 above. Namely,
we will describe the local structure of the Riemann surface associated with the algebraic curve
(1.2.37) near the branch point z = 0. There were obtained 8 different Puiseux expansions

w(z) =224+ ..., wy(z) = =z + ..., ws(z) = V2271 +

of solutions w(z) to the equation F(z, w) = 0 of degree 8 in w. They correspond to 8 sheets of the
Riemann surface. Label the branches of w(z) according to the order they were written above. The
local monodromy z — z¢?™ around z = 0 is given by the permutation

1 23 4567 8
1265 3 487)
It factorizes into product of four cycles

(1)(2)(3645)(78).

Thus there are four points on the Riemann surface over z = 0, two of them regular i.e. of
multiplicity 1, one point of multiplicity 4 and one of multiplicity 2.

Exercise 1.3.57: Prove that the monodromy group of the Riemann surface of the algebraic func-
tion defined by a generic polynomial equation of the form (1.2.27) coincides with the complete
symmetric group S, . Hint. Show that the branch points of such a surface can be labeled by pairs
of distinct numbers i # j, (i, j = 1,...,n) in such a way that a circuit about the images of the points
P;; and Pj; gives rise to a transposition of the i-th and j-th points of the fiber ( when these points
are suitably numbered).

1.3.3 Meromorphic functions on compact Riemann surfaces and branched
coverings of P!

Recall that a meromorphic function on a Riemann surface S is nothing but a holomorphic map
f:S—P!

of the surface to the Riemann sphere. The points in the preimage of the infinite point {c0} € P! =
C U {0} are called poles of f, other points on S will be called ordinary points. If P € S is a pole of
f then the function can be expanded in a Laurent series

f= Z at, m>0, c_n,#0

i=—m
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convergent on some punctured neighbourhood of the point P. Here 7 is a local parameter near
P € S such that 7(P) = 0. The positive number m is called the order of the pole. Near an ordinary
point the function can be expanded in a convergent power series

f=fP)+ > ar
i=1

The number
m = min{i | ¢; # 0}
i=1

is called the multiplicity mults(P) of the ordinary point P wrt the map f : S — P!, cf. Definition
1.2.11. If Pis a pole of f of order m then we put mult¢(P) = m. It is easy to see that the multiplicity
of a point is independent of the choice of local parameter. Moreover, one can always choose a
local parameter 7 near a point P € S, either an ordinary one or a pole, and a local parameter C near

f(P) e C such that the map f is locally written as
C=1", m=mults(P). (1.3.21)

The points of multiplicity one will be called regular points of the meromorphic function. All other
points in S will be called ramification points of f.

Example 1.3.58. Let S be the compact Riemann surface of an algebraic function w(z) defined by an
irreducible polynomial equation F(z, w) = w" + a1 (z)w" ! + - - - + a,(z) = 0. From the construction
of Theorem 1.3.48 we have two holomorphic maps

z2:8>C, w:8S—C
(we now omit hats over z and w used in the Theorem) satisfying the identity
F(z(P),w(P))=0 VPeS.
Let us look at regular points and ramification points on S wrt the map f = z. First, let Crit c C
be the finite subset in the Riemann sphere consisting of all zeros of the discriminant Ar(z) plus

the infinite point. Denote S = S\z~!(Crit). Then any point in S is a regular point wrt the map z.

Moreover, the holomorphic map z : S — C\Crit is a covering of degree 1.
So, the ramification points can be found only in the finite set z~(Crit). Let zo be a point in Crit.
We associate with it a partition of

zo € Crit = apartition (my,...,m;), m; >0, my+---+m=n (1.3.22)

called the ramification profile of S over zy € Crit. Namely, choose a point z, close to zyp and
order the n points in the preimage z~!(z). Denote g € S, the permutation generated by a small
anticlockwise loop around zy wrt the monodromy representation

1 (C\Crit, z4) — S,

of the covering (S, C\Crit, z). The permutation i can be factorized, in a unique way, into a

product of I cycles of the lengths m;, ..., m;. This is the partition in question. Now we are ready
to describe the preimage z7(zy) € S of the point zy € Crit. It consists of [ points Py, ..., P; of
multiplicities my, ..., m; respectively. Since the preimage of any point away from Crit consists of
n regular points in S we assign (1,1, ...,1) (n times) as the ramification profile over zy ¢ Crit.
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Exercise 1.3.59: Describe the ramification points of the holomorphic map f : C — C given by a
polynomial of degree n

f(Z):ﬂOZnﬁLlllZ”*lJr”-Jran, ap#0, for zeC.

The above Example is a brief summary of the constructions and results of Section 1.3.2. Our
nearest goal is to extend them to arbitrary non-constant meromorphic functions on arbitrary
compact Riemann surfaces.

Proposition 1.3.60. Let f : S — C be a non-constant holomorphic map of a compact Riemann surface S.
Then

o The map f is surjective.
e The preimage of any point in C is a finite subset of S.
o The number of ramification points on S is finite.

Proof For any open subset U c S its image f(U) < C is open. This can be easily proven by using
(1.3.21). So f(S8) is an open subset in C. Since S is compact its image is also a closed subset.
Therefore f(S) = C as C is a connected Hausdorff topological space.

Let us now consider the preimage f~'(z9) c S of a given point z; € C. Suppose it consists
of an infinite set of points Py, Py, .... By definition f(P;) = zp for any i. Due to compactness
of the Riemann surface one can choose a convergent subsequence P;, — Py € S (the so-called
accumulation point of the infinite set). Using the following uniqueness statement from complex
analysis

Lemma 1.3.61. Let fi, f, be two functions holomorphic on an open connected domain U < C taking equal
values at the points of an infinite subset with an accumulation point in U. Then f; = f,.

along with connnectedness of S we conclude that f = zy. Such a contradiction proves the second
part of Proposition.

Proof of the third statement of Proposition is quite similar. Namely, if P; € S is a ramification
point then df(P;)/dt = 0 where 7 is a local parameter near P;. If the set of such points is infinite
then, using again the above Lemma and connectedness of S we conclude that f is a constant map.

0

Definition 1.3.62. Let f : S — C be a non-constant holomorphic map of a compact Riemann surface. A
point zg € C is called a branch point wrt this map if zo = f(Po) for some ramification point Py € S. The
finite set of all branch points will be denoted Branch  C.

Remark 1.3.63. If S is the compact Riemann surface of an algebraic function w(z) then the set of
all branch points wrt the map f(z, w) = z belongs to the set Crit (see above) but not necessarily
coincides with it.

Theorem 1.3.64. 1. Let f : S — C be a non-constant holomorphic map of a compact Riemann surface.
Denote C = f~ (E\anch). Then the triple

(S, C\Branch, f | 3) (1.3.23)
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is a covering of a finite degree n for some n > 1.
2. Let zy € C be a branch point and {P1} U --- U {P;} = f~'(20). Denote

m; = multfPi, i=1,...,1L
Then the ramification profile over zo wrt the covering (1.3.23) equals (my, ..., m;). In particular
my 4 -+ m = n.

Proof Let {P1} U --- U {P,} = f~1(z0) = S be the full preimage of a point z € C\Branch. All the
points Py, ..., P, are regular. So for every i = 1,...,n there is an open neighbourhood P; € U; = S
such that the restriction

f:U; — V; for some open neighbourhood V;c C\Branch of z

is biholomorphic. Put V = ()_; V.. Then f~!(V) is biholomorphically equivalent to V x
{1,2,...,n}. This proves the first part of Theorem since C\Branch is a connected complex manifold.
Let us proceed to the second part. Choose local parameters 7, ..., 7; near the points Py, ...,
P, respectively and a local parameter C near the branch point zp in such a way that 74(Py) = 0 and
the map f near Py has the form
C=1"

Note that the local parameter C is chosen independently of k; this always can be done. Near Py
the points in the preimage f~!(C,) for small |C,| have the form

2mi

1 1 1
k g k e k —1-m b
Qg):C*k, Qé):wc*k, ...,Q,(nk):a)’”k (.t where w=e™.

Replacing Cy — e¥(,. we obtain the action of the monodromy around the branch point zj of the

covering (1.3.23)
k) A~k k k k) (K
(@, Q0.0 0) = (..., 0%, ).

This is a cycle of the length my, k =1,...,1. O

The following corollary of the Theorem has a particular importance.

Corollary 1.3.65. Let f be a holomorphic map of a compact Riemann surface to the Riemann sphere. Then

D1 multg(P)

{PeS | f(P)=z0}

does not depend on z; € C.

Definition 1.3.66. The number of sheets of the covering (1.3.23) is called the degree of a meromorphic
function f on a compact Riemann surface. It will be denoted by deg f.

According to Corollary 1.3.65 the degree of a meromorphic function is equal to the number of
points, counted with multiplicities, in the preimage of any point in C.
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Example 1.3.67. The meromorphic function f on C defined by a polynomial of degree n has a
single pole at infinity of order n. Thus deg f = n. Applying Corollary 1.3.65 we arrive at the Main
Theorem of Algebra saying that the number of roots, counted with multiplicities of a polynomial
of degree n is equal to n.

Exercise 1.3.68: Let f be a meromorphic function on a compact Riemann surface S having only
one pole of order 1. Prove that f : § — C is a biholomorphic equivalence.

Definition 1.3.69. A compact Riemann surface is called rational if it is biholomorphically equivalent to
the Riemann sphere.

Exercise 1.3.70: Prove that a compact Riemann surface is rational if and only if there exists a
meromorphic function of degree 1 on it.

Exercise 1.3.71: Prove that the field of meromorphic functions (see Remark 1.1.17) on a rational
Riemann surface is isomorphic to the field C(z) of rational functions of one variable.

To conclude this section we briefly discuss more general holomorphic maps between Riemann
surfaces. Let f : §; — S, be a non-constant holomorphic map between compact Riemann surfaces
81 and S,. The following general propertes of such maps can be established in a way similar to
the particular case S, = P! considered above. Namely,

o the number of ramification points in S; is finite;
o the number of branch points in S; is finite;

e the number of points in the preimage f~!(Q) = S; counted with multiplicities does not
depend on the choice of the point Q — S;. This number is called degree of the map f and
denoted deg f.

We leave as an exercise to the reader to formulate the precise definitions of a ramification point,
branch point, multiplicity of a point.

Example 1.3.72. The holomorphic map (1.1.26) between complex tori has degree n. The sets of
ramification points and branch points both are empty.

Exercise 1.3.73: Let f : S — S, be a non constant holomorphic map of Riemann surfaces. Prove
that if Sy is compact then so is S».

Given a holomorphic map f : S — &, of compact Riemann surfaces and a meromorphic
function ¢, on S, one can construct a meromorphic function ¢ by using the pullback 1 = f*¢,

fF2(P) = p2(f(P)).

One obtains a homomorphism

f5M(S2) = M(Sh)
of the fields of meromorphic functions. It is an isomorphism iff f is a biholomorphic equivalence.

Proposition 1.3.74. A holomorphic map f : S1 — S» of compact Riemann surfaces is biholomorphic iff
deg f =1.

Proof of Proposition is left as an exercise for the reader.
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Exercise 1.3.75: Consider the compact Riemann surface S of the algebraic function defined by
equation w" = P,,(z) where P, (z) is a polynomial of degree m in z with distinct roots. Consider
the group of automorphisms of S of the form

J: (z,w) — (2, w), j=0,1,...,n—1

and define the equivalence relation (z;,w1) >~ (z2,w;) if z1 = zp and wy = e /My, for some j.
Show that the quotient surface S/] is well defined and it is biholomorphic to IP!. Determine the
ramification points of the projection map

n:8—8/].

Example 1.3.76. Consider the hyperelliptic Riemann surface S of w? = Pg.2(z). We show that

any such surface is biholomorphically equivalent to some surface S of the form @? = 132g+1(E).
Let zg be one of the zeros of the polynomial Pyg>(z), and let

1 & w
z—zp  (z—zo)8H

7 =

The point (z,0) € S goes to the infinite point of S. The two infinite points P4 € S where z — o
and w/z8™! — +1 go to (0, +1) € S. The inverse mapping has the form

1 w
z=20+ 7, W=

If Pagin(z) = (z — 20) [ 151 (z — 21), then Pog i1 (3) = T151 ' (1 + (20 — 20)2).

1.3.4 Rational versus meromorphic functions on compact Riemann surfaces

Let S be the compact Riemann surface of an algebraic function w(z) defined by an irreducible
polynomial equation F(z,w) = 0. How can we construct meromorphic functions f : S — P! on
it? We already have two meromorphic functions denoted by the same symbols z and w satisfying
the identity F (z(p), w(p)) = 0 for any p € S. More generally we can take a rational function of two
variables

P(z,w)
R(z,w) = 0w P(z,w), Q(z,w) € C[z, w] (1.3.24)
and restrict it on S, i.e., define
f(p) =R(z(p),w(p)), peS. (1.3.25)

The following simple statement says that, under a natural assumption about the denominator the
above construction produces a meromorphic function on the Riemann surface.

Proposition 1.3.77. Assume that the restriction on S of the polynomial Q(z, w) does not vanish identically.
Then the rational function (1.3.24), (1.3.25) is meromorphic on S.
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Proof Any algebraic combination of the meromorphic functions z, w is a meromorphic function
on 8. So the functions P(z(p), w(p)), Q(z(p), w(p)) are meromorphic and the latter one is not an
identical zero. The ratio of these meromorphic functions is also meromorphic. O

We will now prove the converse statement.

Theorem 1.3.78. Let S be the compact Riemann surface of the algebraic function w(z) defined by an
irreducible equation

F(z,w) = ap(z)w" + a1 (2)w" ' + - +a,(z) =0 (1.3.26)

Let f be a meromorphic function on S. Then f can be represented as a rational function of z and w.

Proof Within this proof it will be convenient to redenote by 7 : S — C the function p — z(p). Take
a generic point z on the complex plane such that its preimage 7~!(z) = S consists of n distinct
points. Ordering them in an arbitrary way we obtain two n-tuples of locally well defined functions
wi(z), ..., wy(z) and fi(2), ..., fu(z). Consider the following combinations

) = fiz) + -+ ful2)
ba(z) = wi(z)fi(z) + - + wa(2) fu(2)

ba(z) = w2 A2+t a2 fal2).

(1.3.27)

They do not depend on the choice of the order of points in the preimage hence they are monodromy
invariant. Due to the monodromy invariance of b1(z), ..., b,(z) they are rational functions in z.
We now look at (1.3.27) as at a system of linear equations for fi(z), ..., fu(z). The determinant
D(w1(z),...,wu(z)) of the matrix of coefficients of the system is nothing but the Vandermonde
determinant

D(wy(2),..., wa(2)) = | [ (wi(z) — wj(2)).

i>j

According to Exercise 1.2.5 it is equal to

D(w1(z),...,wa(z)) = 1

where Ar(z) is the discriminant of the polynomial F(z, w). So it is not an identical zero.
Using Kramer rule write an explicit formula for the solution of the linear system. For fi(z) we
have
D(b(z),wy(2), ..., wn(z))
D(w1(z), wa(z),..., wy(2))
where D(b(z), w»(z), ..., ws(z)) is obtained from the Vandermonde determinant by replacing the

first column (1, w1(z),...,w1(z)""!) by (b1(z),...,bs(z)). Multiplying both the numerator and
denominator by the Vandermonde

hi(z) =

B ag (Z)2n72

filz) = A D(b(z),wa(2), ..., wy(2))D(w1(2), w2(2), ..., wy(z))
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we obtain a polynomial in w;(z) whose coefficients are rational functions in z combined with
symmetric polynomials in w;(z), ..., w,(z). These symmetric polynomials can be expressed via
the coefficients of

1 F(zw) 1

ao(z) w — w1 (z) - ao(z)

n—2

(w—wy(2)) ... (w—wy(z)) = [a0(z)w" ™ + (ag(z)w1(z) + a1 (z)) w" 2 +...].
The coefficients of this polynomial are rational functions in z and w;(z). We finally arrive at an

expression of the form
fi(z) = R(z,wi (2))

where R(z, w) is some rational function in two variables. For other functions fi(z) we obtain
similar expressions

fi(z) =R(z,wi(z)), k=2,...,n
with the same R(z, w). Therefore f = R(z, w). O

Example 1.3.79. Let S be the hyperelliptic Riemann surface

2n+1

w? = P2n+1(Z), P2n+1(2) = n (Z — Llj), a; aj for i# ]
i=1

The functions z and w are holomorphic in the finite part of S. These functions have poles at the
infinite point of S, namely, z has a double pole and w has a pole of order 21 4 1. The function z has
on S two simple zeros at the points z = 0, w = & /P5,4+1(0) that merge into a single double zero
if P2,41(0) = 0. The function w has 2n + 1 simple zeros on S at the branch points. The function
1/(z — a;) has a unique second order pole at the i-th ramification point on S and a double zero at
infinity. More general rational functions on S have the form

Py(z) + P1(z) w
Qo(z) + Qi(z)w

for some polynomials Py 1(z), Qo,1(z). Multiplying both the numerator and the denominator by
Qo(z) — Q1(z) w we can rewrite the function in the form

R(z,w) =

R(z,w) = Ro(z) + Ri(z) w
where Ry,1(z) are rational functions of z.
Exercise 1.3.80: Describe poles and zeros of the meromorphic function
w
[Tz —a)

on the hyperelliptic Riemann surface of the above example.

R(z,w) =

Exercise 1.3.81: On the same hyperelliptic surface, consider n pointsp1 = (z1,w1),...,Pn = (Zu, Wn)
in the finite part of S satisfying z; # z; fori # jand w; - - - w,, # 0. Construct a meromorphic function
f on S with simple poles at py, ..., p, and at infinity. Prove that such a function is unique up to a
transformation f — af +b,a #0,beC,
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Exercise 1.3.82: Prove that any meromorphic function on the Riemann surface of the algebraic
function w(z) defined by eq. (1.3.26) can be represented in the form

f=Roz)+Ri(z)w+---+ an(z)w”‘l

where Ry(z), ..., Ry—1(z) are rational functions of z.

Exercise 1.3.83: Let S be a compact Riemann surface represented as a smooth projective curve in
IP2. Prove that any meromorphic function f on S can be represented in the form

P(X,Y,2)

X:Y:Z)= .
D= 5xvz)
Here (X : Y : Z) are homogeneous coordinates of a point on S, P and Q are homogeneous
polynomials of the same degree such that Q does not vanish identically on the curve.

Exercise 1.3.84: Let S be a compact Riemann surface and f a degree n meromorphic function
on it. Let g be another meromorphic function on S. Prove that these functions are algebraically
dependent that is, there exists a polynomial F(z, w) of degree n in w such that

F(f(p),g(p)) =0 VpeS.

Example 1.3.85. Let S and S be two compact Riemann surfaces realized as smooth projective
curves in IP? defined by homogeneous polynomial equations Q(X,Y,Z) = 0 and Q(X,Y,Z) = 0
respectively. Amap f : S — S is called rational if it can be represented in the form

fX:Y:2)=(AXYZ):BX,Y,Z2):C(X,Y,2))

where A, B, C are three homogeneous polynomials of the same degree such that none of them
vanishes identically on S and satisfying

(A(X,Y,Z),B(X,Y,Z),C(X,Y,Z)) # (0,0,0) V(X:Y:Z)eS

and

Q(AX,Y,2),BX,Y,Z),C(X,%,Z)) =0 ¥(X:Y:Z)eS.
Let us prove that the map f is holomorphic. Consider a point p € S belonging to the chart
Uz = {(X:Y:Z)|Z # 0} on the projective plane and assume that j = f(p) € S belongs to the
same chart. Then locally, near p the map f in the coordinates x = X/Z, y = Y/Z is given by a pair

of rational functions A(x,y,1) B(x,y,1)
. e XY, %Y,
fixy — &7 = (C(x,]/,l)/ C(x,y,l)) '

Due to smoothness of the curve S one of the coordinates x or y can be used as a local parameter
near p; let it be x =: 7 then y = y(7) is a locally defined holomorphic function. In a similar way
near jj assume that, say, i =: T works as a local parameter on S. Then the map f is locally given
by the holomorphic function
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In a similar way one can consider other combinations of charts on IP? and other choices of local
parameters on the curves.

Let us now prove the converse statement saying that any holomorphic map between smooth
projective curves is rational. To this end take two meromorphic functions ¥ = X/Z, j = Y/Z on
S. Their pullbacks f*# and f*{ are meromorphic functions on S. Hence, according to Theorem
1.3.78 they are rational functions on the curve S

a(x, y) . b(x, y)
c(x,y)’ c(x y)

X =

where a(x, y), b(x,y), c(x,y) are polynomials; we have reduced the two fractions to a common
denominator c(x, y). Let p, q, r be non-negative integers such that

ZPa(X/Z,Y/Z) = AX,Y,Z), Z'6(X/Z,Y/Z) =B(X,Y,Z), Z'c(X/Z,Y/Z) =C(X,Y,Z)

with some homogeneous polynomials A, B, C. Denote m = max(p,q,r). Then f coincides with
the rational map

fX:Y:Z)=(Z"PAX,Y,2): Z""B(X,Y,Z) : Z""C(X, Y, Z)) .

Exercise 1.3.86: Let S be a non-singular projective curve defined as S := {(X : Y : Z) €
P?|Q(X,Y,Z) = 0} where Q is an irreducible homogeneos polynomial of degree n> 2. Show
that the map

(X:Y:Z)— (Qx:Qy:Qz)

from S to P2 is well defined. The image of such a map is called the dual curve S to S. Find the dual
curves for a conic and for the Fermat cubic x> + y* + z* = 0. Show that the map is holomorphic
but it does not have a holomorphic inverse if n > 3.

Example 1.3.87. Let C be the algebraic curve defined by an irreducible polynomial equation
F(z,w) = 0. Denote by S the compact Riemann surface of an algebraic function w(z) defined by
the same equation. The surface is equipped with a pair of meromorphic functions Z, @ that define
a map

p:S—C, p(P)=(2(P),a(P))

biholomorphic outside a finite number of points, see Theorem 1.3.48 above. We want to compare
rational functions on C and on § especially for the case when the curve has singularities. More
precisely, we have a natural pullback map

p* : {rational functions globally defined on C} — {meromorphic functions on S} (1.3.28)

p*(f)(P) = f(p(P)), PeS, forarational function f onC.

What is the image of this map?
Let us begin with a simple example of the curve

C: w=2>+722
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The Riemann surface S is rational. It can be described by the equation @ = z + 1, see Example ??
above. The map p has the form''

p(Z, W) = (z,w) where z=2 w=2Z0.

The two points Py = (£ = 0, = +1) € S go to the same point p(P+) = (0,0) on C. Thus the
pullback p* of any rational function globally defined on the curve C consists of meromorphic
functions on S taking equal values at the points P;. It remains to observe that, due to the
rationality of S the space of meromorphic functions on it is isomorphic to the space of rational
functions of the variable @. Therefore the image of the map (1.3.28) consists of rational functions
f(w) satistying f(1) = f(—1).

In a similar way one can deal with rational functions globally defined on an irreducible
algebraic curve with n nodal singularities assuming rationality of the corresponding compact
Riemann surface (as an example one can take the curve w? = z [ ['_;(z — z;)?). Then the image of
the pullback map (1.3.28) consists of rational functions of one variable satisfying

for some pairwise distinct complex numbers ay, ..., a,, b1, ..., b,.

