Reduced Order Modelling for Data Assimilation in Parametrized Optimal Control Framework

Maria Strazzullo*, Francesco Ballarin* and Gianluigi Rozza*
(*MathLab, Mathematics Area, SISSA International School for Advanced Studies, Trieste, Italy)

PARAMETRIZED OPTIMAL FLOW CONTROL PROBLEMS are suited for several fields of applied mathematics, such as:

- data assimilation inverse problems
- forecasting models

PDEs, DATA, CONTROL (physics/boundary)

• Functional minimization (Non-linear Time-Dependent)

Optimal solution

the parameter changes...

STRATEGY (FROM HIGH-FIDELITY TO REDUCED MODEL)

Problem: solve several parametric instances of

\[
\min_{y \in \mathcal{X}, u \in \mathcal{U}} \frac{1}{2} \| y - y_0 \|^2_Y + \frac{\alpha}{2} \| u \|^2_U \quad \text{subject to} \quad \mathcal{E}(y, u; \mu) = 0
\]

Space-Time (\(\dim = N_h + N_t \)) Lagrangian Formulation

(\(\dim = 3N \))

- General Framework (linear, non-linear, time-dependent)
- Three equations
- High - Dimensionality

Proper Orthogonal Decomposition (POD) for Space-Time Optimal Control Problems [1]

APPLICATION: CONTROL FOR COASTAL WATER HEIGHT (SWE) [2]

Minimisation of

\[
\frac{1}{2} \int_0^T (h - h_0(\mu))^2 \, dx \, dt + \frac{1}{2} \int_0^T (v - v_0(\mu))^2 \, dx \, dt + \frac{\alpha}{2} \int_0^T u^2 \, dx \, dt
\]

constrained to

\[
\begin{align*}
\rho + \rho \Delta v + \rho (v \cdot \nabla v) - \nabla q - a &= 0 & \text{in } \Omega \times [0, T], \\
\mathbf{n} \cdot (q \mathbf{n}) &= 0 & \text{on } \partial \Omega \times [0, T], \\
v &= v_0 & \text{on } \partial \Omega \times [0, T], \\
h &= h_0 & \text{on } \partial \Omega \times [0, T], \\
v &= 0 & \text{on } \partial \Omega \times [0, T].
\end{align*}
\]

Acknowledgements

We acknowledge the support by European Union Funding for Research and Innovation – Horizon 2020 Program – in the framework of European Research Council Executive Agency: Consolidator Grant H2020-ERC-CoG 2015 ARONA-CFD project 681447 “Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics”. We also acknowledge the PRIN 2017 “Numerical Analysis for Full and Reduced Order Methods for the efficient and accurate solution of complex systems governed by Partial Differential Equations” (NA-FROM-PDEs) and the INdAM-GNCS project “Metodi Numerici di Avanzata per Applicazioni Industriali”. The computations in this work have been performed with RBniCS library, developed at SISSA mathLab, which is an implementation in FEniCS of several reduced order modelling techniques; we acknowledge developers and contributors to both libraries.

References

WHY NEURAL NETWORKS?

1) To correct data which are difficult to interpret, scattered.
2) Faster online reduced solver
3) Analysis (pre-process and post-process phase)

OTHER APPLICATIONS

Pollutant control in the Gulf of Trieste (Uncertainty Quantification) [3].

Driving bifurcations phenomena through optimal control (F. Pichi Poster on ROM and NN for Bifurcations) [4].

Water height solution for \(\mu = (0.1, 0.5, 1) \)

\(\Omega = [0, 10] \times [0, 10] \)

\(\alpha = 10^{-5} \)

(\(\Delta t = 0.1 \))

Errors \(\sim 1e-4 \), Speedup \(\sim 30 \)

ROM vs FE dim = 270 vs 94'016.