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Introduction
The Active Subspace property (AS) proposed by Trent Russi and devel-
oped by Paul Constantine [1] is employed in supervised dimensional reduc-
tion techniques. Dimension reduction in parameter studies confers benefits
in a great number of engineering applications [4]. One of the main rea-
sons behind it, is that parameter studies and scientific computing tasks are
affected by the curse of dimensionality: the methods involved scale expo-
nentially with the dimension of the parameters space making it unfeasible
to be applied unless increasing the computational budget.

The Active Subspace Property
Consider a Lipschitz continuous, differentiable and square-integrable func-
tion, its gradient vector and a sampling density

f : χ ⊂ Rm → R ∇f(x) ∈ Rm, ρ : Rm → R+

Take the uncentered covariance matrix of the gradient, evaluate its ap-
proximation with Monte Carlo and partition its eigendecomposition,

C =

∫
(∇xf)(∇xf)T ρ dx ≈ 1

M

M∑
i=1

(∇xf)(∇xf)T = WΛWT

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] , W1 ∈ Rm×l

where l is the dimension of the Active Subspace. Then the input data can
be decomposed as

x = WWTx = W1W
T
1 x + W2W

T
2 x = W1y + W2z.

Random Fourier Features
Thanks to Bochner theorem and Monte Carlo method we can approximate
the RBF-ARD kernel

k(x,x′) = σf exp− (x− x′)Λ(x− x′)
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with Random Fourier features [3]

k(x,x′) =

∫
Rm

eiw
T (x−x′)λ(w) dw ≈ 〈z(x), z(x′)〉

z(x) =

√
2

n
σf cos(Wx + b)

where n is the number of random Fourier features, b ∈ Rn is a uniform
sampled bias and W ∈ Rn×m is the projection matrix sampled from the
spectral measure λ obtained from the Bochner theorem

λ(w) = N (0, Λ−1)

The feature map φ : χ ⊂ Rm → H from the input space to the Reproducing
Kernel Hilbert Space can be approximated with z(x).

Non-linear Active Subspaces
The nonlinear extension (NAS) of Active Subspaces [2] is obtained applying
the usual procedure to the new simulation map f̃ : φ(χ) ⊂ H → R.
The gradient is approximated with the chain rule as solution of the over-
determined system

∂f̃

∂z
=

(
∂z

∂x

T
)†

∂f̃

∂x

∂zi
∂xd

= −
√

2

n
σf sin

 m∑
j=1

Wijxj + bi

Wid

where
(

∂z
∂x

T
)†

= ∂z
∂x

(
∂z
∂x

T ∂z
∂x

)−1
is the pseudo inverse matrix.

Application to Gaussian Process regression
The following Gaussian Process regressions (GPR) are the result of AS and NAS procedures applied to test cases with simulation functions given by the
piston function from the benchmarks of Constantine work and some hypersurfaces of revolution in R9 with different generatrices and input space [0, 2]8.

The piston function C models the cycle time of a piston within a
cylinder

C = 2π

√
W

k + S2 P0V0
T0

Ta
V 2

The parameters involved are the Piston Weight(W), the piston Sur-
face Area(S), the initial Gas Volume(V0), the spring Coefficient(k),
the atmospheric Pressure(P0), the ambient Temperature(Ta) and the
filling Gas Temperature(T0). They have different ranges and are
sampled uniformly.

AS RRMSE NAS RRMSE var NAS
parabola 0.076314 0.037359 0.003268
log 0.038513 0.031320 0.008919
piston 0.080755 0.076236 0.011082

M=1500 n=1000, the chosen dimension of the Active Subspace for
the GPR is l = 1, the relative root mean square error (RRMSE) of
NAS is estimated over 10 runs, the associated variance is reported.
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