

POD–Galerkin reduced order methods for inverse and multi-physics problems in fluid dynamics M. Nonino¹, M. Strazzullo¹, Z. Zainib¹, F. Ballarin¹, and G. Rozza¹ ¹SISSA mathLab, Trieste, Italy

Introduction and Motivation

Parametrized inverse problems, such as optimal flow control problems (OFCP(μ)), data assimilation, and multi-physics applications, play an ubiquitous role in several fields of application, yet are usually very demanding from a computational standpoint. POD–Galerkin reduction allow us to solve them in a low-dimensional framework and in a fast and reliable way. Following [1, 2], we present some fluid-structure interaction problems in view further applications in multi-physics in cardiovascular modeling [4], employing a novel preprocessing proposed in [3]. Following a similar methodology, we also propose two applications to optimal flow control problems, for cardiovascular modeling and environmental marine applications [5], respectively.

Fluid-structure interaction problems

Problem: simulate the displacement in the time interval [0, T] of a thin structure Ω_t^s at the top of a 2D rectangle filled with a fluid Ω_t^f . **Model:**

		in $\Omega_t^f \times [0,T]$
	$\operatorname{div} \mathbf{u} = 0,$	in $\Omega^f_t \times [0,T]$
{	$\rho_s \partial_t \mathbf{u} - \operatorname{div} \mathbf{P}(\mathbf{d}, p) = \mathbf{b}_s,$	in Ω^s
	$\partial_t \mathbf{d} - \mathbf{u} = 0,$	in Ω^s ,
	$\partial_t \mathbf{d} - \operatorname{div} \sigma^e(\mathbf{d}) = 0,$	in $\Omega_t^f \times [0,T]$.

Discretization: we adopt an ALE formulation, which results in a nonlinear system of equations to be solved with monolithic approach. **Solution manifold preprocessing [3]:** once we have truth solutions $(\mathbf{u}, p, \mathbf{d})$ we define a map $F: \Omega \to \Omega$, smooth and invertible, so that the manifold of the preprocessed snapshots, obtained composing the original snapshots with the map F, features a lower Kolmogorov *n*-width. **Figure:** decay of the first singular values for the original and for the preprocessed displacements.

Figure: bases functions from 1 to 4 for original (first row) and for preprocessed displacements (second row): bases after preprocessing are more suitable to capture the transport effect by a reduction of the "frequency" of oscillations.

Optimal flow control for cardiovascular haemodynamics (with P. Triverio, L. Jimenez-Juan³)

Problem: Find optimal pair $(y(\mu), u(\mu))$ of state and control such that $\min_{(y,u)} \mathcal{J}(y(\mu), u(\mu))$ is satisfied subject to $\mathcal{F}(y(\mu), u(\mu); \mu) = 0$. **Solution:** Numerical approximation of solution to coupled optimality system via one-shot approach:

 $\nabla \mathcal{J} \left(y \left(\boldsymbol{\mu} \right), u \left(\boldsymbol{\mu} \right) \right) + \nabla \mathcal{F} \left(y \left(\boldsymbol{\mu} \right), u \left(\boldsymbol{\mu} \right) \right) \lambda = 0,$ $\mathcal{F} \left(y \left(\boldsymbol{\mu} \right), u \left(\boldsymbol{\mu} \right) \right) = 0$

Test case: Viscous Energy Dissipation and Pressure-Tracking with Distributed Control

$$\mathcal{J}(\boldsymbol{v}, p, \boldsymbol{u}) = \frac{\nu}{2} \int_{\Omega} |\nabla \boldsymbol{v}|^{2} + \frac{1}{2\nu} \int_{\Omega} (p - p_{d})^{2} + \frac{\alpha}{2} \int_{\Omega} |\boldsymbol{u}|^{2}$$
$$\begin{cases} -\nu \Delta \boldsymbol{v} + \boldsymbol{v} (\nabla \cdot \boldsymbol{v}) + \nabla p = \boldsymbol{u} & \text{in } \Omega\\ \nabla \cdot \boldsymbol{v} = 0 & \text{in } \Omega\\ \boldsymbol{v} = \boldsymbol{g} (\mu_{in}) & \text{on } \Gamma_{in} \end{cases}$$

here, \boldsymbol{v}, p and \boldsymbol{u} denote velocity, pressure and control

respectively and ν is the viscosity. Moreover, Ω is sim-

Work in progress: Reduced order optimal flow control on realpatient geometries.

