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Examples and motivations

Example 1. (Biology) Consider a population y of bacteria in a confined
environment in which no more than B elements can coexist. Assume that, at
the initial time, the number of individuals is equal to y0 ≪ B and the growth
rate of the bacteria is a positive constant C. In this case the rate of change
of the population is proportional to the number of existing bacteria, under
the restriction that the total number cannot exceed B. This is expressed by
the differential equation

y′(t) = Cy(t)

(

1− y(t)

B

)

, t > 0, y(0) = y0. (1)

The resolution of this equation allows find the evolution of population over
time.
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Consider two populations, y1 and y2, where y1 are the prey and y2 are the
predators. The evolution of the two populations is described by the
simultaneous differential equations

{

y′1(t) = C1y1(t) [1− b1y1(t)− d2y2(t)] ,

y′2(t) = −C2y2(t) [1− b2y2(t)− d1y1(t)] ,
(2)

where C1 and C2 represent the growth rates of the two populations. The
coefficients d1 and d2 govern the type of interaction between the two
populations, while b1 and b2 are related to the available quantity of nutrients.
The above equation are called the Lotka-Volterra equations.
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Introduction

Consider a continuous function f : R+ × R → R. For given y0 ∈ R, we search
y : t ∈ I ⊂ R+ → y(t) ∈ R that satisfies the following problem, called the
Cauchy problem:

{

y′(t) = f(t, y(t)) ∀t ∈ I

y(t0) = y0
(3)

where y′(t) = dy(t)

dt
.
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Examples
• A Cauchy problem can be linear, such as:

{

y′(t) = 3y(t)− 3t if t > 0

y(0) = 1
(4)

with f(t, v) = 3v − 3t. The solution is y(t) = (1− 1/3)e3t + t+ 1/3.
• We have also nonlinear problems, such as

{

y′(t) = 3
√

y(t) if t > 0

y(0) = 0
(5)

with f(t, v) = 3
√
v. This problem has got three following solutions : y(t) = 0,

y(t) =
√

8t3/27, y(t) = −
√

8t3/27.
• For the following problem:

{

y′(t) = 1 + y2(t) if t > 0

y(0) = 0
(6)

a solution is a function y(t) = tan(t) where 0 < t < π
2

, i.e. a local solution.
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Theorem 1 (Cauchy-Lipschitz, proposition 7.1 in the book). If a function

f(t, y) is

1. continuous with respect to both its arguments;

2. Uniformly Lipschitz-continuous with respect to its second argument,
that is, there exists a positive constant L (named Lipschitz constant)
such that

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2| ∀y1, y2 ∈ R, ∀t ∈ I, (7)

Then the solution y = y(t) of the Cauchy problem (3) exists, is unique and

belongs to C1(I).
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Example 2. Consider a problem (4) and we check it exists a unique global
solution.
In this case f(t, v) = 3v − 3t and we have:

|f(t, y1)− f(t, y2)| = |3y1 − 3t− (3y2 − 3t)| = |3y1 − 3y2| ≤ 3|y1 − y2|

so

|f(t, y1)− f(t, y2)| ≤ L|y1 − y2| ∀y1, y2 ∈ R, ∀t > 0, where L = 3.

So f satisfies the assumptions of Theorem 1 and we can say that the problem
(4) has got a unique global solution.
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Numerical differentiation

Let y : [a, b] → R be C1 and tn ∈ [a, b]. The derivative y′(tn) is given by

y′(tn) = lim
h→0+

y(tn + h)− y(tn)

h
,

= lim
h→0+

y(tn)− y(tn − h)

h
,

= lim
h→0

y(tn + h)− y(tn − h)

2h
.
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Let t0, t1, . . . , tNh
, Nh + 1 be equidistributed nodes at [t0, tNh

]. Let
h = (tNh

− t0)/Nh be the distance between two consecutive nodes.
Let (Dy)n be an approximation of y′(tn). We say

• Forward finite difference if

(Dy)Pn =
y(tn+1)− y(tn)

h
, n = 0, . . . , Nh − 1 (8)

• Backward finite difference if

(Dy)Rn =
y(tn)− y(tn−1)

h
, n = 1, . . . , Nh (9)

• Centered finite difference if

(Dy)Cn =
y(tn+1)− y(tn−1)

2h
, n = 1, . . . , Nh − 1 (10)
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The error in the finite difference
If y ∈ C2(R) for all t ∈ R, then there exists ξn between tn and t such that
(using the Taylor expansion)

y(t) = y(tn) + y′(tn)(t− tn) +
y′′(ξn)

2
(t− tn)

2. (11)

• For t = tn+1 in (11), we obtain

y(tn+1)− y(tn) = y′(tn)h+
y′′(ξn)

2
h2,

so the forward finite difference is given by

(Dy)Pn =
y(tn+1)− y(tn)

h
= y′(tn) +

h

2
y′′(ξn).

In particular,
|y′(tn)− (Dy)Pn | ≤ Ch, where C =

1

2
max

t∈[tn,tn+1]
|y′′(t)|.

