
Linear systems - Direct methods

Numerical Analysis

Profs. Gianluigi Rozza - Luca Heltai

2019-SISSA mathLab Trieste

Linear systems - Direct methods – p. 1/76

Examples and motivation

Example 1 (Capillary bed).

Capillaries are microscopic blood vessels, the
smallest part of the circulatory system. The
capillaries are grouped in networks called cap-
illary beds, made of 10 to 100 capillaries, de-
pending on the tissue.
Blood arrives to the capillary bed through ar-
terioles. In the capillary bed an exchange of
oxigen and waste molecules takes place.
Then, the capillaries become venules and col-
lect the blood in veins to be transfered back to
the heart.

Linear systems - Direct methods – p. 2/76

We consider a model of capillary bed:

• We can model a certain portion of capillary system as a hydraulic
network where every capillary is represented as a pipe.

• We call nodes (small empty circles in the figure on the next page) the
points where several capillaries meet.

• The artery that feeds the system is represented as source at a constant
pressure of 50mmHg.

• We suppose the blood leaves the system through the venules (small

black circles in the figure) at a constant pressure (venous pressure),

fixed to the reference value zero (all other pressures will be referenced

to this one).

• The blood flows from the source to the sinks (we suppose in a constant

way) due to the pressure gradient.

Linear systems - Direct methods – p. 3/76

1

2
4 5

8 9 10 11 12 13 14 15
3

6 7

Q1Q2 Q3

Q4 Q5 Q6 Q7Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31

Linear systems - Direct methods – p. 4/76

We want to find the pressure distribution pj , j = 1, · · · , 15, and the flows

Qm, m = 1, · · · , 31, in the capillary network. To do this, we consider that:

• in every branch m of the network, m = 1, · · · , 31, we have the following relation,

called constitutive relation, between the blood flow Qm (mm3/s) and the pressure

(in mmHg) in the two nodes i and j at the end-points of each capillary

Qm =
1

RmLm

(pi − pj), (1)

where Rm is the hydraulic resistance per unit length (mmHg s/mm4) and Lm is

the length of the capillary m;

• at every node j of the network, j = 1, · · · 15, we impose the balance equation
between inflow and outflow:





∑

m entering

Qm



 −





∑

m exiting

Qm



 = 0,

where outflows have a negative value.

Linear systems - Direct methods – p. 5/76

For example, at the node 2 in the figure, the flow Q2 is an inflow and the flows Q4 and
Q5 are outflows, being the balance:

Q2 − Q4 − Q5 = 0.

By using for every flow the constitution relation (1) in the previous balance, we have

1

R2L2

(p1 − p2) −
1

R4L4

(p2 − p4) −
1

R5L5

(p2 − p5) = 0.

One such equation is obtained for every node in the network.
Remark: if we consider the balance for the node 1, we get

1

R1L1

(pr − p1) −
1

R2L2

(p1 − p2) −
1

R3L3

(p1 − p3) = 0.

Being the pressure pr constant, we move it to the right-hand side.

− 1

R1L1

p1 − 1

R2L2

(p1 − p2) −
1

R3L3

(p1 − p3) = − 1

R1L1

pr.

Linear systems - Direct methods – p. 6/76

In a similar way for the node 8

1

R8L8

(p4 − p8) −
1

R16L16

p8 − 1

R17L17

p8 = 0,

where we see that p16 = p17 = 0. Same process for the nodes 9, · · · , 15.

Writing the balance for every node after having substituted the constitution relation, we
get a system of linear equations for the pressures:

Ap = b, (2)

where p = [p1, p2, · · · , p15]
T is the unknown vector pressures at the nodes of the network,

A ∈ R
15×15 is the coeficient matrix of the system and b ∈ R

15 is the array of known data.

Linear systems - Direct methods – p. 7/76

Lets suppose that all capillaries have the same hydraulic resistance Rm = R = 1 and

that capillary length halves at each bifurcation (if L1 = 20, we’ll have L2 = L3 = 10,

L4 = L5 = L6 = L7 = 5 etc..), the following matrix A is generated:






























































− 1
4

1
10

1
10 0 0 0 0 0 0 0 0 0 0 0 0

1
10 − 1

2 0 1
5

1
5 0 0 0 0 0 0 0 0 0 0

1
10 0 − 1

2 0 0 1
5

1
5 0 0 0 0 0 0 0 0

0 1
5 0 −1 0 0 0 0.4 0.4 0 0 0 0 0 0

0 1
5 0 0 −1 0 0 0 0 0.4 0.4 0 0 0 0

0 0 1
5 0 0 −1 0 0 0 0 0 0.4 0.4 0 0

0 0 1
5 0 0 0 −1 0 0 0 0 0 0 0.4 0.4

0 0 0 0.4 0 0 0 −2 0 0 0 0 0 0 0

0 0 0 0.4 0 0 0 0 −2 0 0 0 0 0 0

0 0 0 0 0.4 0 0 0 0 −2 0 0 0 0 0

0 0 0 0 0.4 0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0.4 0 0 0 0 0 −2 0 0 0

0 0 0 0 0 0.4 0 0 0 0 0 0 −2 0 0

0 0 0 0 0 0 0.4 0 0 0 0 0 0 −2 0

0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 −2































































and b = [−5/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
T
.

