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1. Introduction & motivation
Reduced order methods for parametrized optimal flow control problems
(OFCP(µµµ)) are a reliable and rapid approach to manage wide classes of prob-
lems, in different fields [2, 3]. We focus on applications in life sciences, specifically in
biomedical and environmental sciences.
Among biomedical problems, we focus on the application of reduced order optimal
flow control framework in patient-specific hemodynamics modeling along with
patient-specific geometrical data assimilation for coronary artery bypass grafts
(CABGs)[1, 5]. Applications arising in environmental marine sciences and engi-
neering are also presented: reduced optimal control framework is a useful approach
to monitor, manage and predict (possibly dangerous) marine phenomena [4].

2. Reduced order parametrized optimal control model
Problem description: Let D ⊂ Rp, p ∈ N be a set of parameters characterizing geometrical
and/or physical properties, F be residual of non-linear partial differential equations modeling fluid
flow state and J be a desired objective functional. Parametrized optimal flow control problem is
defined as:

Given µ ∈ D, find optimal pair (s (µ) ,u (µ)) of fluid state and control variables such that
min

(s(µ),u(µ))
J (s,u;µ) subject to F (s,u;µ) = 0.

For solution methodology we adopt optimize-discretize-reduce approach. The optimization step
comprises of derivation of coupled optimality system in monolithic structure, by satisfying first
order Karush-Kuhn-Tucker optimality conditons for Lagrangian L with adjoint z, that is,

∇L (s,u,z;µ) [ξ,π,κ] = ∇ (J (s,u;µ) + 〈F (s,u;µ) ,z〉) [ξ,π,κ] = 0 (1)

We implement Galerkin finite element methods to discretize and numerically approximate the so-
lution to system (1), however the computations need to be performed in repetitive environment
for different parametrized scenarios and hence, require days. To overcome this high computational
expense, we utilize proper orthogonal decomposition (POD)–Galerkin which constructs a
reduced order manifold from Galerkin finite element solutions preserving sufficient energy such that
full order solution manifold is approximated by the reduced order manifold. We, then, explore
solution in the reduced order spaces with computational expense of a few seconds thanks to
low dimensions of solution spaces and offline-online phase decomposition of POD–Galerkin.

3(a). Aims in marine sciences

Loss of pollutant in the Gulf of Tri-
este, Italy:
we bring the concentration of the pollu-
tant y under a safeguard yd.
Nonlinear solution tracking North
Atlantic Ocean:
match the solution (y) to a current
profile based on experimental data
(Gulf Stream dynamics) yd
In both cases we minimise the functional
1

2
‖y(µµµ)− yd(µµµ)‖2L2(ΩOBS)+

α

2
‖u(µµµ)‖2L2(Ωu)

with respect

(y, u) ∈ H1(Ω) × L2(Ωu) trough a dis-
tributed control.

4(a). Biomedical applications

Patient-specific coronary
artery bypass grafts (CABGs)
constructed from clinical images
as computational domain Ω.

Objectives:

(i). Tracking patient-specific clinically
acquired physiological data (vd) through
minimization of J =

∫
Ω
|v − vd|2dΩ.

(ii). Quantifying outflow boundary condi-
tions through boundary control u (∂Ω) to
achieve (i).
(iii). Simulating different µ-dependent
hemodynamics scenarios to achieve (i), in
real-time.

3(b). Applications in environmental marine sciences (with R. Mosetti2)

Loss of pollutant in the Gulf of Trieste, Italy
The parameter µµµ ∈ [0.5, 1]× [−1, 1]× [−1, 1] describes regional winds action
and how they affect the diffusion of the pollutant.

State Equation: Advection Diffusion µ1∆y + [µ2, µ3] · ∇y = χΩuu

Boundaries:
ΓD = coasts, ΓN = Adriatic Sea.
Subdomains:
ΩOBS = Area of Miramare;
Ωu = Source of pollutant (in front of
the city of Trieste).

Comments:
We reproduced the actual physical domain thanks to satellite images. We solved an
uncontrolled pollutant loss in order to understand how to manage this kind of dangerous
situation. Reduced and Finite Element solutions match. The norm error between
Finite Element and reduced solution is shown with respects the basis number N (∼ 10−7).
Time of a run: tN = 2.79s, tN = 2.41 · 10−2s. Dimensions: N = 5639 and N = 20.