Ordinary differential equations – p. 11/85



• For t = tn−1 in (11), we obtain

y(tn−1)− y(tn) = y′(tn)(−h) +
y′′(ξn)

2
(−h)2,

so the backward finite difference is given by

(Dy)Rn =
y(tn)− y(tn−1)

h
= y′(tn)−

h

2
y′′(ξn).

In particular,
|y′(tn)− (Dy)Rn | ≤ Ch,

where C = 1
2
maxt∈[tn−1,tn] |y′′(t)|.
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• For t = tn+1 and t = tn−1 with expansion of order 2 (if y ∈ C3(R))

y(tn+1) = y(tn) + y
′
(tn)h +

y′′(tn)

2
h
2
+

y′′′(ξn1 )

6
h
3
,

y(tn−1) = y(tn) − y
′
(tn)h +

y′′(tn)

2
h
2
−

y′′′(ξn2
)

6
h
3
,

we obtain

y(tn+1) − y(tn−1) = 2y
′
(tn)h +

y′′′(ξn1
) + y′′′(ξn2

)

6
h
3
,

and

(Dy)
C
n =

y(tn+1) − y(tn−1)

2h
= y

′
(tn) +

y′′′(ξn1
) + y′′′(ξn2

)

12
h
2
.

It has the following estimation

|y
′
(tn) − (Dy)

C
n | ≤ Ch

2
,

where C = 1
6 maxt∈[tn−1,tn+1] |y

′′′(t)|.
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Definition 1. The difference τn(h) = |y′(tn)− (Dy)Pn | is called truncation
error in the point tn. We say that τn is of order p > 0 if

τn(h) ≤ Chp,

for a positive constant C.

Thanks to the found estimation, the truncation error of the forward and the
backward finite difference is of order 1; the truncation error of centered finite
difference is of order 2.
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The finite difference method
FOR APPROXIMATION THE CAUCHY PROBLEM (Chapt. 7.3 in the book)

Let 0 = t0 < t1 < . . . < tn < tn+1 < . . . be an equidistributed sequence of real
numbers and h = tn+1 − tn be the time step. We denote by

un an approximation of y(tn).

In the Cauchy problem (3), for t = tn, we have

y′(tn) = f(tn, y(tn)).

We want to approximate the derivative y′(tn) in the point tn. We can use a
finite difference differentiation.
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Forward Euler







un+1 − un

h
= f(tn, un) for n = 0, 1, 2 . . . , Nh − 1

u0 = y0

(12)

Backward Euler







un+1 − un

h
= f(tn+1, un+1) for n = 0, 1, 2 . . . , Nh − 1

u0 = y0

(13)
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Centered scheme



















un+1 − un−1

2h
= f(tn, un) for n = 1, 2 . . . , Nh − 1

u0 = y0

u1 to determine

(14)
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Remark 1.

• The forward Euler is eplicit because un+1 depends on un explicitly:

(forwardEuler) un+1 = un + hf(tn, un).

• The backward Euler is implicit because un+1 is implicitly defined in
terms of un:

(backwardEuler) un+1 = un + hf(tn+1, un+1).
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In general, for the backward Euler, we have to solve a nonlinear equation at each time step.
Fixed point iterations: Note that (backward Euler) is equivalent to a fixed point problem with

un+1 = φ(un+1) = un + hf(tn+1, un+1) (15)

We can solve this problem thanks to the following iterations

u
k+1
n+1 = φ(u

k
n+1), k = 0, 1, 2, . . . (16)

The Newton method: Starting from the equation:

F (un+1) ≡ un+1 − φ(un+1) = 0, (17)

we use the following iterations:

u
k+1
n+1 = u

k
n+1 −

F (uk
n+1)

F ′(uk
n+1)

= u
k
n+1 −

F (uk
n+1)

1 − φ′(uk
n+1)

, k = 0, 1, 2, . . . (18)

In both cases, we have limk→∞ uk
n+1 = un+1 .
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Example 3. Consider the following differential equation
{

y′(t) = −ty2(t), t > 0

y(0) = 2.
(19)

We want to solve this equation using forward Euler and backward Euler
methods, at interval [0, 4] with Nh = 20 subintervals (it is equivalent to a

time step h = 0.2). We approximate the exact solution y(tn) at times

tn = nh, n = 0, 1, . . . 20 (therefore tn = 0.2, 0.4, 0.6, . . .) by a numerical
solution un.
In Matlab/Octave, the forward Euler method can be used by:

>> h = 0.2; % the time step

>> u(1) = 2; % the initial value

>> t = [0:h:4]; % vector of time t(n)

>> for n=1:20; % loop ‘‘for’’

u(n+1) = u(n) + h * ( -t(n) * u(n)^2 );

end;

>> plot(t,u); % we draw the graph
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We can also use the functions feuler and beuler:

• Forward Euler

>> f = @(t,y) -t.*y.^2;

>> Nh = 20; tspan = [0 4]; y0 = 2;

>> [t_EP, y_EP] = feuler(f, tspan, y0, Nh);

Output variables t_EP and y_EP contain sequences of the times tn and
the values un respectively.

