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1 First integrals associated to a Lax pair

One of the most known method to construct first integrals of a Hamiltonian system is
through symmetries of the space P . Another powerful method is due to Lax [?] and
represents the starting point of the modern theory of integrable systems. Given an ODE

ẋ = f(x), x = (x1, . . . , xN ) (1.1)

and two m ×m matrices L = (Lij(x)), A = (Aij(x)), they constitute a Lax pair for the
dynamical systems if for every solution x = x(t) of (1.1) the matrices L = (Lij(x(t))) and
A = (Aij(x(t))) satisfy the equation

L̇ = [A,L] := AL− LA (1.2)

and the validity of (1.2) for L = L(x), A = A(x) implies (1.1).

Theorem 1.1 Given a Lax pair for the dynamical system (1.1), then the eigenvalues
λ1(x), . . . , λm(x) of L(x) are integrals of motion for the dynamical system.

Proof. The coefficients a1(x), . . . , am(x) of the characteristic polynomial

det(L− λ I) = (−1)m
[
λm − a1(x)λm−1 + a2(x)λm−2 + · · ·+ (−1)mam(x)

]
(1.3)

of the matrix L = L(x) are polynomials in tr L, tr L2, . . . , tr Lm:

a1 = tr L, a2 =
1

2

[
(tr L)2 − tr L2

]
, a3 = . . .

Next we show that
tr Lk, k = 1, 2, . . . (1.4)

are first integral of the dynamical system. Indeed for k = 1

d

dt
tr L = tr L̇ = tr (AL− LA) = 0.

more generally
d

dt
trLk = ktr ([A,L]Lk−1) = 0. (1.5)

Since the coefficients of the characteristic polynomial L(x) are constants of motion it
follows that its eigenvalues are constants of motion. 2
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Another proof of the theorem, close to Lax’s original proof, can be obtained observing
that the solution of the equation L̇ = [A,L] can be represented in the form

L(t) = Q(t)L(t0)Q−1(t) (1.6)

where the evolution of Q = Q(t) is determined from the equation

Q̇ = A(t)Q (1.7)

with initial data
Q(t0) = 1.

Then the characteristic polynomials of L(t0) e Q(t)L(t0)Q−1(t) are the same and conse-
quently the eigenvalues are the same.

2 The open Toda lattice

Let us consider the system of n points q1, q2, . . . , qn on the real line interacting with nearest
neighbour interaction potential

U(q1, . . . , qn) =
n−1∑
i=1

eqi−qi+1

the so called Toda lattice. The Hamiltonian H(q, p) ∈ C∞(T ∗Rn) takes the form

H(q, p) =
1

2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1 . (2.1)

There are two possible boundary conditions:

• open Toda with q0 = −∞ and qn+1 = +∞

• closed Toda with q1 = qn+1.

Here we analyse the open Toda lattice. The Hamilton equations with respect to the
canonical Poisson bracket

{qk, pj} = δkj , {qk, qj} = {pk, pj} = 0, jk = 1, . . . , n (2.2)

are

q̇k =
∂H

∂pk
= pk, k = 1, . . . , n

ṗk = −∂H
∂qk

=


−eq1−q2 if k = 1

eqk−1−qk − eqk−qk+1 if 2 ≤ k ≤ n− 1
eqn−1−qn if k = n
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Since the Hamiltonian is translation invariant, the total momentum is a conserved quantity
together with the Hamiltonian.

Flaschka [5],[6] and Manakov [11] separetely showed that the Toda lattice is a com-
pletely integrable system. Let us introduce a new set of dependent variables

ak =
1

2
e
qk−qk+1

2 , k = 1, . . . , n− 1

bk = −1

2
pk, k = 1, . . . , n,

(2.3)

with evolution given by the equations

ȧk = ak(bk+1 − bk), k = 1, . . . , n− 1

ḃk = 2(a2
k − a2

k−1), k = 1, . . . , n,
(2.4)

where we use the convention that a0 = an = 0. Observe that there are only 2n−1 variables
and this is due the translation invariance of the original system. The equations (4.3) have
an Hamiltonian form with Hamiltonian

H(a, b) = 2
n∑
i=1

b2i + 4
n−1∑
i=1

a2
i

with Poisson bracket define on (R∗)n−1 × Rn given by

{ai, bj} = −1

4
δijai +

1

4
δi,j−1ai, i = 1, . . . , n− 1, j = 1, . . . , n,

while all the other entries are equal to zero. We observe that the total momentum
∑n

k=1 bk
is a Casimir of the above Poisson bracket
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Next we introduce the tridiagonal n× n matrices:

L =



b1 a1 0 . . . 0 0
a1 b2 a2 0 0
0 a2 b3 0

. . . . . . . . .

0 bn−1 an−1

0 an−1 bn



A =



0 a1 0 . . . 0 0
−a1 0 a2 0 0

0 −a2 0 0

. . . . . . . . .

0 0 an−1

0 −an−1 0



(2.5)

where A = L+ − L− and we are using the following notation: for a square matrix X we
call X+ the upper triangolar part of X

(X+)ij =

{
Xij , i < j
0, otherwise

and in a similar way by X− the lower triangular part of X

(X−)ij =

{
Xij , i < j
0, otherwise.

A straighforward calculation shows that

Lemma 2.1 The Toda lattice equations (4.3) are equivalent to

dL

dt
= [A,L]. (2.6)

Exercise 2.2 Determine the Lax pair for the closed Toda lattice.

The open Toda lattice equation is sometimes written in the literature in Hessebeg
form. Conjugating the matrix L by a diagonal matrix D = diag(1, a1, a1a2, . . . ,

∏n−1
j=1 aj)
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yelds the matrix L̂ = DLD−1

L̂ =



b1 1 0 . . . 0 0
a2

1 b2 1 0 0
0 a2

2 b3 0

. . . . . . . . .

0 bn−1 1
0 a2

n−1 bn


(2.7)

The Toda equations (4.3) take the form

dL̂

dt
= −2[Â, L̂] (2.8)

where the matrix Â = L̂− namely

Â =



0 0 0 . . . 0 0
a2

1 0 0 0 0
0 a2

2 0 0

. . . . . . . . .

0 0 0
0 a2

n−1 0


(2.9)

From the results of the previous section, the Lax formulation guarantees the existence
of conserved quantities, namely the traces

Fj = tr Lj+1, j = 0, . . . , n− 1.

are conserved quantities. To show the independence of the integrals F0, . . . , Fn−1 we
observe that

Fj−1 =
n∑
k=1

bjk + lower order polynomials of ak and bk.

Since the polynomials bj1 + bj2 + · · · + bjn for j = 1, . . . , n are linearly independent with
respect to the variables b1, . . . , bn, it follows that the integrals F0, . . . , Fn−1 are functionally
independent. Next we show that the integrals are in involution. For the purpose we need
the following lemma.

Lemma 2.3 (i) The spectrum of L consists of n distinct real numbers λ1 < λ2 < · · · <
λn.
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(ii) Let Lv = λv with v = (v1, . . . vn)t. Then v1 6= 0 and vn 6= 0. Furthermore, vk =
v1pk(λ) where pk(λ) is a polynomial of degree k in λ.

Proof. We will first prove (ii). From the equation Lv = λv one obtains

(b1 − λ)v1 + a1v2 = 0 (2.10)

ak−1vk−1 + (bk − λ)vk + akvk+1 = 0, 2 ≤ k < n. (2.11)

Since a1 6= 0 clearly v1 = 0 =⇒ v2 = 0, but then from (2.11) with k = 2, since a2 6= 0,
then v1 = 0 and v2 = 0 implies v3 = 0. Hence v = 0 if v1 = 0. Therefore v1 6= 0. In the
same way it can be proved that vn 6= 0. From (2.10) and (2.11) it easily follows that vk
is a polynomial of degree k in λ. To prove (i), since L is symmetric, the eigenvalues are
real. In order to show that the eigenvalues are distinct, let us suppose that v and ṽ are
two eigenvalues corresponding to the same eigenvector λ. Then the linear combination
αv+βṽ is also an eigenvector of L with eigenvalue λ. But then one can choose α 6= 0 and
β 6= 0 so that αv1 + βṽ1 = 0 and by (ii) it follows that αv + βṽ=0 implying that v and ṽ
are dependent. 2

Using the above lemma one has

det
∂Fj
∂λk

=


1 1 . . . 1

2λ1 2λ2 . . . 2λn
. . . . . . . . . . . .

nλn−1
1 nλn−1

2 . . . nλn−1
n

 = n!
∏
i<j

(λi − λj) 6= 0,

because the eigenvalues are all distinct. This shows that we can take the eigenvalues
λ1, . . . , λn as a new set of functionally independent variables. In order to show that the
Toda lattice is an integrable system we also need to show that the functions F1, . . . , Fn,
or equivalently the eigenvalues λ1, . . . , λn commute with respect to the canonical Poisson
bracket. For the purpose let us consider the equation

Lv = λv, (2.12)

where v is a normalised eigenvector, v = (v1, . . . , vn)t and (v, v) = 1. Then we introduce
the discrete Wronkstian

Wi(v, w) = ai(viwi+1 − vi+1wi) (2.13)

where w is an eigenvector with respect to the eigenvalue µ. We use the convention that
W0 = Wn = 0. It is easy to see using the equation (2.12) that the Wronkstian satisfies

Wi = (µ− λ)viwi +Wi−1. (2.14)
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Indeed we have from (2.12)

(bi − λ)vi + ai−1vi−1 + aivi+1 = 0, (bi − µ)wi + ai−1wi−1 + aiwi+1 = 0.

Multiplying the first equation by wi and the second by vi and subtracting them, one
obtains the statement. We are ready to prove the following.

Proposition 2.4 The eigenvalues of L commute with respect to the canonical Poisson
bracket (2.2).

Proof. Let us consider the equation (2.12) and its variational derivative

δL v + Lδv = v δλ + λ δv

Taking the scalar product with respect to v and using (v, v) = 1 one obtains

δλ = (v, δL v) + (v, (L− λ)δv) = (v, δL v) + ((L− λ)v, δv) = (v, δL v) (2.15)

where we use the fact that the operator L is symmetric.
Let λ and µ be two eigenvalues of L with normalized eigenvectors v an w respectively.

Then from (2.15) one has

∂λ

∂pi
= (v,

∂L

∂pi
v) = −1

2
v2
i

∂λ

∂qi
= (v,

∂L

∂qi
v) = aivivi+1 − ai−1vivi−1, i = 1, . . . , n,

(2.16)

where we use the fact that (v, v) = 1 and we define a0 = 0 = an. The same relations hold
for the eigenvalue µ. Then one has

{λ, µ} =

n∑
i=1

(
∂λ

∂qi

∂µ

∂pi
− ∂λ

∂pi

∂µ

∂qi

)

=
1

2

n∑
i=1

(viwi(ai(viwi+1 − vi+1wi) + ai−1(wivi−1 − viwi−1)) .

(2.17)

Using the definition of Wronkstian in (2.13) and the identity (2.14) one can reduce the
above relation to the form

{λ, µ} =
1

2(µ− λ)

n∑
i=1

(W 2
i −W 2

i−1) =
W 2
n −W 2

0

2(µ− λ)
= 0.

2
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Summarazing, we have proved the following theorem.

Theorem 2.5 The Toda Lattice is a completely integrable Hamiltonian system.

By Liouville theorem it follows that the Toda system can be integrated by quadratures.
Let us show how to do this. By the lemma 2.3 it follows that

L = UΛU t (2.18)

where Λ = diag(λ1, . . . , λn) with distinct eigenvalues and U is an orthogonal matrix UU t =
1 with entries Uij = uij the normalized eigenvectors ui = (u1i, . . . uni)

t of L. From
UU t = U tU = 1 one has

(ui, uj) = δij ,
n∑
k=1

(ukj)
2 = 1, i, j = 1, . . . , n.

We know the eigenvalues of L(t), since they are constants of motion. In order to know
L(t) at time t we need to know the orthogonal matrix U = U(t), with entries Uij = uij .
From (2.6) and (2.18) one has that

U̇ = AU. (2.19)

In particular, the dynamics implied by the above equation on the first row u1i, i = 1, . . . , n
of the matrix U is quite simple.

Lemma 2.6 The time evolution of the first row of the matrix U , namely the entries u1i

i = 1, . . . , n are given by

u1i(t)
2 =

e2λitu1i(0)2∑n
k=1 e

2λktu1k(0)2
, i = 1, . . . , n. (2.20)

Proof. From (2.19) one has

du1i

dt
= (AU)1i = a1ui2

and from the relation Lui = λiui, with ui = (u1i, . . . , uni)
t, one reduces the above equation

to the form
du1i

dt
= (λi − b1)u1i.

The solution is given by

u1i(t) = E(t)eλitu1i(0), E(t) = exp

(
−
∫ t

0
b1(τ)dτ

)
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Using the normalization conditions

1 =
n∑
i=1

u1i(t)
2 = E(t)2

n∑
i=1

e2λitu1i(0)2

which implies

E(t)2 =

(
n∑
i=1

e2λitu1i(0)2

)−1

one arrives to the statement of the lemma. 2

2.1 Inverse spectral problem for the open Toda lattice

The goal of this section is to reconstruct the 2n − 1 variables aj(t) and bj(t) from the
spectral data λ1, . . . , λn and the entries u1i(t), i = 1, . . . , n, of the matrix U with the
constraint

∑n
i=1 u

2
1i(t) = 1. We are going to use three different procedure to solve inverse

spectral problem and integrate the Toda lattice:

• the QR algorithm du to Symes;

• the continued fraction expansion due to Moser;

• orthogonal polynomials (follows from the first algorithm).

Introducing the notation
ξi(t) = u1i(t), i = 1, . . . , n (2.21)

one can see from lemma 2.3 that the orthogonal matrix U can be written in the form

U =


ξ1(t)p0(λ1, t) ξ2(t)p0(λ2, t) . . . ξn(t)p0(λn, t)
ξ1(t)p1(λ1, t) ξ2(t)p1(λ2, t) . . . ξn(t)p1(λn, t)

...
...

...
ξ1(t)pn−1(λ1, t) ξ2(t)pn−1(λ2, t) . . . ξn(t)pn−1(λn, t)


where pk(λ, t) is a polynomial of degree k in λ. Since U is an orthogonal matrix, the
orthogonality relations on the rows of U take the form

n∑
k=1

ξ2
k pm(λk)pj(λk) = δmj . (2.22)

In other words, the polynomials pj(λ, t) are normalized orthogonal polynomials with re-
spect to the discrete weights ξ2

k at the points λk. To find the orthogonal polynomials from
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the weights, is a standard procedure. We will use QR factorisation, which is a decompo-
sition of a matrix A = QR into an orthogonal matrix Q and an upper triangular matrix
R. If A is invertible, then the decomposition is unique if the diagonal entries of R are
positive.

Let us consider the non degenerate matrix V in the form

V =


√
w1(t)p0(λ1, 0)

√
w1(t)p1(λ1, 0) . . .

√
w1(t)pn−1(λ1, 0)√

w2(t)p0(λ2, 0)
√
w2(t)p1(λ2, 0) . . .

√
w2(t)pn−1(λ2, 0)

...
...

...√
wn(t)p0(λn, 0)

√
wn(t)p1(λn, 0) . . .

√
wn(t)pn−1(λn, 0)


= diag

(√
w1(t)

w1(0)
,

√
w2(t)

w2(0)
, . . . ,

√
wn(t)

wn(0)

)
U(0)t

By the QR algorithm one has

V (t) = diag

(√
w1(t)

w1(0)
,

√
w2(t)

w2(0)
, . . . ,

√
wn(t)

wn(0)

)
U(0)t = U(t)tR.

It is easy to check that R is indeed upper-triangular by observing that the entry (j, l) of
the product U(t)V takes the form

n∑
k=1

wk(t)pj(λk, t)pl(λk, 0) = 0, for l < j,

due to the orthogonality of the polynomials pj(λk, t) with respect to the weights w1(t), . . . wn(t).
Multiplyingthe matrix V from the left by U(0) and observing that√

wj(t)

wj(0)
= E(t)eλjt,

one arrives to the relation

E(t)U(0)etΛU(0)t = E(t)etL(0) = U(0)U(t)tR

or equivalently
etL(0) = U(0)U(t)tR, (2.23)

where the scalar term E(t) has been absorbed in R. From the relation

L(t) = U(t)ΛU(t)t = U(t)U(0)tL(0)U(0)U(t)t (2.24)

one realizes that L(t) can be obtained from L(0) by knowing U(0)U(t)t. Therefore, the
solution of the Toda lattice equations can be obtained by the following steps
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• from L(0) determine etL(0);

• apply Gram-Schmidt orthogonalization procedure to etL(0) = U(0)U(t)tR so that
one obtains U(0)U(t)t

• determine L(t) from the identity L(t) = U(t)U(0)tL(0)U(0)U(t)t.

We are going to derive a different procedure to integrate the Toda lattice due to Moser
[12]. Recall that we have denoted by (ξ1, . . . ξn) the first row of the matrix U . Consider
the set

Spec = {λ1 < λ2 < · · · < λn, (ξ1, . . . , ξn), ξi > 0,

n∑
i=1

ξ2
i = 1}, (2.25)

which is the spectral data associated to the matrix L = L(a, b). The matrix L is a Jacobi
matrix, namely a tridiagonal symmetric matrix where the lower and upper diagonal entries
are positive.

Theorem 2.7 (Moser) The spectral map

S : L(a, b)→ Spec

is a bijection between Jacobi matrices and the set Spec.

Proof. We need to show that for a given set (λ, ξ) ∈ Rn × Rn where λ = (λ1, . . . , λn),
with λ1 < λ2 < · · · < λn and ξ = (ξ1, . . . , ξn) with (ξ, ξ) = 1 and ξi > 0 there is a unique
Jacobi matrix with such spectral data. For the purpose define for j = 0, . . . , n − 1 the
(n− j)× (n− j) matrices

∆j(z) = det


z − bj+1 −aj+1 0 0 . . . . . .
−aj+1 z − bj+2 −aj+2 0 . . . . . .