1.4 Example: complex tori and elliptic functions

Let T? = T?

o be a complex torus

T? = C/Awr (1.4.1)

where
A = {2mw + 2nw’ | m,n € 7} (1.4.2)

be the period lattice defined by a pair of complex numbers w, v’ satisfying
J(o'/w) > 0.

We already know that there are no non-constant holomorphic functions on the torus and any
meromorphic functions on T? can be considered as doubly periodic meromorphic function on the
complex plane

f(z4+2w) = f(z), f(z+2')=f(z) VzeC.

Such functions will be called elliptic for the reasons that will be explained later.
Values of an elliptic function at any point of the complex plane are uniquely determined by its
restriction onto the fundamental parallelogram consisting of complex numbers z of the form

z=2z0+2xw+2yo’, 0<x,y<1 (1.4.3)

10One can formally invert p in the class of rational maps

oz w) = (z,w/z).
That means that S and C are birationally equivalent. Observe that the function w/z is not defined at the singular point
(0,0) of the curve C.
We leave as an exercise to the reader to prove birational equivalence between an arbitrary irreducible algebraic curve
and the corresponding compact Riemann surface constructed in Theorem 1.3.48.
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for a given zg € C. There is only finite number of poles of an elliptic function inside the parallelo-
gram or on its boundary. Choosing appropriately the vertex zyp we can free the boundary of (1.4.3)
of the poles of the function.

Proposition 1.4.1. Let z,. . ., z be the poles of an elliptic function f inside a fundamental parallelogram
(1.4.3). Assume that there are no poles on the boundary of the parallelogram. Then

Zk:Resf

z=z;
i=1

Proof According to Cauchy theorem

k
D Res e)dz = 5 5{% f2)

where C is the boundary of the parallelogram oriented in the anti-clockwise direction. On the
opposite sides of the boundary the function takes equal values. So the contour integral in the
above equation vanishes. O

Corollary 1.4.2. There is no elliptic functions with only one simple pole in the fundamental parallelogram.

Remark 1.4.3. According to Exercise 1.3.25 the above Corollary implies that the complex torus is
not biholomorphically equivalent to the Riemann sphere. In Section 2.1 below we give another
proof of this statement based on simple topological arguments.

Exercise 1.4.4: For a given elliptic function f(z) of degree n choose a fundamental parallelogram
containing neither zeros nor poles of f on its boundary. Denote 4y, .. ., a, the zeros and by, ..., b,
the poles of f inside the parallelogram repeated according to their multiplicities. Prove that

Z Zb € N

Hint: consider the integral
R
2m f (z)

over the boundary of the parallelogram.

dz

We now construct the first example of an elliptic function with one double pole in the paral-
lelogram. The Weierstrass elliptic function, p(z) is defined by

9(z) = p(z|w, @) ——+ > [ - i] (1.4.4)

m2+n2+0
Here and below we use the notation

Wy = 2mMw + 2new’, m,neZ (1.4.5)
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for the points of the lattice. It is not difficult to verify that the (1.4.4) converges absolutely and
uniformly on compact sets not containing points of the period lattice. Therefore, it defines a
meromorphic function of z having double poles at the lattice nodes. This function is obviously
doubly periodic: p(z + 2kw + 2lw’) = p(z), k, 1 € Z. It is an even function p(—z) = p(z).

Exercise 1.4.5: Let f be a meromorphic function on the complex torus (1.4.1) having only one pole
of order two at z = 0. Prove that

f(z) =ap(z) +b, a,beC.

The Laurent expansions of the functions p(z) and ¢’(z) have the following forms as z — 0

1 9z 932
o(z) = = + S 4 14.
PR = Z 50 Tt (14.6)
oy 2, 822 &
9'(z) = z3+ 0 + 7 +..., (1.4.7)

where

(1.4.8)
=140 > w,s,

m2+n2#0

(verify!). This implies that the Laurent expansion of the function (p’)* —4¢> + g2 + g3 has the form
O(z) as z — 0. Hence, this doubly periodic function is constant, and thus equals zero. Conclusion:
the Weierstrass function (z) satisfies the differential equation

(9')? = 49° — 9290 — g3. (1.4.9)
Let us now map the torus T?(w, ') to the elliptic curve C, where
C: Y*Z =4X3 — ,X7% — g 7° (1.4.10)

by setting f : T?(w, ') — C with

) (9(),9'(2),1), z#0
flz) = { 0,10, z=0 (1.4.11)

Theorem 1.4.6. 1. The elliptic curve (1.4.10) is non-singular.

2. The map (1.4.11) of the complex torus (1.4.1) to the Riemann surface (1.4.10) is a biholomorphic
isomorphism.

3. Any non-singular elliptic curve of the form (1.4.10) is biholomorphically equivalent to a complex
torus of the form (1.4.1)
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Proof As the Weierstrass function has on the torus only one pole of order two, the degree of the

holomorphic map ¢ : T2 — C is equal to two. That means that for a given u € C the equation
9(z) = u has two solutions counted with multiplicities. If z is a solution then so is —z since the
function is even. These two solutions are distinct iff 2z ¢ A, /. Therefore the ramification points
of the holomorphic map coincide with the half-periods of the lattice. All of them have multiplicity
two.

Modulo the lattice there are four half-periods: wy = 0 and

v =w, w=-w-0, w=do. (1.4.12)
The point wy makes the preimage of the infinite point in C. Denote
ei=p(w;), i=1,23. (1.4.13)
Lemma 1.4.7. 1. The complex numbers ey, e, e3 are pairwise distinct.

2. They are roots of the cubic equation 4u> — gou — g3 = 0 where ¢, g3 are defined by egs. (1.4.8).

Proof Suppose, for example that e; = e;. Then the full preimage ¢! (e;) consists of two points w;
and w; of the total multiplicity four — a contradiction.
To prove the second part of Lemma we observe that ¢’(z) is an odd function. So

¢ (i) = —¢'(—wi) = —¢'(—wi + 2w;) = —¢'(wi)) = ¢ (w)=0, i=1,2,3.
Substituting z = w; in eq. (1.4.9) we obtain
0=4e —gei—g3, i=1223.

O

The first statement of Theorem readily follows from Lemma. To prove the second statement
it suffices to prove that the degree of the map (1.4.11) is equal to one. That is, for a given point
(X,Y,Z), Z # 0, of the curve (1.4.10) we have to solve the system of equations

Pz =u u=3% v=1=
9'(z) =0

If v # 0 then the first equation has two distinct solutions z and —z. The second equation selects
only one of them since ¢’(z) # ¢’(—z) in this case. Let us now consider the case v = 0. Then, we
have u = e;, e, or e3. We already know that the equation ’(z) = 0 has three distinct solutions
z = w1, Wy and ws. Since @’ is a degree three meromorphic function on the torus there are no other
solutions. So we have uniqueness of the solution to the system also in this case. Finally for the
point at infinity (0,1,0) of (1.4.10) the unique point in the preimage is z = 0.

The proof of the third part of Theorem follows from the following lemma.

Lemma 1.4.8. Consider the affine curve v* = 4u® — gou — g3 and defined the integrals

i=1,2,3

r’ du
w; = ,
0 «/4u3—g2u—g3
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for a suitable choice of the square root. The solution to the differential equation

du\? 3
E = 4u° — U — g3 (1414)

satisfying

u(z)=zlz+0(§), z—0
has the form
u(z) = p(z|w, ')
where w = w1, ' = w;3.
Proof The differential equation (1.4.14) can be solved by quadratures. Indeed we can write it in

the form
du

=dz
A4ud — gou — g3
so that y ! .
u 5
z(u) = , z(u) =+—+ 0?2
=] e W=ty 0w
It is more convenient to use the notation
P /
z(P) = d—bf, P = (u,0).
w U
For P — P + y where y is a loop in C we have
d /
2(P) »2(P) + | =

14

The inverse map
2= P(2) = (u(2),0(2))
satisfies

!/

u Z+§gd_u’ =u(z), v z+f£l =9(z)

(4 (4
v v
Choose y; the path from oo to ¢; on the first sheet and back to the second sheet so that
d !
l/ = 2a)1'
Vi &

SO

u(z + 2w;) = u(z), v(z+2w;)=0v(z), i=123.

One has w1 + wp + w3 = 0. So we choose 2w := 2w and 2w’ := 2ws. Then u(z) and v(z) are elliptic

functions on the torus T?m e Further
L ot 2 4
u(z)+z—2+ (z™), v(2) ——;—i— (z) z—0
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We conclude that u(z) = p(z) and v(z) = ¢’(z).
Namely, the inverse function to the solution in question can be written as elliptic integral

_JZ Z
o \/AZ3 — 97 — g5

For sufficiently large |Z| the function

2(Z) = +7+0( -912) (1.4.15)

is well defined up to a sign. We can extend it to a (multivalued) function z(P), P = (Z, W) on the
elliptic Riemann surface (1.4.10) by the integral

Pz
z(P) = | =
(P) o W

along some path from the infinite point of the surface to the point P. For a given P it depends only
on the homotopy class of the path with fixed endpoints. A change of the homotopy class changes

the integral as
N § az
w
')/

for a loop y on the Riemann surface. Therefore the inverse map
2= P(z) = (Z(2), W(2))

satisfies

az az
Z z+ffw =Z(z), W]lz+ W = W(z)
y y
for any loop y. Take the following particular loops y;, i = 1, 2, 3 as follows: choose a path from
infinity to ¢; on one sheet of the Riemann surface then return back along the same path on another

sheet. Then iz
W=2a)1, i=1,2,3,
Vi

see eq. (??). We obtain
Z(z + 2wi) = Z(z), W(z+2w;) =W(z), i=1,2,3.

It is easy to see that, under a suitable choice of orientations on the loops one has w; + w; + w3 = 0.
So we choose 2w := 2w; and 2w’ := 2w; as two independent periods. It remains to prove that
Im(w'/w) > 0. To this end consider the following integral

S - I S 0
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over the Riemann surface. Applying Stokes theorem rewrite it as a contour integral

i dz

Zbz(p) =

2 fﬁ “P)
over two sides of the loops Y1 and y3. The latter is equal (cf. the proof of Lemma 3.1.16 below) to
2i(w @ — ©'@) = 4w Im <.

We conclude that Z(z) and W(z) are elliptic functions on the complex torus T? . They have
poles only at z = 0. From (1.4.15) it follows that

1 2

2
Z(z) = =) +0(z°), W(z) = = +0(z) for z—0.
Hence
Z(z) = 9(z|w, "), W(z)=¢'(z|w ).
This completes the proof of Lemma and, therefore of Theorem. OJ

Exercise 1.4.9: Prove that any elliptic function f(z) with period lattice {2mw + 2nw'} can be
represented in the form

f(@) =Plp)] +Qlp@)]9'(2)

where P and Q are rational functions.

Exercise 1.4.10: Prove the following addition theorem for the Weierstrass function

( 1 pu) ' () )
det| 1  p(v) 9 (v) =0 VYu,o. (1.4.16)
1 pu+v) —¢'(u+0)

Derive that the map (1.4.11) is an isomorphism of the group of points on the torus T? = C/{2wZ ®
2w'Z} to the group of points on the cubic (1.4.10) with the marked point at infinity, see Exercise
1.2.40 above.

Example 1.4.11. Let us briefly consider behaviour of elliptic functions under holomorphic maps
between complex tori. Take the first nontrivial case of the degree two map

.72 2
f2 : Ta),w’ - T%’

/
L' 7

see eq. (1.1.26) above. To compute the pullback of the Weierstrass function p(z | £, »’) on the torus
q- ( P p 2

Ti 2 W have to express it via p(z) = p(z| w, @"). Proof of the resulting expression

p(z15.0) = 9@ +pE-a)—a

(the so-called Landen transformation for Weierstrass functions) is left as an exercise to the reader.

Exercise 1.4.12: Prove that

2 2 , (2 2,
0 gma)Jrgnw L9 gmergnw , 0<mn<?2

are the inflection points of the cubic (1.4.10), see Exercise 1.2.39 above.
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Exercise 1.4.13: Let ¢(z) be the Weierstrass function with a rectangular lattice of periods
welRyy o €iRep.
(1) Prove that p(z) takes real values on the lines of four types
Rez =2mw, or ilmz=2na’

and
Rez=(2m+ 1w, or ilmz= (2n+1)a’

withm, n € Z.
(2) Prove that the coefficients g», g3 given by eqs. (1.4.8) are real.

(3) Prove that the roots (1.4.13) of the cubic polynomial 4Z° — ¢,Z — g3 are real and satisfy the
inequalities
e1 > ey > es.

Observe thate; > 0 and e3 < 0.
(4) Prove that ¢(z) restricted onto the line iImz = (2n + 1)a’, n € Z satisfies
e3 < p(z) <e
and its restriction onto the line Rez = (2m + 1)w, m € Z satisfies

e < p(z) <er.

(5) Prove that any elliptic Riemann surface (1.4.10) with real branch points is biholomorphically
equivalent to a complex torus with a rectangular lattice of periods.

Define the Weierstrass C- and o-functions useful in the theory of elliptic functions by quadra-
tures

"(z) = — — = 1.4.17
0 = —9(a), Ty = (@) (1417)
assuming that the integration constants are chosen in such a way that, for z — 0
1
() =-+0 (), a(z)=z+0(2). (1.4.18)
They are given by the following expansion
, 1 1 1 z
_ - = — . 1.4.1

and infinite product

o(z) = oz|w,a) =z [] {(1 - w‘i) exp [ﬁ + 2;;] } . (1.4.20)
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The Weierstrass C-function has simple poles at the points of the period lattice. The function o(z)
is an entire function on the complex plane. It has simple zeros at the points of the period lattice.
These functions satisfy

o'(2)

C/(Z) = 780(2)/ U(Z)

The functions ((z) and o(z) are not elliptic; under a translation of the argument by a vector of the
period lattice they transform according to

= {(2). (1.4.21)

{(z42w) =C(z) +2n, C(z+20') =C(z) +21 (1.4.22)

0(z 4+ 2w) = —0(z) exp[2n(z + w)], 0(z +2w") = —0(z) exp[21(z + &')] (1.4.23)
where 17 and n’ are constants depending on the period lattice.

Exercise 1.4.14: Prove that
n=_Cw), 1 =) (1.4.24)

Exercise 1.4.15: Prove the transformation law (1.4.23).

Exercise 1.4.16: Integrating C(z) over the fundamental parallelogram centered at the origin, prove
Legendre relation

nd—#w:%. (1.4.25)

Exercise 1.4.17: Prove that the sum

n
Z C(z — zk) + co (1.4.26)
k=1
is an elliptic function in z iff the coefficients cy, . . ., ¢, satisfy

c1+--4cy=0.

Prove that any elliptic function with only simple poles can be represented in the form (1.4.26).

Exercise 1.4.18: Derive the following expression for the elliptic function C(u + v) — C(u) — C(v)

_19'(w) —¢'(0)
C(u+v)—C(u) —C(v) = 5 o) —p(0) (1.4.27)
Exercise 1.4.19: Prove that the function
©oo(z —a)
14.2
5e=m) (1.4.28)

is an elliptic function in z iff

Prove that any elliptic function can be represented in the form (1.4.28), up to a constant factor.
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Exercise 1.4.20: Prove the following identity:

o(u+v)o(u—0)
o*(u)o*(v)

= p(v) — p(u). (1.4.29)

Exercise 1.4.21: Prove the following generalization of the previous identity

1 p(uo) ¢'(uo) ... 9" (up)

1 o) ¢w) ... " V() n(n=1) o(uo +ur + - +up) [ [icjo(ui — u))
det e R TD I

. o"+1(u0)o”+1(u1)...a”+1(un)

T o) ¢ () ... 9"V (uy)

for any n > 1 and arbitrary ug, u1, ..., .

Exercise 1.4.22: Show that for an arbitrary A # 0

P(Az| Aw, A0') = A2p(z | w, @)
C(Az] Aw, A’) = A7 (z| w, @) (1.4.30)
o(Az| Aw, A’) = Ao(z| w, @)

Exercise 1.4.23: Consider the Korteweg—de Vries (KdV) equation
1t = 6uu’ —u"” (1.4.31)

(here u = u(x, t), the dot stands for the derivative with respect to ¢, and the prime stands for the
derivative with respect to x). Show that any (complex) periodic solution of KdV in the form of a
traveling wave 1 = u(x — ct) has the form

u(x,t) = 2p(x —ct — xp) — %, (1.4.32)

where the Weierstrass function ¢ corresponds to some elliptic curve (1.4.10), and the velocity c
and the phase xj are arbitrary.

Exercise 1.4.24: (see [8]). Look for a solution of the KdV equation in the form
u(x,t) =2p(x — x1(t)) + 2p(x — x2(£)) + 29 (x — x3(t)). (1.4.33)
Derive for the functions x;(t) the system of differential equations

¥ =12 o(xj—x), j=12,3 (1.434)
i#j

(a particular case of Calogero-Moser system and its integrals

D9xj—x) =0, j=1,23. (1.4.35)
k]

Integrate this system by quadratures.
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Exercise 1.4.25: (see [?]). For the elliptic curve (1.4.10) construct a new elliptic curve w? = 4D5(z)
with the third-degree polynomial

Ps(z) = (22— 3¢2) (z + 9%) . (1.4.36)

Denote by ¢ the corresponding Weierstrass function. Let &; = ¢(x;(t) — xj(t)), i # j, where the
quantities x;(t) are defined in the previous Exercise. Show that the functions &12(f), &x3(t), and
&13(t) are the roots of the cubic equation

11 .
48 — g8 — 388+ 5820(61/3g21) = 0 (1.4.37)

Other properties of the functions, ¢, C and ¢ and of other elliptic functions as well, can be
found, for example, in the texts [2] and [?], or in the handbook [4].
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Chapter 2

Topological properties of Riemann
surfaces

2.1 Genus of a compact Riemann surface

An arbitrary Riemann surface is also a real smooth oriented two-dimensional manifold. What
can be said about the topology of this manifold? From the topological point of view, Riemann
surfaces are quite simple as the following theorem shows.

Theorem 2.1.1. [18] Any compact connected orientable smooth two-dimensional manifold (= surface) is
homeomorphic to a sphere with ¢ > 0 handles. The number of handles is called the genus of the surface.
Surfaces of different genera are not homeomorphic.

Each surface of genus g can be obtained from a genus g — 1 surface by removing two discs
and connecting the resulting holes with a cylinder. The surface of genus 0 is the usual sphere. See
Figure 2.1 for examples of surfaces of positive genus.

Let us compute the genus of the surfaces in the examples 1.2.42-1.2.44. We begin with exam-
ple 1.2.43 namely the curve C = {(z,w) € C? | w? = z*> —a?}, a # 0. Let S be the compactification of
C obtained by adding two points co* at infinity. We want to show that the genus of S is equal to
zero. For the purpose let us consider S as a two sheeted branched covering of the Riemann sphere
n:8 — C, n(z,w) = z. Delete the segment [—a,a] with endpoints at the branch points from
the z-plane C. Off this segment it is possible to distinguish the two branches w4 = ++/22 — a2
of the two-valued function w(z) = /22 —a2. The preimage 1~(C\[—4,4]) on S splits into two
pieces, with the mapping 7 an isomorphism on each of them. The branches w (z) and w_(z) are
interchanged in passing from one edge of the cut [—a,a] to the other. Therefore, the surface is
glued together from two identical copies of spheres with cuts according to the rule indicated in
the figure 2.2

After the gluing we again obtain a sphere, i.e., the genus g is equal to zero. Example 1.2.42 is
analogous to Example 1.2.43, but the cut must be made between the points 0 and oo, i.e. the point
at infinity must be considered as a branch point. Again the genus is equal to zero.

93
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Figure 2.1: A sphere with five handles

Figure 2.2: The cuts of the algebraic function v/z? — a?

Remark2.1.2. Itisnotdifficult to prove that the compact Riemann surface S of the algebraic function
w(z) = v/z2 — a? isbiholomorphically equivalent to the Riemann sphere. Indeed, consider a family
of parallel lines

w=z—as

depending on a complex parameter s. For s # 0 every such line intersects the curve C in a unique
point with the coordinates

a1+52 w(s):al_sz
2s 2s
We obtain a one-to-one map
C0} — S, s (2(s),w(s)).

For s — 0 both z(s) and w(s) go to infinity but the ratio w(s)/z(s) — 1. That means that the image
of the point s = 0 coincides with the point oo™ € S. In a similar way for s — oo both z(s) and w(s)
go to infinity but the ratio w(s)/z(s) — —1. That means that the image of the point s = 0 coincides
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with the point o~ € S. So we have a one-to-one holomorphic map from C to S. The inverse map
is given by

_a

Cz4w

s(z,w)

In Example 1.2.44 for the curve described by the equation w? = H7:1(Z — zj) it is necessary

to split up the branch points arbitrarily into pairs and make cuts (arcs) in C joining the paired
branch points. If  is odd one of the branch points is at co. The surface S is glued together from
two identical copies of a sphere with such cuts, with the edges of the corresponding cuts glued
together in “cross-wise” fashion (see figure 2.4 for n = 4).

OO0

Figure 2.3 Opening of the cuts of the two branches of the function

\/(Z —21)(z — 22)(z — 23)(z — z4)

24

23

Z2
21

Figure 2.4: The Riemann surface of w? = (z — a1)(z — a2)(z — a3) (z — a4) is glued from two copies
of the extended complex plane cut along the intervals [z;,2;]| and [z3,2z4]. The resulting surface
topologically is a torus.

24

z3
29

21
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It is not hard to see that in the case n = 4 one obtains a sphere with one handle, and, in the
general case one obtains a sphere with n/2 — 1 handles for n even and (n — 1)/2 for n odd.

2.1.1 Genus of a Riemann surface and the Riemann-Hurwitz formula

We derive a formula for the computation of the genus of a compact Riemann surface by computing
first the Euler characteristic of the surface.

A triangulation of a two-dimensional compact surface M is a decomposition of M into closed
subsets homeomorphic to triangles such that each pair fits in one of the following three types

e disjoint
e meet at a vertex
e meet at an edge.
We state the following theorem.

Theorem 2.1.3. [18] Every compact connected orientable 2-dimensional manifold M can be triangulated.

Given a 2-dimensional compact manifold M (possibly with boundary) and a triangulation of
the manifold with

e ¢ = #of edges;
e v = # of vertices;
e t = # of triangles,
we can associate to such triangulation the Euler characteristic.

Definition 2.1.4. The quantity
EM)=v—e+t (2.1.1)

is called the Euler characteristic of the manifold M with respect to the given triangulation.

Proposition 2.1.5. The Euler number is independent from the choice of the triangulation. For a compact
Riemann surface S of genus g the Euler number is

E(S) =2 —2g. (2.1.2)

Proof. We consider compact surfaces with no boundaries. Given a triangulation, one can refine
the triangulation by adding a vertex inside a triangle and three edges. This operation replaces
one triangle with three triangles an it is easy to check that the Euler number remains unchanged.
Another way to refine the triangulation is to add a point on an edge, so that two triangles
are replaced by four triangles. Also in this case the Euler number remains unchanged. These
operations define elementary refinements. A general refinement is obtained by making a sequence
of elementary refinements. Therefore a given triangulation and any of its refinement have the
same Euler number. Now the main point is to show that two triangulations have a common
refinement. It is sufficient to superimpose two triangulations and add the necessary number
for points to make the union of these two triangulations a triangulation. Then the triangulation
obtained in this way is a refinement of both the triangulations. This is enough to show that the
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Euler number does not depend on the triangulation. Now let us make the computation of the
Euler number for a compact Riemann surface of genus g. We use an inductive argument. For the
sphere Sy, choosing a triangulation as shown in the figure 2.1.1, with 4 vertices, 4 triangles and
6 edges, one obtains that the Euler number is equal to 2. For the disc D = {z € C||z| < 1}, the

Euler number is equal to E(D) = 1 and for the cylinder C. of finite length the Euler number
E(Ceylinder) = 0, (see figure 2.5).