• Backward Euler
The function beuler uses the same syntax:
>> [t_ER, y_ER] = beuler(f, tspan, y0, Nh);
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Comparison between the exact solution and those obtained by forward and
backward Euler methods.
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y ’ (t)  =  − t y2

t

y(
t)

sol−ex     
Euler prog.
Euler retr 
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Stability conditions

The choice of time step h is not arbitrary. For forward Euler, we will see later
that if h is not small enough then stability problems may arise.

For example, if we consider the problem

{

y′(t) = −2y(t) for t ∈ R+

y(0) = 1,
(20)

then the solution is
y(t) = e−2t,

We can observe that behavior with respect to h of forward and backwar Euler
methods are very different.
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Stability conditions (forward Euler)
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Stability conditions (backward Euler)
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The (absolute) stability properties
(Chapt. 7.6 in the book)

For given λ < 0, we consider the model problem:

{

y′(t) = λy(t) for t ∈ R+

y(0) = 1
(21)

The solution is

y(t) = eλt. In particular, lim
t→∞

y(t) = 0.

Let 0 = t0 < t1 < . . . < tn < tn+1 < . . . such that tn = nh and where the time
step h > 0 is fixed.

We say that a numerical scheme associated to the model problem is
absolutely stable if limn→∞ un = 0.
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• For the forward Euler:

un+1 = (1 + λh)un, where un = (1 + λh)n, ∀n ≥ 0. (22)

If 1 + λh < −1, then |un| → ∞ when n→ ∞, therefore forward Euler is
unstable.
To ensure stability, we need to limit the time step h, by imposing the stability
condition :

|1 + λh| < 1 hence h < 2/|λ|.

• For the backward Euler:

un+1 =

(

1

1− λh

)

un and therefore un =

(

1

1− λh

)n

, ∀n ≥ 0.

Because limn→∞ un = 0, it is unconditionally stable (it is stable for any h > 0).
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Example 4. Let solve the problem (21) for λ = −2 and y0 = 1 at interval

[0, 10] using forward and backward Euler methods with h = 0.9 and h = 1.1.

Here are the Matlab/Octave commands for the case h = 0.9. Note that, even

if f(t, y) does not depend on t, it must be defined in Matlab/Octave as a

function of (t, y).

>> f = @(t,x) -2*x; h=0.9; tspan=[0 10]; Nh = 10/h; y0=1;

>> [t_ep, y_ep] = feuler(f, tspan, y0, Nh);

>> [t_er, y_er] = beuler(f, tspan, y0, Nh);

>> t = linspace(0, 10, 11); sol_ex = @(t) exp(-2*t);

>> plot(t, sol_ex(t), ’b’, t_ep, y_ep, ’ro-’, t_er, y_er’, ’go-’)

The following figure shows obtained solutions for h = 0.9 (on the left) and

h = 1.1 (on the right) and the exact solution.
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Comparison of solutions that we obtain by the forward and backward Euler
methods for h = 0.9 (on the left, stable) and h = 1.1 (on the right, unstable)

(stability condition for forward Euler: |λ| = 2 ⇒ h < 2/|λ| = 1).

Ordinary differential equations – p. 29/85



Absolute stability controls perturbations
(Chapt. 7.6.2 in the book)

For a generic problem, it raises the question of stability, i.e. the property that
small perturbations on the data induce small perturbations on the
approximation.

We want to show the following property.

A numerical method which is absolutely stable on the model problem,
guarantees that the perturbations are kept under control as t tends to infinity
(is stable in the above sense).
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Consider now the following generalized model problem:






y′(t) = λ(t)y(t) + r(t), t ∈ (0,+∞),

y(0) = 1,
(23)

where λ and r are two continuous functions and −λmax ≤ λ(t) ≤ −λmin with
0 < λmin ≤ λmax < +∞. In this case the exact solution does not necessarily
tend to zero as t tends to infinity.
For instance if both r and λ are constants we have

y(t) =
(

1 +
r

λ

)

eλt − r

λ

whose limit when t tends to infinity is −r/λ. Thus, in general, it does not
make sense to require a numerical method to be absolutely stable, i.e. to
satisfy (23).

For the sake of simplicity we will confine our analysis to the forward Euler
method (23).
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We have






un+1 = un + h(λnun + rn), n ≥ 0,

u0 = 1

where λn = λ(tn) and rn = r(tn).
Let us consider the following “perturbed” method:







zn+1 = zn + h(λnzn + rn + ρn+1), n ≥ 0,

z0 = u0 + ρ0,
(24)

where ρ0, ρ1, . . . are given perturbations which are introduced at every time
step.

This is a simple model in which ρ0 and ρn+1 represent truncation errors or
numerical errors.

Question: Is the difference zn − un bounded for all n = 0, 1, ...
independently of n and h?