0 −aj+2 z − bj+3 −aj+3

. . . . . . . . .
. . . 0 0 −an−1 z − bn


with ∆n(z) := 1 and ∆n+1(z) = 0 and ∆0(z) = det(zI − L). It is easy to see that ∆j

is a polynomial of degree n − j. Furthermore, expanding the determinant along the first
column, one obtains the recursion relation

∆j(z) = (z − bj+1)∆j+1 − a2
j+1∆j+2. (2.26)

Now let us consider the entry (1, 1) of the resolvent R := (zI − L)−1. Such entry turns
out the be equal to

R(z)11 =
∆1(z)

∆0(z)
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by the form of the inverse of a matrix. On the other hand, one also has

R(z)11 = (zI − L)−1
11 = (U(zI − Λ)U t)−1

11 = (U(zI − Λ)−1U t)11 =
n∑
i=1

ξ2
i

z − λi

Combining the above two relations and the recursive formula (2.26) one arrives to the
continued fraction expansion

n∑
i=1

ξ2
i

z − λi
=

1
∆0
∆1

=
1

z − b1 −
a2

1
∆1
∆2

=
1

z − b1 −
a2

1

z−b2−
a2
2

...
···−

a2
n−1
z−bn

(2.27)

2

For example from the continued fraction expansion one has

b1 =

n∑
i=1

λiξ
2
i , an−1 =

∑
i<j

(λi − λj)ξiξj .

So the integration of the Toda lattice is obtained by the following diagram:

{ai(0), bi(0)} direct spectral problem
=⇒ {λ1, . . . , λn, ξ1(0) . . . , ξn(0)}

⇓

{ai(t), bi(t)}
inverse spectral problem⇐= {λ1, . . . , λn, ξ1(t) . . . , ξn(t)}.

Such procedure is called inverse scattering.

Example 2.8 In the particular case n = 2 from the continued fraction expansion

ξ2
1

z − λ1
+

ξ2
2

z − λ2
=

1

z − b1 −
a2

1

z − b2

one can get easily the explicit formulas of the solution

b1(t) = −1

2
p1 = λ1ξ1(t)2 + λ2ξ2(t)2 =

λ1ξ1(0)2e2λ1t + λ2ξ2(0)2e2λ2t

ξ1(0)2e2λ1t + ξ2(0)2e2λ2t

b2(t) = −1

2
p2 = λ2ξ1(t)2 + λ1ξ2(t)2 =

λ2ξ1(0)2e2λ1t + λ1ξ2(0)2e2λ2t

ξ1(0)2e2λ1t + ξ2(0)2e2λ2t

13



a1 =
1

2
e
q1−q2

2 = (λ2 − λ1)ξ1(t)ξ2(t) =
(λ2 − λ1)ξ1(0)ξ2(0)e(λ1+λ2)t

ξ1(0)2e2λ1t + ξ2(0)2e2λ2t

or equivalently

q1 = − log
(
ξ1(0)2e2λ1t + ξ2(0)2e2λ2t

)
q2 = −2(λ1 + λ2)t− 2 log(2(λ1 − λ2)ξ1(0)ξ2(0)) + log

(
ξ1(0)2e2λ1t + ξ2(0)2e2λ2t

)
.

Observe that for t→ +∞ one has

a1(t)→ 0, b1(t)→ λ2, b2(t)→ λ1.

Exercise 2.9 Prove that for t→ +∞ the Lax matrix becomes diagonal with entries

L→ drag(λn, λn−1, . . . , λ2, λ1).

2.2 Toda flows and orthogonal polynomials

It is instructive to relate the integration of the Toda flows to orthogonal polynomials. Let
dµ(λ) be a positive measure on the real line such that∫

R
λkdµ(λ) <∞, k ≥ 0.

Consider the (n+ 1)× (n+ 1) Hankel matrix Mn with entries

(Mn)ij =

∫
R
λi+j−2dµ(λ), i, j = 1, . . . , n+ 1.

Lemma 2.10 The matrix Mn is positive definite.

Proof. It is sufficient to consider the positive integral

0 <

∫
R

(
n∑
k=0

tkλ
k)2dµ(λ) =

∫
R

n∑
j,k=0

tktjλ
k+jdµ(λ) =< t,Mnt >

where t = (t0, . . . , tn). For the arbitrariness of t it follows that Mn is a positive definite
matrix. 2
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We define the determinant
Dn = detMn (2.28)

which is by lemma 2.10 positive. For convenience we are setting D−1 = 1.
Let us now consider the polynomial of degree n

πn(λ) = det


∫
λndµ(λ)

Mn−1 . . .∫
λ2n−1dµ(λ)

λ0 λ1 . . . λn−1 λn

 (2.29)

Lemma 2.11 The polynomials

p0(λ) =
1√
D0

pn(λ) =
πn(λ)√
DnDn−1

=

√
Dn−1

Dn

(
λn +O(λn−1)

)
, n > 0,

(2.30)

are orthonormal polynomials with respect to the measure dµ(λ), namely∫
R
pn(λ)pm(λ)dµ(λ) = δnm. (2.31)

Proof. The orthonormality condition (2.31) is equivalent to the conditions
∫
R pn(λ)λmdµ(λ) =

0 for m < n and
∫
R pn(λ)2dµ(λ) = 1 Using the fact that the determinant is a multilinear

map one has

∫
R
pn(λ)λmdµ(λ) = det


∫
λndµ(λ)

Mn−1 . . .∫
λ2n−1dµ(λ)∫

λmdµ(λ)
∫
λm+1dµ(λ) . . .

∫
λm+n−1dµ(λ)

∫
λm+ndµ(λ)

 = 0, m < n.

The above determinant is equal to zero because the last row of the above matrix is equal
to the (m+ 1)th row. Regarding the normalising condition one has∫

R
pn(λ)2dµ(λ) =

1

DnDn−1

∫
R
Dn−1λ

nπn(λ)dµ(λ) = 1.

2
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Lemma 2.12 The orthogonal polynomials (2.30) satisfy a 3-term recurrence relations

λp0(λ) = a1p1(λ) + b1p0(λ)

λpn(λ) = an+1pn+1(λ) + bn+1pn(λ) + anpn−1(λ),
(2.32)

with

an+1 =

√
Dn+1Dn−1

D2
n

(2.33)

bn+1 =
Gn
Dn
− Gn−1

Dn−1
. (2.34)

where Gn−1 is the determinant of the minor of Dn(λ) that is obtained by erasing the (n+1)
row and the n column,

Proof. The polynomial λpn(λ) is of degree n+ 1 so one has

λpn(λ) =

n+1∑
k=0

γnk pk(λ),

for some constants γnk . Multiplying both sides of the above identity by pj(λ), 0 ≤ j < n−1
and integrating over dµ(λ) one has, using orthogonality

0 =

∫
R
λpn(λ)pj(λ)dµ(λ) = γnj , 0 ≤ j < n− 1.

because λpj(λ) is a polynomial of degree at most j + 1 and λpn(λ) is at most of degree
n+ 1. Therefore only γnn+1, γ

n
n and γnn−1 are different from zero. In order to determine the

coefficient γnn+1 let us observe that

pn(λ) =

√
Dn−1

Dn
λn +O(λn−1),

and comparing the right and left-handside of (2.32) one has

γnn+1 =

√
Dn+1Dn−1

D2
n

:= an+1 (2.35)

Regarding γnn−1 one has

γnn−1 =

∫
R
λpn(λ)pn−1(λ)dµ(λ) =

√
DnDn−2

D2
n−1

16



so that γnn−1 = an. Defining Gn−1 the determinant of the minor of Dn(λ) that is obtained
by erasing the (n+ 1) row and the n column, one has that

pn(λ) =

√
Dn−1

Dn
λn − Gn−1√

DnDn−1
λn−1 +O(λn−2)

so that comparing the left and righthandside of (2.32) one obtains

bn+1 =
Gn
Dn
− Gn−1

Dn−1
. (2.36)

2

2.3 Integration of Toda lattice

Now let us consider the measure associated to the Toda lattice

dµ̃(λ) = E2(t)

n∑
j=1

e2λitδ(λ− λi)u1,i(0)2dλ,

with E(t) a function of time as in (??). Then it is easy to check that the ratios Gn/Dn

in (2.36) are independent from E(t) as well as the ratios

√
Dn+1Dn−1

D2
n

in the definition of

an. Therefore we can set E(t) = 1 without loss of generality. It in an easy calculation to
derive the identity

∂Dn

∂t
= 2Gn.

So using the above identity one can write the coefficient bn+1 in the form

bn+1 =
1

2

∂

∂t
log

Dn

Dn−1
. (2.37)

We conclude that the integration of the Toda lattice equation is given by the relation
(2.37) and (2.33) with respect to the measure

dµ(λ, t) =
n∑
j=1

u1,i(0)2e2λitδ(λ− λi)dλ.

We are now interested in determining the evolution of the coefficients an and bn as
a function of the parameter t. To operate in a more general setting let us introduce the
modified weight

dµ(λ) = e2
∑s
k=1 λ

ktkdµ̃(λ),

17



with dµ̃(λ) independent from the times tk, k = 1, . . . , s and with t1 = t. Consider the
tridiagonal seminfinte matrix L

L =



b1 a1 0 . . . 0 0 . . .
a1 b2 a2 0 0 . . .
0 a2 b3 0 . . .

. . . . . . . . . . . .

0 bn−1 an−1 . . .
0 an−1 bn . . .
. . . . . . . . . . . .


(2.38)

and the infinite vector

p(λ) =



p0(λ)
p1(λ)
p2(λ)
. . .
pn(λ)
. . . .


Then the 3-term recurrence relation can be written in the compact form

λp(λ) = Lp(λ). (2.39)

Now let us introduce the quasi-polynomials

ψk(λ) = pk(λ)e
∑s
r=1 λ

rtr .

Clearly from the orthonormality of the polynomials pk(λ) it follows that∫
R
ψk(λ)ψj(λ)dµ̃(λ) = δkj . (2.40)

Now we are going to investigate the dependence of ψk on the times t1, . . . , ts.

Lemma 2.13 The following relation is satisfied:

∂ψj(λ)

∂tα
=

∞∑
m=0

(Aα)jmψm(λ), α = 1, . . . , s, (2.41)

with Aα antisymmetric matrix.

18



Proof. Let us differentiate with respect to tα the orthonormality relations (2.40)∫
R

∂ψj(λ)

∂tα
ψk(λ)dµ̃(λ) +

∫
R
ψj(λ)

∂ψk(λ)

∂tα
dµ̃(λ) = 0

so that ∫
R

∑
m

(Aα)jmψm(λ)ψk(λ)dµ̃(λ) +

∫
R
ψj(λ)

∑
m

(Aα)kmψm(λ)dµ̃(λ)

= (Aα)jk + (Aα)kj = 0

2

Lemma 2.14 The following relation is satisfied

Aα = (Lα)+ − (Lα)−, α = 1, . . . , s, (2.42)

where (Lα)± is the projection of Lα to the upper/lowe triangular part of Lα.

Proof. We observe that

ψk(λ) =

(√
Dk−1

Dk
λk +O(λk−1)

)
e
∑s
β=1 λ

βtβ ,

so that

∂ψk(λ)

∂tα
= ψk(λ)

∂

∂tα

(
log

√
Dk−1

Dk

)
+ λαψk(λ) +O(λk−1)e

∑s
β=1 λ

βtβ ,

so that for j > k

Akj =

∫
R

∂ψk(λ)

∂tα
ψj(λ)dµ̃(λ) =

∫
R
λαψk(λ)ψj(λ)dµ̃(λ) =

∫
R

∑
m

(Lα)kmψm(λ)ψj(λ)dµ̃

= (Lα)kj .

Using the antisymmetry of Aα, (2.42) follows. 2

Lemma 2.15 The semiinfinite matrix L satisfies the Lax equation

dL

dtα
= [Aα, L], α = 1, . . . , s. (2.43)

19



Proof. We differentiate with respect to tα the 3-term recurrence relation (2.39) to obtain

dL

dtα
ψ + (L− λ)

dψ

dtα
= 0 (2.44)

where ψ(λ) = p(λ)e
∑s
k=1 tkλ

k
. Using (2.41) one obtains

dL

dtα
ψ + (L− λ)Aαψ =

(
dL

dtα
− [Aα, L]

)
ψ = 0

so that by the completeness of ψ one has (2.43). 2

Remark 2.16 Let (λ1, . . . , λn) be the zeros of the polynomial pn(λ), then the relation
(2.39) takes the form

b1 a1 0 . . . 0 0
a1 b2 a2 0 0
0 a2 b3 0

. . . . . . . . .

0 bn−1 an−1

0 an−1 bn





p0(λj)
p1(λj)
p2(λj)

. . .

pn−2(λj)
pn−1(λj)


= λj



p0(λj)
p1(λj)
p2(λj)

. . .

pn−2(λj)
pn−1(λj)


.

The above equality says that the zeros of pn(λ) are the eigenvalues of L defined in (4.4)
and therefore, by lemma 2.3, its eigenvalues are distinct and real. The eigenvector relative
to the eigenvalue λj is given by (p0(λj), p1(λj), . . . , pn−1(λj))

t.

Remark 2.17 From the construction of this section and the relation (2.22), in order to
solve the Toda lattice equations, given the Lax matrix L(0) at time t = 0, it is sufficient
to determine its eigenvalues λ1, . . . , λn and the first entry of the eigenvectors u1j(0) ,
j = 1, . . . , n and then construct the measure

dµ(λ) =
n∑
j=1

u1j(0)2e2λjtδ(λ− λj)dλ,

where δ(λ) is the Dirac delta function. Given the measure dµ(λ) the solution of the Toda
lattice equation is obtained from (2.28), (2.37) and (2.35).
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3 Periodic Toda

We consider the Toda lattice for bn, an with n ∈ Z and the periodicity condition in N :
(bn, an) = (an+N , bn+N ). The phase space becomes M = RN ×RN

>0. The Hamiltonian
takes the form

H =
1

2

N∑
n=1

b2n +

N∑
n=1

a2
n.

Now the equations of motions are:{
ḃn = a2

n − a2
n−1

ȧn = 1
2an(bn+1 − bn)

. (3.1)

These equations have an Hamiltonian structure. Indeed, the canonical Poisson bracket
transforms to

{an, am} = 0 = {bn, bm} ,

{bn, am} =
1

2
(amδn,m − amδn,m+1)

for every 1 ≤ n,m ≤ N. Such bracket can be written in the compact form using a 2N×2N
matrix:

J =

(
0 A
−At 0

)
, (3.2)

where A is a N ×N matrix defined by:

A =
1

2


a1 0 . . . 0 −aN
−a1 a2 0 . . . 0

0 −a2 a3
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −aN−1 aN

 . (3.3)

For every point of the phase space (b, a) = (bn, an)1≤n≤N the Poisson brackets between
two generic C∞(M) functions F,G, is:

{F,G}J(b, a) = 〈(∇bF,∇aF ), J(∇bG,∇aG)〉R2N

= 〈∇bF,A∇aG〉RN − 〈∇aF,At∇bG〉RN .
(3.4)

Then we have that the equations given in 3.1 are exactly:

ḃn = {bn, H}J , ȧn = {an, H}J , 1 ≤ n ≤ N.

From now on, we will consider the periodic Toda lattice in Flaschka coordinates.
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Remark 3.1 Because of the old coordinates’ periodicity, we have that
∏N
n=1 an = 1.

Indeed:
N∏
n=1

an =
N∏
n=1

e
1
2

(qn−qn+1) = e
1
2

∑N
n=1(qn−qn+1) = 1.

So we have immediatly found another constant of motion, together with
∑N

n=1 bn.

The last thing to observe about the Poisson structure { , }J , is that it is degenerate
and it admits some Casimir functions. Indeed, one can observe that the matrix A has not
maximum rank, since:

det(A) = a1

∣∣∣∣∣∣∣∣∣∣
a2 0 . . . 0

−a2 a3
...

...
. . . 0

0 . . . −aN−1 aN

∣∣∣∣∣∣∣∣∣∣
− aN (−1)N−1

∣∣∣∣∣∣∣∣∣∣
−a2 a3 . . . 0

0 −a3
...

...
. . . 0

0 . . . 0 −aN−1

∣∣∣∣∣∣∣∣∣∣
= 0,

but rank(A) = N−1: one can find a nonzero minor of this dimension, for example the one
obatined removing the first column and the first row ofA has the value

∏N
i=2 ai = 1/a1 6= 0.

Then, from the definition of J , rank(J) = 2N − 2, in every point of the phase space.

Definition 3.2 A Casimir function for a Poisson structure { , } is a smooth function
f : C∞(M) with the property that {f, h} ≡ 0, ∀h ∈ C∞(M).

In our case, the two Casimir functions associated to the Poisson bracket { , }J are the
conserved quantities:

C1 = − 1

N

N∑
n=1

bn, C2 =

(
N∏
n=1

an

) 1
N

. (3.5)

Calculating the gradients in a certain point (b, a) ∈M, we find:

∇b,aC1 = (∇bC1,∇aC1) = (− 1

N
, . . . ,− 1

N
, 0, . . . , 0), (3.6)

∇b,aC2 = (∇bC2,∇aC2) = (0, . . . , 0,
C2

Na1
, . . . ,

C2

NaN
), (3.7)

namely they are linearly independent vectors for every point (b, a). Then, one can consider
for every (β, α) ∈ R×R>0 the level set given by:

Mβ,α := {(b, a) ∈M : (C1, C2) = (β, α)} ,

and since the gradients ∇b,aC1 and ∇b,aC2 are linearly independent on each point of M,
Mβ,α is smooth submanifold ofM of codimension two. EveryMβ,α has also the property
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to have the restricted Poisson structure (induced by J) nondegenerate, and then it has a
symplectic structure.
In other words Mβ,α is the symplectic foliation of M.
Furthermore in our specific case C2 = 1, so α must be 1 and then the foliation is of the
type Mβ,1.

The Lax pair for the periodic Toda lattice is given by two N ×N matrices L±, A:

L±(b, a) =



b1 a1 0 . . . ±aN
a1 b2 a2

. . .
...