Linear systems - Direct methods – p. 8/76

The problem of determining the pressures and flows in the network requires to solve a
linear system Ap = b.
In this case, the matrix A is symmetric and definite positive. This last property ensures
that the matrix A is not singular and thus that the system has a unique solution.
The solution is given by the vector

p = [12.46, 3.07, 3.07, 0.73, 0.73, 0.73, 0.73, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15]
T
.

Once we have the pressures, we can compute, using the relation (1), the flows:

Q1 = 1.88

Q2,3 = 0.94

Q4,··· ,7 = 0.47

Q8,··· ,15 = 0.23

Q16,··· ,31 = 0.12

Linear systems - Direct methods – p. 9/76

Linear distribution of pressures in the capillary bed computed from the pressures at

every node (solution of the system)

0

20

40

Linear systems - Direct methods – p. 10/76

Distribution of the flows in the capillary bed

1 5 10 15 20 25 30

0.5

1.0

1.5

Linear systems - Direct methods – p. 11/76

Example 2 (Hydraulic network). Let us consider a hydraulic network made
of 10 pipes.

p=10 bar

1

2

3

4

p=0

p=0

p=0

p=0

Q1

Q2

Q3

Q4 Q5

Q6

Q7

Q8

Q10

Q9

Linear systems - Direct methods – p. 12/76

The network is fed by a reservoir of water at constant pressure pr = 10 bar
(pressure values in this exercise are the difference between the “real” pressure

and the atmospheric pressure, in bar). For each pipe in the network, the

following relation between the water flow Q (m3/s) and the pressure (in bar)
holds at both pipe-ends

Q =
1

RL
(pin − pout), (3)

where R is the hydraulic resistance per unit length ((bar s)/m4) and L is the

legth (in m) of the pipeline. The resistance R depends on the pipe radius r
and the dynamic viscosity µ of the liquid, following the relation

R = 8µ/(πr4).

At every node of the network, the balance between inflows and outflows can
be set; for example for the node 2 in the figure, we have Q2 −Q9 −Q10 = 0
(outflows have a negative sign).

Linear systems - Direct methods – p. 13/76

We assume atmospheric pressure at the outlets (p = 0 bar). A typical
problem consists the pressure values and flows in the network. Using both
given relations, a linear system can be built for the pressure of a form:

Ap = b, (4)

where p = [p1, p2, p3, p4]
T is the vector of pressures (unknown) at the 4 nodes

of the network.

Linear systems - Direct methods – p. 14/76

The following table contains the relevant characteristics of the pipelines:

Pipe R L Pipe R L Pipe R L

1 0.2500 20 2 2.0000 10 3 1.0204 14

4 2.0000 10 5 2.0000 10 6 7.8125 8

7 7.8125 8 8 7.8125 8 9 2.0000 10

10 7.8125 8

Correspondingly, A and b are:

A =





−0.370 0.050 0.050 0.070

0.050 −0.116 0 0.050

0.050 0 −0.116 0.050

0.070 0.050 0.050 −0.202




, b =





−2

0

0

0




.

Linear systems - Direct methods – p. 15/76

The array of pressure values at the nodes is:

p = A−1b = [8.1172, 5.9893, 5.9893, 5.7779]T . We can finally compute, using

the relation (1), the flows (in m3/s):

Q1 0.3766 Q2 1.0640 Q3 0.1638

Q4 0.1064 Q5 0.0106 Q6 0.0958

Q7 0.0924 Q8 0.0924 Q9 0.0106

Q10 0.0958

Linear systems - Direct methods – p. 16/76

Example 3 (Economy/Logistic). We want to determine the situation of
equilibrium between demand and offer of certain goods. Let us consider that
m >= n factories produce n different products. They have to adapt their
productions to the internal demand (i.e. the goods needed as input by the

other factories) as well as to the external demand, from the consumers.
xi, i = 1, . . . , n is the total number of goods made by the factory i,
bi, i = 1, . . . , n is the corresponding demand from the market and
cij the amount produced by the factory i needed for the factory j to make
one unit of product.

Linear systems - Direct methods – p. 17/76

Interaction scheme between 3 factories and the market

Linear systems - Direct methods – p. 18/76

If we suppose that the relation between the different products is linear, the

equlibrium is reached when the vector x = [x1, . . . , xn]
T satisfies

x = Cx+ b,

where C = (cij) and b = [b1, . . . , bn]
T . Consequently, the total production x

is solution of the linear system :

Ax = b, where A = I − C.

