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Introduction

When dealing with Parametrized Partial Differential Equations the computational cost required by a large number of solutions for each new value of the involved parameters
may be unaffordably large. To mitigate that, different methods have been studied in order to find solutions in a more effcient way (|1]).

In our work we exploit a PO approach to obtain the basis functions used to project the original problem and to reconstruct an approximate solution manifold. We focus on a new
reduced segregated approach for laminar flows and on a mixed projection-data driven technique for turbulent flows, in a Finite Volume framework ([3]).

Segregated methods: the reduced SIMPLE algorithm

Incompressible Navier-Stokes equations:

Turbulent flows: mixing projection and data-driven

The starting point in developing the ROM is the usual decomposition of the fields into a

UP Since the equations are coupled and block solvers re- sum of global spatial modes multiplied by temporal coefficients:
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are solved iteratively and one at a time. In order to be as coherent as possible, we

developed a segregated algorithm also at the reduced level.
The Reduced SIMPLE Algorithm

The reduced basis ¢;(x), x;(x) and n;(x) are computed by means of Proper Orthogo-
nal Decomposition (POD), which is implemented using the snapshots method. The
velocity snapshots matrix &, is given by:

Input: Tentative value of the velocity and pressure coefflicient vectors af; and ap k = 1, tolerance
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1: Reconstruct the first attempt full velocity and pressure fields: uo = Lua¥, po = LpaZ, We proceed to the projection step of the momentum equation of RANS. This step will
2: while res > tol do give the following dynamical system with the unknowns being the vectors of coeflicients

3: assemble reduced momentum equation Aj], = .LZ:AH.(uki]_,M)L'IL; b = LIb, (., pr_1); a and b:

4: compute reduced velocity residual — r, = |[Aja; | — byl Ma = l/(B + BT)a —a¥Ca + gT(Cm + Cro)a — Hb.

5 solve A} a;’ = b}, and reconstruct u; = Lya}; o . ) .

6:  assemble reduced pressure equation A7 = LT Ay (1) Lyp; b7 = LTby(p, u); In order to 'be able to use t.he? continuity equations we .ubed the supremizer enrichment
7: compute reduced pressure residual — rp, = |ALal | — b7 |; method which allows to project the continuity equation onto the pressure modes, the
8- solve ATa? = b7 and reconstruct py, = Lyal; resulting system is the following

9: res = max(ry,rp), k =k + 1;

10: end while

Mé =v(B + Br)a —a¥Ca+ g¥ (Cr1 + Cr2)a — Hb, 1)
Pa = 0.

Segregated methods: a paramet’rlzed VISCOSlt’y prOblem Interpolation using Radial Basis Functions (RBF) is used to approximate the value

The geometry is represented by a back step and the parameter we have choosen is the of the eddy viscoisty coefficients vector g [2]. First one can notice the following:
viscosity p € [0.01,1]. 50 snapshots have been solved to apply the POD. — v
/ I 1 Pl v = f(u) = g= fla)

The interpolation using RBF functions is based on the following formula :
N,
gL Grla) =) wy;Crj(la—al |gy.), for L=1,2.,N,,
j=1
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figure: reduced counterpart for the same value of the parame-
et ter. Only 10 basis functions have been used during projection
for both velocity and pressure fields. Bottom figure: com-

The presented results are for the benchmark case of the flow around a circular cylinder in
unsteady state setting. The case is without parameterization so the reduction is done on

L | g c time (both reproduction of the snapshots and extrapolation in time). The Reynolds
parison b et.fveen the L .1101'111 of‘the error for each value of the number is equal to 10000. The results shown are for the lift coefficient ;. The FOM
' evsatmassssnsmret parameter in the :crammg set for the old block ROM solver results are compared to those of both the Hybrid ROM (H-RONM ) and the Projection
| . (red) and for the SIMPLE ROM solver (blue). ROM (P-ROM) which is based on solving (1) neglecting the turbulent term in RANS
1 | equations. A quantitative convergence analysis is shown for the decay of the error with
the increase of the number of modes used in the H-ROM.

Segregated methods: a parametrized geometry problem |

o
One of the in-progress works in the group is relative to geometrical parametrization : @
and hyper-reduction ([4]). In this case the angle of attack of an airfoil has been
parametrized: « € [—10,10]. 100 snapshots have been solved, 40 basis functions have
been employed for the projection. The modified mesh is obtained by the use of radial @Q‘
basis functions interpolation.
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