0 a2 b3
. . . 0

...
. . .

. . .
. . . aN−1

±aN . . . 0 aN−1 bN


(3.8)

that is a Jacobi matrix with extra entry in the right-upper and left-lower corner (that
leave it symmetric), and the skew-symmetric one:

A =
1

2



0 a1 0 . . . −aN
−a1 0 a2

. . .
...

0 −a2
. . .

. . . 0
...

. . .
. . .

. . . aN−1

aN . . . 0 −aN−1 0


, (3.9)

one can prove, through straightforward calculation, that the system given by

L̇+ =
[
A,L+

]
is equivalent to the Toda lattice equations 3.1, i.e. L+, A form a Lax pair for the periodic
Toda lattice. (The same is true for the matrix L− but changing the sign of the terms aN
in the matrix A).

Now,using the property of Lax pair formulation, recalled above, one finds the following
proposition.

Proposition 3.3 For every solution (b (t) , a (t)) of the periodic Toda lattice 3.1, the

eigenvalues
{
λ±j

}
1≤j≤N

of L± (b (t) , a (t)) are conserved quantities.

This result explains why it is fundamental for us, to study the spectrum of such periodic
Jacobi matrices: it gives us the constants of motion that we need in order to say that the
Toda lattice is an integrable system.
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4 Jacobi operator and its spectra

The spectral theory of the matrices L± defined in (3.8) is strictly connected with the
spectral theory of Jacobi operators. So we dedicate a section entirely about this topic. We
start from the Jacobi operator and we introduce some particular spectra for this operator,
namely the periodic/antiperiodic spectrum and the Dirichlet spectrum. Then we show
how these two spectra are associated to the Lax matrices L± of the periodic Toda lattice.

Definition 4.1 We call Jacobi operator, an operator acting on the space l2(Z) as the
following combination of shift operators:

(Lb,ay)(n) = an−1(S−1y)(n) + bn(S0y)(n) + an(S1y)(n), (4.1)

for every y ∈ l2(Z), where (Smy)(n) = y(n + m),∀m ∈ Z is the m−shift operator, and
b = {bn}n∈Z is a sequence of real numbers and a = {an}n∈Z is a sequence of real and
positive numbers.

On each sequence of l2(Z), the Jacobi operator is realised as an infinite dimensional sym-
metric tridiagonal matrix such that: the bn stay on the diagonal and the an stay on the
upper and lower diagonals.

Definition 4.2 A real Jacobi matrix of size N is the finite dimensional analogue of the
Jacobi operator. So it is a symmetric, tridiagonal matrix:

L =


b1 a1 0 . . . 0
a1 b2 a2 . . . 0
0 a2 b3 . . . 0

0
. . .

. . .
. . . aN−1

0 0 . . . aN−1 bN

 , (4.2)

where the entries an ∈ R>0 and bn ∈ R for 1 ≤ n ≤ N . A periodic Jacobi matrix is a
matrix of the same kind, but it has also two nonzero positive elements: one in the right
upper corner and another in the left lower corner, that leave it symmetric but no more
tridiagonal. For example the matrix L± defined in 3.8 are periodic Jacobi matrix.

Remark 4.3 The open Toda lattice, is defined by the equations

ȧk = ak(bk+1 − bk), k = 1, . . . , N − 1

ḃk = 2(a2
k − a2

k−1), k = 1, . . . , N,
(4.3)
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where we have a0 = aN = 0. Its Lax pair is given by the matrix (4.2) and the matrix

A =



0 a1 0 . . . 0 0
−a1 0 a2 0 0

0 −a2 0 0

. . . . . . . . .

0 0 an−1

0 −an−1 0


(4.4)

so that the equations (4.3) are equivalent to the Lax equations

dL

dt
= [A,L].

Now we look at the difference equation for the Jacobi operator:

(Lb,ay)(n) = λy(n), n ∈ Z (4.5)

in our case, when bn, an are periodic, and we define two different spectra associated to this
equation.

Remark 4.4 Solutions {y(n)}n∈Z of the equation 4.5, are functions of λ, so we denote
y(·) = y(·, λ) for every λ satysfing the equation.

Definition 4.5 The periodic/antiperiodic spectrum of the Jacobi operator Lb,a (of period
N), is formed by the λ ∈ R such that the eigenfunctions of 4.5 satisfy the periodic/anti-
periodic condition y(n+N) = ±y(n), for every n ∈ Z.

We now show that this spectrum exactly corresponds to the set of eigenvalues of the
matrix L±. Indeed: we know from the properties of Flaschka-Manakov coordinates that
our sequences of bn, an are periodic of period N . Then using the periodic condition on the
eigenfunction, we obtain that the the difference equation 4.5 is reduced to N equations:

a0y(0) + b1y(1) + a1y(2) = λy(1)⇔ aNy(N) + b1y(1) + a1y(2) = λy(1)

ak−1y(k − 1) + bky(k) + aky(k + 1) = λy(k), 2 ≤ k ≤ N − 1

aN−1y(N − 1) + bNy(N) + aNy(N + 1) = λy(N)⇔
⇔ aN−1y(N − 1) + bNy(N) + aNy(1) = λy(N),

that are equivalent to the eigenvalues equation for L+:

(L+ − λI)(y(1), . . . , y(N))t = 0,

and similarly for the anti-periodic spectrum.
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Definition 4.6 The Dirichlet spectrum of the Jacobi operator Lb,a, is formed by λ ∈ R
such that they are solution of 4.5 and the correspondent eigenfunction respects the zero
boundary conditions, i.e. y(1) = 0 = y(N + 1).

Also in this case, we can find a relation between this spectrum and the eigenvalues of
a matrix related to the Lax matrix for Toda periodic L+. In particular the Dirichlet
spectrum corresponds to the eigenvalues of the matrix LN2 obtained removing the first
column and the first row of L+. Indeed using the periodicity of bn, an and the zero boundary
conditions, the equation 4.5 is reduced to N − 1 equations:
a1y(1) + b2y(2) + a2y(3) = λy(2)⇔ b2y(2) + a2y(3) = λy(2)

ak−1y(k − 1) + bky(k) + aky(k + 1) = λy(k), 3 ≤ k ≤ N − 1

aN−1y(N − 1) + bNy(N) + aNy(N + 1) = λy(N)⇔ aN−1y(N − 1) + bNy(N) = λy(N)

,

that are equivalent to the eigenvalues equation for LN2 :

(LN2 − λI)(y(2), . . . , y(N))t = 0.

We recall that from Lemma 2.3 the eigenvalues µ1, . . . , µN−1 of the matrix LN2 are all
distinct.

Remark 4.7 For the periodic Toda lattice, the matrices L±, do not have necessarily
distinct eigenvalues. The Dirichlet spectrum µ1(0), . . . , µN−1(0) that are the eigenvalues
of the matrix LN2 are distinct, and this enable us to use the orthogonal decomposition,
namely LN2 (0) = U(0)diag(µ1, . . . , µN−1)U t(0) where U(0) is an orthogonal matrix whose
column are orthogonal polynomials with respect to an orthogonal measure ρ(0). Such
measure is determined from the eigenvalues λ±1 , . . . , λ

±
N of L± and the Dirchlet spectrum.

However in this case, the eigenvalues µj are not constant of motion but evolve according
to so called Dubrovin type equation [?]. The integration is much more complicated,
however once we have the measure ρ(t) and the Dirichlet spectrum µ1(t), . . . , µN−1(t), we
can obtain the orthogonal matrix U(t) by Gram-Schmidt procedure and then recover the
matrix LN2 (t) as

LN2 = U(t)diag(µ1(t), . . . , µN−1(t))U t(t), t ≥ 0.

This enable to obtain a2, . . . , aN−1 and b2, . . . , bN . The evolution of a1(t), b1(t) and aN (t)
is obtained using the two conserved quantities of the Toda lattice, namely C1, C2, and by
fixing the normalization of the measure ρ(t).

We summarise the integration procedure with the following diagram:
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{bk(t = 0), ak(t = 0)} direct spectral problem−→ Eigenvalues of L±(0), LN2 (0)

and spectral measure ρ(0)y Toda evolution

{bk(t), ak(t)}
inverse spectral problem←− Eigenvalues of L±(t), LN2 (t)

and spectral measure ρ(t)

The key step is to observe that the Dirichlet sprectrum, after a nonlinear change of
coordinate, evolves linearly on the Jacobi variety of the Riemann surface

S := {(w, λ) ∈ C2 | w2 =

N∏
j=1

(λ− λ+
j )(λ− λ−j )},

where we assume that generically the λ±j are distinct. Such coordinates correspond to the
angle variable of the Toda lattice.

5 Direct spectral problem

In this section we want to describe the periodic/antiperiodic spectrum and the Dirich-
let spectrum for the operator Lb,a. As a first step we construct a basis of normalised
eigenvectors.

Definition 5.1 We call fundamental solutions c(k, λ), s(k, λ) the solutions of 4.5 with
initial conditions:

c(0, λ) = 1, s(0, λ) = 0,

c(1, λ) = 0, s(1, λ) = 1.

Then given any arbitrary initial conditions, the solution y(k, λ) will be a linear com-
bination of the two fundamental solutions:

y(k, λ) = y(0, λ)c(k, λ) + y(1, λ)s(k, λ).

Definition 5.2 We call Wronskian, for every k ∈ Z, the quantity:

W (k) = ak(c(k)s(k + 1)− c(k + 1)s(k)). (5.1)
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The Wronkstian does not depend on k.

Proposition 5.3 (Wronskian Identity) The following is satisfied:

W (k) = a0, ∀k ∈ N. (5.2)

Proof. Using the relation (4.5) we have

W (k) = ak(c(k)s(k + 1)− c(k + 1)s(k))

= ak

[
c(k)

ak
((λ− bk)s(k)− ak−1s(k − 1))− s(k)

ak
((λ− bk)c(k)− ak−1c(k − 1))

]
= ak−1(c(k − 1)s(k)− s(k − 1)c(k)) = W (k − 1).

(5.3)

Using the definition 5.1 we have that W (0) = a0. 2

Now we characterise the fundamental solutions c(k, λ), s(k, λ).

Proposition 5.4 For each k ∈ N, the eigenfunctions c(k, λ) and s(k, λ) are polynomials
in λ of degree at k − 2 and k − 1 respectively. In particular we have:

c(N + 1, λ) = −(a1a2 . . . aN−1)−1λN−1 + . . . ,

s(N + 1, λ) = (a1a2 . . . aN )−1λN + . . .
(5.4)

Proof. We first introduce the following notation: Lji is the the quadratic matrix obtained
from L+ without first i− 1 rows and columns and without last N − j rows and columns.
Then we can take the determinant of this quadratic matrix:

∆j
i = det(λI − Lji ) (5.5)

for 1 ≤ i ≤ j ≤ N . We also put ∆i−1
i ≡ 1 and ∆i−2

i ≡ 0.
We are going to prove that, ∀k ∈ Z, the fundamental solutions can be expressed with the
following formulas:

c(k) = −a0(a1 . . . ak−1)−1∆k−1
2 , s(k) = (a1 . . . ak−1)−1∆k−1

1 , (5.6)

and since ∆k−1
2 ,∆k−1

1 are monic polynomials in λ of degree k − 2 and k − 1 respectively
we have the first statement of the proposition. Then, in the case k = N + 1 we obtain
exactly the relation (5.4).
We have to prove the relation (5.6). We prove it by induction on k. We restrict to the
eigenfunction c(k, λ), since the case for s(k, λ) can be obtained in a similar way. If k = 1,
from the equation 4.5 we have that:

λc(1, λ) = a0c(0, λ) + b1c(1, λ) + a1c(2, λ),
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and substituting initial conditions, one obtains c(2, λ) = −a0a
−1
1 : then recalling that we

put ∆i−1
i ≡ 1 we are done.

Now, supposing that the formula is valid for k − 1, we prove that it is also valid for k.
Recalling the same eigenvalue equation:

λc(k − 1, λ) = ak−2c(k − 2, λ) + bk−1c(k − 1, λ) + ak−1c(k, λ),

and using the induction hypothesis, we find:

c(k, λ) = a−1
k−1(−ak−2c(k − 2, λ) + (λ− bk−1)c(k − 1, λ))

= a−1
k−1(−ak−2(−a0(a1 . . . ak−3)−1∆k−3

2 ) + (λ− bk−1)(−a0(a1 . . . ak−2)−1∆k−2
2 )

= −a0(a1 . . . ak−1)−1(−a2
k−2∆k−3

2 + (λ− bk−1)∆k−2
2 )

= −a0(a1 . . . ak−1)−1∆k−1
2 .

2

For every eigenfunction f(k) of the operator Lb,a we have

f(k, λ) = f(0, λ)c(k, λ) + f(1, λ)s(k, λ)

and in particular (
f(N)

f(N + 1)

)
=

(
c(N) s(N)

c(N + 1) s(N + 1)

)(
f(0)
f(1)

)
.

Using the Wronkstian identity 5.2, the matrix

MN =

(
c(N) s(N)

c(N + 1) s(N + 1)

)
(5.7)

has det(MN ) = 1. Therefore its eigenvalues are

det(MN − ξI) = ξ2 −∆ξ + 1 = 0 ⇔ ξ± =
∆±

√
∆2 − 4

2
,

where ∆(λ) = Tr(MN (λ)) = c(N,λ) + s(N + 1, λ).
The quantity ∆(λ), is called discriminant. We observe that the eigenvalues ξ of the matrix
MN have the following properties

• if ∆(λ) = ±2, then ξ± = ±1 is a double eigenvalue of the matrix MN ;

• if |∆| < 2, then the eigenvalues ξ± are complex conjugate and |ξ±| = 1;

• if |∆| > 2, then the eigenvalues are real and ξ+ > 1 and ξ− < 1.
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The eigenvectors of the matrix MN can be parematrized as(
χ±
1

)
, χ± =

ξ± − s(N + 1)

c(N + 1)
.

The Bloch eigenfunctions are defined by

ψ±(k + 1) = s(k + 1) + χ±c(k + 1), k ∈ Z.

We observe that ψ±(1) = 1. One can immediately verify that

ψ±(N + 1) = ξ±ψ±(1) = ξ±

so that
ψ±(m(N + 1)) = ξmψ±(1), m ∈ Z.

Therefore when the eigenvalues ξ± are real, the Bloch eigenfunction ψ+(m(N + 1)) grows
exponentially for m positive and ψ−(m(N+1)) grows exponentially for m negative. When
the eigenvalues ξ± are complex we have

|ψ±(m(N + 1))| = |ξm||ψ±(1)| = 1, m ∈ Z.

The values of λ for which
∆(λ) = ±2,

correspond to the periodic and anti-periodic spectrum of the operator Lb,a. This spectrum
corresponds to the eigenvalues of the matrices L± respectively. Since the matrices L± are
symmetric, it follows that the equations ∆(λ) = ±2 have N real solutions each.

The set of values λ ∈ R for which

|∆(λ)| < 2

corresponds to the stability zones of the spectrum of Lb,a.
The Dirichlet spectrum corresponds to the values of λ ∈ R for which the polynomial
c(N + 1) of degree N − 1 is equal to zero. Indeed, from the relation 5.6, we have:

c(1, λ) = 0, c(N + 1, λ) = 0.

Such spectrum corresponds to the eigenvalues of the matrix LN2 , which is a tri-diagonal
matrix. The next result shows that the eigenvalues of tridiagonal matrices are all distinct.

Proposition 5.5 Every Jacobi matrix L of size N has exactly N different real eigenval-
ues.
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Proof. The idea of the proof is first to show that every eigenvector v = (v(1), . . . , v(N))t

of L for a certain eigenvalue λ, i.e. (L− λI)v = 0, has the property that the first and the
last entry must be different from zero. Indeed, if for example v(1) were zero, then writing
explicitly the eigenvalues equation one has:

(b1 − λ)v(1) + a1v(2) = 0,

that implies v(2) = 0. Then:

a1v(1) + (b2 − λ)v(2) + a2v(3) = 0,

that implies v(3) = 0. Going on in this way one obtains that all the components of v
are zero, in contraddiction with the fact that v was eigenvector. The same proof is valid
supposing that v(N) = 0.
Now we can prove our thesis. Suppose that a certain λ, eigenvalue of L, we have two
different eigenvectors v, w: we are going to show that they are linearly dependent. Indeed:
from the property above we know that v(1) 6= 0 and also w(1) 6= 0. Then we can choose
a couple of real numbers c, d such that (c, d) 6= (0, 0) and cv(1) + dw(1) = 0. And now we
can consider the vector cv+dw: this is still an eigenvector for L with respect to λ, but its
first component is zero, and so we have that cv + dw is the null vector for c, d coefficients
nonzero both. This exactly means that v, w are linearly dependent and so every eigenvalue
of L has multeplicity one. 2

Remark 5.6 In this chapter we introduced all the tools to prove the integrability of the
periodic Toda lattice. Indeed we introduce

• the Flaschka-Manakov coordinates {ak, bk}Nk=1 and we show that there are two con-
stants of motion:

N∑
n=1

bn,
N∏
n=1

an.

• We show that the Hamilton equation of motion for the periodic Toda lattice are
equivalent to the Lax equation

L̇± =
[
L±, A

]
,

where L± are the periodic Jacobi matrices defined in (3.8) and A is defined in (3.9).
This allowed us to show that all the eigenvalues of the Lax matrix L± are constant
of motions. Clearly these quantities cannot be all independent.

• Then we related this set of eigenvalues to the periodic, anti-periodic spectrum of
the Jacobi operator 4.1, and we defined also its Dirichlet spectrum, showing that it
coincides with the set of eigenvalues of the matrix LN2 , submatrix of L± obtained by
erasing the first row and column of L±.
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In the next chapter we are going to solve the inverse spectral problem for the periodic Ja-
cobi matrix, namely we will show how to reconstruct the periodic Jacobi matrix associated
to Toda lattice from its spectral data.