In cardiovascular haemodynamics: Stateconstraints $\mathcal{F}(y, u; \mu)$ are Navier-Stokes equations. Cost-functional $\mathcal{J}(y, u; \mu)$ represents cardiovascular quantities of interest e.g. blood flow velocity, pressure drop, wall shear stress or viscous energy dissipation.

plified domain for arterial bifurcation.

on Γ_D on Γ_N

Figure: Pressure

 \mathcal{J} reduction: $\sim O(10^3)$

Geometry for triple coronary artery bypass grafts

Reduced $OFCP(\mu)$ in environmental sciences

1) Loss of pollutant in the Gulf of Trieste, Italy: concentration of the pollutant y under a safeguard y_d . Parameter $\mu \in [0.5, 1] \times [-1, 1] \times [-1, 1]$ describes regional winds action. \rightarrow Model: $\min_{(y,u) \in Y \times U} \frac{1}{2} \int_{\Omega_{OBS}} (y - y_d)^2 + \frac{\alpha}{2} \int_{\Omega_u} u^2$

s.t. $\int_{\Omega} (\mu_1 \nabla y \cdot \nabla q + [\mu_2, \mu_3] \cdot \nabla y q)) = L \, u \int_{\Omega_u} q.$

2) Nonlinear solution tracking North Atlantic Ocean: make the solution (ψ) similar to a current profile based on experimental data (Gulf Stream dynamics). Parameter $\boldsymbol{\mu} \in [0.07^3, 1] \times [10^{-4}, 1] \times$ $[10^{-4}, 0.045^2]$ describing the Ocean dynamic. \rightarrow Model: $\min_{(\psi, u) \in Y \times U} \frac{1}{2} \int_{\Omega_{OBS}} (\psi - \psi_d)^2 + \frac{\alpha}{2} \int_{\Omega_u} u^2$ s.t. $\mu_3 \frac{\partial \psi}{\partial x} \frac{\partial q}{\partial y} - \frac{\partial \psi}{\partial y} \frac{\partial q}{\partial x} = f - \mu_1 \Delta \psi + \mu_2 \Delta^2 \psi.$

Results environmental app. (with R. Mosetti⁴)

-6.2581

-12.516

1.531e+01

1) Gulf pollutant control

Left plot: Finite Element uncontrolled concentration.

Center plot: Reduced Order controlled concentration.

Right plot: Convergence error vs $N \ (\sim 10^{-8}).$

Dimension Comparison FE vs RB: 5939 vs 201.

2) Nonlinear Ocean dynamic

Left plot: Finite Element streamfunction profile.

Center plot: Reduced Order stream-function profile.

Right plot: Convergence error vs $N \ (\sim 10^{-7}).$

Dimension Comparison FE vs RB: 6490 vs 225.

References

- [1] F. Ballarin and G. Rozza. POD-Galerkin monolithic reduced order models for parametrized fluid-structure interaction problems. International Journal for Numerical Methods in Fluids, 82(12):1010–1034, 2016.
- [2] F. Ballarin, G. Rozza, and Y. Maday. chapter Reduced-order semi-implicit schemes for fluid-structure interaction problems, pages 149–167, MS&A vol.17, Springer International Publishing, 2017.
- [3] N. Cagniart, Y. Maday, and B. Stamm. Model order reduction for problems with large convection effects. 2016.
- [4] Z. Chen, F. Ballarin, G. Rozza, A. M. Crean, L. Jimenez-Juan, and P. Triverio. Non-invasive assessment of aortic coarctation severity using computational fluid dynamics: a feasibility study. *in 20th Annual Scientific Sessions, Society for Cardiovascular Magnetic Resonance*, Washington, DC, Feb. 1–4, 2017.
- [5] M. Strazzullo, F. Ballarin, R. Mosetti, and G. Rozza. Model reduction for parametrized optimal control problems in environmental marine sciences and engineering https://arxiv.org/abs/1710.01640. Submitted. 2017.

https://gitlab.com/RBniCS/RBniCS.git https://gitlab.com/multiphenics/multiphenics.git

Acknowledgements

We acknowledge the support by European Union Funding for Research and Innovation – Horizon 2020 Program – in the framework of European Research Council Executive Agency: Consolidator Grant H2020 ERC CoG 2015 AROMA-CFD project 681447 "Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics".

²LJLL, Paris VI, France; ³University of Toronto, Canada; ⁴OGS, Trieste