Ordinary differential equations – p. 32/85



We will consider two cases:

(i) Let λn = λ and ρn = ρ be two constants. We can write the schema for the error
en = zn − un 





en+1 = en + h(λen + ρ), n ≥ 0,

e0 = ρ.
(25)

that the solution is

en = ρ(1 + hλ)n + hρ

n−1
∑

k=0

(1 + hλ)k = ρψ(h, λ), (26)

where
ψ(h, λ) =

(

(1 + hλ)n(1 +
1

λ
)−

1

λ

)

We use equation for the geometric sum

n−1
∑

k=0

ak =
1− an

1− a
. (27)
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Suppose that h < h0(λ) = 2/|λ|, i.e. h ensure the absolute stability of the

forward Euler method applied to the problem (21).

Therefore (1 + hλ)n < 1 ∀n and it follows that the error due to perturbations
is bounded by

|en| ≤ ϕ(λ)|ρ|, (28)

where ϕ(λ) = 1 + |2/λ| . Moreover,

lim
n→∞

|en| =
|ρ|
|λ| .

So, the error of perturbations is bounded by |ρ| times a constant that is
independent of n and h. Obviously, if h > h0, the perturbations amplifies
when n increases because (1 + hλ)n → ∞ when n→ ∞.
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(ii) In the general case where λ and r depends on t, we have

zn − un = ρ0

n−1
∏

k=0

(1 + hλk) + h

n−1
∑

k=0

ρk+1

n−1
∏

j=k+1

(1 + hλj) (29)

We require the time step h to satisfy the restriction h < h0(λ), where

h0(λ) = 2/λmax. Then, |1 + hλk| ≤ max(|1− hλmin|, |1− hλmax|) < 1. Let

ρ = max |ρn| and λ such that (1 + hλ) = max(|1− hλmin|, |1− hλmax|).

It holds:

|zn − un| ≤ |ρ0|
n−1
∏

k=0

|1 + hλk|+ h

n−1
∑

k=0

|ρk+1|
n−1
∏

j=k+1

|1 + hλj |

≤ ρ

n−1
∏

k=0

(1 + hλ) + h

n−1
∑

k=0

ρ

n−1
∏

j=k+1

(1 + hλ) = ρψ(h, λ)

So, even in this case, en = zn − un satisfies (28).
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Remark 2. Consider now the following generalized model problem

{

y′(t) = f(t, y(t)) t > 0

y(0) = y0 ,

at unbounded interval. We can extend the control of perturbations to
generalized model problem (23), in cases where exists λmin > 0 and λmax <∞
such that

−λmax < ∂f/∂y(t, y) < −λmin, ∀t ≥ 0, ∀y ∈ Dy, (30)

This allows to get (29) and to obtain the same conclusions as in (ii) if

0 < h < 2/λmax.

Let Dy be a set that contains the trajectory of y(t) (possible values of un).
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Example 5. Let us consider the Cauchy
problem







y′(t) = arctan(3y)− 3y + t, t ∈ (0,+∞),

y(0) = 1.
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For y = 0, we have y′(t) > 0, t ∈ (0,+∞). We deduce that if we draw the

graph of the function y(t), it can never go below the axis t and therefore

y(t) > 0, ∀t ∈ (0,+∞). We put Dy = (0,∞) and we calculate

fy = ∂f/∂y = 3/(1 + 9y2)− 3. You can choose

λmax = 3 (<∞) et λmin = λ∗ > 0.

So,

−λmax < ∂f/∂y(t, y) < −λmin, ∀t ≥ 0, ∀y ∈ Dy = (0,∞),

and the forward Euler method is stable if h < 2/λmax = 2/3.
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Solution y(t) of the problem in the example 5; numerical solution un (red)

using the forward Euler (h = 2/3− 0.01, stable) and solution zn (black) with

perturbation ρ0 = 3 (only at the initial value).

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

15

20

Ordinary differential equations – p. 38/85



Error en = zn − yn between the perturbed numerical solution and
non-perturbed numerical solution (h = 2/3− 0.01, stable).

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

Ordinary differential equations – p. 39/85



Solution y(t) of the problem in the example 5; numerical solution un (red)

using the forward Euler (h = 2/3 + 0.02, unstable) and solution zn (black)

with perturbation ρ0 = 3 (only at the initial value).
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Error en = zn − yn between the perturbed numerical solution and
non-perturbed numerical solution (h = 2/3 + 0.02, unstable).
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Example 6. We seek an upper bound on h that guarantees stability for the
forward Euler method applied to approximate the Cauchy problem:







y′ = 1− y2, t > 1,

y(1) = (e2 − 1)/(e2 + 1).
(31)

The exact solution is y(t) = (e2t − 1)/(e2t + 1) and ∂f/∂y = −2y. Since

y ∈ [y(1), 1] = Dy, ∂f/∂y ∈ (−2,−2y(1)) for all t > 1 we can take

λmin = 2y(1)(> 0) and λmax = 2(<∞).

Thus, for absolute stability of the forward Euler method, h should be smaller
than h0 = 1 and it must be checked that un ∈ [y(1), 1].