Nonlinear solution tracking North Atlantic Ocean:
The parameter µµµ ∈ [0.073, 1]× [10−4, 1]× [10−4, 0.0452] describes the actual diffusivity and
advection effects of the Ocean dynamic.

State Equation: Quasi-Geostrophic Equations µ3
∂y

∂x1

∂q

∂x2
− ∂y

∂x1

∂q

∂x2
= u− µ1q + µ2∆q,

where q = ∆y and no slip boundary conditions are applied.

Streamline Formulation: y =
streamfunction, q = −vorticity.
The velocity field uuu of Oceanic
current could be recovered by
(u1, u2) = (yx2

,−yx1
)

Domains: ΩOBS = Ωu = Ω.

Comments:
We reproduced the Florida peninsula working on satellite images. Experimental data
helped us to build the target function yd. Desired state, reduced and Finite Element
solutions match. The norm error between Finite Element and reduced solution is shown
with respects the basis number N (∼ 10−8). Time of a run: tN = 5.59s, tN = 2.38·10−1s.
Dimensions: N = 6490 and N = 25.

4(b). Applications in cardiovascular problems (with P. Triverio3 and L. Jiménez-Juan4)
We assume blood to be Newtonian fluid and vessel walls to be rigid and non-permeable. Furthermore, we consider steady Navier-Stokes
equations to model blood flow, that is,

• Γin := inlets

• Γw := walls

• Γo := outlets



−η∆v (µ) + (v (µ) · ∇)v (µ) +∇p (µ) = 0, in Ω

∇ · v (µ) = 0, in Ω

v (µ) = vin (µ), on Γin

v (µ) = 0, on Γw

η∇v (µ) · n− p (µ)n = u (µ) on Γo

J (v (µ) , p (µ) ,u (µ)) = 1
2

∫
Ω |v (µ) − vd|2 + α

2

∫
Γo
|u (µ) |2

Parametrized Poiseuille inflow velocity:

vin (µ) = − ηµ
Rin

(
1− r2

R2
in

)
nin,

where nin is outward normal to inlet

Parabolic desired velocity:
vd = vo

(
1− r2

R2

)
tc, where

tc is tangent along axial direction of centerlines

Case I: Single graft connection: between right internal mammary artery and left anterior descending artery. µ = Re ∈ [70, 80].

FE approx. of

velocity

POD approx. of

velocity

Boundary control

magnitude

Relative error for

variables

Relative error for

reduction in J

Results showed that a total of 55 reduced bases
sufficiently approximate Galerkin finite element
spaces comprising of 433288 degrees of freedom,
along with ∼ O

(
107

)
reduction in relative er-

ror for each variable and similar behavior for
J . Moreover computational time is reduced from
1214.3 seconds to 109.3 seconds (online phase).

Case II: Double graft connections: between right internal mammary artery (RIMA) and left anterior descending artery (LAD), and
saphenuous vein (SV) and first obtuse marginal artery (OM1). µ =

(
Re|Γin1

, Re|Γin2

)
∈ [45, 50]× [70, 80], where Γin1 denotes inlets of SV

and OM1 and Γin2 denotes inlets of RIMA and LAD. vo = 350mm/s.

FE approx. of

velocity

POD approx. of

velocity

Boundary control magnitude Relative error for

variables

Relative error for re-

duction in J

Results showed that a total of 93 reduced bases
sufficiently approximate Galerkin finite element
spaces comprising of 715462 degrees of freedom,
along with ∼ O

(
106

)
reduction in relative er-

ror for each variable and similar behavior for
J . Moreover computational time is reduced from
1848.13 seconds to 202.27 seconds (online phase).

5. Softwares

mathlab.sissa.it/rbnics
mathlab.sissa.it/multiphenics

6. Future perspectives

In environmental sciences a needed de-
velopment involves time dependent
optimal control problems. This for-
mulation could be applied in climato-
logical applications, in order to fore-
cast and predict possible scenarios in a
reliable way. The time dependent model
will make simulations more realistic and
suited to actual ecological and environ-
mental challenges, as well as more com-
putationally demanding. Therefore, re-
duced order modeling is a suitable and
versatile approach to be exploited.
Furthermore, for cardiovascular appli-
cations we propose integration of this
framework with shape parametrization
and implementation of reduced order
methods to gain reduction in para-
metric spaces, in addition to re-
duced solution spaces. This shall better
predict hemodynamics behavior based
on computations in different steno-
sis shape-dependent scenarios and
thus, the model shall be more feasible
for clinical studies.
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