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Introduction
Deep learning-based reduced order models (DL-ROMs) have been recently proposed to overcome common limitations shared by conventional ROMs – built, e.g., exclusively through
proper orthogonal decomposition (POD) – when applied to nonlinear time-dependent parametrized PDEs. In this work, thanks to a prior dimensionality reduction through
POD, a two-step DL-based prediction framework has been implemented with the aim of providing long-term predictions with respect to the training window, for unseen parameter
values. It exploits the advantages of Long-Short Term Memory (LSTM) layers combined with Convolutional ones, obtaining an architecture that consists of two parts: the first
one aimed at providing a certain number of independent predictions for each new input parameter, and a second one trained to properly combine them in the correspondent exact
evolution in time. In particular, the developed architecture has been tested for the reduction of the incompressible Navier-Stokes equations in a laterally heated cavity.

1 - Proposed Framework
The Framework is articulated in two Neural Network structures trained separately. In particular, the NNs used have been designed exploiting the sequential combination of
1D-Convolutional Layers and LSTM layers. Indeed, while the first filters the 1D input data, composed by a certain time-window of the time-series, the latter is capable of learning
the long-term dependencies hidden in the evolution of the signal, which brings significant advantages in the future-time predictions.

Starting from exact numerical resolutions for short time-windows for few different
parameters’ values belonging to the training set, we aim to forecast the time-evolution of

the signal of interest for arbitrarily long time periods, and for each general parameter
belonging to the parameter-space considered.

Therefore, the framework would result in an internal representation of the parametric
system’s dynamics, which can be reconstructed for an arbitrarily long period building a
self-sustaining loop in time that, at each iteration, updates the time-window in input to

the framework with the already obtained predictions.

2A - Training, phase I
The first-step Neural Networks are trained independently with different training-sets, each
one composed by a computed solution (g(ti, aj)) for a different value of the parameters
considered in the training (aj ∈ Ptraining ⊂ Pspace).

g(ti, aj) = Fj(g(ti−W , aj), ..., g(ti−1, aj), aj) ∀ti > W, ∀j ∈ {1, ..., n} s.t. aj ∈ Ptraining

2B - Training, phase II
The second-step Neural Network is trained a posteriori to the first-step predictions. In-
deed, they correspond to its inputs and are appropriately combined to result in a proper
forecast for the next temporal step and for a general parameter.

g(ti, p) = G(F1(t, a1), ..., Fn(t, an), p) ∀ti > W, ∀p ∈ Pspace

3 - Application to incompressible Navier-Stokes equation in a heated cavity

Incompressible Navier-Stokes equation:

δu
δt + (u · ∇)u− ν∇2u = − 1

ρ∇p+ g

Choosing the case of a laterally heated cavity, the parame-
ter space now represents the Grashof Number’s values.
After a POD decomposition and after having trained the
framework with the exactly computed modes related to 9
different parameter values, the modes’ evolution in time is
predicted for general Grashof Numbers.

The modes’ forecasts are performed in a mean time of 12
minutes, improving of a factor of 10 the time taken to ex-
tract them exactly by simulation. The predictions, tested
for the first 4 modes of 7 random Grashof numbers’ values,
have shown a mean absolute error percentage of 1.7%, and
a maximum absolute error percentage of 2.8% on 10 times
bigger periods than the initial time-window width given to
the framework.

References and Acknowledgements
[1] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges, 2021.

[2] F. Fatone, S. Fresca, and A. Manzoni. Long-time prediction of nonlinear parametrized dynamical systems by deep learning-based reduced order models, 2022.

[3] M. W. Hess, A. Quaini, and G. Rozza. A data-driven surrogate modeling approach for time-dependent incompressible navier-stokes equations with dynamic mode decomposition and manifold
interpolation, 2022.