Figure 2.5: Triangulation of the sphere with 4 vertices, 6 edges and 4 triangles. Triangulation of
the disc with 3 vertices, 3 edges and one triangle.Triangulation of the cylinder with 6 vertices, 12
edges and 6 triangles.

The torus can be obtained from the sphere by removing two discs and connecting them with
a cylinder. It is simple to check that the Euler number of the torus S; can be obtained as

E(S1) = E(So) — 2E(D) + E(Ceylinger) =2 —2+0 = 0. (2.1.3)

Indeed removing two disks from a genus zero surface, the Euler number decreases by two, because
it is just sufficient to subtract from the Euler formula the two discs that are homeomorphic to two
triangles. Next we add a cylinder to connect the two discs. In order to compute the Euler number
of the resulting surface, it is sufficient to add the contribution of the cylinder (8 edges and 6
triangles for a triangulation like in figure 2.1.1). The resulting Euler characteristics then can be
written as in (2.1.3).

This procedure can be iterated. Indeed the surface S, of genus g can be obtained from the
surface of genus S;_1 by removing two discs and connecting them with a cylinder. Therefore one
has

E(Sg) = E(ngl) — 2E<D) + E(Ccylinder)
which implies
E(Sg) =2 —2g.
o

We apply this result to calculate the genus of a branched covering over the Riemann sphere.

Proposition 2.1.6. Let S be a compact Riemann surface and f : S — C a non-constant holomorphic map
of degree n. Let P1,...,Py € S be the ramification points with respect to the map f with multiplicities
my, ..., my respectively. Denote b; = m; — 1,1 = 1,...,k the ramification indices of these points and let

k
b= )b

j=1
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be the total ramification index. Then the genus of S is equal to

g= g —n+1. (2.1.4)

Proof. Consider a triangulation of C such that the set of vertices of the triangulation contains the
points f(Py),..., f(Py). Suppose that, for each triangle T on C the restriction of f onto every
connected component of the preimage of the interior part of T is a homeomorphism onto the
interior of T. In this way the triangulation of C can be lifted to a triangulation of S. Let the

triangulation of C have v vertices, t triangles and e edges. Then the triangulation of S has
o [ = nt triangles

o ¢ = ne edges

e ¥ = nv — b vertices.

So the Euler characteristic of the surface S equals
2—-2¢g=nv—b—ne+nt=n(v—e+t)—b=2n—0b.
The Proposition is proved. m]

The equation (2.1.4) is the celebrated Riemann-Hurwitz formula. A generalization of it to
holomorphic maps between compact Riemann surfaces will be given below.
As an application of the proposition 2.1.6 we calculate the genus of a smooth projective curve

S={(X:Y:2)eP*|Q(X,Y,Z) =0}

where Q is a homogeneous polynomial of degree n. Suppose that (0 : 0 : 1) ¢ S so that
Q(0,0,Z) = ¢ Z" # 0 with ¢ # 0. Then the map

¢:S—P, HXYZ)=(X:Y)

realises S as a n-sheeted covering of P'. Let us calculate the total ramification number of this map.
The ramification points are obtained by solving the equations

The solution of the above two equations are given by the zeros of the resultant R(Q, Qz) with
respect to Z. Since R(Q, Qz) is a homogeneous polynomial of degree n(n — 1) in X and Y, the total
number of ramification points counting their multiplicity is n(n — 1).

Recall that the ramification number of a ramification point Py = (Xo : Yy : Zp) indicated as
by(Po) is the order of the zero of Q(Xo, Yo, Z) at Z = Zy minus one. We can write

Q(Xo, Yo, Z) = H (Z — Zj)mj

0<j<s
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where Y| jmj =n and Zy, ..., Zs are distinct complex numbers, Z; = Z;(Xo, Zy). With the above
notation the branching number of each branch point P; = (Xo : Yy : Z;) is by(Pj) = m;j — 1. So a
regular point is simple zero of Q(Xo, Yo, Z) a ramification point with ramification number one is a
double zero, and in general a ramification point with ramification number m — 1 is a zero of order
m of Q(Xo, Yo, Z). So if the number of distinct roots of the discriminant is n(n — 1) it means that
the curve has n(n — 1) branch points with multiplicity one, so that the total ramification number is
n(n —1). If the discriminant has for example n(n — 1) — k distinct roots, k > 0, it means that some
of the branch points have branching number bigger than one. However the total ramification
number remains equal to n(n — 1). Then we can apply formula 2.1.4 to obtain

g=%(n—1)n—n+l.

We summarise the above discussion with the following Lemma.

Lemma 2.1.7. The genus of a smooth projective curve of degree n is given by
g= %(n—Z)(n—l). (2.1.5)

Exercise 2.1.8: Calculate the genus of the normalisations of the following curves
o w=(z-1)(z-2)(z-3)(z—4),
o w'=z"+4", a+0.

Exercise 2.1.9: Let us consider the reducible curve

Co={(zw) e C| (w—p1(z)(w — pa(2))(w — p3(2)) = 0}

with
pi(z) =az+b;, =123

and a; and b; i = 1,2,3 complex constants such a;b; — a;b; # 0 for i # j. Furthermore let us assume
that the polynomials p;(z) satisfy the relation

p1(2) + p2(2) +p3(2) = 0.
Consider the curve
C = {(z,w) € C | w’ +w[p1(2)p2(2) +p1(2)p3(2) +p2(2)ps(2)] —P1(2)p2(2)p3(2) (1 +h) = O} (21.6)
where h is a small complex constant. Let S be the normalisation of C. Determine
e how many points have been added to C to obtain S;

o the genus of S;

the branch points (only in the form of the expansion in &, namely z;(h) = z;(0) +hz;(0) +...);

the monodromy of S considered as a degree 3 branched covering of the z-plane.
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Exercise 2.1.10: Let us consider the curve
C:={(z,w) e C*| (w—2z*)(z — w*) + hzw = 0},

where /1 is a small non-zero constant. Determine

e the normalisation S of C and the genus of S;

e the monodromy of S with respect to the projection to the z plane.
Exercise 2.1.11: Calculate the genus of the normalization of the singular curves

1 wd=(z—a1)*(z—a)(z — a3)%(z — ay),

2. w3 =23(z — a3)%(z — ay).

For each singular point calculate the number of points in the preimage of the map ¢ defined in
theorem ??.

Exercise 2.1.12: For which value of A the following curves are non-singular?
L X3 +Y’+2°+3AXYZ =0,
2. X+ Y+ 28+ AX+Y+Z)P =0.

Describe the singularities when they exist and calculate the genus of the corresponding Riemann
surface.

Exercise 2.1.13 (Pliicker’s formula): . Let C be a projective curve of degree n with k nodes and
no other singularities. Show that the genus of the Riemann surface S obtained by resolving
singularities on the curve is equal to

(mn—1)(n—-2)—k.

N —

g:

2.2 Homology

In this section we define the homology of a compact Riemann surface S. Given a triangulation of
the Riemann surface S, we define the verteces as 0-simplex, the edges as 1-simplex and the triangles
as 2-simplex. The orientation on the manifold induces an orientation on the triangles that can be
used to orient the edges bounding each triangle.

Definition 2.2.1. A (simplicial) 0,1, 2-chain is a formal sum of vertices P;, edges S; or triangles T;

Co=211]'P]’ C1 =27}1ij C2=Zk]'T‘, le,m]',k]'EZ.

The element —c; is the edge with opposite orientation and —t is the triangle with opposite
orientation. The vertices P;, P;, P3,... can be used to identify edges and triangles. For example
(P1Py) is the oriented edge from P; to P, and (Pj, P, P3) is the oriented triangle with sides the
oriented edges (P1P»), (P2P3) and (P3P;). The sets of p—chains C, have the (natural) structure of
free abelian groups (just by formal sums). A closed curve y can be homotopically deformed to a
chain of edges in the triangulation 7~ thus defining a cycle (Exercise: prove that it is a cycle!); this
can be called a simple cycle.

With this notation we define the boundary operator 0.



2.2. HOMOLOGY 101

Definition 2.2.2. The boundary operator 6 : C, — Cy—1 withn = 0,1,2 is defined as follows:
0cg =0, cpeCy

P1Py) =P, — Py
6<P1,P2,P3> = <P1P2> + <P2P3> + <P3P1>
The above relation defines 0 on 1 and 2-simplex and it can be extend to 1 and 2-chain by linearity.

The fundamental property is that 6> = 0: indeed (we need to check this only for C,)
6(5(T) =0 (<P1P2> + <P2P3> + <P3P1>) =P, —P1+P3—P,+P;—P3=0. (221)

Definition 2.2.3. A p—chain c, such that 6c, = 0 € Cy is called a p-cycle. A chain which is the boundary
of another chain is called a p-boundary. Clearly any p-boundary is a p-cycle, but not viceversa.

In our case, being the manifold of real dimension 2, all the interesting information is contained
in Cy; the 1-cycles and 1-boundaries are the following subgroups of C:

Zi=1{c,€Cyl0cy =0}, B, ={c,eCpy|Icus1 €Cns1, ¢ = 0Cut1}-
From the above definition it is clear that
B, ZicCy.
Definition 2.2.4. The first homology group of S is denoted by H1(S, Z) and is

Zi(S)
Hi(S8,Z) .= ——=-. 222
This homology group can be shown to be independent of the choice of triangulation 7~ (more
precisely the homology groups corresponding to two triangulations are isomorphic).

Remark 2.2.5. The other homology groups are defined similarly: in particular Hy(S, Z) is made of
the classes of points that cannot be joined by cycles. It is simple to show that Hy(S, Z) = Z* where
k is the number of connected components of S (hence for connected Riemann surfaces k = 1).
The generator is the class of any vertex. Regarding H»(S, Z) we have that if S is compact, then
C, consists of one 2-chain, namely the chain that covers all the surface and B, = (5. Therefore
H,(S,72) = 7.

Therefore the only nontrivial group is H; (S, Z). One has
Proposition 2.2.6. Let S be a connected compact Riemann surface of genus g. The first homology group
Hi (S, Z) is isomorphic to the Abelianization of the first homotopy group, namely
m(S)
[ (S), m(S)]
where [ ., .] is the standard commutator. The group Hy(S, Z) is a free Abelian group with 2g generators

and hence it is isomorphic to Z28. These generators can be chosen as (classes of) simple cycles.
Any cycle can be written as sum of simple cycles (with coefficients in Z.).

Hi(S,Z) ~ (2.2.3)
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Figure 2.6: The blue contour is not homotopic to the trivial loop but it is homologous to zero
because it separates the surface.

Let S be a compact Riemann surface of genus g and let [y1], ..., [y2,] be the set of generators
of 111(8S). Then any element [y] € 711(S) can be uniquely written as

Dl = vl o vdio vl ke kue {1,2,..,28)

with ji,..., j» € Z and we use the subscript 77; to denote the elements of the homotopy group.
Then the corresponding element [y]y, in the homology class is obtained as

Wlm = ilyelm + i2lvels + -+ jalye s, k. ko€ {1,2,...,2¢}

This in particular also shows that the homology is independent from the triangulation.

Remark 2.2.7. A cycle may be Homologous to the trivial cycle but not homotopic to a point, for
example the one in Fig. 2.6.

In the rest of this section we simply denote as y an element in the homology. Letay, ..., ag, by, ..., by
be a basis in H1(S, Z). Then any cycle y is homologous to a linear combination of the basis with
integer coefficients:

8 8
Yy~ Z m;a; + Znibi, m;, n; € Z.

i=1 i=1

Intersection number

The notion of intersection number is more general than the one given here as it applies to any two
submanifolds of complementary dimensions. In our case of complex one-dimensional manifold
(i.e. real surface) two submanifolds of complementary dimension must have both dimension 1
(i.e. they must be curves) or 0 and 2 (points and domains). The latter case is rather degenerate
(although not meaningless) and we focus only on the first case.

Given two simple cycles y and 1 we represent them as smooth closed curves and we consider
their intersection: again, possibly by a small deformation of one or both contours we can reduce
to the situation that
(a) the intersection is finite and
(b) all intersections occur transversally, i.e. the tangents to y and 7 at the point of intersection are
not parallel.
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Given p € y n n one such point of intersection, we associate a number v(p) € {+1, -1} as
follows. Let z be a local coordinate at p: the two (arcs) of y and 1 now are arcs in a neighbourhood
of z(p) = 0 crossing each other transversally. We denote by y¢ and 1)y the two tangent vectors at
z(p) = 0; if the determinant of their components is positive we set v(p) = 1, if it is negative we
set v(p) = —1. In other words the number v(p) indicates the orientation of the axis spanned by y,
and 1o (in this order!) relative to the orientation of the standard R (z), J(z) axes.

Definition 2.2.8. The intersection number between y and 1 is then defined by

yeni= > v(p). (2.2.4)
peynn
It follows immediately from the definition that y * 1 = —n * y and the intersection number is

an integer. One can also prove that:
Proposition 2.2.9. The intersection number is invariant under smooth homotopy deformations of y and .

Therefore the intersection number depends only on the homotopy classes of y and 1, which
we then denote by [y] * [7].
In particular it makes sense to compute the self-intersection of a cycle

[y]1=[y]=0. (22.5)

This makes sense because in the actual computation one chooses two different representatives in
the same class of y which intersect transversally: the fact that the result is zero then follows from
the antisymmetry.

Note also that the intersection number depends on the orientation of the contours: if we reverse
one contour the intersection number changes sign

]+ ] = =[] = [n]. (2.2.6)

Moreover:

Lemma 2.2.10. The intersection number of any boundary  with any cycle y vanishes y = g = 0.

Proof. A boundary f is a collection of simple cycles that bound a domain. if y is a symple cycle it
must traverse the boundary of this domain an even number of times, and two consecutive crossing
count with opposite sign, hence cancel out. m]

This lemma implies that the intersection number is well defined as a pairing on the first
homology group. More in fact is true

Theorem 2.2.11. The intersection pairing
x: Hi(S,Z) x Hi(S,Z) > Z (2.2.7)

is a bilinear skew—symmetric map. If S is a compact Riemann surface then it is nondegenerate.
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Figure 2.7: Intersection of y1 and y,.

2.2.1 Homology of a compact Riemann surface of genus g

We have said that H; (S, Z) is isomorphic to Z* and that the intersection pairing is antisymmetric
and nondegenerate. It can be shown that there are simple cycles

{an, B, a2, B2, ..., g, Be} (2.2.8)
that generate H1(S, Z) and such that
aixaj=0, BixPi=0, aj*pj=0i. (2.2.9)
Definition 2.2.12. A basis of H1(S, Z.) satisfying (2.2.9) is called a canonical basis.

A canonical basis exists but it is not unique. Let & = (ay,...,a,)  and g = (B1,...,Bg)" denote
the column vectors of the 2¢ generators and let us suppose we make a transformation

<;> - (é g) (;) (2.2.10)

where the 2¢ x 2¢ matrix S = (é g) is integer valued and non-singular. The basis &/, ' will be

a set of generators provided that S~ is also integer-valued and hence the determinant of S must
be +1.
Moreover if we want that the new basis is also canonical this forces

= (_ﬂg 15) - (;’;f) s (@p) = (g) « (@,B) (2211)

] =SJs (2.2.12)

Matrices of dimension 2g x 2g satisfying (2.2.12) form a group, the symplectic group, denoted by
Sp(8,2).

so that
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Figure 2.8: Homology basis.

Example 2.2.13. Let us construct a canonical basis of cycles on the hyperelliptic surface w? =

Hf:g;rl (z —zi), § = 1. We represent this surface in the form of two copies of C (sheets) with cuts
along the segments [z1,2], [z3,24], ..., [z24+1,%0]. A canonical basis of cycles can be chosen as
indicated in the Figure 2.8 for g = 2 (the dashed lines represent the parts of a; and a, lying on the

lower sheet).

2.2.2 Canonical dissection of a compact Riemann-surface and Poincare poly-
gon

We take a basepoint Py and consider the homotopy group m1(S, Py) of loops based at Py. Amongst
these there are 2g generators ay, 51, .. g, Be whose homology classes form a canonical basis.
Although these loops are only identified by their homotopy classes, we will think of them as
concrete choices of (smooth) closed curves on the surface with basepoint Py.

Definition 2.2.14. The canonical dissection of S, called the Poincare’ polygon of S, is the simply connected
domain S obtained by removing the 2g generators identified above.

ag gt B1

B1

Figure 2.9: Dissection of a surface of genus one and two.

The boundary 28 of this domain consists of both sides of each generator and hence consists
of 4¢ arcs. We show inductively how to get the domain S from the surface S. In figure (2.9)



106 CHAPTER 2. TOPOLOGICAL PROPERTIES OF RIEMANN SURFACES

each torus is cut along its cycles so that the simply connected domain S is the rectangle. One
can repeat this operation inductively in the following way. The surface of genus 2 is cut along
the line y which decomposes the surface is two tori with boundary. Then each torus is dissected
along its canonical basis of cycles and the polygons obtained are identified along the side y so
that S coincides with the 8-gone (see Figure 2.9 and 2.10). In the general case one can repeat
the dissection by cutting out of a sphere g disks bounded by curves y1,...,),. By flattening the
resulting surface, one obtains a polygon with ¢ sides with symbol y1,...,y,. We then attach to
each side y; the handle a;f jazj_l ‘Bj_l)/ jforj=1,..., g, thus obtaining the normal form of genus g (
see Figure 2.10) for the case of genus one and two).

3;1\' A B

Y

Figure 2.10: Poincaré polygon for surfaces of genus one and two.



Chapter 3

Differentials on a Riemann surface.

3.1 Holomorphic differentials
We consider a complex-one dimensional manifold M with with an atlas of charts {U,, ¢,} with
Qo Uy — Vo C

and ¢, (P) = z, € V, and P € U,. Here we are identifying C with R? by writing z, = x, + iy, with
X, and vy, standard coordinates on R2.

Definition 3.1.1. A smooth one 1-form (also called differential) w on M is an assignment of a collection of
two smooth functions 1y (Xa, Ya) and va(Xa, Ya) to each local coordinate zy = x4 + iy, in U, such that

w = ua(xocr ya)dxa + Ua(xm ya)dya (311)

transform under change of coordinates as a (1,0)-tensor. Namely if zg = xp + iy is another local coordinate
such that U, n Ug # (& then

O Ola
<”ﬁ(xﬁfyﬁ)> _ | 9% 0% <“w(xwya)>
Vg (x}g, y,g) 0Xy 53/a [ (xa/ ya)
dyp  Oyp

with xo = xa(xp, Yp) and Yo = Ya(xp, Yp)-

Using the basis dz, = dx, + idy,, dz, = dx, — idy,, we can rewrite w in the form
@ = Ny (24,20) 320 + 3020, Za) 424, (3.1.2)

where

. 1 .
h, = E(ua —i0y), Qo= E(u” +iv,).

The two parts h(z,,Z,) dz, and §(z4, Z4) dZ, of the expression (3.1.2) will be called (1,0)- and
(0,1)-forms respectively. The above expression shows that the decomposition of w in (1,0) and

107
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(0,1) form is invariant under local change of coordinates, if and only if the change of coordinates

is holomorphic, namely
0Za %a

dzp | 0z5

The above conditions in real coordinates are equivalent to the Cauchy-Riemann equation. For a
one-complex dimensional manifold M that has a complex structure ( namely a Riemann surface),
the decomposition of a one form in (1,0) and (0,1) form is invariant under local change of
coordinates. From now on we will consider only holomorphic change of coordinates.

Definition 3.1.2. A one form w is called holomorphic is the functions hy(z,,Z,) in (3.1.2) are all holomor-
phic functions and g, = 0, namely
w = h(z,)dz,.

A one form w is called antiholomorphic if
w = g(zy)dza.
In a similar way to one form we can define two-forms.
Definition 3.1.3. A smooth two form 1 on M is an assignment of a smooth function f,(za,Z,) such that
N = fo(zZa,Za)dzo A dZ,
is invariant under coordinate change.

The exterior multiplication satisfies the conditions
Az, ndzy, =0, dzy, ndz, =0, dz, Andz, = —dz, A dz,.
Under holomorphic change of coordinates zg = zg(z4), Zg = Z(Z,) one has
n = fp(zp,2p)dzp A dZg = fo(Za,Za)dza A dZa

where )
dz,

dZﬁ

f5(28,28) = fa(za,Za)

We define QF fork = 0, 1,2 as the set of smooth functions, smooth one forms and smooth two-forms
on M respectively. We define the exterior derivative

d:Q0F -0, k=012
as follows. For f € Q°,
df(z,2) = fdz + fudz,

For one forms w € Q!, with w = h(z,z)dz + g(z,2z)dz in a given coordinate chart, the exterior
derivative takes the form
dw =dh Andz+dg A dz

and for two forms, 1 € Q*(M)
dn =0.
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Clearly the fundamental property of the exterior differentiation is
d* = 0.

We can decompose the exterior derivative operator d according to the decomposition of 1-form in
(0,1) and (1, 0) forms

d=0+70
so that for h € Q% := QY in a local chart
0:Q% - QY oh(z,z) = h.dz,

and
0:Q% - Q%", Oh(z,2) = hydz.

In general we get the diagram

Qo1 9 0?2

P
QO . R Ql,O

where Q2 = Q1. Also in this case ¢ = 0 and ¢% = 0.

Definition 3.1.4. A one form w is called exact if there is a function f € Q° such that df = w. A one form
w € Qs called closed if dw = 0.

Lemma 3.1.5. A (1,0)-form w = h(z,z) dz is closed if and only if the function h(z, z) is holomorphic.

It follows that all the holomorphic differentials, locally can be written in the form w = h(z)dz
where h(z) is a holomorphic function. Holomorphic differentials are closed differentials.

Definition 3.1.6. The first de Rham cohomology group is defined as

Closed 1-forms  ker(d : Q' — Q?)

H} = = .
Exact 1-forms — Im(d : Q0 — Q1)

deRham ( )

A similar definition can be obtained for the Dolbeault cohomology groups H?(S) and H!(S)
with respect to the operator 0:

 ker(0: QY - Q?)

Hl,O(S) . (9 : QO - QLO)

=ker(d: QY0 - Q?),

HOL(S) = ker_(a 1 Q0 (?) _ ) Qo1 .
(0:Q0 — QO1) Image(0 : Q0 — QO1)

A non trivial result shows that there are isomorphisms among the above three groups [17]. By

denoting H%!(S) the complex conjugate of the group H*!(S), one has the following theorem.
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Theorem 3.1.7. The Dolbeault cohomology groups H°(S) and H(S) are isomorphic

H'Y(S) ~ HYL(S) (3.1.3)
and the first de-Rham cohomology group is isomorphic to
Hierian(S) = HY(S) @ HY(S). (3.14)

The relation (3.1.3) shows that the complex vector spaces H'?(S) and H*!(S) have the same
dimension. The relation (3.1.4) shows that the dimension of the complex vector space H?(S) and

H*!(S) is half the dimension of the complex vector space H} ., (S).