6 Integrability of Toda periodic

In this chapter we are going to show a way to integrate the equations in 3.1.
The main idea is to think at the problem from another point of view: we want to resolve the
inverse problem for the spectrum of periodic Jacobi matrix. This means that we suppose
to know the eigenvalues of the matrix L+, and we want to reconstruct, starting from these,
the entries of L+. Unfortunately the only spectrum of the matrix it is not enough, but we
have to use the already known Dirichlet spectrum. This information, together with the
construction of a basis of eigenvectors with respect to every Dirichlet eigenvalue, permit
us to reconstruct the periodic Jacobi matrix L+, that has the initial fixed spectrum and
Dirichlet spectrum, and

∏N
n=1 an constant.

Actually, this can be done with a certain degree of non uniqueness, that depends essentially
on the choice of a sign in front of some square roots needed in the construction of the
eigenvectors cited above. In particular, one can see that the space of isospectral periodic
Jacobi matrices with constant

∏N
n=1 an is a torus of dimension at most N − 1. This is all

for the inverse spectral problem for periodic Jacobi matrix.
So in the case of periodic Toda equations, fixing the initial conditions an(0), bn(0), we can
compute the eigenvalues of L±, that are constants, as we already know, and we have that∏N
n=1 an = 1. Then applying the result for the inverse spectral problem, if we are able to

calculate also the time evolution for the Dirichlet spectrum, that it is no more constant,
then we are able to describe the temporal evolution of the coordinates an, bn .
For this reason, in the last part of the chapter we will show how to find the system of
differential equations for the Dirichlet eigenvalues.

7 The union of periodic and anti-periodic spectra

This section is kind of technical. We are going to introduce a new matrix Q of dimension
2N , that will be useful for other computations.
First of all we want to show how the spectrum of this matrix is related to the periodic/anti-
periodic spectra of 4.1, already defined in the section 4.

Definition 7.1 . We define a new periodic Jacobi matrix Q, of size 2N , constructed by
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taking two copies of L+:

Q =



b1 a1 0 . . . . . . . . . . . . aN

a1 b2
. . .

. . .
. . . aN−1

aN−1 bN aN
... aN b1 a1

...

a1
. . .

. . .
. . . aN−1

aN . . . . . . . . . . . . . . . aN−1 bN


.

The spectrum of Q is described by the following result. Note that since Q is a real
symmetric matrix, it has 2N real eignevalues, but we do not know anything about the
multeplicity of each one.

Theorem 7.2 (Q spectrum) The spectrum of Q

λ1 < λ2 ≤ λ3 < λ4 ≤ · · · < λ2N−2 ≤ λ2N−1 < λ2N

is such that: if N is even, then λ1, λ4, λ5, . . . , λ2N−4, λ2N−3, λ2N are the roots of ∆(λ)−2 =
0 and they have periodic eigenvectors of period N; all the others are the roots of ∆(λ)+2 = 0
and they have eigenvectors of period 2N. If N is odd, then λ2, λ3, λ6, . . . , λ2N−4, λ2N−3, λ2N

are the roots of ∆(λ)− 2 = 0, with eignvectors of period N and the others are the roots of
∆(λ)+2 = 0, with eigenvectors of period 2N. Only the intervals [λ2i, λ2i+1] may degenerate
to one point.

Before to start the proof we need the following lemma, that describes the derivative of
∆(λ).

Lemma 7.3 We have that:

d∆

dλ
=

1

aN

N∑
k=1

(s(N)c2(k)− (c(N)− s(N + 1))c(k)s(k)− c(N + 1)s2(k)). (7.1)

Proof. We take y(k) and z(k) generic solutions of eigenvalues equation 4.5, respectivly
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for two different λ and µ. Then:

(λ− µ)
N∑
k=1

y(k)z(k) =
N∑
k=1

(λy(k)z(k)− µz(k)y(k))

=

N∑
k=1

(z(k)(ak−1S
−1 + bkS

0 + akS
1)y(k)− y(k)(ak−1S

−1 + bkS
0 + akS

1)z(k))

=
N∑
k=1

(ak−1(z(k)y(k − 1)− z(k − 1)y(k)) + ak(z(k)y(k + 1)− y(k)z(k + 1)))

= a0(y(0)z(1)− z(0)y(1)) + aN (z(N)y(N + 1)− y(N)z(N + 1)).

Choosing y(k) = c(k, λ) and z(k) = c(k, µ) and using initial conditions, remains:

(λ− µ)
N∑
k=1

c(k, λ)c(k, µ) = aN (c(N,µ)c(N + 1, λ)− c(N,λ)c(N + 1, µ)),

and now dividing by λ− µ and for λ −→ µ, we finally have an expression for the norm of
c:

‖c‖2 =
N∑
k=1

c2(k) = aN (c(N)c′(N + 1)− c(N + 1)c′(N)). (7.2)

The same is valid for the norm of s and something similar is true for the scalar product
(c, s). Then substituting these formulas in d∆

dλ = c′(N,λ) + s′(N + 1, λ) one obtains the
thesis. 2

It follows the proof of the previous theorem on the spectrum of Q.

Proof. (Q spectrum) Now we are looking for f solution of the eigenvalues equation, so
f = f0c+ f1s a linear combination of the fundamental solutions, where f0 = f(0, λ), f1 =
f(1, λ). Then we also impose that it is periodic (or antiperiodic) of period N , i.e. f(k +
N) = ±f(k). These two things together are equivalent to the following condition (in the
periodic case): (

f(0)
f(1)

)
=

(
f(N)

f(N + 1)

)
=

(
c(N) s(N)

c(N + 1) s(N + 1)

)(
f(0)
f(1)

)
.

But this means that the matrix:

MN =

(
c(N) s(N)

c(N + 1) s(N + 1)

)
(7.3)
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has only eigenvalues 1. Now observe that these eigenvalues come from:

det(MN − ξI) = ξ2 −∆ξ + 1 = 0 ⇔ ξ =
∆±

√
∆2 − 4

2
,

where ∆ = Tr(MN ) = c(N) + s(N + 1).
So, we have that f is a periodic solution of period N of the eigenvalues equations for Q,
if and only if ∆− 2 = 0. We can conclude that the eigenvalues of Q that admits periodic
eigenvector comes from the zeroes of the polynomial ∆(λ) − 2 (that is of degree N).
Repeating the same procedure with antiperiodic condition, one finds that the eigenvalues
satysfing this condition are exactly the roots of ∆(λ) + 2. The eigenvectors then can be
extended to periodic solution of period 2N.
To show the alternetion of the eigenvalues, we are going to use the formula from the past
lemma:

d∆

dλ
=

1

aN

N∑
k=1

(s(N)c2(k)− (c(N)− s(N + 1))c(k)s(k)− c(N + 1)s2(k)).

We observe that here appears a quadratic form, whose discriminant is exactly ∆2 − 4.
Indeed:

((c(N)− s(N + 1))2 + 4s(N)c(N + 1)

= c2(N) + s2(N + 1)− 2c(N)s(N + 1) + 4s(N)c(N + 1)

= c2(N) + s2(N + 1) + 2c(N)s(N + 1)− 4

= ∆2 − 4.

Then we can say that, as long as ∆2− 4 < 0, d∆
dλ will have the sign of c(N + 1). Moreover

this polynomial cannot vanish untill ∆2 − 4 < 0, because otherwise from the Wronskian
relation we would have c(N)s(N + 1) = 1, and then:

|∆| = |c(N) +
1

c(N)
| ≥ 2,

that is in contraddiction with the fact that ∆2 − 4 < 0. So c(N + 1) vanishes or changes
of sign only when ∆2 − 4 > 0. 2

Corollary 7.4 The eigenvalues of Q are the union of the eigenvalues of L±.

Remark 7.5 [Desplacements of Dirichlet eigenvalues, respect to Q eigenvalues]We al-
ready observed in the section 4, that the definition of Dirichlet spectrum for the operator
Lb,a, for which are requested zero boundary conditions, coincides exactly with the spec-
trum of the matrix LN2 and also with the roots of the polynomial c(N + 1). Then, from
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Figure 1: This is the graphic of a generic polynomial ∆(λ) for N = 4. All the eigenvalues
for the matrix Q are identified by the abcsissas of the orange points, that describes the
intersections between y = ∆(λ) and the lines y = ±2. In this case all the gaps are open,
and we find 8 different eigenvalues of Q, λ1 < λ2 ≤ λ3 < · · · < λ8.

the proposition 5.5, we have exactly N − 1 distinct Dirichlet eigenvalues that we call
µ1 < · · · < µN−1.
One can then observe that everyone of these eigenvalues stay in an interval of the type
[λ2i, λ2i+1], already called interval of instability. Indeed, evaluating the Wronskian relation
for k = N , for λ = µs, s = 1, . . . N − 1 one obtains:

c(N,µs) =
1

s(N + 1, µs)
(7.4)

and then the discriminant in µs becomes:

∆(µs) =
1

s(N + 1, µs)
+ s(N + 1, µs). (7.5)

Therefore |∆(µs)| ≥ 2. In this way, we find that µs ∈ [λ2s, λ2s+1], and by the formula
proved for d∆

dλ we have that there is only one Dirichlet eigenvalue for each of these intervals.

For example, in the Figure 1, for N = 4, we find the 3 Dirichlet eigenvalues that lay one
on each of the orange segments, that are exactly the ones for which |∆(λ)| ≥ 2.

8 Inverse spectral problem

Suppose we have fixed the spectrum of the matrix Q (and so of L±), and also the∏N
n=1 an = A and we want to describe the entries of these matrices. We now enunci-

ate the main result for the inverse spectral problem.
Its proof explains in detail why the matrix Q, of given spectrum and Dirichlet spectrum,
is not univocally defined. The proof is constructive, so one can also find in which way the
entries of the matrix are reconstructed from these spectra.
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Theorem 8.1 If λ1 < λ2 ≤ λ3 < λ4 ≤ · · · < λ2N−2 ≤ λ2N−1 < λ2N is the spectrum of
a matrix Q, then for every sequence {µs}s=N−1

s=1 such that λ2s ≤ µs ≤ λ2s+1, there are
exactly 2r matrices Q with that periodic spectrum and ∆N

2 (µs) = 0, ∀s.
Note that r is the number of µs that are nondegenerating in λ2s,2s+1.

Proof. We follow the proof in [20].
For every Dirichlet eigenvalues we define Φ(k, µs) for k = 1, . . . , N − 1 the corrispondent
eigenvector for LN2 , with the condition Φ(1, µs) = 1. Then we have:

Φ(k, µs) = − a1

aN
c(k + 1, µs), ∀k.

Indeed, Φ(k, µs) must solve the equations:
(b2 − λ)Φ(1) + a2Φ(2) = 0

ak−1Φ(k − 2) + (bk − λ)Φ(k − 1) + akΦ(k) = 0, k = 3, . . . , N − 1

aN−1Φ(N − 2) + (bN − λ)Φ(N − 1) = 0

,

that are exactly satisfied from −a1 \ aNc(k + 1, µs), for k = 1, . . . , N − 1.
Recalling the formula 7.2 for the norm of c and evaluating it in λ = µs remains:

‖c(µs)‖2 =

N∑
k=1

c2(k, µs) = aNc(N,µs)c
′(N + 1, µs).

Then we also have that:

N∑
k=1

Φ2(k, µs) =
a2

1

aN

c′(N + 1, µs)

s(N + 1, µs)
,

where in the last equality we used the Wronskian relation 7.4 for k = N already used.
The latter formula also give us a new way to write s(N + 1, µs):

s(N + 1, µs) =
∆(µs)±

√
∆2(µs)− 4

2
, (8.1)

where we know from before that the radicand is positive or zero, so the squareroot is a
real number.
Moreover observing that we can rewrite the polynomial c(N + 1, λ) as:

c(N + 1, λ) = −(a1 . . . aN−1)−1
N−1∏
s=1

(λ− µs) = −(a1 . . . aN−1)−1P (λ),
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we find that the square of the norm of the eigenvector correspondent to µs, r
2
s , is exactly:

r2
s = −a2

1AP
′
(µs)

(
∆(µs)±

√
∆2(µs)− 4

2

)−1

. (8.2)

Now, if we consider the normalized eigenvector for µs, its components are:

Φ(k, µs)

r2
s

, k = 1, . . . N − 1.

But then, thinking about the orthogonal matrix formed by the basis of normalized eigen-
vectors for LN2 , we also have that:

N−1∑
s=1

Φ2(k, µs)

r2
s

= 1, k = 1, . . . N − 1

and in particular for k = 1, using the condition imposed above:

N−1∑
s=1

1

r2
s

= 1.

This means that:

a2
1 = −A

N−1∑
s=1

σ(µs)

P ′(µs)
, (8.3)

where we set

σ(µs) =
∆(µs)±

√
∆2(µs)− 4

2
.

With this last formula we can now describe the entry a1, knowing the values of A and of
all µs. It’s important to note that in this reconstruction of a1, we have to choose a sign
in the factor σ(µs) every time that ∆2(µs) − 4 6= 0, i.e. for every µs that not coincides
to λ2s,2s+1, beacuse we know that the zeroes of this polynomial are the eigenvalues of Q.
This is the reason from which comes the nonuniqueness of the matrix Q.
Once one has a1, one can use the trace formula in order to determine b1:

b1 =
1

2
(Tr(L+) + Tr(L−))− Tr(LN2 ) =

1

2
(λ1 + λN ) +

1

2

N−1∑
i=1

(λ2i + λ2i+1 − 2µi). (8.4)

Then, for what concernes the entries a2, . . . , aN−1 and b2, . . . bN we use some results about
orthogonal polynomials with respect to a given measure.
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First, we observe that since (Φ(1, µs), . . . ,Φ(N −1, µs))
t, s = 1, . . . , N −1 are eigenvectors

of a real standard Jacobi matrix LN2 , they correspond to a family of orthogonal polyno-
mials with respect to the spectral measure dρ(λ) associated to LN2 . Moreover, being real
orthogonal polynomials, they satiesfies a three terms recurrence relation (given exactly
from the eigenvalues equation for LN2 ), where it is well known that the coefficients are
determined by special formulas:

bk =

∫
λΦ2(k − 1, λ)dρ(λ), k = 2, . . . , N

ak =

∫
λΦ(k, λ)Φ(k − 1, λ)dρ(λ), k = 2, . . . , N − 1

.

Defining the spectral measure as the following discreate measure:

dρ(λ) =
1

a2
1

N−1∑
s=1

1

r2
s

δ(λ− µs)dλ, (8.5)

we finally find:

bk =
1

a2
1

N−1∑
s=1

µs
Φ2(k − 1, µs)

P ′(µs)
δ(µs), k = 2, . . . , N

ak =
1

a2
1

N−1∑
s=1

µs
Φ(k − 1, µs)Φ(k, µs)

P ′(µs)
δ(µs), k = 2, . . . , N − 1

. (8.6)

At the end, one can obtain the last term aN , dividing the costant A by the product
a1 · · · · · aN−1.

2

With this theorem we are able to write 2r different matrices Q with same eigenvalues,
Dirichlet eigenvalues and fixed A, just choosing different signs for every σ(µs) everytime
that µs is not degenerate.

9 Time evolution of Dirichlet eigenvalues

The main result of this section will be the following formula for the derivative of each
Dirichlet eigenvalue, that is the analogue of the formula of the Dirichlet eigenvalues for
periodic problem of the KdV equation.

Proposition 9.1 For every s = 1, . . . N − 1 is true that:(
1

2

dµs
dt

P
′
(µs)

)2

= ∆2(µs)− 4. (9.1)
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In the proof of this proposition, we need some algebraic properties of the matrices LN−1
2

and LN3 , that we state in few tecnical lemmas.

Lemma 9.2 The time derivative of the quantity ∆j
2(λ), for every value of λ, is:

d

dt
∆j

2 = 2
(
a2
j∆

j−1
2 − a2

1∆j
3

)
. (9.2)

Proof. We procede by induction over j. Before to start we recall that from the equations
of motion we have:

d

dt
(λ− bj) = 2(a2

j−1 − a2
j )

and
d

dt
(−a2

j+1) = −2aj+1
d

dt
aj+1 = 2(−a2

j+1) ((λ− bj+1)− (λ− bj+2)) .

Then for j = 3 the equation is satisfied since:

d

dt
∆3

2 =
d

dt

(
(λ− b2)(λ− b3)− a2

2

)
= 2(a2

1 − a2
2)(λ− b3) + 2(λ− b2)(a2

2 − a2
3)− 2a2

2 ((λ− b2)− (λ− b3))

= a2
1(λ− b3)− a2

3(λ− b2)

= a2
1∆3

3 − a2
3∆2

2.

.

Then supposing that the formula is true for every j < N − 1, we prove it for i = j + 1,
indeed:

d

dt
∆j+1

2 =
d

dt

(
(λ− bj+1)∆j

2 − a
2
j∆

j−1
2

)
= 2(a2

j − a2
j+1)∆j

2 + (λ− bj+1)2(a2
1∆j

3 − a
2
j∆

j−1
2 )+

− 2a2
j ((λ− bj)− (λ− bj+1))∆j−1

2 − 2a2
j (a

2
1∆j−1

3 − a2
j−1∆j−2

2 )

= −2a2
j+1∆j

2 + 2a2
1((λ− bj+1)∆j

3 − a
2
j∆

j−1
3 )− 2a2

j (−∆j
2 + (λ− bj)∆j−1

2 − a2
j−1∆j−2

2 )

= 2(a2
1∆j+1

3 − aj+1∆j
2),

where we used the induction hypothesis for j, j − 1. So the formula is true for every value
of j ≤ N. 2

Lemma 9.3 For every s = 1, . . . , N − 1 the following formula is true:

∆N−1
2 (µs)∆

N
3 (µs) =

N−1∏
n=2

a2
n. (9.3)
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Proof. In order to prove the relation stated in the lemma, we prove the following one,
for every i, j and for each value of λ:

∆j
i∆

j+1
i+1 −∆j+1

i ∆j
i+1 = a2

i . . . a
2
j . (9.4)

Then for i = 2, j = N − 1, evaluating the above formula in one of the µs, we obtain the
thesis:

∆N−1
2 ∆N

3 (µs)−∆N
2 ∆N−1

3 (µs)︸ ︷︷ ︸
=0

= a2
2 . . . a

2
N−1.

Now, for induction over i, j, one proves 9.4, simple expressing the determinants ∆j+1
i+1 ,∆

j
i+1

respect to the last row:

∆j
i∆

j+1
i+1 −∆j+1

i ∆j
i+1 = ∆j

i ((λ− bj+1)∆j
i+1 − a

2
j∆

j−1
i+1 )− ((λ− bj+1)∆j

i − a
2
j∆

j−1
i )∆j

i+1

= a2
j (∆j−1

i ∆j
i+1 −∆j

i∆
j−1
i+1 )︸ ︷︷ ︸

=a2
i ...a

2
j−1

,

where in the last equality we used the induction hypothesis. 2

Now, using these two relations, we prove the proposition stated at the begenning of the
section.