In the figure below, it represents the exact solution (dotted line) and

approximate solutions obtained in the interval (1, 20) with h = 20/19 (dashed

line) and h = 20/21 (solid line). This shows that limitation of h0 obtained
above is accurate.
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Numerical solution of the problem (31) obtained using forward Euler

method with h = 20/19 (red).
The exact solution corresponds to the solid line.
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Numerical solutions of the problem (31) obtained using forward Euler

method with h = 20/19 (red) and h = 20/21 (black).
The exact solution corresponds to the solid line.
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Convergence of the forward Euler
(Chapt. 7.3.1 in the book)

Definition 2. Let y(t) be the solution of the Cauchy problem (3) on the

interval [0, T ]; let un be an approximated solution at time tn = nh, where

h = T/Nh (Nh ∈ N) is the time step, found by a given numerical method.
The method is convergent if

∀n = 0, . . . , Nh : |un − y(tn)| ≤ C(h)

where C(h) → 0 when h→ 0.

Moreover, if there exists p > 0 such that C(h) = O(hp), We say that the
method converges with order p.

In the following, we will analyze the convergence and the order of the forward
Euler method.
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Convergence of the forward Euler

We will prove the following convergence result:

Theorem 2. If y ∈ C2([0, T ]) and f is uniform Lipschitz continuous on the
second variable, L is the Lipschitz constant, then

∀n ≥ 0, |y(tn)− un| ≤ c(tn)h, (32)

where

c(tn) =
eLtn − 1

2L
max

t∈[0,T ]
|y′′(t)|.

In particular, the method converges with order p = 1 according to the previous
definition, with

C(h) = c(T )h.
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Proof. We define the error at time n as:

en = un − y(tn)
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We define the local truncation error of the forward Euler method as

τn+1(h) =
y(tn+1)− y(tn)

h
− y′(tn), (33)

and the global truncation error

τ(h) = max
n

|τn(h)|.

We know there exists ξn ∈ (tn, tn + h) such that

τn+1(h) =
1

2
y′′(ξn)h.

So we have the following estimation for the global truncation error:

τ(h) ≤ 1

2
max

t∈[0,T ]
|y′′(t)|h.
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The following equation for the numerical solution un







un+1 − un

h
= f(tn, un) for n = 0, 1, 2 . . . , Nh

u0 = y0.

and the equation (33) for a local truncation error

τn+1(h) =
y(tn+1)− y(tn)

h
− y′(tn) =

y(tn+1)− y(tn)

h
− f(tn, y(tn)),

we obtain:






en+1 − en
h

= f(tn, un)− f(tn, y(tn))− τn+1(h),

e0 = 0.
(34)

Ordinary differential equations – p. 49/85



Since the function f is Lipschitz, we have

|f(tn, un)− f(tn, y(tn))| ≤ L|un − y(tn)| ≤ L|en|.

Given this inequality, (34) can be written as:

|en+1| ≤ (1 + Lh)|en|+ h|τn+1(h)|.

Let Ej = |ej |. Then we have the following inequality:

En+1 ≤ (1 + hL)En + hτ(h)

≤ (1 + hL) [(1 + hL)En−1 + hτ(h)] + hτ(h)

≤
[

1 + (1 + hL) + (1 + hL)2 + . . .+ (1 + hL)n
]

hτ(h)

=
(1 + hL)n+1 − 1

hL
hτ(h)
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But
1 + hL ≤ ehL, ∀h > 0,

hence
(1 + hL)n − 1 ≤ eLhn − 1 = eLtn − 1.

Therefore

En ≤ eLtn − 1

L
τ(h) ≤ eLtn − 1

L
h
1

2
max

t∈[0,T ]
|y′′(t)|,

i.e.

|un − y(tn)| ≤
[

1

2

eLtn − 1

L
max

t∈[0,T ]
|y′′(t)|

]

h ≤ c(T )h,

where c(T ) = eLT
−1

2L
maxt∈[0,T ] |y′′(t)|.

�
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Remark 3. The same type of results can be obtained for the backward Euler
method.

Remark 4. The estimation of convergence (32) is obtained under the
assumption that the function f is Lipschitz continuous. More precisely, the
estimation

|un − y(tn)| ≤ htn
1

2
max

t
|y′′(t)| , (35)

is true if f also satisfies the condition ∂f
∂y

(t, y) ≤ 0 for all t ∈ [0, T ] and for

all y ∈ (−∞,∞).

Ordinary differential equations – p. 52/85



We prove (35). Using the Lagrange theorem, there exists ξn such that

f(tn, un) − f(tn, y(tn)) =
∂f(t, ξn)

∂y
(un − y(tn)) =

∂f(t, ξ)

∂y
en.

So, using (34) we find

en+1 =

(

1 + h
∂f(t, ξn)

∂y

)

en − h
h

2
y
′′
(ηn).

If h < 2
λmax

then we have 1 + h
∂f(t,ξn)

∂y
∈ (−1, 1) and therefore

|en+1| ≤ |en| + hτ(h).