Linear systems - Direct methods – p. 19/76

Formulation of the problem

We call linear system of order n (n positive integer), an expression of the form

Ax = b,

where A = (aij) is a given matrix of size n× n, b = (bj) is a given vector and
x = (xj) is the unknown vector of the system. The previous relation is
quivalent to the n equations

n∑

j=1

aijxj = bi, i = 1, . . . , n.

The matrix A is called non-singular if det(A) 6= 0; the solution x will be
unique (for any given vector b) if and only if the matrix associated to the linear
system is non-singular.

Linear systems - Direct methods – p. 20/76

In theory, if A is non-singular, the solution is given by the Cramer’s rule:

xi =
det(Bi)

det(A)
, i = 1, . . . , n,

where Bi is the matrix by substituting the i-th column of A by the vector b:

Bi =





a11 . . . b1 . . . a1n

a21 . . . b2 . . . a2n

...
...

...
an1 . . . bn . . . ann





↑
i

Linear systems - Direct methods – p. 21/76

Unfortunately, the application of this rule is unacceptable for the practical
solution of systems because the computational cost is of the order of (n+ 1)!

floating point operations (flops). In fact, every determinant requires n! flops.

Linear systems - Direct methods – p. 22/76

For example, the following table gives the time required by different computers
to solve a linear system using the Cramer rule (o.r. stands for “out of reach”):

Number of flops of the computer
n 109 (Giga) 1010 1011 1012 (Tera) 1015 (Peta)
10 10−1 sec 10−2 sec 10−3 sec 10−4 sec negligible
15 17 hours 1.74 hours 10.46 min 1 min 6 10−2 sec
20 4860 years 486 years 48.6 years 4.86 years 1.7 days
25 o.r. o.r. o.r. o.r. 38365 years

Alternative algorithms have to be developed. In the following sections, several
methods will be analysed.

Linear systems - Direct methods – p. 23/76

Triangular systems
A matrix U = (uij) is upper triangular if

uij = 0 ∀i, j : 1 ≤ j < i ≤ n

and a matrix L = (lij) is lower triangular if

lij = 0 ∀i, j : 1 ≤ i < j ≤ n.

Respectively, the system to be solved is called upper or lower triangular
system.
Remark: If a matrix A in non-singular and triangular, knowing that

det(A) =

n∏

i=1

λi(A) =

n∏

i=1

aii

(λi(A) being the i-th eigenvalue of A), we can deduce that aii 6= 0, for all
i = 1, . . . , n.

Linear systems - Direct methods – p. 24/76

If L is lower triangular and non-singular, the linear system Ly = b corresponds
to 





l11y1 = b1

l21y1 + l22y2 = b2
...
ln1y1 + ln2y2 + . . .+ lnnyn = bn

Thus:
y1 = b1/l11 , [1 operation]

and for i = 2, 3, . . . , n

yi =
1

lii

(

bi −
i−1∑

j=1

lijyj

)

. [1 + 2(i− 1) operations]

This algorithm is called forward substitutions algorithm.

Linear systems - Direct methods – p. 25/76

The forward substitutions algorithm requires n2 operations, whare n is the size
of the system:

1 +

n∑

i=2

(1 + 2(i− 1)) = 1 + (n− 1) + 2

n∑

i=2

(i− 1)

= 1 + (n− 1) + 2
n(n− 1)

2

= n2.

Linear systems - Direct methods – p. 26/76

If U is upper triangular and non-singular, the system Ux = y is:






u11x1 + . . .+ u1,n−1xn−1 + u1nxn = y1
...

un−1,n−1xn−1 + un−1,nxn = yn−1

unnxn = yn

Thus:
xn = yn/unn ,

and for i = n− 1, n− 2, . . . , 2, 1

xi =
1

uii

(

yi −
n∑

j=i+1

uijxj

)

.

This algorithm is called backward substitutions algorithm The cost is, once
again, n2 operations.

Linear systems - Direct methods – p. 27/76

The LU factorization method
(Sec. 5.3 of the book)

Let A = (aij) be a non-singular n× n matrix. Assume that there exist a matrix
U = (uij), upper triangular and a matrix L = (lij), lower triangular such that

A = LU. (5)

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

A L U=
0

0

We call (5) a factorization LU of A.

Linear systems - Direct methods – p. 28/76

If we know the factorization LU of A, solving the system Ax = b is equivalent
to solving two systems defined by triangular matrices. Indeed,

Ax = b ⇔ LUx = b ⇔
{
Ly = b,

Ux = y.

We can easily calculate the solutions of both systems:
• first, we use the forward substitutions algorithm to solve Ly = b

(order n2 flops);
• then, we use the backward substitutions algorithm to solve Ux = y

(order n2 flops).
It is required to find first (if possible) the matrices L and U (what requires a
number of operations of the order 2n3

3
flops).

