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Introduction
The project aims to develop a propeller of optimal shape for cruise ships.
The shape optimization problem is faced exploiting data-driven Reduced Order Models
(ROMs) to reduce the computational effort of high-fidelity fluid dynamic simulations of open
water tests.

Goals of the project:
⋆ improve the efficiency of the propeller’s blades;
⋆ avoid the cavitation phenomenon, i.e. the formation of vapor-filled cavities;
⋆ reduce noise, vibration and consumption.

1. Blade parametrization and deformation
Blade geometric
parameters:

⋆ rake
⋆ skew
⋆ pitch
⋆ section parameters:

· radius
· camber
· thickness
· chord length

Blade deformation: design of 200 deformed blades
Deformed parameters:

⋆ pitch (±10%)
⋆ camber (±10%)
⋆ thickness (±30%)
⋆ chord length (±30%)

2. Setting of Full Order Model (FOM)
• Type of simulation: open water tests, with different inlet velocity v.

• Mesh: found in an iterative way in order to validate with experimental measures.

FOM mesh made
with snappyHexMesh

iterate until :

{
errkT

≤ 1%

errkQ
≤ 3%

Validation with
experimental results

• Moving mesh technique:
Moving Reference Frame (MRF).

• Turbulence modeling:
⋆ Reynolds Averaged Navier-

Stokes (RANS) equations
⋆ κ− ω SST model
⋆ γ − Reθ turbulent transition.

Final mesh: ∼ 6 M cells.

Definition of forces/moments acting on blades

Thrust force:
T = Tpressure + Tviscous

Tpressure = ρ

∫
Sbl

pndA

Tviscous = ρ

∫
Sbl

ΣndA

Thrust coefficient:

kT =
T

ρn2
rpsD
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Torque momentum:
Q = Qpressure +Qviscous

Qpressure = ρ

∫
Sbl

pn× rdA

Tviscous = ρ

∫
Sbl

Σn× rdA

Torque coefficient:

kQ =
Q

ρn2
rpsD
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⋆ nrps: rounds per second;

⋆ Sbl: blades surface;

⋆ n: normal to surface;

⋆ D: propeller diameter;

⋆ r = (x, y, z): position
vector;

⋆ Σ: wall shear stress ten-
sor.

3. OFFLINE stage: FOM simulations
Mesh deformation with Radial Basis Func-
tion (RBF) interpolation technique from:

Undeformed control points (unde-
formed propeller and boundaries)

Deformed control points (deformed
propeller and undeformed boundaries)

Slice of undeformed ( ) and deformed ( )
mesh: a. Reconstruction of internal mesh.

Computational time: ∼ 2 h 15
min.

b. Simulation of a large number of
open water tests with deformed
blades and mesh.
Computational time to run one
simulation: ∼ 48− 72 h.

4. ONLINE stage: Shape Optimization exploiting ROM

Selection of the best individuals:

ROM prediction of pressure p and
wall shear stress Σ

optimize the
efficiency η = Tv

2πnQ

Mate/Crossover
Remark:

the Reduced Order Model
is applied only
on the blades.

Computational time:
∼ 5 min.

Mutation

iterate for
each generation

Starting population of parameters

Shape Optimization using Genetic Algorithm

Optimal set of parameters

Validation of efficiency in OpenFoam

5. Computational science and engineering softwares: mathlab.sissa.it/cse-software

BladeX
github.com/mathLab/BladeX

mathlab.github.io/BladeX

PyGeM
github.com/mathLab/PyGeM
mathlab.github.io/PyGeM

EZyRB
github.com/mathLab/EZyRB
mathlab.github.io/EZyRB

BladeX is a Python package for geometrical
parametrization and bottom-up construction of pro-
peller blades.

PyGeM is a Python package using Free Form Defor-
mation, Radial Basis Functions, and Inverse Distance
Weighting to morph complex geometries.

EZyRB is a Python library for data-driven (non-
intrusive) model order reduction with POD with in-
terpolation.
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