Since e0 = 0, we deduce
|en| ≤ nhτ(h) = tnτ(h),

which was to be demonstrated (35).
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Runge-Kutta methods of order 2
If we integrate the equation y′(t) = f(t, y(t)) between tn and tn+1, we obtain:

y(tn+1) − y(tn) =

∫

tn+1

tn

f(t, y(t))dt. (36)

Remark 5. Numerical integration methods (Chapt. 4.2 in the book)

We want to approximate the integral of the function f(t, y(t)). If we use the midpoint

formula, we approximate the area below the curve by the area of a rectangle that has

as a basis h and as a height the value of the function at time tn + h/2 (see figure on

the left). If we use the trapezoidal formula, we approximate the area below the curve

by the area of a trapezoid that has as basis both values of the function at times tn and

tn+1 and as a height h (see figure on the right).
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Using trapezoidal formula, we find the following implicit method, that is called
Crank-Nicolson or trapezoidal method :

un+1 − un =
h

2
[f(tn, un) + f(tn+1, un+1)] , ∀n ≥ 0. (37)

This method is unconditionally stable when it is applied to the model problem
(21).

If we modify the schema (37) (changing to explicit) then we obtain the Heun
method :

un+1 − un =
h

2
[f(tn, un) + f(tn+1, un + hf(tn, un))] . (38)

Both methods (Crank-Nicolson and Heun) are of order 2 with respect to h.
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If we use in (36) midpoint formula, we obtain

un+1 − un = h f(tn+ 1
2
, un+ 1

2
). (39)

If we approximate un+1/2 by

un+ 1
2
= un +

h

2
f(tn, un),

we obtain improved Euler method:

un+1 − un = h f

(

tn+ 1
2
, un +

h

2
f(tn, un)

)

. (40)

Heun and improved Euler methods are particular cases of the Runge-Kutta
method of order 2. When we apply them to the model problem (21), we have
the same stability condition h < 2/|λ| for both methods.
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In the following table we summarize the characteristics of the methods:

Method Explicit/Implicit Stability w.r.to h

Forward Euler Explicit Conditionally 1
Backward Euler Implicit Unconditionally 1
Crank–Nicolson Implicit Unconditionally 2

Heun Explicit Conditionally 2
Improved Euler Explicit Conditionally 2
Runge–Kutta Explicit Conditionally 4
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There are more complicated methods, such as Runge-Kutta method of order
4, that is obtained by considering the integration of the Simpson method:

un →



















































































un+1 = un +
h

6
(K1 + 2K2 + 2K3 +K4),

where:

K1 = f(tn, un),

K2 = f(tn +
h

2
, un +

h

2
K1),

K3 = f(tn +
h

2
, un +

h

2
K2),

K4 = f(tn+1, un + hK3).
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Example 7. Let us consider the Cauchy problem

{

y′(t) = −y(0.1− cos(t)), t > 0

y(0) = 1.
(41)

We solve this problem by the forward Euler and Heun methods on the
interval [0, 12] with a time step h = 0.4.

>> f = @(t,y) (cos(t) - 0.1)*y;

>> h = 0.4; tspan = [0 12]; y0 = 1; Nh = 12/h;

>> % forward Euler

>> [t_ep, y_ep] = feuler(f, tspan, y0, Nh);

>> % Heun

>> [t_heun, y_heun] = heun(f, tspan, y0, Nh);
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The first of the following figures shows the solutions obtained by both

methods and the exact solution y(t) = e−0.1t+sin(t). Note that the solution
obtained by the Heun method is much more precise than the forward Euler
method.
Moreover, we can see that if we reduce the time step, the solution obtained
by the forward Euler method approximates the exact solution. The second
figure shows the solutions obtained with h = 0.4, 0.2, 0.1, 0.05 using the
following commands:

>> sol_ex = @(t) exp(-0.1*t + sin(t));

>> t = [0:0.01:12];

>> plot(t, sol_ex(t), ’b--’); hold on;

>> h=0.4; Nh = 12/h;

>> for i=1:4

[t_ep, y_ep] = feuler(f, tspan, y0, Nh);

plot(t_ep, y_ep)

Nh = Nh*2;

end
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Comparison of solutions obtained by the forward Euler and Heun methods
for h = 0.4.
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Solutions obtained by the forward Euler method for different time steps.
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We want to estimate the order of convergence of these two methods. For
this we will solve the problem with different time steps and we will compare
the results obtained at time t = 6 with the exact solution.

>> h=0.4; Nh = 12/h; t=6; y6 = sol_ex(t);

>> for i=1:5

% foreward Euler

[t_ep, y_ep] = feuler(f, tspan, y0, Nh);

err_ep(i) = abs(y6 - y_ep(fix(Nh/2)+1));

% Heun

[t_heun, y_heun] = heun(f, tspan, y0, Nh);

err_heun(i) = abs(y6 - y_heun(fix(Nh/2)+1));

Nh = Nh*2;

end

>> h=[0.4, 0.2, 0.1, 0.05, 0.025];

>> loglog(h,err_ep,’b’,h,err_heun,’r’)

The following figure shows, in logarithmic scale, errors of both methods
depending on h. Clearly, the forward Euler method converges with order 1
and Heun method converges with order 2.
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Errors of the forward Euler and Heun methods in the calculation of y(6).
Note that a scale is logarithmic.