Linear systems - Direct methods – p. 29/76

Example 4. Lets try to find a factorization LU in the case case where the
size of the matrix A is n = 2. We can write the equation (5) as

[
a11 a12

a21 a22

]

=

[
l11 0

l21 l22

][
u11 u12

0 u22

]

,

Or equivalently:

(a) l11u11 = a11, (b) l11u12 = a12,

(c) l21u11 = a21, (d) l21u12 + l22u22 = a22.

We have then a system (non-linear) with 4 equations and 6 unknowns; in
order to have the same number of equations and unknowns, we fix the
diagonal of L by taking l11 = l22 = 1. Consequently, from (a) and (b) we
have u11 = a11 and u12 = a12; finally, if we assume a11 6= 0, we obtain
l21 = a21/a11 and u22 = a22 − l21u12 = a22 − a21a12/a11 using the equations

(c) and (d).

Linear systems - Direct methods – p. 30/76

To determine a factorization LU of the matrix A of any size n, we apply the
following method.

1. The elements of L and U satisfy the non-linear system

min(i,j)∑

r=1

lirurj = aij , i, j = 1, . . . , n; (6)

2. The system (6) has n2 equations and n2 + n unknowns. We can wipe
out n unknowns if we set the n diagonal elements of L equal to 1:

lii = 1, i = 1, . . . , n.

We will see that in this case there exists an algorithm (Gauss
factorization) allowing us to efficiently compute the factors L and U .

Linear systems - Direct methods – p. 31/76

The Gauss elimination method

The Gauss elimination method transforms the system

Ax = b

in an equivalent system (i.e. with the same solution) of the form:

Ux = b̂,

where U is an upper triangular matrix and b̂ is a properly modified second
member.

This system can be solved by a backward substitutions method.

In the transformation, we essentially use the property that says that we do not
change the solution of the system if we add to a given equation a linear
combination of other equations.

Linear systems - Direct methods – p. 32/76

Let us consider an invertible matrix A ∈ R
n×n in which the diagonal element

a11 is assumed to be non-zero. we set A(1) = A and b(1) = b. We introduce
the multiplier

li1 =
a
(1)
i1

a
(1)
11

, i = 2, 3, . . . , n, A(1) =





a
(1)
11 ... a

(1)
1j ... a

(1)
1n

...
...

...
a
(1)
i1 ... a

(1)
ij

... a
(1)
in

...
...

...
a
(1)
n1 ... a

(1)
nj

... a
(1)
nn





where the a
(1)
ij represent the elements of A(1). Example:

A =




2 4 6

4 8 10

7 8 9



 =⇒ l21 =
4

2
, l31 =

7

2
.

The unknown x1 can be removed from the rows i = 2, . . . , n by substracting li1
times the first row and doing the same at the right-hand side.

Linear systems - Direct methods – p. 33/76

Let us define

a
(2)
ij = a

(1)
ij − li1a

(1)
1j , i, j = 2, . . . , n,

b
(2)
i = b

(1)
i − li1b

(1)
1 , i = 2, . . . , n,

where the b
(1)
i are the components of b(1) and we get a new system of the form





a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n

...
...

...
0 a

(2)
n2 . . . a

(2)
nn









x1

x2

...
xn




=





b
(1)
1

b
(2)
2

...
b
(2)
n




,

which will be written as A(2)x = b(2) and that is equivalent to the system we
had at the beginning.

Linear systems - Direct methods – p. 34/76

Once again we can transform this system by removing the unknown x2 from
the rows 3, . . . , n. By repeating this step we obtain a finite series of systems

A(k)x = b(k), 1 ≤ k ≤ n, (7)

where, for k ≥ 2, the matrix A(k) is of the form

A(k) =





a
(1)
11 a

(1)
12 a

(1)
1n

0 a
(2)
22 a

(2)
2n

...
. . .

...
0 . . . 0 a

(k)
kk . . . a

(k)
kn

...
...

...
...

0 . . . 0 a
(k)
nk . . . a

(k)
nn





,

where we assume a
(i)
ii 6= 0 for i = 1, . . . , k − 1.

Linear systems - Direct methods – p. 35/76

Gauss elimination method: diagram showing how the matrix A(k+1) is obtained from the matrix
A(k).

Linear systems - Direct methods – p. 36/76

It is clear that for k = n we obtain the following upper triangular system
A(n)x = b(n) :





a
(1)
11 a

(1)
12 a

(1)
1n

0 a
(2)
22 a

(2)
2n

...
. . .

...

0
. . .

...
0 a

(n)
nn









x1

x2

...

...
xn





=





b
(1)
1

b
(2)
2

...

...
b
(n)
n





.

To be consistent with the previous notation, we write as U upper triangular
matrix A(n). The elements a

(k)
kk are called pivots and have to be non-zero for

k = 1, . . . , n− 1.