Proof. First of all, looking for the proof of the proposition above, we observe that the
determinant of the matrix L± − λI explicited respect to the first row is:

det(L± − λI) = (b1 − λ)∆N
2 − a2

1∆N
3 ± (−1)N−1a1aN

∣∣∣∣∣∣∣∣∣∣∣

a2 0 0
b3 − λ a3 0 0
a3 b4 − λ a4 0
...

. . .
. . .

...
0 bN−1 − λ aN−1

∣∣∣∣∣∣∣∣∣∣∣
± (−1)N−1aNa1

∣∣∣∣∣∣∣∣∣∣∣

a2 b3 − λ a3 0
0 a3 b4 − λ a4 0
0 0 a4 b5 − λ 0
...

. . .
. . .

...
0 aN−1

∣∣∣∣∣∣∣∣∣∣∣
− a2

N∆N−1
2

= (b1 − λ)∆N
2 − a2

1∆N
3 − a2

N∆N−1
2 ± 2(−1)N−1

N∏
n=1

an.

(9.5)
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If we valuate this formula in λ = µs,∀s we have:

det(L± − µsI) = −a2
1∆N

3 (µs)− a2
N∆N−1

2 (µs)± 2(−1)N−1. (9.6)

Now we recall what we have proved in the section 4 for the spectrum of periodic Jacobi ma-
trices: the polynomials ∆(λ)± 2 correspond respectevely to the caratteristic polynomials
of L±. In this way, we can say that:

∆2(µs)− 4 = det(L+ − µsI) det(L− − µsI)

=
(
a2

1∆N
3 (µs) + a2

N∆N−1
2 (µs)

)2
− 4

=
(
a2

1∆N
3 (µs)− a2

N∆N−1
2 (µs)

)2
,

(9.7)

where in the last equality we used the formula 9.3 in such a way that

a2
1a

2
N∆N

3 (µs)∆
N−1
2 (µs) = 1.

At the end, combining the last formula with 9.2 one obtains the thesis:

∆2(µs)− 4 =

(
1

2

d

dt
∆N

2

)2

=

(
1

2

dµs
dt

P
′
(µs)

)2

.

2

9.1 Integration of the equations of the Dirichlet spectrum

We are finally going to show how to determine the time dependence of the Dirichlet
eigenvalues. Remembering that these are the the roots of the polynomial P (λ), one can
show the following formulas:

N−1∑
s=1

µrs
P ′(µs)

= 0, r = 0, . . . , N − 3 (9.8)

and
N−1∑
s=1

µN−2
s

P ′(µs)
= 1. (9.9)

Indeed, the function G(λ) = λr

P (λ) , for every r ≥ 0, has µ1, . . . , µN−1 as poles of first order.
Then taking γ any contour around all these poles, using the residual calculation rules, one
has:

1

2πi

∫
γ

λr

P (λ)
dλ =

N−1∑
s=1

µrs
P ′(µs)

.
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But, on the other side:

1

2πi

∫
γ

λr

P (λ)
dλ = −Resλ=∞

λr

P (λ)
=

{
0, r = 0, . . . , N − 3

1, r = N − 2
.

Now, substituting the formula for P
′
(µs) from 9.1 in these polynomials properties, one

finds the following system of differential equations for the Dirichlet eigenvalues:

N−1∑
s=1

µrs
dµs/dt

±
√

∆2(µs)− 4
= 0, r = 0, . . . , N − 3 (9.10)

and
N−1∑
s=1

µN−2
s

dµs/dt

±
√

∆2(µs)− 4
= 2. (9.11)

Note that these equations make sense if and only if we suppose the nondegenerancy of all
the intervals of instability (otherwise some denominator in the above formula goes to zero).
On the other side, for every interval that degenerates, we know that the corrispondent µs
will be constant µs = λ2s,2s+1, so we do not need any differential equations to describe
its temporal evolution. In a certain way, the number of equations of the above system
decrease in a proportional way respect to the degenerating µs. For simplicity we assume
that the instability zones are all open.

We introduce the change of variables (µ1, . . . , µN−1)→ (ξ1, . . . , ξN−1)

ξl =

N−1∑
j=1

∫ µj

λ2j

λl−1√
R(λ)

dλ, (9.12)

for every l, . . . , N − 1.
We check that the trasformation that sends (µ1, . . . , µN−1) into (ξ1, . . . , ξN−1) is really a
change of variables, verifying that its Jacobian is nondegenerate.
Calculating its determinant one finds that it can be expressed through a multiple of the
determinant of Vandermonde matrix in µ1, . . . , µN−1.
Then, since the Dirichlet eigenvalues are all dinsticts, the determinant is nonzero and the
trasformation above is a change of variables.
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Indeed:

det

(
∂ξl
∂µj

)N−1

l,j=1

=

∣∣∣∣∣∣∣∣∣∣∣∣

1√
R(µ1)

1√
R(µ2)

. . . 1√
R(µN−1)

µ1√
R(µ1)

µ2√
R(µ2)

. . .
µN−1√
R(µN−1)

...
...

µN−2
1√
R(µ1)

µN−2
2√

R(µN−2)
. . .

µN−2
N−√

R(µN−1)

∣∣∣∣∣∣∣∣∣∣∣∣
=

1√∏N−1
i=1 R(µi)

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
µ1 µ2 . . . µN−1
...

...

µN−2
1 µN−2

2 . . . µN−2
N−1

∣∣∣∣∣∣∣∣∣
=

1√∏N−1
i=1 R(µi)

∏
1≤j<l≤N−1

(µj − µl)︸ ︷︷ ︸
6=0

6= 0.

The temporal evolution of these new variables takes the following form:

dξl
dt

=
N−1∑
j=1

µl−1
j√
R(µj)

dµj
dt

= 2
N−1∑
j=1

µl−1
j

P ′(µj)
,

where in the last equality we used the already proved formula (9.1) that describes the
derivative of µj . Now using the property of polynomials given by (9.8),(9.9), we finally
obtain:

dξl
dt

=

{
0, l = 1, . . . N − 2

2, l = N − 1
.

Then:

ξl =

{
cl, l = 1, . . . , N − 2

2t+ cN−1, l = N − 1
,

and setting all the integration constants to zero, one has:
0
0
...
0
2t

 =



∑N−1
j=1

∫ µj
λ2j

1√
R(λ)

dλ∑N−1
j=1

∫ µj
λ2j

λ√
R(λ)

dλ

...∑N−1
i=1

∫ µj
λ2j

λN−2√
R(λ)

dλ

 .

For every non degenerate µs, the sign of its time derivative at the time zero must be
chosen in such a way that it is consistent with initial data ak(0), bk(0). The main issue
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with the explicit integration (a concrete useful formula) is the explicit expression of the
inversion of the above integrals, namely the expression of µj = µj(t). Such problem is
a classical problem in the theory of Riemann surface and it is called Jacobi inversion
problem.

10 Action-angle variables

In order to define the action-angle variables for the periodic Toda lattice, we have to define
another pair of variables µi, νi, i = 1, . . . N − 1, where the µi are exactly the Dirichlet
eigenvalues (and we are assuming that they are all non degenerate). We will show that
these new variables are canonical, and from that we will construct actions and angles [20].

11 Translated coordinates

We consider the space Ω formed by:

Ω =

{
λ+

1 < λ+
2 ≤ λ

+
3 < · · · < λ+

N , (µi,±
√

∆2(µi)− 4),
s. t. every µi stays in appropriate interval,∑

λ+
i = 0, and ∆(λ) + 2 has N roots.

}

For what we proved in previous chapters, we know that this set is in corrispondence to
the space that describes the periodic Toda lattice in Flasckha coordinates, i.e:

D =
{
ai, bi, i = 1, . . . , N s. t.

∑
bi = 0,

∏
ai = 1, ai > 0

}
.

In Ω we introduce a two form ω that is globally defined and closed (so it is a symplectic
form):

ω =
N−1∑
i=1

dµi ∧ d∆(µi)√
∆2(µi)− 4

,

where ∆ is the discriminant.
With next theorem we are going to show that it admits a global canonical form, choosing
appropriate coordinates on Ω that we will call translated coordinates (for reasons that will
be clear after the proof).
We first recall some properties of the discriminant ∆ that will be used later. Combining
9.6, and the corollary 7.4 we have that (for example if N is even):

∆(λ) = (b1 − λ)∆N
2 (λ)− a2

1∆N
3 (λ)− a2

N∆N−1
2 (λ),

and then for λ = µi for i = 1, . . . , N − 1 it remains:

∆(µi) = −a2
1∆N

3 (µi)− a2
N∆N−1

2 (µi), (11.1)
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because ∆N
2 (µi) = 0. Then in particular, as seen in 9.7, one has:√

∆2(µi)− 4 = ±(a2
1∆N

3 (µs)− a2
N∆N−1

2 (µs)).

Theorem 11.1 On Ω there is a global system of coordinates q0
i , p

0
i for 2 ≤ i ≤ N such

that ω can be rewritten as:

ω =
1

2

N−1∑
j=2

dq0
j ∧ dp0

j .

Proof. The main idea is to write ω using only ai, bi and then through Flasckha trasfor-
mation we will return to standard coordinates qi, pi.
First of all we define for every µi the corrispondent:

νi = ±1

2
log |c(N,µi)|.

From the relations above and from the Wronskian relation 5.2, we express c(N,µi) in
terms of ∆, and we obtain:

νi = ±1

2
log |

∆(µi)±
√

∆2(µi)− 4

2
|

= ±1

2
log |1

2
((−a2

1 ± a2
1)∆N

3 (µi) + (−a2
N ∓ a2

N )∆N−1
2 (µi))|,

where in the last equality we used the relations recalled above.
Note that the sign corresponds to the sign chosen in Ω for (µi,±

√
∆2(µi)− 4).

We can observe that, since:

dνi =
1

2

2

∆±
√

∆2 − 4

(
1± ∆√

∆2 − 4

)
d∆(µi) = ∓1

2

1√
∆2 − 4

d∆(µi),

we can write ω with the second definition of νi:

ω =

N−1∑
i=1

dµi ∧ dνi.

Now from the formula 9.3:

∆N
3 ∆N−1

2 (µi) =
1

a2
1a

2
N

,

we show that νi can be written as function of ai, bi, in the following way:

νi = ±1

2
log |1

2
((−1± 1)a2

1∆N
3 (µi) + (−1∓ 1)

1

a2
1∆N

3 (µi)
)| = −1

2
log | − a2

1∆N
3 (µi)|.
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Now we introduce the following notation: we call µ
(l)
k for k = 1, . . . , N−l+1 the eigenvalues

of LNl (1 ≤ l ≤ N), so that our µk = µ
(2)
k . Recall that, expanding the determinant respect

to the first row, one has:

∆N
l (λ) = (bl − λ)∆N

l+1(λ)− a2
l ∆

N
l+2(λ),

then
∆N
l (µ

(l+1)
k ) = −a2

l ∆
N
l+2(µ

(l+1)
k ). (11.2)

It follows that:

ω = −1

2

N−1∑
i=1

dµi ∧
d∆N

1 (µi)

∆N
1 (µi)

.

In order to manipulate this last expression of ω, we are going to show two recursive
formulas, with the notation introduced above:

−1

2

N−l+1∑
i=1

dµ
(l)
i ∧

d∆N
l+1(µ

(l)
i )

∆N
1+1(µ

(l)
i )

= −1

2

N−l∑
j=1

dµ
(l+1)
j ∧

d∆N
l (µ

(l+1)
j )

∆N
1 (µ

(l+1)
j )

(11.3)

−1

2

N−l∑
j=1

dµ
(l+1)
j ∧

d∆N
l (µ

(l+1)
j )

∆N
1 (µ

(l+1)
j )

= −
N−l∑
j=1

dµ
(l+1)
j ∧ dal

al
− 1

2

N−l∑
j=1

dµ
(l+1)
j ∧

d∆N
l+2(µ

(l+1)
j )

∆N
l+2(µ

(l+1)
j )

(11.4)

(11.5)

.
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and this is true for every l = 1, . . . , N. Indeed:

−1

2

N−l+1∑
i=1

dµ
(l)
i ∧

d∆N
l+1(µ

(l)
i )

∆N
1+1(µ

(l)
i )

= −1

2

N−l+1∑
i=1

dµ
(l)
i ∧ d(log ∆N

l+1(µ
(l)
i ))

= −1

2

N−l+1∑
i=1

dµ
(l)
i ∧ d(

N−l∑
j=1

log(µ
(l)
j − µ

(l+1)
j )

=
1

2

N−l+1∑
i=1

N−l∑
j=1

dµ
(l)
i ∧ dµ

l+1
j

µ
(l)
i − µ

(l+1)
j

=
1

2

N−l+1∑
i=1

N−l∑
j=1

dµ
(l+1)
j ∧ dµli

µ
(l+1)
j − µ(l)

i

= −1

2

N−l∑
j=1

µ
(l+1)
j ∧ d log

(
N−l+1∏
i=1

(µ
(l+1)
j − µ(l)

i )

)

= −1

2

N−l∑
j=1

µ
(l+1)
j ∧

d∆N
l (µ

(l+1)
j )

∆N
l (µ

(l+1)
j )

.

Then, going on from this one can also obtain the second formula, applying 11.2 to the
result above:

−1

2

N−l∑
j=1

µ
(l+1)
j ∧

d∆N
l (µ

(l+1)
j )

∆N
l (µ

(l+1)
j )

= −1

2

N−l∑
j=1

µ
(l+1)
j ∧

da2
l ∆

N
l+2(µ

(l+1)
j )

a2
l ∆

N
l+2(µ

(l+1)
j )

= −
N−l∑
j=1

dµ
(l+1)
j ∧ dal

al
− 1

2

N−l∑
j=1

dµ
(l+1)
j ∧

d∆N
l+2(µ

(l+1)
j )

∆N
l+2(µ

(l+1)
j )

.

Taking the last expression for ω, we use this last formula for l = 1 and then the first for
l = 2, it follows that:

ω = −
N−1∑
j=1

dµ
(2)
j ∧

da1

a1
− 1

2

N−2∑
j=1

dµ
(3)
j ∧

d∆N
2 (µ

(3)
j )

∆N
2 (µ

(3)
j )

= . . .

and reapiting this procedure for every l one arrives to:

· · · = −
N−1∑
j=1

dµ
(2)
j ∧

da1

a1
−−

N−2∑
j=1

dµ
(3)
j ∧

da2

a2
− · · · − dµ(N)

1 ∧ daN−1

aN−1
,
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that is equivalent to:

ω = −d

N−1∑
j=1

µ
(2)
j −

N−2∑
j=1

µ
(3)
j

 ∧ da1

a1
− d

N−2∑
j=1

µ
(3)
j −

N−3∑
j=1

µ
(4)
j

 ∧ (da1

a1
+
da2

a2

)
− . . .

− dµ(N)
1 ∧

(
da1

a1
+
da2

a2
+ · · ·+ daN−1

aN−1

) .

Then remembering the fact that every LNl is a standard Jacobi matrix, so in particular

it is diagonalizable (i.e. LNl = Udiag(µ
(l)
1 , . . . , µ

(l)
N−l+1)U t with U orthogonal matrix), and

using the invariance for similitude of the trace, one finds that

N−l+1∑
k=1

µ
(l)
k =

N∑
k=l

bk,

and therefore:

ω = −db2 ∧
da1

a1
− db3 ∧

(
da1

a1
+
da2

a2

)
− · · · − dbN ∧

(
da1

a1
+
da2

a2
+ · · ·+ daN−1

aN−1

)
.

Finally, we can write ω in a more compact form using that
∏
i ai = 1. This implies that:

log(
∏
i

ai) =
∑
i

log ai = 0

and then:

d

(∑
i

log ai

)
=
∑
i

dai
ai

= 0.

In this way:

ω =
N∑
j=2

dbj ∧
∑

j≤i≤N

dai
ai
. (11.6)

So ω is expressed only through ai, bi. Applying Flaschka transformation one can returns
to the begenning coordinates:

2
daj
aj

= dqj − dqj+1

dpj = −2dbj

and then

ω =
1

2

N∑
j=2

(dqj − dq1) ∧ dpj .

Defining new coordinates q0
j = qj − q1 and p0

j = pj one then obtains the thesis. 2
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12 Construction of angles and actions

Finally we can start from these new canonical coordinates µi, νi to construct action-angle
variables. First we define the actions: for every l = 1, . . . , N − 1, choosing αl a curve
around the interval [λ2l, λ2l+1]

Jl =

∮
αl

N−1∑
i=1

νidµi = 2

∫ λ2l+1

λ2l

1

2
log |

∆(µi) ±
√

∆2(µi)− 4

2
|dµi. (12.1)

For now on we will use the following notation R(λ) = ∆2(λ)− 4.
In order to construct the angles, we have to send the periodic variables µi into some new
ones that will be linear in time. The intermediate step is to consider the variable ξj defined
in (9.12). We define the 1− forms:

ηl =
λl−1√
R(λ)

dλ, l = 1, . . . , N − 1. (12.2)

Then we call A, the (N − 1)× (N − 1) matrix given by:

Aj,l = 2

∫ λ2j+1

λ2j

ηl.