10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

100

h

| y
(6

) −
 u

n (6
) |

euler prog.
heun       

−1 

−2 

Ordinary differential equations – p. 64/85



Systems of differential equations
(Chapt. 7.9 in the book)

Let us consider the following system of non-homogeneous ordinary differential
equation with constant coefficients.

{

y′(t) = Ay(t) + b(t) t > 0,

y(0) = y0,
(42)

where A ∈ R
p×p and b(t) ∈ R

p, where we assume that A has got p distinct
eigenvalues λj , j = 1, . . . , p.
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From the numerical point of view, the methods introduced in the scalar case
can be extended to systems of differential equations. For example, the forward
Euler method (12) becomes:







un+1 − un

h
= Aun + bn for n = 0, 1, 2, . . . , Nh − 1

u0 = y0 ,
(43)

while the backward Euler method (13) becomes:







un+1 − un

h
= Aun+1 + bn+1 for n = 0, 1, 2, . . . , Nh − 1

u0 = y0 ,
(44)
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Regarding stability, if b ≡ 0 and the eigenvalues λj (j = 1, . . . , p) of matrix A
are strictly negative: λj < 0, j = 1, . . . , p, then y(t) → 0 when t→ +∞, and
the forward Euler method is stable (i.e. un → 0 if n→ +∞) if

h <
2

maxj=1,...,p |λj |
=

2

ρ(A)
, (45)

where ρ(A) is the spectral radius of A, while the backward Euler method is
unconditionally stable.
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Example 8. Linear system
The system

{

y′1(t) = −2y1(t) + y2(t) + e−t

y′2(t) = 3y1(t)− 4y2(t)
(46)

with initial conditions y1(0) = y10, y2(0) = y20, can be written as (42), where

y(t) =

[

y1(t)

y2(t)

]

, A =

[

−2 1

3 −4

]

, b(t) =

[

e−t

0

]

, y0 =

[

y10

y20

]

.

Let h > 0 be the time step; for n ∈ N, we set tn = nh, bn = b(tn) and we

denote by un an approximation of the exact solution y(tn) at time tn.
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The forward Euler, backward Euler and Crank-Nicolson methods for
approximating the solution y(t) of (46) are written respectively:

forward Euler
{

un+1 = un + hAun + hbn = (I + hA)un + hbn

backward Euler

{

(I − hA)un+1 = un + hbn+1

u0 = y0

Crank-Nicolson

{

(I − h
2
A)un+1 = (I + h

2
A)un + h

2
(bn + bn+1)

u0 = y0

It should be noted that at each step of the methods of BE and CN, we must

solve a linear system with the matrix I − hA and I − h
2
A, respectively (these

are implicit methods).
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The forward Euler method is explicit (there is not linear system to solve),
but it is stable conditionally. In this case, the eigenvalues of A are λ1 = −1
and λ2 = −5; they are strictly negative, so the condition (45) on h is

satisfied. ρ(A) = 5, so the stability condition is

h < h̄ =
2

5
.
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Behavior of the forward Euler method for the system (46) with initial

condition y0 = [1, 1]⊤ and different values of the time step h.
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A = [-2 1; 3 -4];

dy = @(t,y,A) A*y + [exp(-t); 0];

h_bar = 2 / max(abs(eig(A)));

[t,y]=feuler(dy,[0,10],[1;1],10/(0.1*h_bar),A);

plot(y(1,:), y(2,:)); hold on;

[t,y]=feuler(dy,[0,10],[1;1],10/(h_bar),A);

plot(y(1,:), y(2,:), ’ro’);

[t,y]=feuler(dy,[0,10],[1;1],10/(0.9*h_bar),A);

plot(y(1,:), y(2,:), ’go--’);
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We could also consider the case of a nonlinear system of the form

y′(t) = F(t,y(t)),

(for example the system (2)). If ∂F
∂y

is a matrix with real and negative
eigenvalues, then the backward Euler method is unconditionally stable, while
the forward Euler method is stable under condition (45), where A = ∂F

∂y
.
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Example 9. Nonlinear system
The nonlinear system

y′1(t) = −2y1(t) + sin(y2(t)) + e−t sin(t),

y′2(t) = cos(y1(t))− 4y2(t), (47)

with initial conditions y1(0) = y10, y2(0) = y20, can be written as

y′(t) = F(t,y(t)),

where

F(t,y(t)) =

[

−2y1(t) + sin(y2(t)) + e−t sin(t)

cos(y1(t))− 4y2(t)

]

.

Let h > 0 be the time step; for n ∈ N, we set tn = nh and we denote by un

an approximation of the exact solution y(tn) at time tn.

Ordinary differential equations – p. 73/85



The forward Euler, backward Euler and Crank-Nicolson methods for
approximating the solution y(t) of (47) are written respectively:

forward Euler

{

un+1 = un + hF(tn,un),

u0 = y0,

backward Euler

{

un+1 − hF(tn+1,un+1) = un,

u0 = y0,

Crank-Nicolson

{

un+1 − h
2
F(tn+1,un+1) = un + h

2
F(tn,un),

u0 = y0.