3.1.1 Integration

We can integrate one forms on curves of the Riemann surface S, two-forms on domains of S and
0-forms on zero dimensional domains of S, namely points. Let ¢y be a 0-chain,

Cop = ZniP,', Pi €S
i

then for f € Q°(8) the integral of f over a 0-chain ¢ is
| £=Snse)

A one form w canbe integrated over a one-chain c. If the piece-wise differentiable pathc : [0,1] — S
is contained in a single coordinate disc with coordinates z = x + iy, then the integral of w over the
one-chain c takes the form

£w=LEmmam%w+f€MWﬂm%$w

0

By the transition formula for w the above integral is independent from the choice of the coordinate
chart z. In a similar way a two-form 7 can be integrated over two chains D. Again restricting to a

single coordinate chart one has
JJ n= JJ f(z,2)dzdz.
D D

The integral is well defined and extends in a obvious way to an arbitrary two-chain.

Theorem 3.1.8 (Stokes theorem). Let D be a domain of S with a piece-wise smooth boundary 0D and let

w be a smooth one-form. Then
J dw = f w. (3.1.5)
D oD

As a consequence of Stokes theorem, the integral of closed forms w on any closed oriented
contour (cycle) y on S does not depend on the homology class of y. Recall that two cycles y; and
¥ are said to be homologous if their difference y1 — y2 = y1 U (—y2) (where (—)) is the cycle with
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the opposite orientation) is the oriented boundary of some domain D on S with D = y; — y».
Then for a close differential w and from Stokes theorem we obtain

Ozfd(uzj w:J w:Jw—J .
D oD Y1—)2 hat 72

In addition, the integral of a close differential @ on a close cycle y is independent from the
cohomology class. Let o’ = w + df for some smooth function f, then

Lw = L(a)’ —df) = La)'.

We summarise the above discussion with the following proposition.
Proposition 3.1.9. The integration is a paring between the first homology group Hy(S, Z) and the first

cohomology group H} ., (S, C)

f : Hi(S,Z) x H} gyom(S,€) — C

The pairing is non-degenerate.

Proof. We need to prove that the pairing is non-degenerate. Consider a smooth one-form w such

that
J w=0
‘)/

forall y € Hi(S, Z). It follows that the function

)= @
Py
is well defined and it does not depend on the path of integration between Py and P. Therefore
df = w, namely the equivalent class of w in the de-Rham cohomology is zero, [w] = 0 in
H;eRham (S’ C) ' =
As a consequence of the above proposition we have the following lemma.

Lemma 3.1.10. The dimension of the space H,
of the compact Riemann surface S.

orham (S, €) i less then or equal to 2g where g is the genus

Proof. Suppose by contradiction, that there are wy, ..., ws, s > 2g independent closed differentials
in H} .. (S,C). Then let us consider a basis of the homology Sj, j = 1...,2¢ and construct the
matrix with entries

Cjk =j Wy, j= 1,...2g, k= 1,...S.
i
Such matrix has rank at most equal to 2g, and therefore one can find nonzero constants a, ..., a,
such that the differential © = >};_; axws has all its periods equal to zero, namely

J w=0 j=1,..2g.
Sj

By proposition 3.1.9 it follows that [w] = 0 and we arrive to a contradiction. m]



112 CHAPTER 3. DIFFERENTIALS ON A RIEMANN SURFACE.

As a consequence of the above lemma we have the following corollary for the dimension of
the space of holomorphic differentials.

Corollary 3.1.11. The space of holomorphic differentials on a Riemann surface of genus g is no more than
g-dimensional.

Actually the number of independent holomorphic differentials is indeed equal to g.
Theorem 3.1.12. The space of holomorphic differentials on a Riemann surface S of genus g has dimension
g

We do not give a proof of the above theorem that is constructive (see [18] or [17]). However
for a Riemann surface given as the zeros of a polynomial equation one can determine explicitly
the holomorphic differentials.

Example 3.1.13. Let us consider holomorphic differentials on a hyperelliptic Riemann surface

2¢+1
S = {w? = Pag1(2)}, Paga(z) = [[(z—z)
k=1
of genus g > 1. Let us check that the differentials
ZF1ldz ZF1dz
Me=—1—= , k=1,...,8 (3.1.6)
P2g+1(z)

are holomorphic. Indeed, holomorphicity at any finite point but branch point is obvious as the
denominator does not vanish. We verify holomorphicity in a neighbourhood of the i-th branch
point P; = {z = z;, w = 0}. Choosing the local parameter 7 in a neighbourhood of P; in the form
T = \/z — z;, we get from (1.2.26) that n = x(7)dt, where the function

Z(Zi + Tz)kfl

\/Hj#i(Tz +2i - 2))

Yi(T) =

is holomorphic for small 7.

At the point at infinity the differentials 7, can be written in terms of the local parameter 7 = 77z
in the form 1y = ¢r(7)d7, where the functions

2¢+1

2

Oi(T) = —272(8=k) [H (1 —zi’c)] , k=1,...,g
i=1

are holomorphic for small 7.

In the same way it can be verified that the differentials 1, = zk_ldz/ w,k=1,...,gare holomor-
phic on the Riemann surface of the curve w? = P;y5(z) with Pag42(2) an even polynomial with
2g + 2 distinct roots.
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Newton polygon and holomorphic differentials

In general let us consider the non-singular irreducible affine plane curve C := {(z,w) € C?,|F(z,w) =
Z?:o aj(z)w""7}, where a;(z) are polynomials in z. Let S be the Riemann surface of the curve C.
The one form i
Z 7wl dz
w=—7 ij21, 3.1.7
Fu(z, w) J ( )

is clearly holomorphic for all values where z and w are holomorphic. Indeed the only other
possible points where such differential might have poles are the zeros of F,, namely the branch
points with respect to the projection 7, : S — C, m.(z,w) = z. At these branch points, one needs
to take w as local coordinate. Since F,dz + F,dw = 0 one has

o
F, FE°
Therefore at the branch points where F,, = 0 one can write the differential w in the form v =
I lwk1dw

—— Since we assume that the curve C is non-singular, F, # 0 at the points where

F, =0.
In order to determine for which coefficients (i, j) the differential w in (3.1.7) remains holomor-
phic when z and w go to infinity, we exploit again the Newton polygon.
We recall that the Newton polygon N of the polynomial F(z,w) = >, i a;jz'w’ is the convex
hull of the set of points (7, j) of the (x, y)-plane defined by

N = Convex Hull{(i, j) € 7? |aij # 0}.

We define N = N \ON where dN is the boundary of N. We have the following theorem

Theorem 3.1.14. Suppose that the affine plane curve C = {(z,w) € C* [F(z,w) = }j_, M aziwi = 0}
is connected and non singular and let S be the compact Riemann surface of the curve C. Then the basis of
holomorphic differentials of S is
Zi—1gpi—1 -
w=———dz, (i,j)eN. (3.1.8)
Foy
Proof. The Riemann surface S has two meromorphic function z and w. Therefore we need to show

that w in (3.1.8) remains holomorphic at the poles of z and w when (i, j) € N. We assume, without
loss of generality, that ag, # 0 and agy # 0. Further let

m, = max {i|ay #0}, mp= max {i|ajp # 0}
i=0,...M i=0,...M

In this way the Newton polygon takes the form depicted in the figure. Suppose that the total
number of edges of the Newton polygon is £. We divide the edges of the Newton polygon in two
subsets:

o the edges that face the y axis, including the horizontal edges.

e the remaining edges.
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Figure 3.1: Example of Newton polygon

We number each edge starting from the rightmost edge that does not face the y axis and we
proceed numbering the edges anti-clockwise as in Figure 3.1. For each edge that does not face the
y axis we associate the line that contains it

Ly(x,y) =xgs+yps—ms =0, x,yeR, s=1,2,...,4,
while for the remaining edges, including the horizontal edges we associate the lines
Lf(x,y) =xqs+yps —ms =0, x,yeR, s=0,6+1,...¢

where we assume in both cases that g5, m; € N U {0}, and ps € Z. We define the set of integer lattice
points

D = {(i,j) e Z*|L; (i,j) <0}, s=1,2,...,04, 5.19)
Ds = {(i,j) e Z*|L (i,j) >0}, s=¢,6+1,...L o
Then clearly the interior of the Newton polygon is given by

N = mgles.

Since the function z has degree n the number of its poles counting multiplicity is equal to n. The
local coordinate of the function z at each of its poles is obtained from the slope of each line L;
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s =1,...4;. Indeed to each line L;” we associate the expansion in the local coordinate ¢

1
1= w2 s-1,...,0, (3.1.10)
t4s ths

where we assume that (ps, gs) # (0,0). We substitute the above expansion into the equation of the
curve to obtain

e, o) = 3 ayel = e S agd o).

(i,))eN (i,)eNAL;
The coefficient ¢, is obtained from
> ad o
(i,)eNAL;

The number of distinct solutions of the above equation corresponds to the length of the projection
of the corresponding edge of the Newton polygon on the y axis. In order to study the behaviour
of the differential (3.1.8) near the poles of the function z we first consider the expansion of each
term using the local coordinate (3.1.10):

dt
Folz(t),w(t)) = Y jage) lenmivorrs — om0 N gt 4 O(t)) (3.1.12)
i,jeN i,jeNAL;

so that the differential w in (3.1.8) takes the form

Z w1 = (=Dg=(i=Dps p—as+1 4y
W= —F == P
¢ tps—ms(zi,ieNmLs_ aijcy, + O(t))

= cons ¢t 4 O(t))dt,

where the constant factor is not important for our purposes. In view of (3.1.15), for (i, j) € N
one has igs + jps —m; < 0 fors = 1,...,¢; so we conclude from the above expansion that w is
holomorphic near the poles of z.

Finally, we need to study the behaviour of w near the set of poles of w. The local behaviour of
the function w near its poles is described by the slope of the edges that are not facing the positive
x-axis. For the example in the Figure 3.1 this corresponds to the edges L, and Ly . In the general
case the edges L;, for s = r...,{; correspond to poles of both the functions z and w and the
computation has already been performed above. The edges LY, s=6+1,...60 + kwithk >0
correspond only to poles of the function w while the function z assumes finite values that are the
zeros of the polynomial 3 ; , o a;,z'. In this case the local coordinate near such points is described
by

z=rcot?, w~th, s=4+1,...60 +k (3.1.13)
Plugging the above local coordinate in F(z(t), w(t)) one can determine the constant ¢y, and the
number of solutions corresponds to the length of the projection of the corresponding segment
onto the x axis. Then plugging the local coordinate (3.1.13) in @ one obtains

@ = cons tEHPTTY L O()dE, s=64+1,...6 +k
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In view of (3.1.15), for (i, j) € N one has igs + jps —ms = 1fors = €1 +1,... 61 + k, so we conclude
from the above expansion that w is holomorphic near the poles of w.
O

Example 3.1.15. Consider the algebraic curve C := {(z,w) € C? | F(z,w) = w® + zw* + 22w + zw? +
z*w? + 1 = 0}. Using Maple, it is possible to verify that the curve is non singular since the system
of equations F = 0, F,, = 0 and F, = 0 does not have solutions. The Newton polygon is given in
the Figure 3.2. The edges L, and L, describe the poles of the function z, with total multiplicity

sr+
L3
34
Ly
2 L 2 L]
+
L4
1
: Ly
0 1 2 3 4 5

Figure 3.2: Newton polygon

equal to 4 which is equal to the length of the projection of the edges onto the y-axis. The edges
L, and L7 describe the poles of the function w with total multiplicity equal to 5 which is equal
to the length of the projection of these edges onto the x-axis. The edges L;” and L facing the y
axis describe the behaviour of the function z near z = 0 while the side L, that is facing the x axis
describes the behaviour of the function w near w = 0. The corresponding lines are

L
L

(x,y) =x—-5y=0, L,(xy)=3x+4y—19=0

(3.1.14)
(xy)=x—y+3=0 Lf(x,y)=x=0.

W=

e Edge L ; it corresponds to the local parameter of the form

z==, W= TS(CO + 2 ck’ck)
T
k=1

Plugging the above ansatz into the equation of the curve one obtains F(z(t), w(t)) = co+ 1+
O(t) = 0 which implies cp = —1 . We denote this point as P*? = (o0,0). It is a first order
pole for z while it is a zero of order five for the function w.
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e Edge L, ; it correspond to a local parameter of the form

1
2=, w= — (co + ZCka)
T i>1

Plugging the ansatz into the equation of the curve we obtain F(z(t), w(t)) = T%(CO(CS +
1) + O(1)) = 0 so that ¢y = ¢™/® for j = 1,2,3. Since locally the function w ~ —z3, the
corresponding point P* that needs to be added to make C a compact Riemann surface is a
branch point of multiplicity 3 with respect to the projection 7.(z, w) = z and of multiplicity
4 with respect to the projection 1, (z, w) = w. The point P* is a pole of multiplicity 3 for the
function z and it is a pole of multiplicity four for the function w.

e Edge L. ; it corresponds to a local parameter of the form

1 k
z=1 w=—(c -I—ECT
T(0 4 KT)

3
O(1)) = 0 which implies ¢y = —1. We denote this point as P>*. It is a simple zero for z and
a first order pole for w.

Plugging the ansatz into the equation of the curve we obtain F(z(7), w(t)) = Tl(cg(co +1)+

e Edge L ; it correspond to a local parameter of the form

z=1 w=co —s—chT")
k

Plugging the above local coordinate into the equation of the curve one obtains F(z(1), w(7)) =
cg +1+o0(1) =0, so that ¢y = e™i/3 with j =1,2,3. Namely the meromorphic function z has
three simple zeros at the points P? = (0,€™i3),j=1,2,3.
Let us define the domains
D;={(i,j) e Z*|L; (i,j) <0}, s=1,2,
D; = {(i,j) e Z*|L} (i,j) > 0}, s=3,4.

Then the interior of the Newton polygon N is equal to

4
N =(D..
s=1

i—17,j—1 ~
Let us check that the differential w = %dz is holomorphic for (i, j) € N. For example let
w
us consider the the differential w in the local coordinate the point P“?. We have

Fu(z(1), w(T)) = %(1 +0(1)), dz= —;d’[
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so that ‘ ‘ o
w = —1 I 42(1 4 O(1))dr = —v~ 4D (1 4 O(1))dr
which is holomorphic for small 7 when (i, j) € Ds. In a similar way writing the differential w
i—1,,j—1
in local coordinates near the other points, one concludes that w = F—wdz is a holomorphic

differential for (i, j) € (', Ds = N.

3.1.2 Riemann bilinear relations

In this section we prove several technical assertions regarding the periods of close differential and
holomorphic differentials. Such relations are known as Riemann bilinear relations

Lemma 3.1.16. Let wy and w, be two closed differentials on a surface S of genus g > 1. Denote their
periods with respect to a canonical basis of cycles ay, ..., aq, p1,...,Bg, by Ai, Bi and A;, Bi:

&:Jw,&:f@ 4:chm:fd. (3.1.15)

i

Denote by f = {w the primitive of w, then

JLwAd:§ﬁJ:€mﬂ4m. (3.1.16)

i=1

D
O

Proof. The first of the equalities in (3.1.16) follows from Stokes’ formula, since d(fw') = w A @'.
Let us prove the second. We have that

oSS
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To compute the i-th term in the first sum we use the fact that f(P) = S;} @ where Py is a point in
the interior of S:

P; P P;
f(Pi) — f(P}) = Jw - Jw = Jw = —B; (3.1.17)
Py Py P

since the cycle P;P;, which is closed on S, is homologous to the cycle f; (see the figure; a fragment

of the boundary 08 is pictured). Similarly, the jump of the function f in crossing the cut f; has the

form
Qi

Q) — f(Q) = Jw = A (3.1.18)
Q

since the cycle Q!Q; on S is homologous to the cycle a;. Moreover, o'(P}) = «'(P;) and o'(Q!) =
@'(Q;) because the differential @’ is single-valued on S. We have that

|| rege + J F@Yw/(Pl) = | FRO'(P) ~ [ (7(P) + B)a(P)

—B,‘J a)’(Pi) = —B,‘A;

where the minus sign appears because the edge ai_l occurs in dS with a minus sign. Similarly,

O ' L) fo' = AiB;.

Summing these equalities, we get (3.1.16). The lemma is proved. m]

We derive some important consequences for periods of holomorphic differentials from the
lemma 3.1.16. Everywhere we denote by a, ..., ay, f1,..., B the canonical basis of cycles on S.

Corollary 3.1.17. Let w be a nonzero holomorphic differential on S, and Ay, ..., Ag, By, ..., By its corre-
sponding periods with respect to the canonical homology basis ay ..., aq and By ..., Bg, then

8
g (Z AkBk> <0. (3.1.19)

i=1

Proof. Take @’ = @ in the lemma 3.1.16. Then A} = A; and B! = Bifori=1,...,5. We have that

1JJwAw’=£JJ\f\2dZAdZ=JJ f[2dx A dy > 0.
2) s 2 S

Here z = x + iy is a local parameter, and w = f(z)dz. In view of (3.1.16) this integral is equal to

. g 8

1 = = =

5 O By — ABy = =9 (Z AkBk> :
k=1

k=1

The corollary is proved. ]
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Corollary 3.1.18. If all the a-periods of a holomorphic differential are zero, then w = 0.
This follows immediately from Corollary 3.1.17.

Corollary 3.1.19. On a surface S of genus g there exists a basis w1, ..., wq of holomorphic differentials
such that

jga)k —on, jk=1,...,8 (3.1.20)

aj

Proof. Let 1, ...,ng be an arbitrary basis of holomorphic differentials on S. The matrix

@j

is non-singular. Indeed, otherwise there are constants ¢, ..., c, such that >}, Ajkcy = 0. But then
Dk = 0, since this differential has zero a-periods. This contradicts the independence of the
differentials 71, ..., 1,. Consider

8
wj = Ag, j=1,....8 (3.1.22)
k=1

where the matrix (Akj) is the inverse of the matrix (Ajx), D AikAkj = 0;j. Then the differentials w;
define the desired basis. |

Abasis wy, ..., wg satisfying the conditions (3.1.20) will be called a normal basis of holomorphic
differentials (with respect to a canonical basis of cycles ay, ..., ag, f1,...,Bg) -

Corollary 3.1.20. Let wy, ... wq be a normalized basis of holomorphic differentials, and let

B]k = %wk/ j/k = 1/" '/g‘ (3»1.23)
Bj

Then the matrix (Bj) is symmetric and has positive-definite imaginary part.

Proof. Let us apply the lemma 3.1.16 to the pair @ = w; and @’ = wy. By (3.1.16) we have that

0= 2(6ijBik — 0ixBij) = (Bjk — Byj).

1

The symmetry is proved. Next, we apply Corollary 3.1.17 to the differential Z‘]?:l xjw;j where all
the coefficients xy, ..., x, are real. We have that Ay = x, By = Z]» x;By;j which implies

S(Z kaijk]-) = Z S(Bkj)xkxj < 0.
k j kj

The lemma is proved. m|

Definition 3.1.21. The matrix (Bj) is called a period matrix of the Riemann surface S.
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Figure 3.3: Homology basis.

Example 3.1.22. We consider a surface S of the form w? = P;(z) of genus ¢ = 1 (an elliptic
Riemann surface). Let P3(z) = (z — z1)(z — 22)(z — z3) and choose a basis of cycles as shown in the
figure 2.7. We have that

Note that

dz
I
B adz 77 +/Ps3(2)
B_jg Ps(z)_gzz ———, 9(B)>0. (3.1.24)
“ Pg(Z)

Example 3.1.23. . Consider a hyperelliptic Riemann surface w? = Pyg;1(z) = ]_L.Zifl(z — z;) for

genus g > 2, and choose a basis of cycles as indicated in the figure 3.4 (there ¢ = 2). A normal
basis of holomorphic differentials has the form

§ oz ldz
wj= 2= i, e (3.1.25)

P2g+1 (Z)

Here (cj) is the matrix inverse to the matrix (Aj) where

20 k—1
21 4 /Prg11(2)
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Bl

. -
~.. -

Figure 3.4: Homology basis.

3.1.3 Meromorphic differentials, their residues and periods

Meromorphic (Abelian) differentials on a Riemann surface differ from holomorphic differentials
by the possible presence of singularities of pole type. If a surface is given in the form F(z, w) = 0,
then the Abelian differentials have the form w = R(z, w)dz or, equivalently, w = Ry (z, w)dw, where
R(z,w) and R;(z,w) are rational functions. For example, on a hyperelliptic Riemann surface
w? = Pyg11(z) the differential w~'zF"'dz has for k > g a unique pole at infinity of multiplicity
2(k — g) (see Example 3.1.13). Suppose that the differential w has a pole of multiplicity k at the
point Py i.e., can be written in terms of a local parameter z, z(Py) = 0, in the form

w— (C;kk I 0(1)) dz (3.1.27)
Z 4

(the multiplicity of the pole does not depend on the choice of the local parameter z).

Definition 3.1.24. The residue Resp_p, w(P) of the differential w at a point Py is defined to be the coefficient
C_1.

Lemma 3.1.25. The residue Resp—_p, w(P) does not depend on the choice of the local parameter z.

po

i
c

Proof. This residue is equal to

L1
T on
where C is an arbitrary small contour encircling Py. The independence of this integral on the
choice of the local parameter is obvious. The lemma is proved. m]

Theorem 3.1.26 (The Residue Theorem). . The sum of the residues of a meromorphic differential w on a
Riemann surface, taken over all poles of this differential, is equal to zero.

Proof. Let Py, ..., Py be the poles of w. We encircle them by small contours Cj, ..., Cy such that

1
R = — , j=1,...,N,
Peisa) 2mi @]

Cj
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(the contours C; run in the positive direction), and cut out the domains bounded by C;, ..., Cy from
the surface S. This gives a domain &’ with oriented boundary of the form 08" = —C; —--- — Cy
(the sign means reversal of orientation). The differential w is holomorphic on &'. By Stokes’

formula,
1 ¢ 1 1
R =— = —— = —— dw =0,
2 B ZHingw 2mi | ¢ ZniJ o
=t =1¢; o8
since dw = 0. The theorem is proved. m]

We present the simplest example of the use of the residue theorem: we prove that the number
of zeros of a meromorphic function is equal to its number of poles (counting multiplicity). Let
Py, ..., Py, be the zeros of the meromorphic function f, with multiplicities m;, ..., m; a nd let
Q1,...,Q; be the poles of this function, with multiplicities #y,...,n,. Consider the logarithmic
differential d(Inf). This is a meromorphic differential on S with simple poles at P, ..., Py with
residues my, ..., m, and at the points Qy, ..., Q; with residues —ny, ..., —n;. By the residue theorem:
my + - +m—ny —--- —n = 0, which means that the assertion to be proved is valid. One
more example. For any elliptic function f(z) on the torus T> = C/{2mw + 2n«'} the residues at
the poles are defined with respect to the complex coordinate z (in C). These are the residues of
the meromorphic differential f(z)dz, since dz is holomorphic everywhere. Conclusion: the sum of
the residues of any elliptic function (over all poles in a lattice parallelogram) is equal to zero. We
formulate an existence theorem for meromorphic differentials on a Riemann surface S (see [?] for
a proof).

