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The Active Subspace Property
Consider a Lipschitz continuous, differentiable and square-integrable func-
tion, its gradient vector and a sampling density

f : χ ⊂ Rm → R ∇f(x) ∈ Rm, ρ : Rm → R+

Take the correlation matrix of the gradient, evaluate its approximation
with Monte Carlo and partition its eigendecomposition,

C =

∫
X
(∇xf)(∇xf)

T ρ dx ≈ 1

M

M∑
i=1

(∇xf)(∇xf)
T = WΛWT

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] , W1 ∈ Rm×l

where l is the dimension of the Active Subspace. Then the input data can
be decomposed as

x = WWTx = W1W
T
1 x + W2W

T
2 x = W1y + W2z.

Kernel-based Active Subspaces
We introduce an immersion φ from the original domain X ⊂ R to a sup-
posedly infinite-dimensional Hilbert space H

z = φ(x) =

√
2

D
σf cos(Wx + b), x ∈ X , z ∈ H

resulting from an approximation of a RBF kernel with Random Fourier
Features [3]: b is a bias term and W is sampled from the spectral measure
associated to the kernel.

The kernel-based extension (KAS) of
Active Subspaces [2] is obtained ap-
plying the usual procedure to the new
simulation map f̃ : φ(χ) ⊂ H→ R.

X ⊂ Rm φ(X ) ⊂ H

R

φ

f
f̃

In this case the correlation matrix is

C̃ =

∫
φ(X )

(∇zf̃)(z)(∇zf̃(z))
T dµ(z) ≈ 1

M

M∑
i=1

(∇zf̃)(∇zf̃)
T = W̃Λ̃W̃T

Response surfaces with Gaussian process regression
The term response
surface refers to the
general procedure of
finding the values of a
model function f for
new inputs without
directly computing it
but exploiting regres-
sion or interpolation
from a training set
{xi, f(xi)}.
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The code is implemented in the library ATHENA (Advanced Techniques
for High dimensional parameter spaces to Enhance Numerical Analysis) at
https://github.com/mathLab/ATHENA.
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Comparison between the sufficiency summary plots obtained from the
application of AS and KAS methods for the surface of revolution model
function with domain [−3, 3]2 and generatrix the sine function. The left
plot refers to AS, the right plot to KAS.

A CFD application of KAS using Discontinuous Galerkin method
Lift (CL) and drag (CD) coefficients of a NACA 0012 airfoil are considered as
model functions. We consider physical and geometrical parameters and build
a response surface: the first component of the initial velocity, the kinematic
viscosity, the vertical and horizontal displacements of the airfoil and its angle
of attack, the vertical displacements of the upper and lower side of the initial
conduct. Reynolds number ranges from 400 to 2000.



∂tu + (u · ∇)u = −∇p+ ν∆u x ∈ Ω,

∇ · u = 0 x ∈ Ω,

u(x, 0) = u0, p(x, 0) = 0 x ∈ Ω,

u(x, t) = u0, n · ∇p(x, t) = 0 x ∈ ∂ΩI ,

u(x, t) = 0, n · ∇p(x, t) = 0 x ∈ ∂ΩW ,

n · ∇u(x, t) = 0, p(x, t) = 1 x ∈ ∂ΩO,
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Comparison between the sufficiency summary plots obtained from the
application of AS and KAS methods for the drag coefficient CD. The
left plot refers to AS, the right plot to KAS. With the blue solid line
we depict the mean of the GP regression, with the shadow area the
confidence intervals, and with the blue dots the testing points.
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