It should be noted that at each step of the methods of BE and CN, we must
solve a nonlinear system.
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The forward Euler method is explicit (there is not system to solve), but it is
stable conditionally. In this case, the jacobian of F is given by

J =
∂F

∂y
=

[

−2 cos y2

− sin y1 −4,

]

and the eigenvalues are λ1,2 = −3±√
1− sin y1 cos y2; They are strictly

negative, in particular −3−
√
2 < λ1,2 < −3 +

√
2 < 0, and ρ(J) < 3 +

√
2.

Therefore the stability condition is

h < h̄ =
2

ρ(J)
, for example if h <

2

3 +
√
2
≃ 0.453.
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Behaviour of the forward Euler method for the system(47) with initial

condition y0 = [1, 1]⊤: h = 0.1 (blue) and h = 0.8h̄ (red). If we take h ≥ h̄,
we can observe the instability of the method.
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We used the following commands:

dy = @(t,y) [-2*y(1) + sin(y(2)) + exp(-t)*sin(t); ...

cos(y(1)) - 4*y(2)]

[t,y] = feuler(dy, [0,100],[1; 1], 100/0.1);

subplot(2,1,1); plot(y(1,:), y(2,:),’o-’); hold on;

J = @(y) [-2, cos(y(2)); -sin(y(1)), - 4];

for i = 1:size(t,2);

rho(i) = max(abs(eig(feval(J, y(:,i)))));

end

subplot(2,1,2);

plot(t,rho, ’o-’);

h_bar = 2/max(rho);

[t,y] = feuler(dy, [0,100],[1; 1], 100/(0.8*h_bar));

subplot(2,1,1);

plot(y(1,:), y(2,:), ’ro-’);
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Here is a summary of the stability:

Problem Stability of the explicit methods

Model y′ = λy h < 2/|λ|
Cauchy y′ = f(t, y(t)) h < 2/max

∣

∣

∣

∣

∂f

∂y

∣

∣

∣

∣

System of linear eq. y′ = Ay + b h < 2/ρ(A)

System of nonlinear eq. y′ = F(t,y(t)) h < 2/ρ(J)

for
• ρ(A) = max

i
|λi(A)|, for a system of linear equations;

• ρ(J) = max
i

|λi(J)|, for a system of nonlinear equations, where

J(t,y) =
∂F

∂y
, for λi(J) < 0, ∀i.
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Applications

We return to the example given at the beginning of the chapter.
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Example. 1 (suite) At first, we consider the scalar equation (1):

y′(t) = Cy(t)

(

1− y(t)

B

)

, t > 0, y(0) = y0.

Let us take an initial population of 40 rabbits whose growth factor is
C = 0.08 (the unit of time is one month) and the maximum population is
equal B B = 70 rabbits. We solve the equation using the Heun method with
h = 1 month over a period of three years:

>> f=@(t,y) 0.08*y.*(1-(y/70));

>> tspan = [0 36]; y0=40; h = 1; Nh = 36/h;

>> [t, y] = heun(f,tspan,y0,Nh); plot(t,y)
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Evolution of the population of rabbits over a period of 3 years.
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Now, we consider the system (2). Let us take an initial population y1(0) of

40 rabbits, a population y2(0) of 20 foxes and the Lotka-Volterra equations:

{

y′1(t) = 0.08 y1(t)− 0.004 y1(t)y2(t),

y′2(t) = −0.06 y2(t) + 0.002 y1(t)y2(t).
(48)

We want to study the evolution of the two populations over a period of 10
years. Let us define the vectors:

y(t) =

[

y1(t)

y2(t)

]

, F(t,y) =

[

0.08 y1(t)− 0.004 y1(t)y2(t)

−0.06 y2(t) + 0.002 y1(t)y2(t)

]

,

We can rewrite the system (48) in the general form:

y′(t) = F(t,y), t > 0, y(0) = [y1(0), y2(0)]
T . (49)
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All the methods that we have seen so far are applicable to the system(49).
For example, the forward Euler method can be written as

un+1 − un

h
= F(tn,un),

which is equivalent to the system of equations



























un+1,1 − un,1

h
= 0.08un,1 − 0.004un,1un,2, n ≥ 0

un+1,2 − un,2

h
= −0.06un,2 + 0.002un,1un,2, n ≥ 0

u0,1 = y1(0), u0,2 = y2(0).
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The command heun can solve system of differential equations. First we
must write a function that define the system:

>> fun2 = @(t,y) [ 0.08*y(1) - 0.004*y(1)*y(2);

-0.06*y(2) + 0.002*y(1)*y(2) ]

Then we can solve the system using:

>> y0=[40 20]; tspan=[0 120]; Nh=40;

>> [t,y] = heun(fun2, tspan, y0, Nh);

>> plot(t,y(:,1),’b’, t,y(:,2),’r’)

The first column of y contains the solution y1, while the second column
contains y2. The following figure shows the evolution of the two populations.
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Evolution of populations of rabbits and foxes over 10 years.
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