Theorem 3.1.27. Suppose that Py, ..., Py are points of a Riemann surface S and zi,...,zy are local
parameters centered at these points, z;(P;) = 0, and the collection of principal parts is

X0 0
—ki —1 .
T—’_.“—’_—. dz;, i=1,...,N. (3.1.28)
z;' Zj
Assume the condition N
i, =0 (3.1.29)
i=1

Then there exists on S a meromorphic differential with poles at the points P1, ..., PN, and principal parts
(3.1.28).

Any meromorphic differential can be represented as the sum of a holomorphic differential and
the following elementary meromorphic differentials.

1. Abelian differential of the second kind Q} has a unique pole of multiplicity n + 1 at P and a
principal part of the form

Q= (L + 0(1)) dz (3.1.30)

Zn+1
with respect to some local parameter z, z(P) = 0,n = 1,2,....

2. An Abelian differential of the third kind Qpg has a pair of simple poles at the points P and
Q with residues +1 and —1 respectively.
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Example 3.1.28. We construct elementary Abelian differentials on a hyperelliptic Riemann surface

w? = Pyg11(z). Suppose that a point P which is not a branch point takes the form P = (a,w, =
Pj¢11(a)). An Abelian differential of the second kind Ql(al) has the form

P, .1(a)
QS) _ <w+wu T e >d_z (3.1.31)

(z—a)? 2w,(z—a)) 2w

(with respect to the local parameter z-a). The differentials Ql(,”) can be obtained as follows:

1 4 1 1
P n' dg—1 P (3.1.32)
If P = (z;,0) is one of the branch points, then
n dz n dz
QP = W for n = 2k, QP = m for n =2k + 1. (3133)
Finally, if P = oo, then
QI()”) = —%zk_ldz for n =2k, Qf = —%zg”‘_l%z for n =2k + 1. (3.1.34)

We now construct differentials of the third kind. Suppose that the point P and Q have the form
P = (a,w, = 4/Pag+1(a)) and Q = (b, w, = 4/P2g41(D)). Then

w+w, w+wy\ dz
Qpp = — — 1.
FQ (z—a z—b)Zw (3-1.35)
If Q = +o0 then
w+ w, dz
Qpg = s 7w (3.1.36)

Accordingly, we see that for a hyperelliptic Riemann surface it is possible to represent all the
Abelian differentials without appealing to Theorem 3.1.27.

Exercise 3.1.29: Deduce from Theorem 3.1.27 that a Riemann surface S of genus 0 is rational. Hint.
Show that for any points P, Q € S the function f = exp S Qpg is single valued and meromorphic
on S and gives a biholomorphic isomorphism f : S —

The period of a meromorphic differential w along the cycle y is defined if the cycle does not
pass through poles of this differential. The period SV w depends only on the homology class of
y on the surface S, with the poles of w with nonzero residue deleted. For example, the periods
of the differential Qpg of the third kind along a cycle not passing through the points P and Q
are determined to within integer multiples of 27i. In speaking of the periods of meromorphic
differentials we shall assume that the cycles do not pass through the poles of the differential.

Lemma 3.1.30. Suppose that the differentials (1 and Q, on a Riemann surface S have the same poles
and principal parts, and the same periods with respect to the cycles ay,...,ag, B1,...,Bs. Then these
differentials coincide.
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Proof. The difference w1 — w, is a holomorphic differential that has zero a-periods. Therefore, it is
identically zero (see Lecture 3.1.2). The lemma is proved. ]

Definition 3.1.31. A meromorphic differential w is said to be normalized with respect to a canonical basis
of cycles ay, ..., g, B1,..., B if it has zero a-periods.

Any meromorphic differential w can be turned into a normalized differential by adding a
holomorphic differential ZI§=1 crwg. Indeed the condition that Q = w + >, ¢rwy is normalised,

namely

defines the constants cy, ..., ¢, uniquely.

By Lemma 3.1.30, a normalized meromorphic differential is uniquely determined by its poles
and by the principal parts at the poles. In what follows we assume that meromorphic differentials
are normalized. We obtain formulas that will be useful for the -periods of such differentials by
arguments like those in the proof of Lemma 3.1.16.

g
a)+2ckf we=0, j=1,...,g
k=1 v

i — 0

Lemma 3.1.32. The following formulas hold for the B-periods of normalized differentials Ql(f) and Qpg

1 dn—l
%Ql(,n) = 27Zladzn—_1¢k<2)|z=0, k=1,.. L8 n= 1,2,..., (3137)
Px

where z is a particular local parameter in a neighbourhood of P, z(P) = 0, and the functions i (z) are
determined by the equality wy = Px(z)dz and wy, ..., w4 is a normalized basis of holomorphic differentials
with respect to the canonical homology basis as, ..., ag, 1, ..., Bg,

P
Qpg = 27‘Zif we, i=1,...,8 (3.1.38)
Q
Pr

where the integration from Q to P in the last integral does not intersect the cycles ay, ..., ag, p1, ..., Py

Proof. We encircle the point P with a small circle C oriented anticlockwise; deleting the interior of
this circle from the surface S, we get a domain &’ with 08’ = —C. Let us apply the arguments of

Lemma 3.1.16 to the pair of differentials w = wy, @' = QI(,"). Denote by u; the primitive

Q
uk(Q) = f W (3.1.39)

Py

which is single-valued on the Poincare’ polygon & of the surface S. We have that

g
0= J f WA = JS QY = Y (AjB;— AiB)) — jg QY (3.1.40)
! o !’ ]:1 C
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(the boundary 08’ differs from the boundary 8 by (—C)). Here the & and S-periods of wy and QF
have the form

Aj = 0j, Bj =By, A;- =0, B;- = ngl(jn).
Bj
From this,

4; ol = ff QY = 2n1Res(qu( ) = = 27iRes [(f f Yi(T dr) n+1] (3.1.41)
Py
B

Computation of the residue on the right-hand side of this equality leads to (3.1.37).

We now prove (3.1.38). Let C and C’ small circles around P and Q respectively. Deleting the
interior of this circles from the surface S, we get a domain &’ with 08’ = —C — C'. Let us apply
the arguments of Lemma 3.1.16 to the pair of differentials w = wy, @’ = Qpg. Denote by u; the
primitive of w;. By analogy with (3.1.40) and (3.1.41) we have that

§QPQ = 2mi § qupQ + 27 § qupQ
B C cr

Since the differential (pg has a simple pole in P and Q with residue +1 respectively, the above

integrals are equal to
P Q P
fﬁQPQ = ue(P) — ux(Q) =f wk—J Wk = f Wk

Py P,
e 0 o Q

where we assume that the point Py lies in the interior of &'. The lemma is proved. o

Exercise 3.1.33: Prove the following equality, which is valid for any quadruple of distinct points

P4,...,P4 on a Riemann surface:
Py Ps

Qp,p, = Qp,p,. (3.1.42)
P P,

Exercise 3.1.34: Consider the series expansion of the differentials Ql(f) in a neighbourhood of the
point P

0
o _ |1 (n)_j
QP = (Z”ﬁ—’_zg)cj z’)dz. (3.1.43)
]:

Prove the following symmetry relations for the coefficients c](.k):

ke jk)l =i, kj=12.... (3.1.44)

Exercise 3.1.35: Prove that a meromorphic differential of the second kind w is uniquely determined
by its poles, principal parts, and the real normalization condition

g 3€a) =0 (3.1.45)

for any cycle S. Formulate and prove an analogous assertion for differentials of the third kind
(with purely imaginary residues).
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3.1.4 The Jacobi variety, Abel’s theorem

Let ey, ..., e be the standard basis in the space C$, ¢; = (0,...,1,...,0), with one on the j-entry.
Given 2g row vectors A, € C8, k =1,...,2g, with Ay = Zj?:l Akjej, we construct the 2¢ x ¢ matrix
A having in the k-row the vector A

Axj = (Ab)j. (3.1.46)

The matrix A generates a lattice in C8 of maximal rank, if its row vectors are linearly independent
over the real numbers.

Consider in €S the integer period lattice L generated by the vectors (3.1.46). The vectors in this
lattice can be written in the form

28
L={0eCs o= mhl, (m,... my)eZ*} (3.1.47)
k=1

We assume that L generates a lattice of maximal rank in C8. Then the quotient of C$ by this lattice
is the 2¢g-dimensional torus
T% = C8/L (3.1.48)

namely a g-dimensional complex manifold. Changing the basis in C8, namely ¢ — ecM, V\Zith
M e GL(g, C), the matrix A — AM. Furthermore, the same lattice is given by vectors (A1, ..., Az)
with

2g
Ak = Z nk]'/\]‘
k=1

with N = {nkj}igjzl € SL(2g,Z). Therefore A — NA. Summarizing, two matrices A and A
represent the same torus if

A=NAM, MeGL(g,C), NeSL(?2g, 7). (3.1.49)

If we assume that the lattice generated by A has maximal rank, we can always choose A in such a
way that
v (1)

with A; € GL(g, C). Therefore, by (3.1.49) the two matrices A and AAT - < A Ii1> with [, the
243

g-dimensional identity, represent the same torus.

Let B = (Bjx) be an arbitrary complex symmetric ¢ x ¢ matrix with positive-definite imaginary
part (as shown in Lecture 3.1.2, the period matrices of Riemann surfaces have this property). We
consider the vectors

ey, ...,eq, eB,... e.B. (3.1.50)

Lemma 3.1.36. The vectors (3.1.50) are linearly independent over R.

Proof. Assume that these vectors are dependent over R:

(p1e1 + -+ + pgeg) + (p1er + - + ugeg)B =10, p;, pje R
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Separating out the real part of this equality we get that J((u1e1 + - - - + pgeq)B) = 0. But the matrix
J(B) is non-singular, which implies y; = --- = y, = 0. Hence also p; = - - - = p, = 0. The lemma
is proved. m]

Consider in C$ the integer period lattice generated by the vectors (3.1.50). The vectors in this
lattice can be written in the form
m+nB, m,neZs. (3.1.51)

By Lemma 3.1.36 the quotient of C¢ by this lattice is a torus of maximal rank:
T% = T%(B) = C$/{m + nB}. (3.1.52)

Definition 3.1.37. Suppose that B = (Bj) is a period matrix of a Riemann surface S of genus g. The
torus T?(B) in (3.1.52), constructed from this period matrix is called the Jacobi variety (or Jacobian) of the
surface S and denoted by J(S).

Remark 3.1.38. What happens with the torus J(S) when the canonical basis of cycles on S changes?
Leta = (aq,..., ozg)t and 8 = (B, .- .,ﬁg)t be the column vectors of the canonical homology basis.
Leta’ and B’ be anew canonical homology basis related to a and g by the symplectic transformation

(g’, ) - (Z Z) (g) (? Z) € Sp(2g,Z).

Let w = (w1, ..., w,) be the canonical homology basis of holomorphic differentials with respect to
the basis @ and , namely
J w = I, f w =B
a B

where I is the ¢ dimensional identity matrix. Then

J.a)zf w = aly + bB,
a’ aa+bp

Ja):f w = clg +dB.
4 ca+dp

Observe that al, + bB is non singular, since it is the matrix of a-periods of the holomorphic
differentials. So the canonical basis of holomorphic differentials o’ = (@}, ..., a):g) with respect to
the basis @’ and f’ is given by

o' = w(alg + bB) ™!

This implies that the corresponding period matrix
B = J w' = (clg + dB)(aly + bB) ™. (3.1.53)

From (3.1.49) it follows that the tori T?¢(B) and T?¢(B’) are isomorphic. Accordingly, the Jacobian
J(S) changes up to isomorphism when the canonical basis changes.
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We consider the primitives (”Abelian integrals”) of the basis of holomorphic differentials:

P
u(P) = J wy, k=1,...,g (3.1.54)

Py

where Py is a fixed point of the Riemann surface. The vector-valued function
A(P) = (u1(P), ..., ug(P)) (3.1.55)

is called the Abel mapping (the path of integration is chosen to be the same in all the integrals
ui(P),...,ug(P)).

Lemma 3.1.39. The Abel mapping is a well-defined holomorphic mapping
S—-J(S). (3.1.56)

Proof. (cf. Example 3.1.28). A change of the path of integration in the integrals (3.1.54) leads to a
change in the values of these integrals according to the law

ug(P) — ug(P) + %wk, k=1,...,g
')/

where y is some cycle on S. Decomposing it with respect to the basis of cycles, y ~ > mja;+ > n;B;
we get that
uk(P) — Mk(P) + my + ZBkjnj, k=1,. -, 8
j

The increment on the right-hand side is the kth coordinate of the period lattice vector m + nB
where m = (my,...,mg), n = (ny,...,ng). The lemma is proved. O

The Jacobi variety together with the Abel mapping (3.1.56) is used for solving the following
problem: what points of a Riemann surface can be the zeros and poles of meromorphic functions?
We have the Abel’s theorem.

Theorem 3.1.40 (Abel’s Theorem). The points Py, ..., P, and Q1, ..., Q (some of the points can repeat)
on a Riemann surface S are the respective zeros and poles of some function meromorphic on S if and only
if the following relation holds on the Jacobian:

A(P1) + -+ + A(Py) = A(Q1) + -+ + A(Qn)- (3.1.57)

Here and below, the sign = will mean equality on the Jacobi variety (congruence modulo the
period lattice (3.1.51)). We remark that the relation (3.1.57) does not depend on the choice of the
initial point Py of the Abel map (3.1.54).

Proof. 1) Necessity. Suppose that a meromorphic function f has the respective points Py, ..., P,
and Qy,...,Qy as zeros and poles, where each zero and pole is written the number of times
corresponding to its multiplicity. Consider the logarithmic differential O = d(log f). Since

f = constexp glfo ), is a meromorphic function, the integral in the exponent does not depend on
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the path of integratio. It follows that all the periods of this differential Q are integer multiples of
2mi. On the other hand, we represent it in the form

n 8§
Q=>Qpg + ), cws, (3.1.58)
j=1 s=1

where Qp. ,Q,; are normalized differentials of the third kind (see Lecture 3.1.3) and cy,...,c, are
constant coefficients. Let us use the information about the periods of the differential. We have
that

2ming = %Q =c,, Ny€Z,
(03

which gives us ¢ = 2ming. Further,

P;
n
2n1mk—§Q 27 Zf k+2n12ns ok

(we used the formula (3.1.38)). From this,

P;
ug(P1) + - + ug(Pn) — ur(Q1) — -+ — ux(Qn) = 2 J =My — Z 13Bsk. (3.1.59)

The right-hand side is the kth coordinate of the vector m + nB of the period lattice (3.1.51), where
m = (my,...,mg), n = (ny,...,ng). The necessity of the condition (3.1.57) is proved.
2) Sufficiency. Suppose that

8
we(P1) + -+ + ug(Pu) = u(Q1) — -+ — u(Qu) = mx — Y By (3.1.60)

f(P) —exp[ JQPQ]—i—Ec]J a)]]

where Qp.. are the normalised third kind differentials with poles in P; and Q; and c; are constants.
The function is a single valued meromorphic function if the integrals in the exponent do not depend
on the path of integration. Let us study the behaviour of f when P — P + a:

8
fp) — fPrexp | Y [ wy] -
=

In order to have a single valued function the constant cx = 2mtng, 1 € IN. Next let us consider the
behaviour of f when P — P + By

g 8 3P g
f(P) — f(P)exp ;Lkaij-i-j;nijwj = f(P)exp ZRiEL/ a)k+2nij§1njjﬁkwj

Consider the function
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Using the relation (3.1.60) one obtains that f(P) — f(P) exp[2nimy] = f(P) which shows that f(P)
is a meromorphic function on S. m]

Example 3.1.41. We consider the elliptic curve
w* =42° — gz — gs. (3.1.61)

For this curve the Jacobi variety J(S) is a two-dimensional torus, and the Abel mapping (which
coincides with (2?)) is an isomorphism (see Example 3.1.22). Abel’s theorem becomes the following
assertion from the theory of elliptic functions: the sum of all the zeros of an elliptic function is
equal to the sum of all its poles to within a vector of the period lattice.

Example 3.1.42. (also from the theory of elliptic functions). Consider an the elliptic function of
the form f(z, w) = az+ bw + ¢, where a, b, and c are constants. It has a pole of third order at infinity
(for b # 0). Consequently, it has three zeros P;, P, and P3. In other words, the line az + bw +c¢ =0
intersects the elliptic curve (3.1.61) in three points (see the figure). We choose o as the initial point
for the Abel mapping, i.e., u(®0) = 0. Let u; = u(P;), i = 1,2,3. In other words,

P = (p(u;), ' (ui)), i=1,2,3,

where p(u) is the Weierstrass function corresponding to the curve (3.1.61). Applying Abel’s
theorem to the zeros and poles of f, we get that

U + up +usz =0.

Conversely, according to the same theorem, if 17 + up + u3 = 0, i.e. u3 = —up — u; then the points
Py, P, and Pj; lie on a single line. Writing the condition of collinearity of these points and taking
into account the evenness of g and oddness of ¢’, we get the addition theorem for Weierstrass
functions:
1T () 9’ (u1)
det|1 P (u2) 9 (u2) =0. (3.1.62)
1 ol +uy) —¢' (1 + up)

3.1.5 Divisors on a Riemann surface. The canonical class. The Riemann-Roch
theorem

Definition 3.1.43. A divisor D on a Riemann surface is defined to be a (formal) integral linear combination
of points on it:

n
D=YnP, PieS neZ (3.1.63)
i=1
For example, for any meromorphic function f the divisor (f) of its zeros Py, ..., Py and poles
Q1,...,Q of multiplicities my, ..., my, and ny, ..., n, respectively is defined

(f) =miP1+ -+ mPr —mQq — - - —mQy. (3.1.64)

Observe that given f and g two meromorphic functions

(fe) =) +©), (/&) =) —(8)
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Definition 3.1.44. Divisors of meromorphic functions are also called principal divisors.

Another useful notation for the divisor of a meromoprhic function is given by
(f) = Y multp(f) - P
P

where we recall that the multiplicity of f in P is the minimum coefficient present in the Laurent
expansion in a neighbourhood of the point P namely multpf = min,cz{n, |a, # 0} where the
Laurent expansion of f in P is ), a,,z". Such definition does not depend on the choice of the local
coordinates. The set of all divisors on S, Div(S), obviously form an Abelian group (the zero is the
empty divisor).

Definition 3.1.45. The degree deg D of a divisor of the form (3.1.63) is defined to be the number

N
degD = > m;. (3.1.65)

i=1
The degree is a linear function on the group of divisors. For instance,

deg(f) = 0. (3.1.66)

Definition 3.1.46. Two divisors D and D’ are said to be linearly equivalent, D ~ D' if their difference is a
principal divisor.

Linearly equivalent divisors have the same degree in view of (3.1.66). For example, on P!
any divisor of zero degree is principal, and two divisors of the same degree are always linearly
equivalent.

Example 3.1.47. The divisor (w) of any Abelian differential @ on a Riemann surface S is well-
defined by analogy with (3.1.64). If &’ is another Abelian differential, then (v) ~ (@’). Indeed,
their ratio f = w/w’ is a meromorphic function on S, and (w) — («’) = (f). We remark that any
differential in a coordinate chart ¢, : Uy — V,, with ¢ (P) = z, take the form

W = hy(z4)dze, @' = (24)d2zs

where h, and /1, are meromorphic functions. The ratio g, = h,/h), is a meromorphic function of
Va. Now define f := g, o ¢, which is a meromorphic function on U,. It is easy to check that f is
well defined and independent from the coordinate chart.

Definition 3.1.48. The linear equivalence class of divisors of Abelian differentials is called the canonical
class of the Riemann surface S. We denote it by Ks.

For example, the divisor —2c0 = (dz) can be taken as a representative of the canonical class
Kpr.

We reformulate Abel’s theorem in the language of divisors. Note that the Abel map extends
linearly to the whole group of divisors. Abel’s theorem obviously means that a divisor D is
principal if and only if the following two conditions hold:

1. degD = 0;
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2. A(D)=0o0n]J(S),

where
M

(AP;) — AQ))), D=>.(Pj—Q)),

1 j=1

with A the Abel map defined in (3.1.55).

Let us return to the canonical class. We compute it for a hyperelliptic surface w? = Ppg»(z). Let
P1,...,Pagy2 be the branch points of the Riemann surface, and P+ and P, - its point at infinity.
We have that

Mz

AD) =

-
Il

(dZ) =P+ + P28+2 — 2P+ — 2P

Thus the degree of the canonical class on this surface is equal to 2g — 2. We prove an analogous
assertion for an arbitrary Riemann surface. For the purpose we need the following lemma.

Lemma 3.1.49. Let f : S — X be a holomorphic map between Riemann surfaces S and X and w a
meromorphic one form on X, then for any fixed point P € S

multp f*w = (1 + multp)(w))multp(f) — 1 (3.1.67)

where f*w denotes the pull back of w via f. We recall that the multiplicity of f in P is the unique integer
m such that there is local a coordinate near P € S and f(P) € X such that f takes the form T — 7.

Proof. Suppose that the map f can be represented near the point P and f(P) with centred local
coordinates 7 and 7' as T — 7' = 7. Suppose that near the point f(P) the one form w takes the
form w = g(v')d7’ with g(7') = Y-, axt*. Then, the one form f*w, near the point P, takes the
form

ffo = g(t™)ymt" dr = Z ok M=l

k=n

Looking at the coefficient in the exponent, one has the claim of the lemma. m]

Definition 3.1.50. Let f : S — X be a holomorphic map between Riemann surfaces. The branch point
divisor Wy is the divisor on S defined by

Wy = [multp(f) — 1]P. (3.1.68)
PeS

For example, let us consider the Riemann surface S of the curve C := {z,w) € C?|F(z,w) = 0}
and consider the projection 1, : C — C such that 71.(z,w) = z. Such map can be extended to a
holomorphic function 2 : S — P'. Let Py, ..., Py be the ramification points of £ with multiplicity
by, ..., by respectively. The branch point divisor is Ws = b1P1 +...bnPn.

Definition 3.1.51. Let f : S — X be a holomoprhic map between Riemann surfaces and let Q € X. The
inverse image of the divisor nQ, n € Z\{0}, denoted f*(nQ) is defined as

f*nQ)=n >, mult,(f) - P. (3.1.69)
Pef1(Q)
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Applying (3.1.67), (3.1.68) and (3.1.69), we arrive to the relation between divisors
(ffw) = Wi + f*(w), (3.1.70)
where f*(w) is the inverse image of the divisor (w) of the one form w.

Lemma 3.1.52. The canonical class of the surface S has the form
Ks = Ws+ f*(Kpr). (3.1.71)

Here f* denotes the inverse image of a divisor in the class Kp1 with respect to the holomorphic function
f:S—PL

Proof. . This follows immediately from (3.1.70). ]
Corollary 3.1.53. The degree of the canonical class Ks of a Riemann surface S of genus g is equal to 2g —2.

Proof. We have from (3.1.71) that deg Ks = deg W, —2deg f, where deg W is the total multiplicity
of the ramification points of the map f. By the Riemann-Hurwitz formula (2.1.4), deg Wy =
2g + 2deg f — 2. The corollary is proved. ]

The divisor (3.1.63) is positive if all multiplicities #n are non negative numbers An effective
divisor is a divisor linearly equivalent to a positive divisor. Divisors D and D’ are connected by
the inequality D > D’ if their difference D — D’ is a positive divisor.