It is a standard result in the theory of Riemann surface that the determinant of A is
nonzero, and so A is invertible . Then we can define the N − 1 normalized forms: ω1

...
ωN−1

 = A−1

 η1
...

ηN−1

 ,

in the sense that
∫ λ2j+1

λ2j
wl = δj,l.

Finally we define the angle variables θl as:

 θ1
...

θN−1

 =
N−1∑
j=1


∫ µj
λ2j

ω1∫ µj
λ2j

ω2

...∫ µj
λ2j

ωN−1

 = A−1


0
0
...
0
2t

 = 2t


Ã1,N−1

Ã2,N−1
...

ÃN−1,N−1

 , (12.3)
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where Ã is the inverse of the matrix A. These functions θl are actually angles, indeed
sending µj → µj + αj where αj is a circle surrounding [λ2j , λ2j+1], we have that:

θl(µj + αj) =
N−1∑
k=1

A−1
lk ξk(µj + αj)

=
N−1∑
k=1

A−1
lk

N−1∑
j=1

∫ µj

λ2j

λk−1√
R(λ)

dλ+

∮
αj

λk−1√
R(λ)

dλ


= θl(µj) +

N−1∑
k=1

A−1
lk

N−1∑
j=1

Ajk


= θl(µj) +

N−1∑
j=1

δj,l = θl(µj) + 1.

So for µj → µj + αj , then θl → θl + 1, and this is true for every l = 1, . . . , N − 1.

Lemma 12.1 The variables (θ, J) defined in (12.1) and (12.3) respectively, are canoni-
cally conjugate variables.

The proof follows the classical lines of constructing a generating function of a canonical
transformation between the (µ, ν) variables and the action angle variables.

13 Solution through Riemann Theta functions

In the work done before this chapter, we proved the integrability for the periodic Toda
lattice and we constructed angle action variables to describe the motion of the system on
the torus where it takes place.
Now we are looking for an explicit formulation for the an, bn: in order to do this, we
have to work on the Riemann surface associated to our problem. Here we can construct
a homology basis of cycles and of holomorfic differential: through these then are defined
the so called Theta functions, with which we are going to write our solution.
Once stated the main features of these objects, we have to define the second tool we need.
We call the k−shifted solutions c(k, n), s(k, n), the solutions of the spectral equation for
the k−shifted operator Lb,a, obtained replacing an, bn with an+k, bn+k. Then we are able to
find an expression for every bk, through the sum of all the N−1 zeros, µj(k), of c(k,N+1)
one of the two fundamental solutions for the shifted spectral equation. This formula will
be used at the end to find the Theta functions formulation for bk. To obtain it, we have
to work on the sum of these µj(k).
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Recalling some particular solutions for the spectral equation for L+, called Bloch eigen-
functions and already defined in 4, and studying their analytical properties on the Riemann
surface we will find a connection between them and the µj , µj(k). Here comes the crucial
point: we will define a 1− form on the Riemann surface as the differential of the loga-
rithm of the Bloch function, and using some typical properties of the Riemann surfaces as
the Riemann bilinear relations and the Riemann vanishing theorem, we will arrive to the
expression through Theta functions for the sum of the µj(k).

14 Riemann surfaces

In this section we recall the basic ingredients of Riemann surfaces, see e.g. [?]. In order
to define the Riemann surface associated to the periodic Toda lattice, we have to recall
the eigenvalues for the matrix Q, given by the roots of the polynomial ∆2 − 4: λ1 < λ2 ≤
λ3 < λ4 ≤ · · · < λ2N−2 ≤ λ2N−1 < λ2N .
Now we consider only the case in which there are exactly 2g + 2, listing eigenvalues and
we rename them as:

λ1 < λ2 < · · · < λ2g+2.

Furthermore we have the inequality λ2j < µj < λ2j+1, j = 1 . . . , g.
We define the polynomial of degree 2g + 2:

R(λ) =

2g+2∏
j=1

(λ− λj).

Finally, we define the Riemannian surface S associated to the periodic Toda lattice as:

S =
{

(w, λ) ∈ C2|F (λ,w)− w2 −R(λ) = 0
}

(14.1)

For g = 1, S is also called an elliptic curve and for g > 1 an hyperelliptic curve.

Remark 14.1 Note that the projection map π : S → C, π(λ,w) = λ realizes S as a
two-sheeted coverings of the λ−plane. The branch points of this covering are the points
for which the pre-images merge in one point, i.e. the points determined by the system:{

F (λ,w) = 0

Fw(λ,w) = 0
⇔

{
w2 −R(λ) = 0

w = 0
,

namely Pj = (λj , 0), j = 1, . . . , 2g + 1. All branch points have multeplicity one.
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We choose the function
√
R(λ) analytic in C\[λ1, λ2] ∪ [λ3, λ4] · · · ∪ [λ2g+1, λ2g+2] and we

assume that
√
R(λ) is real and positive on [λ2g+2,∞). We define as the first sheet of

the Riemann surface S and denote it by S+, the sheet where
√
R(λ) is positive on the

interval [λ2g+2,∞). Clearly the second sheet S− is identified with the sheet where
√
R(λ)

is negative on the interval [λ2g+2,∞).
The curve S can be compactified to a compact Rieamnn surface by adding the two

points at infinity ∞± on the sheet S± and a complex structure. The complex structure
is obtain as follows. In a neighborhood of any point of S that is not a branch point the
projection λ is a local parameter, or local chart. Near such points the surface S has a
local parametric representation (λ,

√
R(λ)) for a suitable choice of the sign of the square

root.
Instead, in a neighborhood of a branch point Pj a local chart is given by

τ =
√
λ− λj , (14.2)

Then for the branch points of S we get the local parametric representation

λ = λj + τ2, w = τ

√∏
j 6=i

(τ2 + λi − λj) (14.3)

where the radical is a single-valued holomorphic function for sufficiently small τ ;(the ex-
pression under the root sign does not vanish), and dw/dτ 6= 0 for τ = 0. The two points
at infintiy have local chart

λ =
1

τ
, τ ∈ C∗.

The genus of the surface S can be calculated using the Riemann-Hurwitz formula

genus =
1

2

m∑
j=1

bj − n+ 1. (14.4)

where in our case, bj = 1 is the branching number of each branch point and n = 2 is the
degree of the covering map π. So we obtain

genus =
1

2
(2g + 2)− 2 + 1 = g.

In the next three paragraphs we are going to summarise the most important features
and properties of a Riemann surface, applied in particular on S . We limit to give some
statements of theorems, and all the prooves can be find in [?].
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Figure 2: Representation of the Riemann surface S, in the case of genus g = 3, as two
copies of the complex plane with the appropriate cuts.

Figure 3: Two curves γ1, γ2 for which is calculated the value of the function ν(P ), for
every P in which they intersect.
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Figure 4: The canonical homology basis of cycles choosen for S, for genus g = 3. Observe
that with the dashed line we denoted the passage of the curve on the lower sheet of S.

Canonical homology basis Now we want to define a basis for the for the first homology
group of S, such that it is canonical.

Definition 14.2 We call a canonical basis for H1(S,Z), a basis of cycles α1, . . . , αg and
β1, . . . , βg such that the intersection number satisfies the following conditions:

αi ◦ αj = βi ◦ βj = 0, αi ◦ βj = δij , i, j = 1 . . . , g (14.5)

Now, using the representation of S made by two copies of C with cuts along the real
intervals [λ2j−1, λ2j ] for every j = 1, . . . , g + 1, we choose a canonical basis of cycles, as
represented in the figure 4 in this way:

• every αj is a counterclockwise cycle around the interval [λ2j , λ2j+1] in the upper
sheet, and two different αj never intersect themselves;

• every βj is a counterclockwise cycle that starts in the interval preceding λ8, intersects
only the αj cycle (and the correspondent surrounded interval) in the upper sheet,
then passes to the lower sheet returning to the point of begenning.

Holomorphic and meromorphic differentials We are going to introduce some prop-
erties of differentials on Riemann surfaces, that will be useful later on.

Definition 14.3 A differential ω is holomorphic/meromorphic if in local coordinates can
be written as

ω = hα(zα)dzα,

where hα(zα) is a holomorphic/meromorphic function.

55



Note that holomorphic differentials are all closed differentials. Now we use the following
result to construct a basis of exactly g holomorphic differentials.

Theorem 14.4 The space of holomorphic differentials on a Riemann surface of genus g
has dimension g (as a vectorial space).

In particular, for our S, we can explicitly find a basis of holomorphic differentials, given
by:

ηk =
λk−1dλ

w
=
λk−1dλ√
R(λ)

, k = 1, . . . , g. (14.6)

We have to check that ηk are all holomorphic.
This is certainly true at any finite point that is not a branch point of S, so first we see
what happens in one of the branch points Pj = (λj , 0). We consider the local parameter
τ =

√
λ− λj , then we obtain ηk = ζk(τ)dτ with:

ζk(τ) =
(τ2 + λj)

k−12τ√∏2g+2
i=1 (τ2 + λj − λi)

=
2(λj + τ2)k−1√∏
j 6=i(τ

2 + λj − λi)
,

that is holomorphic for small τ.
Then at the infinity point we consider the local parameter τ = 1

λ , and in this case we
obtain ηk = φk(τ)dτ with:

φk(τ) =
−
(

1
τ

)k+1(
1
τ

)g+1∏2g+2
i=1

√
(1− λiτ)

=
−2τ g−k∏2g+2

i=1

√
(1− λiτ)

,

that is also holomorphic for small τ.
So we can conclude that ηk form a basis of holomorphic differential of S.

Remark 14.5 We already met this holomorphic differentials during the construction of
angle action variables in the previous section 12. Indeed, they are exactly the differential
constructed in 12.2 to define the coordinates change from the Dirichlet eigenvalues to some
new coordinates ξk linear in time.

Matching this last result with what we found in the previous paragraph 14, we can take a
canonical homology basis for S, formed by α1, . . . , αg, β1, . . . , βg, and we can normalize the
basis of holomorfic differentials ηk in the sense that the normalized basis of holomorphic
differential ωk is such that: ∮

αj

ωk = δj,k, j, k = 1, . . . , g. (14.7)

56



Indeed, we set:

Ajk =

∮
αj

ηk = 2

∫ λ2j+1

λ2j

λk−1dλ√
R(λ)

, j, k = 1, . . . , g. (14.8)

This matrix is nonsingular. Indeed, otherwise there are constants cl, . . . , cg, not all zero,
such that

∑
k Ajkck = 0. But then

∑
k ckηk = 0, since this differential has zero a-periods.

This contradicts the independence of the differentials η1, . . . , ηg.
So we can take Ãk,j the inverse matrix of Aj,k, and we define:

ωj =

g∑
k=1

Ãjkηk =

∑g
k=1 Ãjkλ

k−1dλ√
R(λ)

, j = 1, . . . , g. (14.9)

Then we can consider the integral of the normalized basis on the β-cycles and the matrix
we will obtain in this way has the following properties:

Proposition 14.6 Let ω1, . . . ωg be the normalized basis of holomorphic differentials as
in (14.7) and (14.9). Let

Bjk =

∮
βj

ωk, j, k = 1, . . . , g. (14.10)

Then the matrix (Bjk) is symmetric and has positive-definite imaginary part.
The matrix (Bjk) is called a period matrix of the Riemann surface S.

Remark 14.7 The surface S has all the branch points real. Furthermore, with the choice
of the homology basis given in fig. 4 and the choice of the branch cuts for

√
R(λ), we can

conclude that the matrix A is real and the matrix B is pure imaginary.

We will also need to consider meromorphic differentials on S. They take the form ω =
H(λ,w)dλ, where H(λ,w) is a rational function of λ and w. If P0 is a pole of multeplicity
k for ω, in a local coordinate z(P ) centred in P0, namely z(P0) = 0, it takes the form

ω =
(c−k
zk

+ · · ·+ c−1

z
+O(1)

)
dz.

For the meromorphic differential there is the freedom to fix the normalisation to zero
on the α cycles. Indeed it is possible to add the meromorphic differentials so that the
differential

ω̃ = ω +

g∑
j=1

cjωj

has zero α-periods, namely it is sufficient to chose cj = −
∫
αl
ω.

A property of the meromorphic differentials is given by the following theorem.
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Theorem 14.8 (The Residue Theorem) The sum of the residues of a meromorphic
differential ω on a Riemann surface, taken over all poles of this differential, is equal to
zero.

Any meromorphic differential can be represented as the sum of a holomorphic differential
and the following elementary meromorphic differentials.

1. Normalised abelian differential of the second kind Ωn
P with a only a pole of multi-

plicity n+ 1 at P and principal part of the form

Ωn
P =

(
1

zn+1
+O(1)

)
dz (14.11)

with respect to some local parameter z, z(P ) = 0, n = 1, 2, . . . .

2. Normalised Abelian differential of the third kind ΩPQ with simple poles at the points
P and Q with residues +1 and −1 respectively.

For the hyperelliptic Riemann surface S and given the points P = (p, wp) and Q = (q, wq)
we have that

ΩPQ =
dλ

2w

(
w + wp
λ− p

− w + wq
λ− q

)
+

g∑
j=1

cjωj

where cj are the normalising constants so that
∫
αj

ΩPQ = 0 for j = 1, . . . , g.

Regarding the second kind differentials we consider for future use the one with a pole

at ∞± of order two which we denote as Ω
(1)
∞± . It takes the form

Ω
(1)
∞± =

λg+1 − λg
2g+1∑
j=1

λj + sg−1λ
g−1 + . . . s0

 dλ

w
, (14.12)

where the constants s0, . . . , sg−1 are determined by
∫
αj

Ω
(1)
∞± = 0, j = 1, . . . , g. The β

periods of the above canonical meromorphic differentials can be expressed in terms of the
holomorphic differential using the Riemann bilinear relation.

Lemma 14.9 Let ΩPQ a normalized Abelian differential of the third kind, and ωk a nor-
malized basis of holomorfic differentials with respect to the canonical homology basis cho-
sen. Then: ∮

βk

ΩPQ = 2πi

∫ P

Q
ωk, i = 1, . . . , g, (14.13)

where the integration from Q to P in the integral does not intersect the cycles α1, . . . , αg,
β1, . . . , βg.
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As an example we consider the third kind differential Ω∞−,∞+ . Its periods are

Uk :=
1

2πi

∮
βk

Ω∞−,∞+ =

∫ ∞−
∞+

ωk ∈ R i = 1, . . . , g, (14.14)

where from our choice of homology basis, the periods Uk are all real. A smilar results
holds for the second kind differential

Lemma 14.10 Let Ω
(1)
∞± be the second kind normalised differential with second order pole

at ±∞. Then ∮
βk

Ω
(1)
±∞ = 4πiψk(z)|z=0, k = 1, . . . , g, (14.15)

where ωk = ψk(z)dz is the holomorphic differential in the local coordinate z =
1

λ
near the

point ∞+.

We observe that 
∮
β1

Ω
(1)
±∞∮

β2
Ω

(1)
±∞

...∮
βg

Ω
(1)
±∞

 = −4πiA−1


0
0
...
1

 (14.16)

where A is the period matrix (14.8) of the non normalised holomorphic differentials. We
define the vector V as

Vj =
1

2πi

∮
βj

Ω
(1)
±∞, j = 1, . . . , g. (14.17)

From (14.16) we have that the vector V is real and it is related to the angle variables
defined in (??).

Jacobi variety, Abel map and Theta functions. With the same notations above for
the canonical homology basis of cycles and the basis of holomorphic differentials on the
Riemann surface S of genus g, we consider the period matrix of S, that we already called
B. We recall that B is a g × g complex matrix, with the properties, stated in 14.6, to be
symmetric and with imaginary part positive-definite.
Then, thanks to these properties, for any basis e1, . . . , eg of Cg we have that the vectors:

e1, . . . , eg, Be1, . . . , Beg

are linearly independent on R. Now consider in Cg the integer period lattice generated by
the this family of independent vectors. Every vector in this lattice can be written in the
form:

m+ nB, m, n ∈ Zg. (14.18)

59



and by the independence of the generetors e1, . . . , eg, Be1, . . . , Beg, the quotient of Cg by
this lattice is a torus of maximal rank, that we define as the Jacoby variety (or Jacobian)
of S.

Definition 14.11 If B is the period matrix of S, then the torus:

T 2g = T 2g(B) = Cg/{m+ nB}. (14.19)

denoted by J(S) is the Jacobi variety of S.

Now we can define the Abel map. Fixing a point P0 ∈ S, for every P ∈ S we consider
the integral:

uk(P ) =

∫ P

P0

ωk, k = 1, . . . , g. (14.20)

Then the vector-valued function

A(P ) = (u1(P ), . . . , ug(P )) (14.21)

is called the Abel map (the path of integration is chosen to be the same in all the integrals
u1(P ), . . . , ug(P )). This function is connected with the Jacobi variety of S in the sense
that it takes values on it.

Lemma 14.12 The Abel mapping is a well-defined holomorphic mapping

A : S → J(S).

Proof. A change of the path of integration in the integrals uk(P ) leads to a change in
the values of these integrals according to the law

uk(P )→ uk(P ) +

∮
γ
ωk, k = 1, . . . , g,

where γ is some cycle on S. Decomposing it with respect to the basis of cycles, γ '∑
mjαj +

∑
njβj we get that:

uk(P )→ uk(P ) +mk +
∑
j

Bkjnj , k = 1, . . . , g.

The increment on the right-hand side is the kth coordinate of the period lattice vector
2πiM +NB where M = (m1, . . . ,mg), N = (n1, . . . , ng). The lemma is proved. 2
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Finally we can start talking about Theta functions on our Riemann surface S.
Generally speaking, chosen B = (Bjk) a symmetric g × g matrix with positive-definite
imaginary part and z = (z1, . . . , zg) and N = (N1, . . . , Ng) some g-dimensional vectors,
we can define the Riemann theta function (associated to B) as its multiple Fourier series,

Θ(z) = Θ(z;B) =
∑
N∈Zg

exp (πi〈NB,N〉+ 2πi〈N, z〉) , (14.22)

where the angle brackets denote the Euclidean inner product:

〈N, z〉 =

g∑
k=1

Nkzk, 〈NB,N〉 =

g∑
j,k=1

BkjNjNk.