Linear systems - Direct methods – p. 37/76

In order to make explicit the formulae to get from the k-th systm to the k + 1-th,
for k = 1, . . . , n− 1, we asssume that a(k)

kk 6= 0 and we define the multiplier

lik =
a
(k)
ik

a
(k)
kk

, i = k + 1, . . . , n, [(n− k) operations] (8)

we set then

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj , i, j = k + 1, . . . , n, [2(n− k)2 operations]

b
(k+1)
i = b

(k)
i − likb

(k)
k , i = k + 1, . . . , n. [2(n− k) operations]

(9)

Linear systems - Direct methods – p. 38/76

Remark 1. To perform the Gauss elimination,

2

n−1∑

k=1

(n− k)2 + 3

n−1∑

k=1

(n− k) =

2

n−1∑

p=1

p2 + 3

n−1∑

p=1

p = 2
(n− 1)n(2n− 1)

6
+ 3

n(n− 1)

2

operations are required, plus n2 operations for the resolution with the

backward substitutions method of the triangular system U x = b(n). By

keeping only the dominant elements (of order n3), we can say that the Gauss
elimination method has a cost of around

2

3
n3 operations.

Linear systems - Direct methods – p. 39/76

The following table shows the estimated computation time to solve a system
using the LU factorization in different computers:

Number of flops of the computer
n 109 (Giga) 1012 (Tera) 1015 (Peta)
102 7 10−4 sec negligible negligible
104 11 min 0.7 sec 7 10−4 sec
106 21 years 7.7 months 11 min
108 o.r. o.r. 21 years

Linear systems - Direct methods – p. 40/76

The Gauss method is only properly defined if the pivots a
(k)
kk are non-zero for

k = 1, . . . , n− 1. Unfortunately, knowing that the diagonal elements of A are
not zero is not enough to avoid null pivots during the elimination phase. For
example, the matrix A in (10) is invertible and its diagonal elements are
non-zero

A =




1 2 3

2 4 5

7 8 9



 , but we find A(2) =




1 2 3

0 0 −1

0 −6 −12



 . (10)

Nevertheless, we have to stop the Gauss method at the second step, because
a
(2)
22 = 0.

Linear systems - Direct methods – p. 41/76

Let Ai be the i-th main submatrix of A (i = 1, . . . , n− 1), i.e. the submatrix
made of the i first rows and columns of A:

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

A

Ai

i

i

and let di be the principal minor of A defined as di = det(Ai). We have the
following result.

Linear systems - Direct methods – p. 42/76

Proposition 1. (Proposition 5.1 in the book) For a given matrix A ∈ R
n×n,

its Gauss factorization exists and is unique iff the principal submatrices Ai

(i = 1, . . . , n− 1) are non-singular (i.e. the principal minors di are non-zero:

di 6= 0).

Remark: If di 6= 0 (i = 1, . . . , n− 1), then the pivots a
(i)
ii are also non-zero.

The matrix of the previous example does not satisfy this condition because
d1 = 1 but d2 = 0.

Linear systems - Direct methods – p. 43/76

There are some categories of matrices for which the hypothesis of the proposition (1) are fulfilled. In
particular, we mention:

1. (Strictly >) diagonal dominant by row matrices. A matrix A is said diagonal dominant
by row if

|aii| ≥
∑

j=1,...,n;j 6=i

|aij |, i = 1, . . . , n.

2. (Strictly >) diagonal dominant by column matrices. A matrix A is said diagonal
dominant by column if

|ajj | ≥
∑

i=1,...,n;i6=j

|aij |, j = 1, . . . , n.

Examples:







−4 1 2

2 5 0

−2 1 7






is diagonal dominant by row and by column, whereas







−3 1 2

2 5 0

−2 1 7






is only diagonal dominant by row.

Linear systems - Direct methods – p. 44/76

3. Symmetric definite positive matrices. A matrix A is symmetric if A = AT ; it is definite
positive if all its eigenvalues are positive, i.e.:

λi(A) > 0, i = 1, . . . , n.

Linear systems - Direct methods – p. 45/76

Gauss ∼ LU

We can show that the Gauss method is equivalent to the factorization A = LU

of the matrix A, with L = multiplier matrix and U = A(n).

More exactly:

A =





1 0 0

l21 1 0
... l32

. . .
...

...
. . .

. . . 0

ln1 ln,n−1 1





︸ ︷︷ ︸
L





a
(1)
11 a

(1)
12 a

(1)
1n

0 a
(2)
22 a

(2)
2n

...
. . .

...

0
. . .

...
0 a

(n)
nn





︸ ︷︷ ︸
U

.

Linear systems - Direct methods – p. 46/76

The matrices L and U only depend on A (and not on b), the same factorization
can be resused for solving several linear systems that share the same matrix
A but different vectors b.

The number of operations is then considerably reduced, since most of the
computational weight, around 2

3
n3flops, is due to the Gaussian elimination

process. Indeed, let us consider the M linear systems:

Axm = bm m = 1, . . . ,M

Donc:
• the cost of the factorization A = LU is 2

3
n3flops;

• the cost of the resolution of both triangular systems, Lym = bm and
Uxm = ym (m = 1, . . . ,M) is 2Mn2flops,

for a total of 2
3
n3 + 2Mn2flops which is much smaller than 2

3
Mn3flops

required to solve all the systems Gauss elimination method.