With each divisor D we associate the linear space of meromorphic functions

L(D) = {f | (f) + D = 0}. (3.1.72)

If D is a positive divisor, then this space consists of functions f having poles only at points of D,
with multiplicities not greater than the multiplicities of these pointsin D. If D = D — D_, where
D, and D_ are positive divisors, then the space L(D) consists of the meromorphic functions with
poles possible only at points of D, with multiplicities not greater than the multiplicities of these
points in D , and with zeros at all points of D_ (at least), with multiplicities not less than the
multiplicities of these points in D.

Lemma 3.1.54. If the divisors D and D’ are linearly equivalent, then the spaces L(D) and L(D’) are
isomorphic.

Proof. Let D — D' = (g), where g is a meromorphic function. If f € L(D), then f' = fg e L(D’).
Indeed,
(f)+D' =(f)+(g+D' =(f) +D>0.

Conversely, if f' € L(D'), then f = g~ f" € L(D). The lemma is proved. ]
We denote the dimension of the space L(D) by
I(D) = dim L(D). (3.1.73)

By Lemma 3.1.54, the function /(D) (as well as the degree deg D) is constant on linear equivalence
classes of divisors. We make some simple remarks about the properties of this important function.

Remark 3.1.55. For the zero (empty) divisor, [(0) = 1. If degD < 0, then I(D) = 0.
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Remark 3.1.56. A divisor D is effective if and only if /(D) > 0. Indeed, replacing D by a positive
divisor D’ linearly equivalent to it, we see that the space L(D’) contains the constants. Conversely,
ifI(D) > 0, then D is effective. Indeed, if the meromorphic function f is such that D’ = (f)+D > 0,
then the divisor D’, which is linearly equivalent to D is positive.

Remark 3.1.57. The number /(D) — 1 is often denoted by |D|. According to Remark 3.1.56 |D| = 0
for effective divisors. The number |D| admits the following intuitive interpretation. Let us assume
D > 0. We show that |D| > m if and only if for any points Py, ..., P, there is a divisor D’ ~ D
containing the points Py, ..., P, (the presence of coinciding points among Pj, ..., P, is taken into
account by their multiple occurrence in D’).

If I(D) = m + 1, then there are linearly independent functions fi, ..., f» € L(D) such that the
function f = Z;":l ¢ifj — co, where ¢j, j = 1,...,m are arbitrary constants, has zeros in Py, ..., Py,
namely

fP)=0, j=1,..,m.

This system can be written in the form

fiP1)  f(P1) ... fu(P1) 1 Co
f(P2)  fa(P2) ... fu(P2) C‘z c.o

AP AE o e )\ ] G

It is a system of inhomogeneous linear equations for the constants cy, ..., c;; which has a solution
for any choice of the points P, . . ., P,, since the functions fi, .. ., f, € L(D) arelinearly independent.
Note that a similar inhomogeneous linear equations can be obtained when the points Py, ..., P,
are not all distinct.

We conclude that the divisor D' = (f) + D > 0 contains the arbitrary points P, ..., P,, and
D' ~ D.

Viceversa suppose that there is a positive divisor D’ containing the arbitrary points Py, ..., Py,
and such that D’ ~ D. Then there is a meromorphic function f such that (f) = D’ — D, or
(f) + D =D’ > 0. It follows that f € L(D) and f has zeros in arbitrary points P, ..., Px. We write
f is the form f = 271:1 cjfi — co where f; € L(D). If the function f has zeros at arbitrary points
Py, ..., Py it follows that the system of equations

fP)=0, j=1,..,m,

must be solvable for any set of points Py, ..., Py, but this is possible only if the functions fi, ..., fi
are linearly independent and different from the constant, which means that /(D) > m + 1. One
therefore says that |D| is the number of mobile points in the divisor D.

Remark 3.1.58. Let K = Kg, be the canonical class of a Riemann surface. We mention an interpre-
tation that will be important later for the space L(K — D) for an arbitrary divisor D. First,if D = 0,
the empty divisor, then the space L(K) is isomorphic to the space of holomorphic differentials on
S. Indeed, choose a representative Ky > 0 in the canonical class, taking Ky to be the zero divisor
of some holomorphic differential wy, Ky = (wo). If f € L(Kp), i.e. (f) + (wp) = 0, then the divisor
(fwo) is positive, i.e., the differential fwy is holomorphic. Conversely, if w is any holomorphic
differential, then the meromorphic function f = w/wy lies in L(Kp).
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It follows from the above considerations and Theorem 3.1.12 that
I(K) =g
Lemma 3.1.59. For a positive divisor D the space L(K — D) is isomorphic to the space
Q(D) = {we H(S) | (w) — D = 0}.

Proof. We choose a representative Ky > 0 in the canonical class, taking Ky to be the zero divisor of
some holomorphic differential wy, Ko = (wo). If f € L(Ko — D), then (f) + (wp) — D > 0, namely
the differential fwy is holomorphic and has zeros at the points of D, i.e., fwy € Q(D). Conversely,
if w e Q(D), then f = w/wy € L(Ky — D). The assertion is proved. ]

The main way of getting information about the numbers /(D) is the Riemann-Roch Theorem.
Theorem 3.1.60 (Riemann Roch Theorem). For any divisor D
I(D)=1+degD — g+ I(K—D). (3.1.74)

Proof. For surfaces S of genus 0 (which are isomorphic to IP! in view of Problem 6.1) the Riemann-
Roch theorem is a simple assertion about rational functions (verify!). By Remarks 3.1.55 and 3.1.58
(above) the Riemann-Roch theorem is valid for D = 0.

For Riemann surfaces S of positive genus we first prove (3.1.74) for positive divisors D > 0.
Let D = > /., it Py where all the n; > 0 and Py # P j for k # j. We first verify the arguments when
alltheny =1fork=1,...,mand m = degD. Let f € L(D) be a nonconstant function.

We consider the Abelian differential w = df. It has double poles and zero residues at the points
Py, ..., Py and does not have other singularities. Therefore, it is representable in the form

m
Q=df =Y aQy) +¢
k=1

where Ql(jlk) are normalized differentials of the second kind (see Lecture 3.1.3), ¢y, ..., ¢y, are con-
stants, and the differential ¢ is holomorphic. Since the function f(P) = Sﬁ] Q) is single-valued on

S, the integral Slljo Q is independent from the path of integration. This implies that

4;@:(), SEQ:O, i=1,...,g (3.1.75)

From the vanishing of the a-periods of the meromorphic differentials Q( we get that ¢ = 0 (see
Corollary 3.1.18). From the vanishing of the f-period we get, by (3.1.37) w1th n =1, that

0= ng ZmZ (@) e, i=1,...,8 (3.1.76)
k=1
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where z; is a local parameter in a neighbourhood of Py, z¢(Px) = 0, k = 1,...,m, and the basis
of holomorphic differentials are written in a neighbourhood of Py in the form w; = Y (zx)dz.
Defining w;(Py) := 1i(0), we write the system (3.1.76) in the form

a)l(P1) a)l(P2) a)l(Pm) C1
@2(P1) @2(P2) ... w2Pu) || 2| _ ¢ (3.1.77)
we(P1) wg(Pa) ... wg(Pu)) \em

We have obtained a homogeneous linear system of m = degD equations in the coefficients
c1,...,cm. The nonzero solutions of this systems are in a one-to-one correspondence with the non
constant functions f in L(D), where f can be reproduced from a solution cy, ..., ¢, of the system
(3.1.76) in the form

m P
fP)y =Y | QY.
k=1 P

Thus /(D) = 1 + deg D — rankp where p is the matrix of holomorphic differentials in (3.1.77) (the
1 is added because the constant function belong to the space L(D)). On the other hand the rank
of the matrix p has another interpretation. Consider the holomorphic differential w = Z§=1 riw;.

Such differential @ belongs to the space Q(D) if
wP) =0, k=1,...,m.

The above system of equations can be written in the equivalent form

(a)l(Pl) a)l(Pm))
(n rn ... rg| .. =0. (3.1.78)
wg(P1) ... w¢(Pw)

The number of solutions of this system is equal to g — rankp and it is in one to one correspondence
with the linearly independent holomorphic differentials in (D). Therefore dimQ(D) = g—rankp.
On the other hand we have obtained that

I(D) =1+ degD — rankp
so that combining the two equations we obtain
I(D)=1+degD — g+ dimQ(D) =1+ degD — g+ (K- D)

where the second identity is due to the fact that the space (D) and L(K — D) are isomorphic for
positive divisors. Accordingly the Riemann-Roch theorem has been proved in this case.

We explain what happens when the positive divisor D has multiple points. For example
suppose that D = 1Py + Py + -+ + Py. Then Q = df = 371, C{Ql(,jl) + D ckQI(}k) and the system
(3.1.76) can be written in the form

ny i—1 m
F1d Y
S L S () o, = 0.
k=2

L4711 j-1
j=1 J dzl 21=0 =
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This is a system of homogeneous equations is the variables cl,..., c’fl, C,...,Cy. If the rank of the
coefficient matrix of this system is denoted (as above) by rankp, the dimension of the space L(D)
is equal to /(D) = 1 + deg D — rankp while the dimension of the space (D) is equal to g — rankp
so that /(D) = 1 + degD — g + dimQ(D). We have proved the Riemann-Roch theorem for all
positive divisors and hence for all effective divisors, which (accordingly to Remark 3.1.56) are
distinguished by the condition /(D) > 0. Next we note that the relation in this theorem can be
written in the form

I(D) — %degD =I(K-D) - %deg(K - D), (3.1.79)

which is symmetric with respect to the substitution D — K — D. Therefore the theorem is proved
for all divisors D such that D or K — D is equivalent to a positive divisor. If neither D nor K — D are
equivalent to a positive divisor, then /(D) = 0 and /(K — D) = 0 and the Riemann-Roch theorem
reduces in this case to the equality

degD =g —1. (3.1.80)

Let us prove this equality. We represent D in the form D = D, —D_, where D and D_ are positive
divisors and deg D_ > 0. It follows from the validity of the Riemann-Roch theorem for D that
I(D;) > degDy—g+1=degD+degD_—g+1. ThereforeifdegD > g, thenl(D;) > 1+degD_.
Then the space L(D ) contains a nonzero function f vanishingonD_,i.e. f € L(D. —D_) = L(D).
This contradicts the condition /(D) = 0. Similarly, suppose deg(K—D) > gand K—D =D, —D_
with D and D_ positive divisors. Then /(D) > degD; — g+ 1 = deg(K—D) + degD_ — g+1
or
I(Dy) >deg(D_) +1,

which implies that there exists a nonzero function f € L(D,) and vanishing in D_, namely
feL(Dy —D_) = L(K— D). This contradicts the condition /(K — D) = 0. We conclude that

degD < g, deg(K—D)<g

which is equivalent to deg D = g — 1. The theorem is proved. m]

3.1.6 Some consequences of the Riemann-Roch theorem. The structure of
surfaces of genus 1. Weierstrass points. The canonical embedding

Corollary 3.1.61. If degD > g, then the divisor D is effective.
Corollary 3.1.62. The Riemann inequality
I(D)>1+degD —g, (3.1.81)
holds for deg D > g.
Definition 3.1.63. A positive divisor D is called special if
dimQ(D) > 0.

We remark that any effective divisor of degree less then g is special since /(D) > 0 and by
Riemann-Roch theorem this implies dimQ(D) > 0.

Corollary 3.1.64. If degD > 2g — 2, then D is nonspecial.
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Proof. For degD > 2g — 2 we have that deg(K — D) < 0, hence /(K — D) = 0 (see Remark 3.1.55).
The corollary is proved. o

Exercise 3.1.65: Suppose that k > g; let the Abel mapping A : & — J(S) (see Lecture 3.1.4) be
extended to the kth-power mapping

Ak:Sx---x_§—>](S)

k times

by setting A¥(Py, ..., Px) = A(P1) + - -- + A(Px) (it can actually be assumed that A¥ maps into J(S)
the kth symmetric power SkS, whose points are the unordered collections (Ps, ..., Px) of points of
S). Prove that the special divisors of degree k are precisely the critical points of the Abel mapping
AF. Deduce from this that a divisor D with deg D > g in general position is nonspecial.

Remark 3.1.66. Let deg D = 0, then if D is equivalent to a divisor of a meromorphic function, then
I(D) =1 otherwise I(D) = 0. Let deg D = 2¢ — 2, then if D is equivalent to the canonical divisor,
then /(D) = g otherwise (D) = g — 1. Furthermore if degD > 2¢ — 2, then by Riemann Roch
theorem one has I(D) = 1+ degD — ¢. If 0 < deg D < g — 1 the minimum value of /(D) is zero
while for ¢ < degD <2¢g—2, min(/(D)) =1— g+ degD.

The values of /(D) for 0 < deg D < 2g — 2 are estimated by the Clifford theorem.

Theorem 3.1.67. If0 < deg D < 2g — 2, then
1
D) <1+ 3 degD. (3.1.82)

Proof. If (D) = 0 or [(K — D) = 0, the proof of the theorem is straightforward. Let us assume that
I(D) > 0 and /(K — D) > 0 and consider the map L((D) x L(K — D) — L(K) given by (f,h) — fh
where (f,h) € L((D) x L(K — D). Let V be the subspace in L(K) which is the image of this map.
Then one has

g=I1(K)>dimV =I(D)(K—D) > 1(D)+1(K—-D) -1

where in the last equality we use the identity which holds for real numbers a and b bigger then
one: (a—1)(b—1)>0andsoab>a+b—1.
Therefore
g§=I(D)+I(K-D)—-1=2l(D)+g—2—degD,

which implies (3.1.82). O

Let us make a plot of the possible values of /(D) using Clifford theorem and the above obser-
vations.

We now present examples of the use of the Riemann-Roch theorem in the study of Riemann
surfaces.

Example 3.1.68. Let us show that any Riemann surface S of genus ¢ = 1 is isomorphic to an
elliptic surface w? = P5(z). Let Py be an arbitrary point of S. Here 2¢ — 2 = 0, therefore, any
positive divisor is nonspecial. We have that I(2Py) = 2, hence there is a nonconstant function z
in [(2Py), i-e., a function having a double pole at Py. Further /(3Py) = 3, hence there is a function
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(D)

o I T ‘7

divisors

g1 2g-2 deg(D)

Figure 3.5: The values of /(D) as a function of degD. One can see that the value of (D) of a
special divisors is located between the two lines.

w € 1(3Py) that cannot be represented in the form w = az+b. This function has a pole of order three
at Py. Finally, since I(6P;) = 6, the functions 1,z,z2, 2%, w, w?, wz which lie in /(6P) are linearly
dependent. We have that

Mw? + awz + asw + asz° + a5z + agz + ay = 0. (3.1.83)

The coefficient a; is nonzero (verify). Making the substitution

ap as
wow— | —z+ —
(Zﬂl Zﬂl )
we get the equation of an elliptic curve from (3.1.83).

Example 3.1.69 (Riemann count of the moduli space of Riemann surface). Consider a Riemann
surface S of genus ¢ and a meromorphic function of degree n > 2¢ — 2. Such function represents
S as a n-sheeted covering of the complex plane, branched over a number of points with total
branching number b equal to

by =2n+2g—2

where the Riemann-Hurwitz formula has been used. Generically the ramification points have
branching number equal to one so that by is also equal to the ramification points of the Riemann
surface with respect to the map f. From the Riemann existence theorem, given the branch
points z1, ..., zp, and a permutation associated to each branch point such that the corresponding
monodromy group is a transitive sub-group of the permutation group S,, one can construct a
Riemann surface S up to isomorphism. Let us count how many distinct surfaces one can obtain.

Any meromorphic function of degree n on S represents S as a n-sheeted covering of the
complex plane. Let Dy, be the divisor of poles of f. Since the degree of f is equal to n then
deg D, = n. Furthermore from Riemann-Roch theorem

IDp)=n+1-g.
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So the freedom of choosing the function f is given by the position of the poles, and this gives n
parameters, and the number of functions having poles in D, which is equal to n + 1 — g. The
total number of parameters in choosing the meromorphic function of degree nis 2n +1 — g. So
the total number of parameters for describing a curve of genus g is the number of branch points
by minus the parameters for describing the meromorphic function f, namely

2n+2¢9—-2—-(2n+1-g)=3g—3.

Definition 3.1.70 (Weierstrass points). A point Py of a Riemann surface S of genus g is called a
Weierstrass point if [(kPy) > 1 for some k < g.

It is clear that in the definition of a Weierstrass point it suffices to require that I(gPy) > 1 when
g = 2. There are no Weierstrass points on a surface of genus g = 1. On hyperelliptic Riemann
surfaces of genus g > 1 all branch points are Weierstrass points, since there exist functions with
second-order poles at the branch points (see Lecture ??).

Definition 3.1.71. A Riemann surface is called hyperelliptic if and only if it admits a non constant
meromorphic function of degree 2.

The use of Weierstrass points can be illustrated in the next exercise.

Exercise 3.1.72: Let S be a Riemann surface of genus g > 1, and Py a Weierstrass point of it, with
I(2Py) > 1. Prove that S is hyperelliptic. Prove that the surface is also hyperellipticif /(P + Q) > 1
for two points P and Q.

Exercise 3.1.73: Let S be a hyperellitpic Rieamnn surface and z a function of degree two. Prove
that any other function f of degree two is a Moebius transformation of z.

We show that there exist Weierstrass points on any Riemann surface S of genus g > 1.

Lemma 3.1.74. Suppose that z is a local parameter in a neighbourhood Py, z(Py) = 0; assume that locally
the basis of holomorphic differentials has the form w; = ¢;(z)dz, i =1,...,g. Consider the determinant

Pi(z) Y ... P V()
W(z) = det | ... (3.1.84)
Yoz) Yi2) ... PEV()

The point Py is a Weierstrass point if and only if W(0) = 0.

Proof. If Py is a Weierstrass point, i.e., [(gPy) > 1, then[(K—gPy) > 0by the Riemann-Roch theorem.
Hence, there is a holomorphic differential with a g-fold zero at Py on S. The condition that there
be such a differential can be written in the form W(0) = 0 (cf. the proof of the Riemann-Roch
theorem). The lemma is proved. ]

Lemma 3.1.75. Under a local change of parameter z = z(w) the quantity W transforms according to the

. dz \ 28+
rule W(w) = (%> W(z).
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Proof. Suppose that w; = ¥;(z)dz = ;(w)dw. Then each §; = 1#,-5—;, i=1,...,g This implies that

the derivatives d*); /dwk can be expressed for each i in terms of the derivatives d'i;/dz' by means
of a triangular transformation of the form

Fo k+1 gk ; k=1 gj ;
Jﬂz(@> ¢+§Fr£ i=1,...g
j=1

dwk dw dzk dzi’

(the coefficients ¢, in this formula are certain differential polynomials in z(w)). The statement of
the Lemma readily follows from the transformation rule. ]

Let us define the weight of a Weierstrass point Py as the multiplicity of zero of W(z) at this
point. According to the previous Lemma the definition of weight does not depend on the choice
of the local parameter.

The proof of existence of Weierstrass points for ¢ > 1 can be easily obtained from the following
statement.

Lemma 3.1.76. The total weight of all Weierstrass points on the Riemann surface S of genus g is equal to
(-1g(g+1).

Proof. Let us consider the ratio
W(2)/47 (2).

Here N = 1 ¢(g + 1). According to lemma (3.1.75), the above ratio does not depend on the choice
of the local parameter and, hence, it is a meromorphic function on S. This function has poles of
multiplicity N at the zeroes of the differential w; (the total number of all poles is equal to 2g — 2).
Therefore this function must have N (2¢ —2) = (¢ — 1) g(g + 1) zeroes (as usual, counted with
their multiplicities). These zeroes are the Weierstrass points. m|

Let us do few more remarks about the Weierstrass points. Given a point Py € S, let us consider
the dimension I(k Py) as a function of the integer argument k. This function has the following
properties. According to figure (3.5) we have

1<I(kP)<g 1<k<2g-1

In particular I ((2g — 1)Py) = g. It follows that while k increases 2¢ — 2 times the function I(k Py)
increases only g — 1 times. The next lemma shows that the function I(k Py) is a piece-wise constant
function where each step has size equal to one.

Lemma 3.1.77.

(kPy) = I((k—1)Py) + 1, if there exists a function with a pole of order k at Py
(kPo) = I((k—1)Py), if such a function does not exist

Proof. The space L(k Py) is larger then the space L((k — 1)Py) therefore I(k Py) = I((k — 1)Pp). On
the other hand, dimQ(kPy) < dimQ((k — 1)Py). From the Riemann Roch theorem one has

1k Po) — I((k — 1)P) = 1 + dimQ(kPy) — dimQ((k — 1)Po)

which, when combined with the above two inequalities, gives the statement. m]
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When I(k Py) = I((k — 1)Py) we will say that the number k is a gap at the point Py. From the
previous remarks it follows the following Weierstrass gap theorem:

Theorem 3.1.78. There are exactly ¢ gaps 1 = a1 < ... < ag < 2g at any point Py of a Riemann surface
of genus g.

The gaps have the forma; = i,i = 1,..., g, for a point Py in general position (which is not a
Weierstrass point). Namely for a non Weierstrass point the function I(kPy) is non-zero only for
k > g and one has [(kPy) = 1 + k — g for k > g. A Weierstrass point Py is called normal if the
Weierstrass gap sequence takes the form 1,2,...,¢ — 1, g + 1 where g is the genus of the surface.
Namely a meromorphic function with only a pole in Py has order at least equal to g. Normal
Weierstrass points are generic. A Weierstrass point Py is called hyperelliptical is the Weierstrass
gap sequence takes the form 1,3,5,...,2¢ — 1. In this case a meromorphic function with only a
pole in Py has order equal to two.

Exercise 3.1.79: Show that every compact Riemann surface of genus g is conformally equivalent
to a (g + 1)—sheeted covering surface of the complex plane.

Exercise 3.1.80: Prove that for branch points of a hyperelliptic Riemann surface of genus g the
gaps have the forma; =2i —1,i =1, ..., g. Prove that a hyperelliptic surface does not have other
Weierstrass points. Next suppose that the hyperelliptic Riemann surface has genus 2 and let Py
be a Weierstrass point. Show that there exist meromorphic functions z and w with only a pole in
Py and such that

WP + Wz + awz® + a3z’ + aszt + as5z® + agz® + a;z + ag = 0.
Exercise 3.1.81: Prove that any Riemann surface of genus 2 is hyperelliptic.

Exercise 3.1.82: Let S be a hyperelliptic Riemann surface of the form w? = Pg,(z). Prove that

any birational (biholomorphic) automorphism S — S has the form (z, w) — (%

the linear fractional transformation leaves the collection of zeros of Py, >(z) invariant.

, tw), where

Example 3.1.83 (The canonical embedding). . Let S be an arbitrary Riemann surface of genus
g = 2. Wefixon S a canonical basis of cyclesay, ..., ag, by, ..., bg; letws, ..., ws be the corresponding
normal basis of holomorphic differentials. This basis gives a canonical mapping S — P81
according to the rule

P — (w1(P) : w2(P) : - : wg(P)). (3.1.85)

Indeed, it suffices to see that all the differentials wy, ..., ws cannot simultaneously vanish at some
point of the surface. If P were a point at which any holomorphic differential vanished, i.e.,
I(K — P) = g, (see Remark 3.1.58), then /(P) would be = 2 in view of the Riemann-Roch theorem,
and this means that the surface S is rational (verify!). Accordingly (3.1.85) really is a mapping
S — P871; it is obviously well-defined.