The summation in 14.22 is over the lattice of integer vectors N = (N1, . . . , Ng). The
obvious estimate Re (i〈NB,N〉) ≤ −b〈N,N〉, where b > 0 is the smallest eigenvalue of the
matrix Im (B), implies that this series defines an entire function of the variables z1, . . . , zg.

Proposition 14.13 The theta-function has the following properties.

1. Θ(−z ; B) = Θ(z ; B).

2. For any integer vectors M,K ∈ Zg,

Θ(z +K +MB;B) = exp (−πi〈MB,M〉 − 2πi〈M, z〉) Θ(z;B). (14.23)

3. It satisfies the heat equation

∂

∂Bij
Θ(z ; B) =

1

2πi

∂2

∂zizj
Θ(z ; B), i 6= j

∂

∂Bii
Θ(z ; B) =

1

4πi

∂2

∂z2
i

Θ(z ; B).

(14.24)

Note that, from the equation 14.23 in the second point of the above proposition, the theta-
function is an analytic multivalued function on the g-dimensional torus T 2g = Cg/{N +
MB}.
For e = (e1, . . . , eg) ∈ Cg we define the function F : S → C as

F (P ) = Θ(A(P )− e;B). (14.25)

Then using the properties of the holomorfic differentials and the periodicity of the Θ−
function given by 14.23, we have that F (P ) transforms in the following way:

• F (P + αj) = F (P ) (14.26)

• F (P + βj) = F (P ) exp

(
−πiBjj − 2πi

∫ P

P0

ωj + 2πiej

)
. (14.27)
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Also F (P ) is non single-valued on S from its definition. But we can study the set of its
zeros as the study of the intersection of the Abel mapping’s image A(P ) ⊂ J(S) with the
set of zeros of the Riemann Θ−function. For this we have the following result.

Theorem 14.14 (Riemann Vanishing Theorem) If F (P ) is not identically zero, then
it has g zeros Q1, . . . , Qg, counted with their multiplicity.1

Furthermore the following equality holds:

g∑
j=1

∫ Qj

P0

ω = e+KP0 , (14.28)

where KP0 is the vector of Riemann constants, that depends only on the surface and its
marking and on P0.

15 Bloch eigenfunctions

In this section we return to the spectral problem for the operator Lb,a, analyzed before.
In particular, we consider the k−shifted spectral equation for Lb,a, i.e. the equation 4.5
where the coefficients an, bn are replaced by ak+n, bk+n, and we show the relations between
its fundamental solutions and the fundamental solutions for the non-shifted spectral equa-
tion. Through these new functions we find an expression for every bk, that will give at the
end the explicit solution.
Then we introduce some particular eigenfunctions of the matrix L+, called Bloch eigen-
functions, that will be the main mean for the explicit formulation of bk. Indeed, considering
these functions on the Riemann surface S, and studying their analytical properties we will
find a way to relate them to the expression for bk.

Definition 15.1 We define the two fundamental solutions c(k, n), s(k, n) of the k−shifted
spectral equation 4.5, the ones with initial conditions:{

c(k, 0) = 1

c(k, 1) = 0
,

{
s(k, 0) = 0

s(k, 1) = 1
.

As seen in the case of the non-shifted equation 4.5, also these fundamental solutions
c(k, n), s(k, n) are polynomials in λ with respectively degree n − 2 and n − 1. Indeed,
following an analogue proof with respect to the one done for the proposition 5.4 we can

1Actually, here we are considering F (P ) as a single-valued analytic function on S̃, that is the Poincaré
polygon of S. This is a 4g−polygon obtained cutting and gluening all the cycles, and their inverse, of the
canonical homology basis.
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find the following expressions:

c(k, n) = −ak
n−1∏
i=1

a−1
i λn−2 + . . . , s(k, n) =

n−1∏
i=1

a−1
i λn−1 + . . . . (15.1)

In particular, defining the k− shifted matrix of LN2 , of dimension N − 1:

(L(k)) =


bk+2 ak+2 0 . . . 0
ak+2 bk+3 ak+3 . . . 0

0 ak+3
. . .

...
...

...
0 . . . ak+N−1 bk+N

 ,

we can find that:

c(k,N + 1) = −ak
n−1∏
i=1

a−1
i det(L(k) − λI). (15.2)

This formula will be useful later on. With the next proposition we establish the relation
between c(k, n), s(k, n) and the old fundamental solutions.

Proposition 15.2 [17]. For every fixed k ∈ N, and for every n ∈ Z the following relations
hold: (

c(k, n)
s(k, n)

)
=

(
a−1

0 aks(k + 1) −a−1
0 akc(k + 1)

−a−1
0 aks(k) a−1

0 akc(k)

)(
c(k + n)
s(k + n)

)
. (15.3)

Proof. Once k is fixed, we proceed by induction over n.
For n = 0 the relations hold, indeed:

c(k, 0) = 1 = a−1
0 ak (s(k + 1)c(k)− c(k + 1)s(k))︸ ︷︷ ︸

=W (k)

,

since we know from the property of the Wronskian 5.2, shown in proposition 5.3 that
W (k) = a0 for every k. And

s(k, 0) = 0 = a−1
0 ak (−s(k)c(k) + c(k)s(k)) .

For the same reason also for n = 1 the identities hold:

c(k, 1) = 0 = a−1
0 ak (s(k + 1)c(k + 1)− c(k + 1)s(k + 1)) ,

s(k, 1) = 1 = a−1
0 ak (−c(k + 1)s(k) + c(k)s(k + 1)) .
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Then supposing that they hold for every j ≤ n − 1, we obtain the thesis for n, indeed
using the spectral equation:

c(k, n) = a−1
k+n−1 ((λ− bk+n−1)c(k, n− 1)− ak+n−2c(k, n− 2))

= a−1
k+n−1

(
(λ− bk+n−1)a−1

0 ak (s(k + 1)c(k + n− 1)− c(k + 1)s(k + n− 1))
)

+

+ a−1
k+n−1

(
−ak+n−2a

−1
0 ak (s(k + 1)c(k + n− 2)− c(k + 1)s(k + n− 2))

)
= a−1

0 ak
(
s(k + 1)a−1

k+n−1 ((λ− bk+n−1)c(k + n− 1)− ak+n−2c(k + n− 2))
)

+

+ a−1
0 ak

(
−c(k + 1)a−1

k+n−1 ((λ− bk+n−1)s(k + n− 1)− ak+n−2s(k + n− 2))
)

= a−1
0 ak (s(k + 1)c(k + n)− c(k + 1)s(k + n)) ,

That is exactly our thesis for c(k, n) and with the same argument is obtained the formula
for s(k, n). 2

Definition 15.3 For a fixed k, we denote by µj(k) for j = 1, . . . , N − 1 the roots of the
polynomial c(k,N + 1).

Remark 15.4 For k = 0, we have that µj(k) are exactly the Dirichlet eigenvalues µj , so
we refer to the µj(k) as shifted Dirichlet eigenvalues. As well as the µj , these µj(k) are
no more constant quantities in time.
One can observe that also the µj(k) belong to the interval [λ2j , λ2j+1] , so they coincide
to the corrispondent Dirichlet eigenvalue, whenever the interval degeneretes to one point.

We recall now the useful expression 8.4, that gives b1 in terms of Dirichlet eigenvalues
and we show how we can write something similar for every bk, using the shifted Dirichlet
eigenvalues defined above.
During the proof of the theorem 8.1, that gave the solution for the inverse spectral problem
for the matrix Q, we used the fact that:

b1 =
1

2
Tr(Q)− Tr(LN2 ) =

1

2

2N∑
i=1

λi −
N−1∑
j=1

µj .

This can also be obtained looking at the coefficient of the term λN−2 of the polynomial
c(N + 1) and at the coefficient of the term λ2N−1 of ∆2− 4 in two different ways. Indeed,
for c(N + 1), since it is, up to a multiplicative factor, the characteristic polynomial for the
matrix LN2 , we can write it as:

c(N + 1) =
N−1∏
i=1

a−1
i

(
λN−1 − Tr(LN2 )λN−2 +

1

2
((Tr(LN2 ))2 − Tr(LN2 )2)λN−3 + . . .

)
.
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On the other side, calling the roots of ∆N
2 as µj , we can write c(N + 1) using the Viéte’s

formulas and we have:

c(N + 1) =

N−1∏
i=1

a−1
i

λN−1 − (

N−1∑
j=1

µj)λ
N−2 + (

∑
1≤i<j≤N−1

µiµj)λ
N−3 + . . .

 ,

and so
∑N−1

j=1 µj = Tr(LN2 ).

The same argument is used for ∆2 − 4 to obtain Tr(Q) =
∑2N

i=1 λi.
Now we can reapeat all this for c(k,N + 1). Indeed, using the expression in 15.2 we have
that the coefficient cN−2 of the term λN−2 is (up to a multiplicative factor):

cN−2 = −Tr(L(k)) = −
N∑
n=1

n6=k+1

bn,

from the periodicity of bn. On the other side, using that it has roots µj(k), we obtain
through the following formulas that:

cN−2 = −
N−1∑
j=1

µj(k).

Then, for every k ≥ 1, we can write that:

bk+1 =
1

2
Tr(Q)− Tr(L(k)) =

1

2

2N∑
i=1

λi −
N−1∑
j=1

µj(k). (15.4)

This formula plays a crucial role for our work. Indeed, recalling that the eigenvalues of
L± are constants of motion for the periodic Toda lattice, if we denote with

Λ =
1

2

2N∑
i=1

λi,

with the formulas 8.4, 15.4 we expressed bk in such a way that its temporal evolution is
totally contained in the term

∑N−1
j=1 µj(k).

So, these quantities are exactly the ones that we are going to study on the Riemann
surface S, looking for an explicit time formulation through Theta functions of S. Finally
the temporal evolution of bk will come from:

bk(t) = Λ−
N−1∑
j=1

µj(k − 1, t), k = 1, . . . , N. (15.5)

Now, we are going to define the Bloch eigenfunctions and to show some of their properties
in connection to what we have done untill now.
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Definition 15.5 We call Bloch eigenfunctions ψ(k) the eigenfunctions for the matrix L+,
i.e. such that: (

L+ψ
)

(k) = λψ(k),

with the normalization ψ(1) = 1. Furthermore the following condition must hold:(
ψ(N)

ψ(N + 1)

)
=

(
c(N) s(N)

c(N + 1) s(N + 1)

)(
ψ(0)

1

)
= ξ

(
ψ(0)

1

)
, (15.6)

for ξ some eigenvalue of the matrix MN already defined in 7.3.

Recalling that Tr(MN ) = ∆, the eigenvalues of MN have the form:

ξ± =
∆±

√
∆2 − 4

2
.

Then using the second equation from condition 15.6:

ψ(0)c(N + 1) + s(N + 1) = ξ±,

we can rewrite ψ(0) in the following way:

ψ(0) =
∆±

√
∆2 − 4− 2s(N + 1)

2c(N + 1)
=

(c(N)− s(N + 1))±
√

∆2 − 4

2c(N + 1)
.

Finally, using the fact that every eigenfunction of L+ can be written as linear combi-
nation of the fundamental solutions c, s, we find a particular expression for the Bloch
eigenfunctions:

ψ±(k + 1) = s(k + 1) +
(c(N)− s(N + 1))±

√
∆2 − 4

2c(N + 1)
c(k + 1), (15.7)

for every k ≥ 0.
Clearly, the plus or minus sign for the Bloch eigenfunction is chosen accordingly to the
sign in front of the squareroot. In this way we have two Bloch eigenfunctions and, if we
consider their product ψ+(k + 1)ψ−(k + 1), we find a compact formula that joins them,
c(N + 1) and c(k,N + 1).
In order to prove it, we need the following lemma.

Lemma 15.6 The following relations hold:(
c(k +N)
s(k +N)

)
=

(
c(N) c(N + 1)
s(N) s(N + 1)

)(
c(k)
s(k)

)
, (15.8)

for every k ≥ 0.
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Proof. The proof comes from the periodicity of ak, bk. We proceed by induction over k.
For k = 0, we have that: {

c(N)c(0) + c(N + 1)s(0) = c(N)

s(N)c(0) + s(N + 1)s(0) = s(N)
,

just using the initial conditions of the two fundamental solutions. The same for k = 1,
indeed: {

c(N)c(1) + c(N + 1)s(1) = c(N + 1)

s(N)c(1) + s(N + 1)s(1) = s(N + 1)
.

Now supposing that the relations are true for every j ≤ k − 1, we obtain that also for k,
using the spectral equation:

c(k +N) = a−1
k+N−1 ((λ− bk+N−1)c(k +N − 1)− ak+N−2c(k +N − 2))

= a−1
k+N−1 ((λ− bk+N−1)(c(N)c(k − 1) + c(N + 1)s(k − 1))) +

− a−1
k+N−1 (ak+N−2(c(N)c(k − 2) + c(N + 1)s(k − 2)))

= c(N)
(
a−1
k−1(λ− bk−1)c(k − 1)− ak−2c(k − 2)

)
+

+ c(N + 1)
(
a−1
k−1(λ− bk−1)s(k − 1)− ak−2s(k − 2)

)
= c(N)c(k) + c(N + 1)s(k),

where we use the periodicity of ak−1, ak−2, bk−1, bk−2.
In the same way is obtained the formula for s(k +N), and then the thesis hold for every
k. 2

Finally we can give the formula that matches the three types of eigenfunctions we intro-
duced in this section. It will be used later on, in order to show the analytical properties
of Bloch eigenfuntions considered as a function on the Riemann surface S.

Proposition 15.7 The product of the two Bloch eigenfunctions is such that:

ψ+(k + 1)ψ−(k + 1) = a0a
−1
k

c(k,N + 1)

c(N + 1)
, (15.9)

for every k ≥ 0.

Proof. We note first that for k = 0 the thesis is true since c(0, N + 1) = c(N + 1) and
ψ+(1) = ψ−(1) = 1.
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Then for every k > 0, we use the expressions obtained in 15.7 and we rewrite the product
of the Bloch eigenfunctions:

ψ+(k + 1)ψ−(k + 1) =

(
s(k + 1) +

(c(N)− s(N + 1)) +
√

∆2 − 4

2c(N + 1)
c(k + 1)

)
×

×

(
s(k + 1) +

(c(N)− s(N + 1))−
√

∆2 − 4

2c(N + 1)
c(k + 1)

)

= s2(k + 1) + s(k + 1)c(k + 1)
c(N)− s(N + 1)

c(N + 1)
+

c2(k + 1)
(c(N)− s(N + 1))2 − (∆2 − 4)

4c2(N + 1)
= . . .

.

Working on the numerator of last term, using the definition of ∆, we can rewrite it as:

(c(N)− s(N + 1))2 − (∆2 − 4) = −4c(N)s(N + 1) + 4 = 4(−c(N + 1)s(N)),

where in the last equality we used the well known property of the Wronskian 5.2, namely
for k = N W (N) = a0, that implies c(N)s(N + 1)− c(N + 1)s(N) = 1.
Then we can proceed with the chain of equalities started before substituting the quanitity
above and making common denominator of the three terms, we have that:

. . . =
s2(k + 1)c(N + 1) + s(k + 1)c(k + 1)(c(N)− s(N + 1))− s(N)c2(k + 1)

c(N + 1)

=
1

c(N + 1)

s(k + 1) (s(k + 1)c(N + 1) + c(N)c(k + 1))︸ ︷︷ ︸
=c(k+N+1)


+

1

c(N + 1)

−c(k + 1) (s(k + 1)s(N + 1) + s(N)c(k + 1))︸ ︷︷ ︸
=s(k+N+1)

 = . . .

where we used the relations from the lemma 15.6.
At the end, recalling the expression for the shifted solution c(k,N + 1) in function of the
fundamental solutions, given in 15.3, we conclude that:

. . . =
1

c(N + 1)
(s(k + 1)c(k +N + 1)− c(k + 1)s(k +N + 1))

= a0a
−1
k

c(k,N + 1)

c(N + 1)
,

and this is exactly our thesis. 2

In particular, we will have that one between ψ+(k + 1) and ψ−(k + 1) has some zeros in
µj(k) and some poles in µj .
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16 Explicit integration

In this section we will combined all the results obtained in the previous section in order
to arrive at the formulation of bk through Riemann Θ−functions. Similar formulas have
been obtained for the theory of the Korteweg de Vries equation with periodic potential in
[?].

Theorem 16.1 (Explicit integration for the periodic Toda lattice) The Flaschka
coordinates bk for the periodic Toda lattice have the following temporal evolution:

bk(t) = Λ∗ −
g∑
l=1

∫
αl

λωl(λ) +
1

2

d

dt

(
log

Θ (tV + (k − 1)U + φ0, B)

Θ (tV + kU + φ0, B)

)
, (16.1)

for k = 2, . . . , N .
Here Λ∗ = 1

2

∑2g+2
j=1 λj with g ≤ N−1 and U and V are the g−dimensional vectors defined

in (14.14) and (14.17) respectively, namely :

U =

(
∞−∫
∞+

ω1, . . . ,
∞−∫
∞+

ωg

)
(16.2)

V =
(
V1, . . . , Vg

)
,

Vl =
1

2πi

∫
βl

Ω
(1)
∞± l = 1, . . . , g, (16.3)

where ω1, . . . , ωg are the g holomorphic differentials and Ω
(1)
∞± is the normalised second

kind differential defined in (14.15) and φ0 is a constant real vector. The quantity B is
the g × g period matrix (14.10) associated to the curve S and Θ(z,B) is the Riemann
Theta-function defined in (14.22).

Remark 16.2 Note that the vectors U and V are real, and the period matrix B is pure
imaginary. It follows that the value of the Theta-function is real. Furthermore, we observe
the linear dependence on k and t, in the argument of the Theta functions. We also observe
that the integrals

∫
αl
λωl(λ) are real, since the holomorphic differentials ωl are real on the

α-cycles.

