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Introduction
When dealing with Parametrized Partial Di�erential Equations the computational cost required by a large number of solutions for each new value of the
involved parameters may be una�ordably large. To mitigate that, di�erent methods have been studied in order to �nd solutions in a more e�cient way.
We combine the Hierarchical Model Reduction (HiMod) technique [5, 4, 1], developed for non-parametric equations over domains with a dominant �ow
direction, with a Reduced Basis method, to e�ciently tackle parameter dependence [3]. Depending on the construction of the reduced basis space we
end up with two reduced order techniques called HiRB (based on a Greedy algorithm [6]) and HiPOD (based on Proper Orthogonal Decomposition [2]).
We present results related to saddle point problems, in particular to Stokes equations, and Optimal Control problems.

1) Hierarchical Model Reduction (HiMod)
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HiMod is based on
the decomposition of
the domain into a
dominant �ow di-

rection Ω1D and a
transverse one, γx.

We de�ne a discrete Finite Element space V h
1D over Ω1D, while the trans-

verse direction is reconstructed by amodal basis so that we seek solutions
of the form:

vm(x, y) =

m
∑

i=1

ṽk(x)ϕk(y), ṽk(x) ∈ V h
1D, x ∈ Ω1D, y ∈ γx.

Modal basis functions ϕk are obtained as eigenfunctions of a Sturm-
Liouville problem.

2) HiPOD and HiRB

We use HiMod as the high �delity method employed for projection-based
reduction procedures. A faster o�ine stage is obtained replacing FE dis-
cretizations with HiMod computations. We study two di�erent methods:

• HiPOD: the reduced space is obtained applying a Proper Orthog-
onal Decomposition to a training set of HiMod solutions;

• HiRB: the reduced space is now enlarged step by step with the
HiMod solution related to the parameter value that maximizes the
error, i.e., by a Greedy algorithm.

5) HiPOD and HiRB for OCPs

The truth HiMod approximation for an OCP in its saddle-point formu-
lation is obtained de�ning three uniform hierarchical reduced spaces for
the state, control, adjoint variables. We reduce the problem thanks to the
POD or the Greedy algorithm as: �nd (xm,n

N (µ), pmN (µ)) ∈ X
m,n
N × Qm

N

such that
{

A(xm,n
N ,y

m,n
N ;µ) + B(ym,n

N , pmN ;µ) = 〈F(µ),ym,n
N 〉 ∀ym,n

N ∈ X
m,n
N ,

B(xm,n
N , qmN ;µ) = 〈G(µ), qmN 〉 ∀qmN ∈ Qm

N .

3) HiRB for ADR problems

These results are related to o�ine and on-

line solutions for an Advection-Di�usion-

Reaction PDE, where the parameters are al-
lowed to vary on very large ranges. The online
solution manifold is composed by 20 HiMod ba-
sis functions.

The trend of the H1 norm of the error is shown
on the right. A very good accuracy is reached
with a low number of basis functions. Thanks to
the dimension reduction, the ratio between of-
�ine (HiMod) and online (HiRB) computational
times (speedup) is of the order of 103.
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4) HiPOD and HiRB for Stokes equations

Consider the solution to Stokes equations in a sinusoidal pipe with non-
homogeneous and homogeneous Neumann conditions on the in�ow and
out�ow, respectively.

Online (HiRB) and o�ine (HiMod) solutions are in very good agreement,
i.e., the method is very accurate. These results are obtained with just 3
basis functions of the HiMod solution manifold.

6) HiRB for a linear-elliptic OCP

We consider the online and o�ine solutions for a parametrized elliptic dis-
tributed optimal control problem, where the state equation is a Graetz
�ow. The domain is a rectangle where we impose a non-homogeneous
Dirichlet boundary condition on the inlet and along lateral boundaries.
We use the Legendre polynomials as modal basis functions for the control
variable, and the solutions of a Sturm-Liouville problem as modal basis
functions for the state and adjoint variables.

7) HiRB accuracy for OCP problems

The Greedy algorithm: 100 samples and N = 20.
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