Lemma 3.1.84. If S is a non hyperelliptic surface of genus g > 3, then the canonical mapping (3.1.85) is a
smooth embedding. If S is a hyperelliptic surface of genus g > 2, then the image of the canonical mapping
is a rational curve, and the map itself is a two-sheeted covering.
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Proof. We prove that the mapping (3.1.85) is an embedding. Assume not: assume that the points
Py and P, are merged into a single point by this mapping. This means that the rank of the matrix

(wl(Pl) wl(P2)>
a)g(P1) a)g(Pz)
is equal to 1. But then I(P; + P) > 1 (see the proof of the Riemann-Roch theorem). Hence,
there exists on S a nonconstant function with two simple poles at P; and P; i.e., the surface S is

hyperelliptic. The smoothness is proved similarly: if it fails to hold at a point P, then the rank of
the matrix

w1(P) @y (P)

wg(P)  wg(P)
is equal to 1. Then I/(2P) > 1, and the surface is hyperelliptic. Finally, suppose that S is hyperel-
liptic. Then it can be assumed of the form w? = P;41(z). Its canonical mapping is determined by

the differentials (4.2.37). Performing a projective transformation of the space IP§~! with the matrix
(cjk) (see the formula (4.2.37)), we get the following form for the canonical mapping:

P=(zw)— (1:z:---:2871) (3.1.86)
Its properties are just as indicated in the statement of the lemma. The lemma is proved. ]

Exercise 3.1.85: Suppose that the Riemann surface S is given in IP? by the equation

2 aijéinjc‘l*i*i =0, (3.1.87)

i+j=4
and this curve is non-singular in P? (construct an example of such a non-singular curve). Prove
that the genus of this surface is equal to 3 and the canonical mapping is the identity up to a

projective transformation of IP2. Prove that S is a non hyperelliptic surface. Prove that any non
hyperelliptic surface of genus 3 can be obtained in this way.

The range 8’ = IP&~! of the canonical mapping is called the canonical curve.

Exercise 3.1.86: Prove that any hyperplane in IP§~! intersects the canonical curve 8’ in 2g — 2
points (counting multiplicity).
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Jacobi inversion problem and
theta-functions

4.1 Statement of the Jacobi inversion problem. Definition and
simplest properties of general theta functions

In Lecture 3.1.2 we saw that inversion of an elliptic integral leads to elliptic functions. For a
surface of genus g > 1 the Inversion of integrals of Abelian differentials is not possible since any
such differential has zeros (at least 2¢g — 2 zeros). Instead of the problem of inverting a single
Abelian integral, Jacobi proposed for hyperelliptic surfaces of genus two of the form w? = P5(z)
the problem of solving the system

T dz +T dz _
e RN

(4.1.1)

Py P,

J zdz N J zdz

Ve I Ve

0 0

where 11, 1, are given numbers from which the location of the points P1 = (z1,w1), P2 = (22, wy)
is to be determined. It is clear, moreover, that P; and P, are determined from (4.1.1) only up to
permutation. Jacobi’s idea was to express the symmetric functions of P; and P, as functions of 1
and . He noted also that this will give meromorphic functions of 1; and 1, whose period lattice
is generated by the periods of the basis of holomorphic differentials dz/ +/P5(z) and zdz/ /P5(z).
This Jacobi inversion problem was solved by Goepel and Rosenhain by means of the apparatus of
theta functions of two variables. The generalization of the Jacobi inversion problem to arbitrary
Riemann surfaces and its solution are due to Riemann. We give a precise statement of the Jacobi

inversion problem. Let S be an arbitrary Riemann surface of genus g, and fix a canonical basis of
cyclesay, ..., ag, f1,...,fgonS; asaboveletws, ..., w, bebe the corresponding basis of normalized

145
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holomorphic differentials. Recall (see Lecture 3.1.4) that the Abel mapping has the form

A:S—-J(S), AP) = (ui(P),...,us(P)), (4.1.2)
where J(S) is the Jacobi variety,
P
Mi(P) = | wj, (4.1.3)
)

Py is a particular point of S, and the path of integration from Py to P is the same foralli = 1,...,g.
Consider the gth symmetric power

S8(S) =§_>< x S /S,
¢ times

the symmetric group of ¢ elements. The unordered collections (P4, ..., P,) of ¢ points of S are
the points of the manifold S$(S). The meromorphic functions on S$(S) are the meromorphic
symmetric functions of g variables Py,...,P;, P; € S. The Abel mapping (4.1.2) determines a
mapping

A& S3(S) - J(S), AL(Py,...,Pg) =AMP:) + -+ APy), (4.1.4)

which we also call the Abel mapping.

Lemma 4.1.1. If the divisor D = Py + --- + Pg is nonspecial, then in a neighbourhood of a point
A& (Py, ..., Py) € J(S) the mapping A has a single-valued inverse.

Proof. Suppose that all the points are distinct; let zy, . . ., z; be local parameters in neighbourhoods
of the respective points Py, ..., P, with z;(Px) = 0 and w; = {jx(zx)dz; the normalized holomorphic
differentials in a neighbourhood of Pi. The Jacobi matrix of the mapping (4.1.4) has the following
form at the points (Py, ..., Py)

(1/’11(21 =0) ... Prlzg = 0))

¢g1(21 = 0) ll)gg(zg = 0)
If the rank of this matrix isless than g, then /(K—D) > 0, i.e., the divisor D is special by the Riemann-

Roch theorem. The case when not all the points Py, ..., P, are distinct is treated similarly. We now
prove that the inverse mapping is single-valued. Assume that the collection of points (P}, ..., Pg)

is also carried into A (P1,...,Pg). Then the divisor D" = P} + -+ - + P:g is linearly equivalent to D
by Abel’s theorem. If D" # D, then there would be a meromorphic function with poles at points
of D and with zeros at points of D’. This would contradict the fact that D is nonspecial. Hence,
D’ = D, and the points P}, ..., P;, differ from Py, ..., Py only in order. The lemma is proved. O

Since a divisor P; + ... + P¢ in general position is nonspecial (see Problem 3.1.65), the Abel
mapping (4.1.4) is invertible almost everywhere. The problem of inversion of this mapping in
the large is the Jacobi inversion problem. Thus, the Jacobi inversion problem can be written in
coordinate notation in the form

{ M1(P1)+"'+M1(Pg) =M
......... (4.15)
ug(Pr) + -+ ug(Py) =14
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which generalizes (4.1.1). To solve this problem we need the apparatus of multi-dimensional theta
functions.

4.2 Theta-functions

The g-dimensional theta-functions are defined by their Fourier serie. Let B = (Bj) be a sym-
metric ¢ x ¢ matrix with positive-definite imaginary part and let z = (z1,...,z;) € €& and
N = (Ny,...,Ng) € Z8 be g-dimensional vectors. The Riemann theta function is defined by
its multiple Fourier series,

8
0(z) = 6(z;B) = ) exp (ni(NB,N) + 2mi(N, z)), (4.2.1)
NezZ
where the angle brackets denote the Euclidean inner product:
8 g
(N,zy = > Nizy, (NB,N)= > BijN;Ni.
k=1 k=1

The summation in (4.2.1) is over the lattice of integer vectors N = (Ny,...,Ng). The obvious
estimate R(i(NB,N)) < —b(N,N), where b > 0 is the smallest eigenvalue of the matrix J(B),
implies that the series (4.2.1) defines an entire function of the variables zy, ..., z.

Proposition 4.2.1. The theta-function has the following properties.
1. 6(—z; B) = 6(z; B).
2. For any integer vectors M, K € Z¢,

0(z + K + MB; B) = exp (—mi{MB, M) — 2nti(M, z)) 6(z; B). (4.2.2)

3. It satisfies the heat equation

0 1
- -B) = — . B C s
aB,']' Q(Z’ ) 271 (921‘62]' Q(Z’ )I ¥ J
) | (4.2.3)

Proof. The proof of properties 1. and 3. is straightforward. Let us prove property 2. In the series
for 6(z + K + MB) we make the change of summation index N — N — M. The relation (4.2.2) is
obtained after this transformation. O

The integer lattice {N + MB} is called the period lattice.

Remark 4.2.2. It is possible to define the function 0(z) as an entire function of z;, ..., z, satisfying
the transformation law (4.2.2) (this condition determines 6(z) uniquely to within a factor).
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The theta-function is an analytic multivalued function on the g-dimensional torus T8 = C8/{N+
MB}. In order to construct single valued functions, i.e. meromorphic functions on the torus, one
can take for example, for any two vectors e;, e; € C¢ the product

O(z+e1)0(z —e1)
O(z+e)0(z—e)

Indeed the above expression is by (4.2.2) a single valued function on the g-dimensional torus. In
general for any two sets of g vectors ey, ...eq € €8, vy,...v, € C? satisfying the constraint

e1+...=0, v1+...0,=0

the product
£ 0(z+e)

j:162+v]

is a meromorphic function on the torus (verify this!).
Let p and q be arbitrary real g-dimensional row vectors. We define the theta function with
characteristics p and g:

Olp,ql(z)

exp (mi{pB, p) + 2nilz + q,p)) 6(z + q + pB)

3 exp (mil(N + p)B,N + p) + 2ri(z + q,N + p)). (4.2.4)
NeZzZs

For p = 0 and g = 0 we get the function 6(z). The analogue of the law (4.2.2) for the functions
O[p, 9](z) has the form

O[p,ql(z + K+ MB) = 0O[p, q](z)exp [-mi{MB, M) — 21i{M, z + q) + 2mi(K, p)]. (4.2.5)

Observe that all the coordinates of the characteristics p and q are determined modulo 1.

Definition 4.2.3. The characteristics p and q with all coordinates equal to 0 or 1/2 are called half periods.
A half period [p, q] is said to be even if 4(p,qy = 0 ( mod 2) and odd if 4{p,q) =1 ( mod 2).

Exercise 4.2.4: Prove that the function 0[p, q](z) is even if [p,q] is an even half period and odd if
[p,q] is an odd half period.

In particular the function 6(z) is even. For e = g + Bp with 4(p, 4> = 1 ( mod 2) one has
O(e) = 0.

Example 4.2.5. For g = 1 the theta-function reduces to the Jacobi theta-function 93(z; t) with
parameter 7, It > 0. The Jacobi theta function is defined by the series

O(z;7) = Z exp (mitn® + 2minz) . (4.2.6)

—0<n<o

Since
lexp (ritn® + 2minz)| = exp (—nItn* — 2nnJz))
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the series (4.2.6) converges absolutely and uniformly in the strips |J(z)| < const and defines an
entire function of z.
The series (4.2.6) can be rewritten in the form common in the theory of Fourier series:

0(z) = Z exp(mitn®)e?™ " (4.2.7)

—0O<n<0

(the function 93(z; 7)) in the standard notation; see [[4]). The function 6(z) has the following
periodicity properties:
0(z+1)=0(z) (4.2.8)
O(z + 1) = exp(—mit — 2miz)6(z) (4.2.9)

The integer lattice with basis 1 and 7 is called the period lattice of the theta function. The remaining
Jacobi theta-functions are defined with respect to the lattice 1, T = b/2mi as

\91(2,”[)5:6[%/%](2): Z explni’c(ﬂ—&-%)z—l—Zni(Zﬁ-%) (YH'%)]

—00<n<0o

8(z; 1) = 9[%,0](2) - Z exp [niv: <n + %)2 + 27z (n + %)]

—o0o<n<w
8a(z; 1) =00, 5](z) = D, exp [””"2 +am (Z * 1) n] '
27 S ?

The functions 9,(z; 1), 93(z; 7) and d4(z; 1) are even functions of z while 9;(z; 1) is odd. So for
1+71

g =1, the theta-function 6(z; 7) = 93(z; 1) = 0 forz =

Exercise 4.2.6: Prove that the zeros of the function 6(z) form an integer lattice with the same basis
1+7

2

1, 7 and with origin at the point zy =

By multiplying theta function (4.2.4) we obtain higher order theta functions. The function f(z)
is said to be a nth order theta function with characteristics p and g if it is an entire function of
z1,...,Zg and transforms according to the following law under translation of the argument by a
vector of the period lattice

f(z + N + MB) = exp [-nin{MB, M) — 2nin{M,z + q) + 2ni(p, N)| f(z). (4.2.10)

Exercise 4.2.7: Prove that the nth order theta functions with given characteristics g, p form a linear
space of dimension né. Prove that a basis in this space is formed by the functions

p+S

o[ ,q](nz; nB), (4.2.11)

where the coordinates of the vector S run independently through all values from 0 to n — 1.
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Under a change of the homology basis a1, ..., a; and By, ..., B, under a symplectic transforma-

tion
a a b\ (a a b
()-C o) G) € 8)evesn
The period matrix transforms as (see 3.1.53)
B' = J @' = (cly + dB)(alg + bB) ™!
Denote by R the matrix

R =alg + bB (4.2.12)

The transformed values of the argument of the theta-function and of the characteristics are deter-
mined by

z=2R

PN (d =\ (p\ 1, (c (4.2.13)
(cf)(—b a)<q>+§dlag (w)'

Here the symbol diag means the vectors of diagonal elements of the matrices ab’ and cd'. We have
the equality

OlogdetR
Olp’,q'1(z'; B') = x VdetRexp { Zzlz] og c } 6[p,q](z; B), (4.2.14)

l<]

where ) is a constant independent from z and B. See [19] for a proof.

Exercise 4.2.8: Prove the formula (4.2.14) for g = 1. Hint. Use the Poisson summation formula
(see [20],[19]: if

0

flo) = 5 | Floge s

—0
is the Fourier transform of a sufficiently nice function f(x), then
(e 0]
Z f(2nn) 2
n=—0o0 n=—oo
Theta function are connected by a complicated system of algebraic relations, which are called

addition theorems. These are basically relations between formal Fourier series (see [19]). We
present one of these relations. Let

Oln](zB) = 6[3,0](2z; 28),

according to (4.2.11) this is a basis of second order theta functions.
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Lemma 4.2.9. The following identity holds:
0z +w)0(z—w) = >, O[n](z)0[n](w). (4.2.15)
ne(Z,)3
The expression 1 € (Z,)& means that the summation is over the g-dimensional vectors n whose
coordinates all take values in 0 or 1.
Proof. Let us first analyze the case ¢ = 1. The formula (4.2.15) can be written as
0(z + w)0(z — w) = O(z)0(w) + O[1](z)0[1](w) (4.2.16)

where .
0(z) = Z:exp(m'bk2 + 2mikz), O(z) = Z exp(2mibk® + 4mikz),
k k

A

O[1](z) = > expl [Znib(% + k)2 + dmik + 1 /2)2] , (b) > 0.
k

The left-hand side of (4.2.16) has then the form

Z exp [rib(kK* + 1) + 2mik(z + w) + 2mil(z — w)] . (4.2.17)
k1
We introduce new summation indices m and n by setting m = (k +1)/2 and n = (k —I)/2. The
numbers m and n simultaneously are integers or half integers. In these variables the sum (4.2.17)

takes the form
2 exp[2nibm?® + 4mimz + 2mibn® + 4ninw. (4.2.18)

We break up this sum into two parts. The first part will contain the terms with integers m and n,
while in the second part m and 7 are both half-integers. In the second part we change the notation
from m to m + } and from n to n + 3. Then m and n are integers, and the expression (4.2.14) can
be written in the form

Z exp[2nibm?* + 4nimz] exp[2mibn® + dminw]+

mmnez.

Z exp[2mib(m + %)2 + 4mi(m + %)z] exp[2mib(n + %)2 + 4mti(n + %)w] =

mmneZ
0(2)0(w) + 0[1](2)0[1] (w).

The lemma is proved for g = 1. In the general case g > 1 it is necessary to repeat the arguments
given for each coordinate separately. The lemma is proved. m]

0 B
where B’ and B” are k x k and I x I Riemann matrices, respectively with k + I = g. Prove that the
corresponding theta function factors into the product of two theta function

O(z; B) = 6(z; B6(z"; B"),

z=(21,...,2¢), 2 =(21,--.,2z), 2" = (Zk41,-- -, Zg)-

/
Exercise 4.2.10: Suppose that the Riemann matrix B has a block-diagonal form B = (B 0 ),

(4.2.19)

Notte that the period matrix of a Riemann surface never has a block diagonal structure.
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421 The Riemann theorem on zeros of theta functions and its applications

To solve the Jacobi inversion problem we use the Riemann 6-function 6(z) = 6(z; B) on the
Riemann surface S. As usual we assume that ay,...a, and By,...,, is a canonical homology
basis. The basis of holomorphic differentials w;, ..., wg is normalized

J a)k:(Sjk, f a)k:Bjk.
a; ﬂ

] ]

Even though 6(z B) is not single-valued on [(S), the set of zeros is well defined because of (4.2.2).
The set of zeros of 0(z | B) is an analytic set of codimension one in J(S). Lete = (e, ..., e,) € C& be
a given vector. We consider the function F : S — C defined as

F(P) = O(A(P) —e), (4.2.20)

a® = ([ one [ ).

is a holomorphic map of maximal rank of S into J(S). Because of the periodicity properties of the
theta-function (4.2.2), the function F(P) transforms in the following way:

e F(P+aj) = F(P) (4.2.21)

where the Abel map A

P
e F(P+j) = F(P)exp [—niBjj — ZﬂiJ w; + 2niej] . (4.2.22)
Py

The study of the zeros of F(P) is thus the study of the intersection of A(S) < J(S) with the set of
zeros of 0(z; B) which form a well defined compact analytic sub-variety of the torus J(S). Since
S is compact, there are only two possibilities. Either F(P) is identically zero on S or else F(P) has
only a finite number of zeros. The function F(P) is single-valued and analytic on the cut surface S
(the Poincaré polygon). Assume that it is not identically zero. This will be the case if, for example
O(e) # 0.

Lemma 4.2.11. If F(P) % 0, then the function F(P) has g zeros on 8 (counting multiplicity).

Proof. To compute the number of zeros it is necessary to compute the logarithmic residue

1
5 § dlogF(P) (42.23)
o8

(assume that the zeros of F(P) do not lie on the boundary of 8). We sketch a fragment of 88 (cf.
the proof of lemma 3.1.16). The following notation is introduced for brevity and used below: F*
denotes the value taken by F at a point on S lying on the segment oy or f and F~ the value of F
at the corresponding point a,- Lor By ! (see the figure 4.1).

The notation #* and 1~ has an analogous meaning. In this notation the integral (4.2.23) can
be written in the form

1 13 . _
= 3{>dlogF(P) = 2_7”;1 U + f) [dlog F* —dlogF~]. (4.2.24)
o8 N
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Figure 4.1: A fragment of S.

Note that if P is a point on ay then

u; (P) = u]?L(P) +L wj = u;.r(P) +Bj, j=1,...,8
k

(cf. (3.1.17)), while if P lies on f, then

uf(P) = u; (P) +J wj=u; (P)+05, j=1,..8
g

153

(4.2.25)

(4.2.26)

(cfr. (3.1.18)). We get from the law of transformation (4.2.2) of the theta function or from (4.2.22),

that for P on the cycle ay one has
log F~(P) = —miBy — 2miu," (P) + 2mie; + log F* (P);
while on the cycle i from (4.2.21) one has
logFt =logF~.

From this on ay
dlog F~(P) = dlog F* (P) — 2miw(P),

and on fi
dlogF~(P) = dlog F*(P).

Accordingly, from (4.2.29) and (4.2.29) the sum (4.2.24) can be written in the form
1
i ﬂgdlogF—Zkljga)k =g
o8 k

where we have used the normalization condition §ak wy = 1. The lemma is proved

(4.2.27)

(4.2.28)

(4.2.29)

(4.2.30)
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Note that although the function F(P) is not a single-valued function on S, its zeros Py, ..., P,
do not depend on the location of the cuts along the canonical basis of cycles. Indeed, if this basis
cycles is deformed then the path of integration from Py to P can change in the formulas for the
Abel map. A vector of the form (§ w1, ...,§, w,) is added to the argument of the theta-function

6(z) in (4.2.20). This is a vector of period lattice {N + MB}. As a result of this the function F(P)
can only be multiplied by a non-zero factor in view of (4.2.2).

Now we will show now that the g zeros of F(P) give a solution of the Jacobi inversion problem
for a suitable choice of the vector e.

Theorem 4.2.12. Let e € C8, suppose that F(P) = 0(A(P) —e) # 0 and Py,..., Py are its zeros on S.
Then on the Jacobi variety J(S)
AS(Py,...,Py) = e+ K, (4.2.31)

where K = (K1, ..., Ky) is the vector of Riemann constants,

K- 1+B;]+Z<j§ fp ].>, i=1,...,8 (4.2.32)

I#j "

Proof. Consider the integral
1

= o

§ uj(P)dlog F(P). (4.2.33)
o8

This integral is equal to the sum of the residues of the integrands i.e.,
Ci=uj(P1) + - + ui(Py), (4.2.34)

where Py, ..., P, are the zeros of F(P) of interest to us. On the other hand, this integral can be
represented by analogy with the proof of Lemma 4.2.11 in the form

(J J) J’a’logl—”r —u;dlogF~ ))

f J’ﬂllogFJr (u;r + Bj)(dlog F* — 2miwy)]

J +d10gF+ (f—éjk)dlogF+]

N
“IH |’“ “IH “IH

o
. §
i

[J 2miuT wp — B]-kf dlog F* + 2niBjk] + LJ dlogF*,
] ay 27 b/-

in the course of computation we used formula (4.2.25)-(4.2.30). The function F takes the same
values at the endpoints of oy, therefore

f dlog Ft = 2miny,
(233
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where 7y is an integer. Further let Q; and Q; be the initial and terminal point of f;. Then

dlogF* =logF"(Q;) —log F*(Qj) =
Bi
= log Q(A(Q]' + ﬂ]) —e) — log Q(A(Q]) —e) = —T[iBU + 27Ti€j — Zﬂiuj(Q]'),

The expression for C; can now be written in the form
C]' = Ll]'(Pl) + -+ Mj(Pg) =

1 4235
=ej— EBjj_uj(Qj)+ZJ; u,-a)k+ZB]-k(—nk+1). ( )
k0% k

The last two terms can be thrown out, they correspond to the j-coordinate of some vector of the
period lattice. Thus the relation (4.2.35) coincides with the desired relation (4.2.31) if it is proved
that the constant in this equality reduces to (4.2.32), i.e.