Then, as a conseguence of this, we will obtain similar formulations for all the others
coordinates of the periodic Toda lattice.
To start with, let reconsider the Riemann surface defined in 14.1 as the zero locus in C2

of the polynomial w2 −R(λ), where we recall that this polynomial is given by:

R(λ) =

2g+2∏
j=1

(λ− λj),
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with λ1 < · · · < λ2g+2, the different eigenvalues of Q.
We also recall that we renamed µ1 < · · · < µg the Dirichlet eigenvalues for which the
interval of instability is non-degenerate, i.e. λ2j < µj < λ2j+1 for each j = 1, . . . , g. The
same is true for µj(k).
The crucial point, now, is to see these µj(k) as simple poles for a certain meromorphic
differential on S, that we are going to define. Starting from this, we arrive at the most
useful result of this section, that describes the sum of µj(k) in terms of Riemann Theta
functions, for every k ≥ 1.
The proof of theorem 16.1, namely the derivation of the explicit expression (16.1) is based
on the equation (15.5),

bk(t) = Λ∗ −
g∑
j=1

µj(k − 1, t), k = 1, . . . , g,

and the fact that when λ2j = µj = λ2j+1 these quantities disappear from the above sum,
and the following theorem.

Theorem 16.3 [Formula for the sum of k−shifted eigenvalues] The following relation
holds:

g∑
j=1

µj(k) =

g∑
l=1

∫
αl

λωl(λ)− 1

2

d

dt

(
log

Θ (V t+ kU + φ0, B)

Θ (V t+ (k + 1)U + φ0, B)

)
(16.4)

for k ≥ 1, where U and V are the vectors defined in (16.2) and (16.3) respectively and φ0

is a constant phase.

In order to prove theorem 16.3 we first need to introduce several quantities.
On S, we can consider the meromorphic function ψ(k + 1) which is the extension on

S of the Bloch eigenfunctions (15.7) namely ψ+(k + 1) defined in the upper sheet and
ψ−(k + 1) in the lower sheet, for every k ≥ 0.
Then, being ψ(k+ 1, λ) a meromorphic function on S, it is completely defined by its zeros
and poles: these informations come from what we already proved in the previous section.
Indeed, the formula 15.9 given in the last proposition allow us to say that ψ(k+ 1, λ) has
simple zeros at µj(k) and simple poles at µj .
Furthermore, if we use the expression 15.7 for the two branches of ψ(k+1, λ), we can make
some considerations about the infinity points. On the upper sheet, for λ large enough, we
have:

ψ+(k + 1) = s(k + 1)︸ ︷︷ ︸
deg=k

+
(c(N)− s(N + 1)) +

√
∆2 − 4

2c(N + 1)︸ ︷︷ ︸
='0−λ

2
+λ

2

c(k + 1)︸ ︷︷ ︸
deg=k−1

,
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then we conclude that ψ(k+1, λ) has a pole of order k at∞+. Instead, on the lower sheet:

ψ−(k + 1) = s(k + 1)︸ ︷︷ ︸
deg=k

+
(c(N)− s(N + 1))−

√
∆2 − 4

2c(N + 1)︸ ︷︷ ︸
'0−λ

2
−λ

2

c(k + 1)︸ ︷︷ ︸
deg=k−1

,

then ψ(k + 1, λ) has a zero of order k at ∞−.
Now we define a meromorphic differential on S using this funcion.

Definition 16.4 We denote by ω(k + 1, λ) the following 1−form:

ω(k + 1, λ) =
∂

∂λ
log (ψ(k + 1, λ)) dλ = ψ−1(k + 1, λ)

∂ψ(k + 1, λ)

∂λ
dλ, (16.5)

for every k ≥ 0.

This differential has simple poles at µj(k) and µj for every j = 1, . . . , g with residue +1
and −1 respectively. It has simple poles at ∞+ and ∞− with residue respectively −k and
k.
Then, from the study of differentials on Riemann surface done in the paragraph 14, we
know that on S every meromorphic differential can be represented as a combination of
abelian differentials of second and third kind plus some linear combination of holomorphic
differentials. So, we define the following normalized abelian differential of the third kind:

•
Ωµj(k),µj , j = 1, . . . , g, (16.6)

that has just simple poles at µj(k) with residue +1 and at µj with residue −1.

•
Ω∞−,∞+ (16.7)

that has just simple poles at ∞− with residue +1 and at ∞+ with residue −1.

The canonical homology basis is the one described in Figure 4 and the corresponding
canonical basis of holomorphic differentials on S, is the one constructed in 14.9 and denoted
by ωj , for j = 1, . . . , g,. We conclude that we can represent the differential ω(k+ 1, λ) as:

ω(k + 1, λ) =

g∑
j=1

Ωµj(k),µj + kΩ∞−,∞+ +

g∑
j=1

djωj . (16.8)

where dj are some constants to be determined.
Now fixing some P0 = (λ0, w0) ∈ S, using (16.5) and (16.8) we can represent the function
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ψ(k + 1) in the form

ψ(k + 1, P ) = exp

 g∑
j=1

∫ P

P0

Ωµj(k),µj + k

∫ P

P0

Ω∞−,∞+ +

g∑
j=1

dj

∫ P

P0

ωj

 .

The function ψ(k + 1, P ) is a single-valued function on S. This means that for every
α−cycle and every β−cycle, and for every P ∈ S the condition:{

ψ(k + 1, P + αl) = exp(2πinl)ψ(k + 1, , P )

ψ(k + 1, P + βl) = exp(2πiml)ψ(k + 1, P )
, l = 1, . . . , g, (16.9)

must hold for some constants nl,ml ∈ Z.
The first equality can be rewritten as (we are dropping the dependence on k + 1):

exp(2πinl)ψ(P ) = exp

 g∑
j=1

∫ P+αl

P0

Ωµj(k),µj + k

∫ P+αl

P0

Ω∞−,∞+ +

g∑
j=1

dj

∫ P+αl

P0

ωj


= ψ(P ) exp

 g∑
j=1

∫
αl

Ωµj(k),µj + k

∫
αl

Ω∞−,∞+ +

g∑
j=1

dj

∫
αl

ωj


= ψ(P ) exp(dl),

since all the abelian differentials Ωµj(k),µj ,Ω∞−,∞+ are all normalized.
So we have that the constants dl are fixed:

dl = 2πinl, l = 1, . . . , g. (16.10)

Doing the same steps, the second equality in (16.9) becomes:

exp(2πiml)ψ(P ) = exp

 g∑
j=1

∫ P+βl

P0

Ωµj(k),µj + k

∫ P+βl

P0

Ω∞−,∞+ +

g∑
j=1

dj

∫ P+βl

P0

ωj


= ψ(P ) exp

 g∑
j=1

∫
βl

Ωµj(k),µj + k

∫
βl

Ω∞−,∞+ +

g∑
j=1

dj

∫
βl

ωj

 ,

and so we must have that:

2πiml =

g∑
j=1

∫
βl

Ωµj(k),µj + k

∫
βl

Ω∞−,∞+ + 2πi

g∑
j=1

njBlj ,
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where we used the condition 16.10, and we recall that Blj is the period matrix of S for
the fixed canonical homology basis and the fixed holomorphic differentials basis.
Next we can apply the lemma 14.10 that gives us a way to calculate the β−periods of
normalized Abelian differentials of the third kind through holomorphic differentials.
So the equation above becomes:

2πiml = 2πi

g∑
j=1

∫ µj(k)

µj

ωl + 2πik

∫ ∞−
∞+

ωl + 2πi

g∑
j=1

njBlj .

Finally, choosing a fixed point P0 ∈ S, we can split all the integrals as:∫ µj(k)

µj

ωl =

∫ µj(k)

P0

ωl −
∫ µj

P0

ωl,

and we conclude that:

g∑
j=1

∫ µj(k)

P0

ωl =

g∑
j=1

∫ µj

P0

ωl − k
∫ ∞−
∞+

ωl −
g∑
j=1

njBl,j +ml. (16.11)

We denote by v the vector formed by the right hand side of the above equation:

vl :=

g∑
j=1

∫ µj

P0

ωl − k
∫ ∞−
∞+

ωl −
g∑
j=1

njBl,j +ml, l = 1 . . . , g. (16.12)

Next we we consider the function

F (P ) = Θ(AP0(P )− e,B) = Θ

(∫ P

P0

ω − e,B
)
,

where the complex vector e = v − KP0 , with v the vector defined above and KP0 is the
vector of Riemann constants. We apply the Riemann Vanishing theorem 14.14 to the
function F (P ) and conclude that its g zeros Q1, . . . , Qg satisfy the following relation

g∑
j=1

∫ Qj

P0

ω = e+KP0 = v =

g∑
j=1

∫ µj(k)

P0

ω, (16.13)

namely such zeros Qj coincide with µj(k). This statement is true because the µj(k) are
all distinct and therefore the associated divisor of degree g is not special.
Now we are ready to prove theorem 16.3: namely we are solving the Jacobi inversion
problem, inverting the formula 16.13. This means find symmetric functions in µj(k) given
the vector v.
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Proof. (Formula for the sum of the k−shifted eigenvalues). We introduce the differential:

G(λ) = λ
∂

∂λ
logF (λ)dλ.

The differential G(λ) has the following analytical properties

• it is multivalued on the surface S and single-valued on the Poincaré polygon S̃
obtained from S;

• it has g simple poles at the points (µ1(k), . . . µg(k));

• it has simple poles at ∞±.

Therefore we can evaluate the integral
∫
∂S̃ G, where ∂S̃ is the boundary of S̃, using the

residue theorem. We obtain

1

2πi

∫
∂S̃
G(λ)dλ =

g∑
j=1

Resλ=µj(k)G(λ) + Resλ=∞±(G(λ)) =

g∑
j=1

µj(k) + Resλ=∞±(G(λ)).

We conclude that

g∑
j=1

µj(k) =
1

2πi

∫
∂S̃
G(λ)dλ− Resλ=∞±(G(λ)). (16.14)

From the explicit calculation of the r.h.s. of the above expression we will find a represen-
tation for the sum of k−shifted Dirichlet eigenvalues through the Riemann Θ−functions.

Lemma 16.5 The following relation is satisfied

Resλ=∞+(G(λ)) + Resλ=∞−(G(λ)) =
1

2

d

dt

log
Θ
(
V t+ k

∫∞−
∞+ ω + φ0, B

)
Θ
(
V t+ (k + 1)

∫∞−
∞+ ω + φ0;B

)
 ,

(16.15)
where the vector V has been defined in (14.17) and φ0 is a constant vector.

Proof. We first start to compute the residue of G at ∞+, i.e. :

Resλ=∞+(G(λ)) = Resλ=∞+

λ
∑g

j=1

(
Θ(
∫ λ
P0
ω − (v −KP0), B)jωj(λ)

)
F (P )

,

where the λ−logarithmic-derivative is computed recalling that Θ(·, B) is a vectorial func-

tion and Θ(
∫ λ
P0
ω − (v −KP0), B)j is the derivative with respect to the j-argument. First
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we observe that ∞+ is a simple pole for G. To do this, we use the explicit form of the
canonical basis of holomorhpic differentials ωj on S, already defined in 14.9. Using the
local parameter λ = 1

s we rewrite the holomorphic differentials as:

ωj(s) =

∑g
k=1 Ãjkλ

k−1dλ√
R(λ)

=

∑g
k=1 Ãjk

1
sk−1

(
−ds
s2

)
1

sg+1

√∏2g+2
i=1 (1− λis)

= −
∑g

k=1 Ãjks
g−kds√∏2g+2

i=1 (1− λis)
,

where we recall that the matrix Ã is the inverse matrix of the α−periods matrix for the
holomorphic differentials ηk, not still normalized.
In such coordinates, the product λωj(λ) becomes:

1

s
ωj(s) = −

∑g
k=1 Ãjks

g−k−1√∏2g+2
i=1 (1− λis)

ds = −
g∑

k=1

Ãjks
g−k−1ds(1 + o(s)),

that for k = g has a simple pole in s = 0. The residue at λ =∞+ is then calculated as:

Resλ=∞+λωj(λ) = Ress=0
1

s
ωj(s) = −Ãj,g,

the coefficient of the term s−1.
Applying this result to the residue of G at ∞+ we obtain:

Resλ=∞+G(λ) =Resλ=∞+

λ
∑g

j=1

(
Θ(
∫ λ
P0
ω − (v −KP0), B)jωj(λ)

)
F (P )

= −

∑g
j=1

(
Θ(
∫∞+

P0
ω − (v −KP0), B)jÃj,g

)
Θ(
∫∞+

P0
ω − (v −KP0), B)

.

(16.16)

Now, with some manipulations, we can rewrite this quantity as a logarithmic derivative
with respect to the time of the Theta function. Indeed, we recall that, with our choice of
v in (16.12) we have :

v −KP0 =

 g∑
j=1

∫ µj

P0

ω − k
∫ ∞−
∞+

ω − nB +m−KP0

 ,
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where the vectors n = (nl)
g
l=1, m = (ml)

g
l=1 and B is the period matrix of S and µj =

µj(0, t).
The crucial point here is that, in this sum only one of the term that appears depends on
time, and it is:

g∑
j=1

∫ µj(0,t)

P0

ω, (16.17)

that appear in the calculation of the angle variables (12.3). Combining the expression of
the angle variables (12.3) with the definition of the period vector V in (14.17) we obtain
that

g∑
j=1

∫ µj(0,t)

P0

ωl = 2tÃlg + t0 = −tVl + t0 (16.18)

where t0 is a constant vector and Ã is the inverse of the period matrix of the non normalized
differentials (14.6).

Combining (16.16) and (16.18) we conclude that

d

dt

(
log Θ

(∫ ∞+

P0

ω − (v −KP0), B

))
= 2Resλ=∞+ (G(λ)) , (16.19)

In the same way we can calculate the residue at ∞− obtaining

d

dt

(
log Θ

(∫ ∞−
P0

ω − (v −KP0), B

))
= −2Resλ=∞− (G(λ)) , (16.20)

Combining the above expressions and setting P0 =∞+ we obtain (16.15). 2

Finally, the last term we have to compute is the integral:

1

2πi

∫
∂S
G(λ)dλ.

We have the following lemma.

Lemma 16.6 The following relation is satisfied:

1

2πi

∫
∂S̃
G(λ)dλ =

g∑
l=1

∫
αl

λωl(λ). (16.21)

Proof. We perform the integral on the boundary of the Poincaré polygon S̃ associated
to S, so that we can rewrite the integral as a summation of integrals on all the α, β−cycles
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Figure 5: Each point of αl is connected to the correspondent one of α−1
l through the cycle

βl.

and their correspondent inverse, and then we can use the properties of F (due to Θ) to
calculate each one of them. So we consider:

1

2πi

∫
∂S̃
G(λ)dλ =

1

2πi

(
g∑
l=1

(∫
βl

G(λ) +

∫
αl

G(λ) +

∫
α−1
l

G(λ) +

∫
β−1
l

G(λ)

))
,

and first, for every l = 1, . . . , g, we take the sum of the integrals on αl and on α−1
l . This

can be rewritten as: ∫
αl

λ
∂ logF (λ)

∂λ
dλ−

∫
αl

λ
∂ logF (λ+ βl)

∂λ
dλ,

since the points on α−1
l are the same of the ones on αl less then a β−cycles, as shown in

the Figure 5. Then we work on the function F, and we see that:

F (λ+ βl) = Θ

(∫ λ+βl

P0

ω − (v −KP0), B

)
= Θ


∫ λ

P0

ω +

∫
βl

ω︸ ︷︷ ︸
=elB

−(v −KP0), B

 .

Now we recall the property of the function F , given in 14.27, and we apply it in our case
(taking K = 0 and M = el), so we have:

F (P + βl) = F (P ) exp

(
−πiBll − 2πi

∫ P

P0

ωl + 2πiel

)
.
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Then the integrals sum becomes:∫
αl

λ
∂ logF (λ)

∂λ
dλ−

∫
αl

λ
∂ logF (λ+ βl)

∂λ
dλ =

∫
αl

λ
∂ logF (λ)

∂λ
dλ

−
∫
αl

λ
∂ log(F (λ))

∂λ
−
∫
αl

λ
∂

∂λ

(
−πiBll − 2πi

∫ λ

P0

ωl + 2πiel

)
dλ = 2πi

∫
αl

λωl.

So this is exactly a constant contribute. It is also the only one, since if we take a sum of
integrals on the cycles βl and on β−1

l , we obtain that this sum is null for every l = 1, . . . , g.
Indeed, with the same remarks done before, we can consider every point on the cycle β−1

l

as a point of βl less then the α−1
l cycle. In this way, we have that:∫

βl

G(λ) +

∫
β−1
l

G(λ) =

∫
βl

λ
∂ logF (λ)

∂λ
−
∫
βl

λ
∂ logF (λ− αl)

∂λ
,

but this time, using the property of the funtion F given in 14.26, we have that F (P−αl) =
F (P ), and so the quantity above is null. Then we conclude that:

1

2πi

∫
∂S
G(λ)dλ =

g∑
l=1

∫
αl

λωl(λ).

2

Finally, combining lemma 16.5 and lemma 16.6 we can conclude the proof of theorem 16.3
by re-writing (16.14) in the form (16.4). 2

Remark 16.7 The integration of b1 is obtained by observing that the total momentum
is conserved and therefore

N∑
k=1

bk = Λ =
1

2

2N∑
j=1

λj ,

In this way, applying the theorem 16.1 we have that:

b1(t) = Λ−
N∑
k=2

bk

= Λ− (N − 1)

(
Λ∗ −

g∑
l=1

∫
αl

λωl(λ)

)
+

1

2

d

dt

(
log

Θ (tV +NU + φ0), B)

Θ (tV + U + φ0, B)

)
.

We obtain the integration of the Toda equations in the canonical variables by observing
that

q̇k = pk = −bk.

78



Therefore, direct integration gives

qk = −

(
Λ∗ −

g∑
l=1

∫
αl

λωl(λ)

)
t+

1

2

(
log

Θ
(
tV + (k − 1)c+ φ), B

)
Θ (tV + kc+ φ0, B)

)
+Kk,

for some integration constant Kk.
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