Linear systems - Direct methods – p. 47/76

The pivoting technique

It has been already noted that the Gauss method fails if a pivot becomes zero.

In that case, we can use a technique called pivoting that consists in exchanging
the rows (or the columns) of the system in such a way that no pivot is zero.

Linear systems - Direct methods – p. 48/76

Example 5. Let us go back to the matrix (10) for which the Gauss method
gives a null pivot at the second step. By just exchanging the second and the
third rows, we get a non-zero pivot and can execute one step further. Indeed,

A(2) =




1 2 3

0 0 −1

0 −6 −12



 =⇒ P2A
(2) =




1 2 3

0 −6 −12

0 0 −1



 ,

where P2 =




1 0 0

0 0 1

0 1 0



 is called permutation matrix.

Linear systems - Direct methods – p. 49/76

The pivoting strategy used for the example 5 can be generalized by finding, at
every step k of the elimination, a non-zero pivot among the elements of the
subcolumn A(k)(k : n, k). This is called a partial pivot change (by row).

Linear systems - Direct methods – p. 50/76

From (8) we know that a big value of lik (coming for instance from a small a(k)
kk)

can amplify the rounding errors affecting the elements a
(k)
kj .

Consequently, in order to ensure a better stability, we choose as pivot the
biggest element in module of the column A(k)(k : n, k), and the partial pivoting
is performed at every step, even if it is not strictly necessary (i.e. even if the
pivot is non-zero).

Linear systems - Direct methods – p. 51/76

An alternative method consists looking for the pivot in the whole submatrix
A(k)(k : n, k : n), performing what is called complete pivoting.

Remark that, whereas partial pivoting requires just an additional cost of n2

tests, complete pivoting needs some 2n3/3, what considerably increases the
cost of the Gauss method.

Linear systems - Direct methods – p. 52/76

In general, if at the step k we have to exchange the rows k and r, we will have
to multiply A(k) by the following permutation matrix Pk before continuing:

k →

r →





1

. . .
0 . . . 1

...
1 . . . 0

. . .
1





= Pk

↑ ↑
r k

This means we will consider PkA
(k) insted of A(k).

Linear systems - Direct methods – p. 53/76

We can prove that the result obtained is of the form:

PA = LU, (11)

being P = Pn−1Pn−2 . . . P2P1 (global permutation matrix). L is the multiplier
matrix (the new ones!) and U = A(n).

Once the matrices L, U and P have been calculated, the resolution of the
initial system is transformed into the resolution of the triangular systems

Ax = b =⇒ PAx = Pb =⇒
{
Ly = Pb,

Ux = y.

Remark that the coefficients of the matrix L have the same values as the
multipliers calculated by a factorization LU of the matrix PA without pivoting.

Linear systems - Direct methods – p. 54/76

If we use complete pivoting, it can be proved that we arrive to the following
result:

PAQ = LU

where P = Pn−1 . . . P1 is a permutation matrix that takes into account all
permutations by row, and Q = Q1 . . . Qn−1 is a permutation matrix that takes
into account all permutations by column. By construction, la matrix L is still
lower triangular, and its elements have a module lower or equal to 1.

As for the partial pivoting, the elements of L are the multipliers generated by
the factorization LU of the matrix PAQ with no pivoting.

Linear systems - Direct methods – p. 55/76

Once the matrices L, U , P and Q have been calculated, for solving the linear
system we notice that we can write

Ax = b ⇔ PAQ︸ ︷︷ ︸
LU

Q−1x︸ ︷︷ ︸
x∗

= Pb .

What brings us to the resolution of triangular systems

{
Ly = Pb,

Ux∗ = y.

and finally we compute
x = Qx∗.

Linear systems - Direct methods – p. 56/76

Remark 2. In Matlab/Octave, we can get the factorization of a matrix A
with the command

>> [L,U,P] = lu(A);

The matrix P is a permutation matrix. In the case where the matrix P is the
identity, the matrices L and U are the matrices we are looking for (such that

LU = A). Otherwise, we have LU = PA.

Linear systems - Direct methods – p. 57/76

Example. 2 (continued) In Matlab/Octave, we first need to define the
matrix A and the vector b of the linear system:

>> A = [-0.37, 0.05, 0.05, 0.07; 0.05, -0.116, 0, 0.05;...

0.05, 0, -0.116, 0.05; 0.07, 0.05, 0.05, -0.202];

>> b = [-2; 0; 0; 0];

Then, we can use the command \ as follows:

>> x = A\b

x =

8.1172

5.9893

5.9893

5.7779

This command computes the solution of the system with ad hoc algorithms
(it tests the matrix to choose an optimal algorithm).

Remark: the pressures at the nodes 2 and 3 are the same (by symmetry).

