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Introduction

Deep learning-based reduced order models (DL-ROMs) have been recently proposed to overcome common limitations shared by conventional ROMs — built, e.g., exclusively through
proper orthogonal decomposition (POD) — when applied to nonlinear time-dependent parametrized PDEs. In this work, thanks to a prior dimensionality reduction through
POD, a two-step DL-based prediction framework has been implemented with the aim of providing long-term predictions with respect to the training window, for unseen parameter
values. It exploits the advantages of Long-Short Term Memory (LSTM) layers combined with Convolutional ones, obtaining an architecture that consists of two parts: the first
one aimed at providing a certain number of independent predictions for each new input parameter, and a second one trained to properly combine them in the correspondent exact
evolution in time. In particular, the developed architecture has been tested for the reduction of the incompressible Navier-Stokes equations in a laterally heated cavity.

1 - Proposed Framework

The Framework is articulated in two Neural Network structures trained separately. In particular, the NNs used have been designed exploiting the sequential combination of
1D-Convolutional Layers and LSTM layers. Indeed, while the first filters the 1D input data, composed by a certain time-window of the time-series, the latter is capable of learning
the long-term dependencies hidden in the evolution of the signal, which brings significant advantages in the future-time predictions.
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Starting from exact numerical resolutions for short time-windows for few diflerent Therefore, the framework would result in an internal representation of the parametric
parameters’ values belonging to the training set, we aim to forecast the time-evolution of system’s dynamics, which can be reconstructed for an arbitrarily long period building a
the signal of interest for arbitrarily long time periods, and for each general parameter self-sustaining loop in time that, at each iteration, updates the time-window in input to
belonging to the parameter-space considered. the framework with the already obtained predictions.

2A - Training, phase 1 2B - Training, phase 11
The first-step Neural Networks are trained independently with different training-sets, each The second-step Neural Network is trained a posteriori to the first-step predictions. In-
one composed by a computed solution (g(Z;,a,)) for a different value of the parameters deed, they correspond to its inputs and are appropriately combined to result in a proper
considered in the training (a; € Piraining C Pspace)- forecast for the next temporal step and for a general parameter.
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3 - Application to incompressible Navier-Stokes equation in a heated cavity

Incompressible Navier-Stokes equation:
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predicted for general Grashof Numbers.
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tract them exactly by simulation. The predictions, tested
for the first 4 modes of 7 random Grashof numbers’ values,
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have shown a mean absolute error percentage of 1.7%, and
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bigger periods than the initial time-window width given to
the framework.
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