Data Enhanced Reduced Order Methods Politecnico di Torino for Turbulent Flows

Anna Ivagnes, Giovanni Stabile, Andrea Mola and Gianluigi Rozza

Mathematics Area, mathLab, SISSA, International School of Advanced Studies, Trieste, Italy

Abstract

Introduction The focus of this work is the development of data-driven reduced order techniques in CFD context in order to improve the pressure and velocity accuracy of standard reduced order methods. The general framework of Proper Orthogonal Decomposition with Galerkin approach is coupled with a data-driven technique, exploiting the information of full order data to build correction/ closure terms. These terms are added in the reduced order system to reintroduce the contribution of disregarded modes. The technique is applied to the 2 D study of the turbulent flow around a cylinder in two different approaches: the SUP-ROM, where additional velocity supremizer modes are considered, and the PPE-ROM, where the continuity equation in the model is replaced by the Poisson pressure equation.

1. Offline-Online Procedure

- Full Order Model: Incompressible NSE

OFFLINE PHASE

$\left\{\begin{array}{l}\frac{\partial \mathbf{u}}{\partial t}=-\nabla \cdot(\mathbf{u} \otimes \mathbf{u})+\nabla \cdot \nu\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right)-\nabla p, \\ \nabla \cdot \mathbf{u}=\mathbf{0}, \\ + \text { boundary and initial conditions. }\end{array}\right.$

- Case study: turbulent flow around a circular cylinder
- Discretization with FVM (Finite Volume Method)
- RANS (Reynolds Averaged Navier-Stokes) approach
- POD (Proper orthogonal Decomposition) with Galerkin approach

ONLINE PHASE

- Pick a reduced number of modes: $r \ll N_{u}^{h}, q \ll N_{p}^{h}$
- Approximated fields: $\boldsymbol{u}_{r}=\sum_{i=1}^{r} a_{i} \boldsymbol{\varphi}_{i}, p_{r}=\sum_{j=1}^{q} b_{j} \chi_{j}$
- Projection of the equations onto the reduced modes

Dynamical system with
Unknowns: $\mathbf{a}=\left(a_{i}\right)_{i=1}^{r}$ and $\mathbf{b}=\left(b_{i}\right)_{i=1}^{q}$

| Standard Galerkin-ROM formulation |
| :---: | :---: |
| $r=N_{u}+N_{\text {sup }}, N_{\text {sup }}$ supremizer |\quad Poisson pressure equation approach,\(~\left\{\begin{array}{l}\dot{\mathbf{a}}=\mathbf{f}(\mathbf{a}, \mathbf{b}),

\mathbf{h}(\mathbf{a}, \mathbf{b})=\mathbf{0} .\end{array}\right.\)

2. DD-VMS-ROM: the correction terms

Motivation: improve the velocity and pressure accuracy to better capture the forces. How: reintegrating the contribution of the neglected modes with correction terms. Construction of correction terms:

1. build the exact correction $\tau^{\text {exact }}$ from available data;
2. propose an ansatz for the approximated correction term $\boldsymbol{\tau}^{\text {ansatz }}(\mathbf{a}, \mathbf{b})$;
3. solve an optimization problem $\min \sum_{j}\left\|\boldsymbol{\tau}^{\text {exact }}\left(t_{j}\right)-\boldsymbol{\tau}^{\text {ansatz }}\left(t_{j}\right)\right\|_{L^{2}}^{2}$.

Two different types of correction terms:

- $\boldsymbol{\tau}_{u}(\mathbf{a})$: velocity correction in the momentum equation;
- $\boldsymbol{\tau}_{p}(\mathbf{a}, \mathbf{b})$: novel pressure correction in the Poisson equation (in the PPE approach).

3. EV-ROM: the turbulence modelling

Motivation: Inclusion of a turbulence model in the ROM.
How: Addition of reduced eddy viscosity terms

$$
\nu_{t}=\sum_{i=1}^{r} g_{i} \eta_{i}
$$

$\mathbf{g}=\left(g_{i}\right)_{i=1}^{r}:$ eddy viscosity coefficients vector,
$\left(\eta_{i}\right)_{i=1}^{r}$: eddy viscosity modes.
Construction of g: The eddy viscosity coefficients vector is modelled with regression techniques making use of a fully-connected neural network:
$\mathbf{g}=\mathrm{f}(\mathbf{a})$

\qquad