Linear systems - Direct methods – p. 58/76

If we wanted to use the LU factorization:

>> [L,U,P] = lu(A);

>> y = L\(P*b);

>> x = U\y

x =

8.1172

5.9893

5.9893

5.7779

The solution is the same. We can verify that, in this case, no permutation
takes place (P is the identity matrix):

>> P

P =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Linear systems - Direct methods – p. 59/76

Remark 3. Using the LU factorization, obtained by fixing the value 1 for
the n diagonal elements of L, we can calculate the determinant of a square

matrix with O(n3) operations, because

det(A) = det(L) det(U) = det(U) =

n∏

k=1

ukk;

indeed, the determinant of a triangular matrix is is the product of the
diagonal elements. The Matlab/Octave command det(A) makes use of this.

Linear systems - Direct methods – p. 60/76

The inverse matrix

If A is a n× n non-singular matrix, let us call x(1), . . . ,x(n) the columns of its
inverse matrix A−1 i.e. A−1 = (x(1), . . . ,x(n)).
The relation AA−1 = I can be expressed by the following n systems : for
1 ≤ k ≤ n,

Ax(k) = e(k), (12)

where e(k) is the column vector with all the elements equal to 0 except the one
corresponding to the k-th row, which equals 1.
Once we know the matrices L and U that factorizes A, solving the n systems
(12) defined by the same matrix A requires 2n3 operations.

Linear systems - Direct methods – p. 61/76

The Cholesky factorization

In the case where the n× n matrix A is symmetric and positive definite, there
exists a unique upper triangular matrix R with positive diagonal elements such
that

A = RTR.

This factorization is called Cholesky factorization. In Matlab/Octave, the
command
>> R = chol(A)

can be used to compute R.

Linear systems - Direct methods – p. 62/76

The elements rij of R can be calculated using the expressions r11 =
√
a11 and

for i = 2, . . . , n :

rji =
1

rjj

(

aij −
j−1∑

k=1

rkirkj

)

, j = 1, . . . , i− 1, (13)

rii =

√√√√aii −
i−1∑

k=1

r2ki (14)

The Cholesky factorization needs around n3

3
operations (half the operations for

a LU factorization).

Linear systems - Direct methods – p. 63/76

Example 6. In Matlab there are several families of predefined matrices (see help

gallery). Let us consider the family of the Lehmer matrices, that are positive definite

and thus candidates for a Cholesky factorization. We want to calculate the cost of the
Cholesky factorization for matrices of size n = 10, 20, 30, 40 and 50.

Remark : In the version 5 of Matlab there was available the command flops which

allowed to calculate the number of operations executed. Unfortunately, in the new

version 6 of Matlab, this command has been removed (due to the integration in Matlab

of certain linear algebra libraries). This example can’t be executed on Matlab 6:

>> fl=[];

>> for n=10:10:50

A=gallery(’lehmer’,n);

flops(0)

R=chol(A);

fl = [fl, flops];

end

Linear systems - Direct methods – p. 64/76

We get the number of flops for the different sizes

>> fl

fl =

385 2870 9455 22140 42925

that grow proportionally to n3. Indeed, if we calculate the ratio fl(n)/n3 we find a

“quasi” constant value.

>> n=[10, 20, 30, 40, 50];

>> fl./(n.^3)

ans =

0.3850 0.3588 0.3502 0.3459 0.3434

Remark that this value is approximately 1
3 . Thus, we can say that the computational

cost of the Cholesky factorization is of order 1
3n

3, or half the cost of the Gauss

elimination method.

Linear systems - Direct methods – p. 65/76

Memory space limitations

Example. 1 (continued) Let A be a matrix of size 127 × 127 corresponding to

capillary bed with 8 bifurcation levels. This matrix is symmetric definite positive. The

number of non-null entries of A is 379 and thus much smaller than (127)2 = 16129. It is

a sparse matrix. The figure on the left shows the disposition of the non-null entries of A,
whereas the one on the right shows the non-null entries of the matrix R.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 379
0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 4222

Linear systems - Direct methods – p. 66/76

Example 7. Let us consider the problem of calculating the deformations in
a structure subject to a given set of forces. The discretization using the finite
elements method generates a matrix A of size 150× 150. (The same matrix
would have been produced by the approximation of an electric potential
field.) This matrix is symmetric definite positive. The number of non-null

entries of A is 964, and thus much smaller than (150)2 = 22500. It is a sparse
matrix.

Linear systems - Direct methods – p. 67/76

The figure on the left shows the disposition of the non-null entries of A,
whereas the one on the right shows the non-null entries of the matrix R.

Linear systems - Direct methods – p. 68/76

We notice that the number of non-null entries of R is much bigger than
those of A (fill-in phenomenon). This leads to a bigger memory usage.
To reduce the fill-in phenomenon, we can we can re-order rows and columns
of A in a particular fashion; this is called re-ordering of the matrix. There
are several algorithms that allow us to do this (Matlab command: symand).

