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The Active Subspace Property

Consider a Lipschitz continuous, differentiable and square-integrable func-
tion, its gradient vector and a sampling density

f:xCR™ =R Vf(x)eR™, p:R" =R,

Take the correlation matrix of the gradient, evaluate its approximation
with Monte Carlo and partition its eigendecomposition,

1 M

C— [ (Vuf)(Vauf)Tpdx 57 Y (Tuf) (V)T = WAWT

A = , W =[W;, W, W, € R™*!

where | is the dimension of the Active Subspace. Then the input data can
be decomposed as

x=WWix =W Wix+WyW,x=W;y+ Wyz

——— inNevating with mathematics

Kernel-based Active Subspaces

We introduce an immersion ¢ from the original domain X C R to a sup-
posedly infinite-dimensional Hilbert space H

2
Z:¢(X):\/5()‘fCOS(WX—|—b), x € X,z € H

resulting from an approximation of a RBF kernel with Random Fourier
Features |3|: b is a bias term and W is sampled from the spectral measure
associated to the kernel.

The kernel-based extension (KAS) of s
Active Subspaces |2| is obtained ap- A CR > ¢(X) CH

plying the usual Qrocedure to the new J/ 7
simulation map f : ¢(x) C H — R. f

R
In this case the correlation matrix is
. _ _ 1 X 5 5 -
C= | (Vul) ) (Vaf () (o) = 3 D (Vaf)(Val) = WAWT
A i=1

Response surfaces with Gaussian process regression

The term response A
o(X) CH
surface refers to the Feature space

general procedure of / \
finding the values of a vk
model function f for \ - \

new inputs without
directly computing it |
but exploiting regres- FONEE
sion or interpolation

from a training set R /

{Xia f(XZ) } : ¢Active¢variable WE%&)

Active
subspace

The code is implemented in the library ATHENA (Advanced Techniques
for High dimensional parameter spaces to Enhance Numerical Analysis) at
https://github.com/mathLab/ATHENA.
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Comparison between the sufficiency summary plots obtained from the
application of AS and KAS methods for the surface of revolution model
function with domain [—3, 3] and generatrix the sine function. The left
plot refers to AS, the right plot to KAS.

A CFD application of KAS using Discontinuous Galerkin method

Lift (Cr) and drag (Cp) coefficients of a NACA 0012 airfoil are considered as
model functions. We consider physical and geometrical parameters and build o1
a response surface: the first component of the initial velocity, the kinematic o1 Confidence . Confidence
viscosity, the vertical and horizontal displacements of the airfoil and its angle ' |
of attack, the vertical displacements of the upper and lower side of the initial

conduct. Reynolds number ranges from 400 to 2000.
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u(x,0) =uo, p(x,0)=0 x € {}, Comparison between the sufficiency summary plots obtained from the

u(x,t) =ug, n-Vpx,t)=0 x € 092, application of AS and KAS methods for the drag coefficient Cp. The

u(x,t) =0, n-Vp(x,t)=0 x € 00w, left plot refers to AS, the right plot to KAS. With the blue solid line

n-vu(x,t) =0, p(x,t)=1 x € 000, o we depict the mean of the GP regression, with the shadow area the
0 0 20000 confidence intervals, and with the blue dots the testing points.
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