1 .
_EBJ']' —uj(Q)) + ZJ ujwr =K;, j=1,...,8
kY
To get rid of the term u;(Q;) we transform the integral

1
fusor = 302Q) R
aj
where R; is the beginning of a; and Q; is its end (which is also the beginning of b;). Further
uj(Q;) = uj(R;) + 1. We obtain
1
fﬁ”jwz‘ = 5[2u5(Q)) — 1],
aj

hence
8

1 g
_uj(Q]') + ZJ Ujwy = _5 + Z UjWk.
(233

k=1 k#jk=1"%

The theorem is proved. m|

Remark 4.2.13. We observe that the vector of Riemann constant depends on the choice of the base
point Py of the Abel map. Indeed let Kp, be the vector of Riemann constants with base point Py.
Then Ky, is related to Kp, by

Py
Koy = Kp, + (§—1) J . (4.2.36)

Example 4.2.14. The vector of Riemann constants can be easily calculated for hyperelliptic Rie-

mann surfaces. In particular let us consider the curve w? = [[°_,(z — z) of genus g = 2, and

choose a basis of cycles as indicated in the figure 4.2. A normal basis of holomorphic differentials
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Bl

Figure 4.2: Homology basis.

has the form

2 k—1
_, iz ldz )
w; [Tkt Z;U , i=12, (4.2.37)

where the constants cj are uniquely determined by

f a)]- = 5jk-
Ak

We chose as base point of the Abel map the point Py = (0, 20). We need to compute

%a)z(P) JPI: w1 |, fﬁwl (P) L: w7

2 1

Using the fact that

P 24 24 (zw) 24 (z—w)
%a)z(P)J\ w1 = i}a)z(P)J w1 +J CL)Z(Z,ZU)J w1 —f a)g(z,—w)f w1
Py Py z3 24 z3 24

%) [2%3

= = 1 Bp
= a)Pszfw:f—f—
fantp) [ = | o= (5=

az

one obtains

In the same way calculating

P Zn 2> (z,w) 2> (z,—w)
%a)l(P)J a)zzj[>w1(P)J CUz-i-J a)l(Z,ZU)J wz—f a)l(z,—w)f [3))
Py Py z Z 7 2

ay ay

fot [t

Po
aq
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one obtains that
B 1+ Bzz + B21

2

Observe that the vector K can be written in the form

1 11
x=(03)(z3)®

Namely, given the odd characteristic

11 1
r=(33) = (03).

one has that K = g + pB. From this expression it follows that

¥ =

0(K) = 0.
It is a general result not restricted to this particular example that 0(z)|,—« = 0.
Corollary 4.2.15. Let D a positive divisor of degree g. If the function
O(A(P) — ADD) + K)
does not vanish identically on S then its divisor of zeros coincides with D.

Accordingly, if the function O(A(P) — e) is not identically equal to zero on S, then its zeros
give a solution of the Jacobi inversion problem (4.1.5) for the vector n = e + K. We have shown
that the map (4.1.4) AS : S; — J(S) is a local homeomorphism in a neighbourhood of a non
special positive divisor D of degree g. Since 6(z) # 0 for z € [(S), then O(A(D)) does not vanish
identically on open subsets of SgS. In the next subsection, we characterize the zero set of the
O-function. The zeros of the theta-function form an analytic subvariety of J(S). The collection of
these zeros forms the theta divisor in J(S).

4.3 The Theta Divisor

In this section we study the set of zeros of the theta functions and in particular the Riemann
vanishing theorem which prescribes in a rather detail manner the set of zeros of the theta-function
on C¢.

Theorem 4.3.1. Let e € C8, then O(e) = 0 if and only if e = A(D) — K where D is a positive divisor of
degree g — 1 and K is the vector of Riemann constants (4.2.32).

Remark 4.3.2. For a positive divisor D of degree g — 1, the expression A(D) — K does not depend
on the base point of the Abel map. The theorem 4.3.1 says that the theta-function vanishes on a
g — 1-dimensional variety parametrized by g — 1 points of S, namely the theta function vanishes
on A(Sg1) — K.
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Proof. We first prove sufficiency. Let P; + - - - + P, be a non special divisor and v = A(P; + --- +
Py) — K. Let us consider F(P) = O(A(P) — v). Either F is identically zero or not. In the former case
foreachk=1,...¢

F(Pt) =O0(A(P1+ -+ P+ +P) —K) =0,

where we use the symbol Py to mean that Py does not appear in the divisor. So for e = A(P; +
-+ P+ + Pg) — K we have 6(e) = 0.

In the latter case F(P) # 0, we have that F has precisely g zeros on S due to lemma 4.2.11. Let
Q1,...Qq be the zeros of F, then according to theorem 4.2.12 one has

AQi+ -+ Q) =v+K=AP1 + - +Py).

Since Py + --- + P, is not special, it follows from the Riemann-Roch and the Abel theorems that
Qi+ +++Qq = P1+- - +Pg. Therefore also in this case F(Py) = O(A(P1+ - +Pg+- - +Pg)—K) =0
fork =1,...,g. Since the set of non-special divisor of degree g is dense in S&8)S, the divisors of the
form Py 4 -+ P+ + P, form a dense subset of S @-1S. Since the function 0(z) is continuous,
it follows that 0(z) is identically zero on W,_; — K, where in general W,, < J(S), is the Abel image
of SMWS forn > 1.

Conversely, let O(e) = 0. Then by Jacobi inversion theorem, since 0 is not identically zero on
J(S). Then there exists an integer s, 1 < s < g, so that

O(A(D) — Ds)—e) 0, YDy, Dy SEDs

but
O(A(Dy —Dy) —e) #0, Dy, Dy e S®S.

LetD; = P1+---+ Psand Dy = Qq + - - - + Qs where we assume that the points of the divisors are
mutually distinct. Now let us consider the function

F(P) =60(A(P) + A(Py+ -+ DP;) —A(Q1 +--- + Qs) —¢)

Since F(P1) # 0, this function is not identically zero on S. Therefore, by theorem 4.2.12 it has g
zeros on S. These zeros are by construction Qy, ..., Qs plus some other ¢ — s points Tsy1,..., Tj.
By theorem 4.2.12 one has

A+ + Qs+ Topr,+-+Tg) =K =AQi+- +Q) —AP2+--- +P) +e

or equivalently
e=APy+ -+ Ps +Tsy1,+--+Tg) =K

which is a point in W1 — K. m]

Regarding the zeros of the theta-function it is possible to prove a little bit more then stated in
the previous theorems. Let D € S€~DS and lete = A(D) — K. Then

mult,_.0(z) = (D).

where /(D) is the dimension of the space L(D). The proof of this identity can be found in [20].
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Remark 4.3.3. The vector of Riemann constants has a characterisation in terms of divisors. Indeed
there is a non positive divisor A of degree g — 1 such that its Abel image coincides with %, namely
A(A) = K. Furthermore let D be a positive divisor of degree ¢ — 1, then the vector

e=AD)-K

is a zero of the theta-function, namely 6(¢) = 0. By the parity of the theta-function one has
0(—e) = 0. It follows by theorem 4.3.1 that

—e=AD")-K
where D' is a positive divisor of degree ¢ — 1. Then summing up the two relations we obtain
2K =AD+ D)

where D + D' is a positive divisor of degree 2¢ — 2. Since D + D’ has arbitrary ¢ — 1 points in it, it
follows from remark 3.1.57 that I(D + D’) > g which is equivalent, by Riemann-Roch theorem, to
I([K—D-D') > 1. Sincedeg(D+D’') =2g—2and deg(K—D—D’) = 0,onehas ([K-D—-D’") =1
which implies K = D + D’, namely we have shown that

2K = AK). (4.3.1)

Using the characterization of the theta-divisor one can complete the description of the function
F(P).

Lemma 4.3.4. Let F(P) = O(A(P) — e) where e = A(D) — K, D € S® S8 and K the vector of Riemann
constants defined in (4.2.32). Then

1. F(P) = 0 iff the divisor D is special;

2. F(P) # 0iff dimQ(D) = 0, i.e. the divisor D is not special. In this last case D is the divisor of zeros
of F(P).

Proof. Let’s prove part 1. of the lemma. Let F(P) = 0, then by theorem 4.3.1 there is a positive
divisor D of degree g — 1 so that

A(D) — K — A(P) = A(D) — K.

By Abel theorem, the identity holds if and only if D and D + P are linearly equivalent, that is
there is a meromorphic function in L(D) with a zero in an arbitrary point P € S. This is possible
only if (D) > 1 or equivalently dimQ(D) > 0, namely D is special. Conversely, if D € S8
is special then /(D) > 1 and therefore there is a function f € L(D) with an arbitrary zero in a
point P € S so that (f) = P+ D — D. where D € S&US. Tt follows by Abel theorem that
A(P) — A(D) + K = —A(D) + K, then by theorem 4.3.1, one has 0(A(D) — K) = 0.

Now let us prove part 2. of the lemma. Suppose now that D is not special, then F(P) # 0 and
by theorem 4.2.12, the divisors of zeros of F(P) coincides with D. O

Corollary 4.3.5. Let e = A(D) — K with D € S8~18. Them the function F(P) = 6(A(P) — e) vanishes
identically if and only if dimQ(D + Pg) > 1 (Check!!) where Py is the base point of the Abel map.
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Proof. Let Py be the base point of the Abel map, then A(P — Py) = A(P). Suppose F(P) = 0, then
by theorem 4.3.1 there exists a positive divisor D of degree ¢ — 1 such that

A(P—Py) —A(D) +K = -AD) + K

which implies that A(D + Py) = A(D + P). By Abel theorem, there is a nontrivial meromorphic
function h with divisor
(h)=D+P—D—P,

for all P € S. This implies that [(D + Py) > 2 or equivalently, D + Py is a special divisor. Viceversa
suppose that dimQ(D + Py) > 1, then /(D + Py) > 1 so that L(D + Py) is generated by {1, 1} where
h is a meromorphic function. So there is a nontrivial meromorphic function with poles in D + Py
and having zero in an arbitrary point P ( take for example the function & — h(P)) and some other
¢ — 1 points given by the divisor D. It follows that

A(D + Py) = A(D + P)

or equivalently
A(P—Py) —A(D) +K = -AD) - K

which implies by theorem 4.3.1 that 0 = 6(—A(D) — K) = 6(A(P — Py) — A(D) — K) = 0(A(P) —
A(D) — K) where we recall that Py is the base point of the Abel map. m|

The zeros of the theta function (the points of the theta divisor) form a variety of dimension
2¢—2(for g = 3). If we delete from J(S), the theta divisor, then we get a connected 2¢g-dimensional
domain. We get that the Jacobi inversion problem is solvable for all points of the Jacobian J(S) and
uniquely solvable for almost all points. Thus the collection (Py,...,P;) = (A®)~1(n) of points
of the Riemann surface S (without consideration of order) is a single valued function of a point
n = (N,...1¢) € J(S) (which has singularities at points of the theta divisor.) To find an analytic
expression for this function we take an arbitrary meromorphic function f(P) on S. Then the
specification of the quantities 171, ..., 1y uniquely determines the collection of values

f(P1), ..., f(Py), A®(Py,...,Pg)=n. (4.3.2)

Therefore, any symmetric function of f(P1),..., f(P,) is a single-valued meromorphic function
of the g variables 7 = (11,...,1g), that is 2¢g-fold periodic with period lattice {2riM + BN}. All
these functions can be expressed in terms of a Riemann theta function. The following elementary
symmetric functions has an especially simple expression:

8
= Y f(Py). (4.3.3)
j=1

From Theorem 4.2.31 and the residue formula we get for this function the representation

of ijgf )dlog O(A(P) — n + K)
(4.3.4)

Z Resf )dlog O(A(P) —n+ K),
f(Qr)=
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the second term in the right hand side is the sum of the residue of the integrand over all poles if
f(P). As in the proof of Lemma 4.2.11 and Lemma 4.2.12, it is possible to transform the first term
in (4.3.4) by using the formulas (4.2.29) and (4.2.30). The equality (4.3.4) can be written in the form

anzj f a)k_ Z Resf dlog@( ( ) 77+(]()- (4.3.5)

Here the first term is a constant independent of 1. We analyze the computation of the second term
(the sum of residue) using an example.

Example 4.3.6. S is an hyperelliptic Riemann surface of genus ¢ given by the equation w? =
Ps¢.1(z), and the function f has the form f(z,w) = z, the projection on the z-plane. This function
on S has a unique two-fold pole at o0. We get an analytic expression for the function o constructed
according to the formula (4.3. %) In other words if Py = (z1,w1), ..., Py = (z¢,wg) is a solution of
the inversion problem A(Py) + - -- + A(P;) = 1, then

Gf(T]) =21+ -+ Zg. (4.3.6)

We take oo as the base point Py (the lower limit in the Abel mapping). According to (4.3.5) the
function o¢(n) has the form

of(n) =c— Rogs [zdlog O(A(P) —n+ K)].

Let us compute the residue. Take T = 277 as a local parameter in a neighbourhood of o. Suppose
that the holomorphic differentials w; have the form w; = 1;(7)d7 in a neighbourhood of . Then

8
dlog O(A(P) — n + K) :ZIOgQ — 1+ Kiwi(P) =

1og O(A(P) =1+ %)l (1)

nMoe\

where [. .. |; denotes the partial derivative with respect to the ith variable. By the choice of the base
point point Py = oo, the decomposition of the vector-valued function A(P) in a neighbourhood of
o has the form

A(P) = U + O(1?),
where the vector U = (Uj, ..., Ug) has the form
Uj=y(0), j=1,....8
From these formulas we finally get
or(n) = —(log 6(n — K));,jUil; + c = —02log O(xU + 1 — K)|x—0 + ¢, (4.3.7)

where (log 0(n — K));; denotes derivative with respect to the i — th and j — th argument of the
theta-function and c is a constant.
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We shall show in the next Section that the function

2
u(x,t) = %loge(wﬂ—Wt—rﬁ—?{)—l—c

1
where Wy = 51/)”(0) solves the Korteweg de Vries equation

1
Uy = Z(6uux + Uyxx)-
Exercise 4.3.7: Suppose that a hyperelliptic Riemann surface of genus g is given by the equation
w? = Pg12(z). Denotes its points at infinity by P_ and P,.. Chose P_ as the base point Py of the
Abel mapping. Take f(z,w) = z as the function f. Prove that the function o¢(17) has the form

6(n—K - AP
as(n) = (10g Y 6(17_7(3 +)))U]-H (4.3.8)
j
where the vector U = (Uj, ..., Ug) has the form
Uy=1v0), j=1,...,8 (4.3.9)

where the basis of holomorphic differentials have the form
wi(P)=¢j(t)dr, t=z"", P—w.

Exercise 4.3.8: Let S be a Riemann surface w? = P5(z) of genus 2. Consider the two systems of
differential equations:

Ps(z Ps5(z
dn_ VPse) dn Vi) (4.3.10)
dx Z1 — 2o dx Z — 71
dzv  z2+/Ps(z1)  dzy  z1+/Ps(z2)
dn _myvsa) o dn  avisE) (4.3.11)
dt Z1 — 2o dt Z) — 71

Each of these systems determined a law of motion of the pair of points

P, = (Zl, P5(Z ))/ P = (ZZI P5(Z2))

on the Riemann surface S. Prove that under the Abel mapping (4.1.1) these systems pass into the
systems with constant coefficients

dm o dm
dx 7 dr
dm dm,
TR TR

In other words, the Abel mapping (4.1.1) is simply a substitution integrating the equations (4.3.10)
and (4.3.11).
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44 Holomorphic line bundles and divisors

In this section we show the equivalence between holomorphic line bundles and divisors on a
compact Riemann surface S.

4.4.1 Holomorphic line bundle

Let {U,}aea an open covering of a compact Riemann surface S. Let
o*(U) co(U) « M(U)

be the set of nowhere vanishing holomorphic, holomorphic and meromorphic functionson U < S.

Definition 4.4.1. A complex line bundle over the Riemann surface S is a complex manifold L and a
holomorphic map 7 : L — S such that

o Lp:=7n"Y(P) ~P x C. Lpis called the fiber of L

o foracovering {Upy}aeca of S the triples {P, Uy, Uy} aea with P € U, and v, € C satisfy the equivalence
relation
{P/ U[Y/Ua} = {Q/ UIS,U’B} A P = Q € ua N uﬁ ¢ @/ Ua = gaﬁ(P)Uﬁ

where gag € O*(Uy N Up) is called transition function

The functions g,s € O* (U, N Up) satisfy the cocycle condition
8ap(P)gpy(P)gya(P) =1, VYPelU,nUgn U,

and
8ap(P)gpa(P) = 1.
The line bundle with Sap=1 for all a, € Ais called trivial.

Definition 4.4.2. Two line bundles L and L' with transition functions g.g and g’ 5 define isomorphic line
bundles i it exists f, € O*(U,) so that

Ja
Sup = 7 8o (4.4.12)
One can give to the set of line bundles over S the structure of a group where the multiplication
is given by tensor product and inverse by dual bundle, namely if L. and L' are give by g,3 and g/, g
then
LOL ~ {gupgis} L* ~ {8y

The group of line bundles over S is called the Picard group of S and denoted by Pic(S)".

A section of L is a map ¢ : S — L such that ¢(P) € Lp with P € S. For the trivial bundle
L = C x S every section is of the form ¢(P) = (f(P), P) for some holomorphic or meromorphic
function f in S. A set of meromorphic functions f, € M(U,) such that f,/fs € O*(U, N Up)

More precisely the group of line bundles coincides with the first cohomology group H'(S,0*) and this group last is
called the Picard group of S.
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Va, B € A, is a meromorphic section of the line bundle L. Indeed by defining it transition functions
{8ap}apen are
fa(P)
gtxﬂ(P ) = P 4
fs(P)

one can immediately see that {gap}4gea satisfy the cocycle condition.
The divisor of the meromorphic section { f, }aea is well defined as

(fa) = (fo)lu,-

We now describe a basic correspondence between divisors and line bundles. Let D € Div(S)
with D = };n;P; and let U, be a covering such that each open set U, contains at most a point of
D. Let f, € M*(U,) be meromorphic functions, such that the divisor of f, is precisely the part of
D lying in U,, for example if P; € U, and z, is a centred coordinate near P;, then f, = z;

(fa) = Dlu, = niP;.

Pe U, n U

Then the functions

Sap 1= J% € O* (U, n Up)
B

satisfy the cocycle condition

fafﬁ]i

8ap8py8ya = ]Tﬁﬁfa =1

The line bundle constructed in this way is called the line bundle associated to the divisor D and
it is denoted by L[D]. It is well defined. Indeed if (2, U,) is another chart and f; = (z,)" then

h, = % e O*(U,) and
’ , fa hg
gaﬁ == gﬂﬁ_
5 8,

Therefore according to Definition 4.4.2 g/ 8 and g, define isomorphic line bundles.

The degree of the divisor is called the degree of the line bundle and is denoted by deg L[D].

The map Div(S) — Pic(S) given by D — L[D] is a homomorphism of groups. Indeed, given
two divisors D and D’ with local data {f,} and {f;} respectively, then the local data for D + D’ is
given by {f, f.}. It follows that L[D + D'] = L[D] ® L[D'].

If D is the divisor of a meromorphic function f, namely D = (f), then we can take as a local
data over any cover U, the functions f, := f|u,. The transition functions g,s = fu/fs = 1 so L[D]
is trivial. Conversely, if D is given by local data { f,} and the line bundle L[D] is trivial, then there
exists functions h, € O*(U,) such that

so that fhy ' = fﬁhgl is a global meromorphic function on S with divisor D.

Lemma 4.4.3. The divisors D and D’ are linearly equivalent iff the holomorphic line bundles L[D] and
L[D’] are isomorphic
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Proof. Let h € M(S) so that (h) = D’ — D. Choose a covering of S so that each point of D and
D’ belongs only to one U,. If f, is a meromorphic section of L[D], then h|y, f, is a meromorphic
section of L[D’] which implies (4.4.12). Conversely, let f, and f; be meromorphic sections of
isomorphic line bundles L[D] and L[D’]. Then it exists h, € O*(U,) so that

hofs  fd
hefs  fg
h
that is afa is a meromorphic function with divisor D — D', which gives D ~ D'. o

fa

Summarizing, for each divisor D € Div(S) we can associate a line bundle L[D]. Conversely,
given a line bundle L and a meromorphic section f, we see that gug = fu/fs € O* (U, n Up) and
L = L[(f)]. In particular, L is the line bundle associated to a divisor D on § if and only if it has a
non vanishing meromorphic section.

Lemma 4.4.4. Every holomorphic line bundle on a compact Riemann surface S admits a meromorphic
section.

We do not prove this lemma. Therefore, the map Div(S) — Pic(S) given by D — L[D] is also
and isomorphism of groups. We can then summarize the results of lemmas 4.4.3 and lemma 4.4.4.

Theorem 4.4.5. The Picard group Pic(S) is isomorphic to the group of divisors Div(S) modulo linear
equivalence.

We give now a geometric interpretation of the Riemann-Roch theorem. Denote by h°(L) the
dimension of the space of holomorphic sections of L and by deg L the degree of the line bundle,
i.e. the degree of the divisor D associated to L. Furthermore, we denote by K the canonical line
bundle associated to the canonical divisor K. Its transition functions are

dz,
8ap = E

where (z,, U,) is a chart of S.

Theorem 4.4.6. Let L be an holomorphic line bundle over a Riemann surface S of genus g. Then
(L) = degL +1—g+h (KL™) (4.4.13)

Proof. We just show that the space of holomorphic section of L[D] is isomorphic to the space
L(D) defined in (3.1.72). Indeed, let be ¢ a meromorphic section of L[D] with divisor D and & a

holomorphic section of L[D]. Then /¢ is a meromorphic function on S and —) > 0, therefore

h/¢ € L(D). Conversely, given f € L(D) then f/¢ is a holomorphic section of L[D]. In the same way
one can show that the space of holomorphic section of L[K — D] is isomorphic to the space L(K—D).
Then the relation (4.4.13) follows immediately from the Riemann-Roch theorem 3.1.60. O

Among the line bundles, the spin bundles deserve special attention.
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Definition 4.4.7. A holomorphic line bundle L = L[D] with degD = g — 1, and such that the
2D =K,

where K is the canonical divisor, is called holomorphic spin bundle. Its holomorphic section are called
spinors or theta-charateristics.

Remark 4.4.8. We observe that the Riemann-Roch theorem does not provide any information on
such divisors. The dimension of the space of holomorphic sections of the corresponding line
bundles is obtained using the theory of theta-functions.

Example 4.4.9. Let e = g + pB be an odd half integer charactheristic. Then 0(e) = 0 and
e=AD)—K, 0=2e=2AD)-2K

where by Theorem 4.3.1 D = Py + --- + P¢_1 is a positive divisor of degree ¢ — 1. But we also
know from Remark 4.3.3 that 2K = A(K) so that 2D = K.
On the other hand differentiating 6(A(D) — K) = 0 with respect to P, we obtain

————wi(Py) =0

& 00(A(D) — K)
— 32,’

i=1

So we have found that

w:iw@w®
i=1

Zi

D

is a holomorphic differential with zeros in D. Since 2D = K we have that w has double zeros in D.

Proposition 4.4.10. There exists 435 non equivalent holomorphic spin bundles on a Riemann surface of
genus g.

Proof. Let D be the divisor of the spin bundle. Observe that for any base point Py, the Abel map
gives the identity
2Ap,(D) = Ap,(K).

From Remark 4.3.3 one obtains
2Ap,(D) — 2%p, = 0.

Therefore there is a half integer characteristicse = g+pB, q = (q1,...,qg) and p = (p1, ..., pg), with
gj and p; in Z; such that
e = quO (De) - (](po.

Since there are 48 half-periods e, it follows from the Jacobi inversion theorem, that there exists 4¢
non equivalent divisor D, such that 2D, = K. |

We observe that 0 is an even half integer characteristics. Therefore, there is a divisor Dy such
that
0 = Ap,(Do) — Kp,,

namely, the vector of Riemann constants Kp, = Ap,(Dy). This relation gives the clear dependence
of the vector of Riemann constants on the choice of the base point and the canonical homology
basis. Since 6(0; B) # 0 it follows from Theorem 4.3.1, that the corresponding divisor Dy is not a
positive divisor.
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Lemma 4.4.11 (Fay). The dimension of the space of holomorphic sections of the spin bundle L|D,], where
e is an half integer characteristics is given by

W (L[D,]) = mult,—.0(z; B).
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