Linear systems - Direct methods – p. 69/76

For example, the following figure shows, on the left, one possibility of
reordering A, while the one on the right shows the disposition of the non-null
entries of the Cholesky factorization of the reordered matrix A.

0 50 100 150

0

50

100

150

i

Nombre d’ éléments non nuls : 964

j

0 50 100 150

0

50

100

150

i

Nombre d’ éléments non nuls : 1583

j

Linear systems - Direct methods – p. 70/76

Precision limitations
Example 8. Rounding errors can induce important differences between the calculated

solution using the Gauss elimination method (GEM) and the exact solution. This

happens when the conditioning of the matrix of the system is very big.

The Hilbert matrix of size n × n is a symmetric matrix defined by:

Aij =
1

i + j − 1
, i, j = 1, . . . , n

In Matlab/Octave, we can build a Hilbert matrix of any size n with the command A =

hilb(n). For example, for n = 4, we get:

A =











1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7











We consider the linear systems Anxn = bn where An is the Hilbert matrix of size n with
n = 4, 6, 8, 10, 12, 14, . . ., whereas bn is chosen such that the exact solution is

xn = (1, 1, · · · , 1)T .

Linear systems - Direct methods – p. 71/76

For every n, we calculate the conditioning of the matrix, we solve the linear system by

LU factorization and we get xLU
n as the found solution. The obtained conditioning as

well as the error ‖xn − xLU
n ‖/‖xn‖ (where ‖ · ‖ is the euclidian norm of a vector,

‖x‖ =
√
xT · x) are shown in the figure below.

0 5 10 15
10−20

10−15

10−10

10−5

100

105

1010

1015

1020

K2(A)
||xLU−x||/||x||

n

Linear systems - Direct methods – p. 72/76

Considerations on the precision (Sect. 5.5)

The methods we have seen until now allow us to find the solution of a linear
system in a finite number of operations. That is why they are called direct
methods. However, there are cases where these methods are not satisfactory.

Definition 1. We call conditioning of a matrix M , symmetric definite
positive, the ratio between the maximum and minimum of its eigenvalues, i.e.

K(M) =
λmax(M)

λmin(M)

Linear systems - Direct methods – p. 73/76

It can be shown that, the bigger the conditioning of a matrix, the worse the
solution obtained by a direct method.
For example, let us consider a linear system Ax = b.
If we solve this system with a computer, due to rounding errors, we will not find
the exact solution x but an approximate solution x̂. The following relationship
can be shown :

‖x− x̂‖
‖x‖ ≤ K(A)

‖r‖
‖b‖ (15)

where r is the residual r = b−Ax̂; we write as ‖v‖ =
(∑n

k=1 v
2
k

)1/2 the
Euclidean norm of a vector v.
Remark that, if the conditioning of A is big, the distance ‖x− x̂‖ between the
exact solution and the numerically computed solution can be very big even if
the residual is very small.

Linear systems - Direct methods – p. 74/76

Proof for (15) : Let A be a symmetric definite positive matrix, we can
consider the n eigenvalues λi > 0 and the associated unitary eigenvectors
{vi}, i = 1, . . . , n: Avi = λivi, i = 1, . . . , n. These vectors form an
orthonormal base of Rn, what means vT

i vj = δij for i, j = 1, . . . , n. For any
w ∈ R

n, if we write it as

w =

n∑

i=1

wivi,

we have

‖Aw‖2 = (Aw)T (Aw)

= (λ1w1v
T
1 + . . . λnwnv

T
n)(λ1w1v1 + . . . λnwnvn)

=

n∑

i,j=1

λiλjwiwjv
T
i vj =

n∑

i,j=1

λiλjwiwjδij =

n∑

i=1

λ2
iw

2
i .

Linear systems - Direct methods – p. 75/76

And yet, as ‖w‖2 =
∑n

i=1 w
2
i , we get ‖Aw‖2 ≤ λ2

max‖w‖2, i.e.
‖Aw‖ ≤ λmax‖w‖ where λmax is the biggest eigenvalue of A.

As the eigenvalues of A−1 are 1/λi, we also get
‖A−1w‖ ≤ 1

λmin
‖w‖ ∀w ∈ R

n, where λmin is the smallest eigenvalue of A.
Thus, we have

‖x− x̂‖ = ‖A−1r‖ ≤ 1

λmin
‖r‖,

‖b‖ = ‖Ax‖ ≤ λmax‖x‖,

from where we directly find the inequality (15). �

Linear systems - Direct methods – p. 76/76

	Linear systems - Direct methods
	Examples and motivation
	
	
	
	
	
	
	Formulation of the problem
	
	
	Triangular systems
	
	
	
	The LU factorization method
	
	
	The Gauss elimination method
	Gauss $sim $ LU
	The pivoting technique
	The inverse matrix
	The Cholesky factorization
	Memory space limitations
	
	Precision limitations
	Considerations on the precision (Sect. 5.5)

