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Introduction
We present an investigation of data-driven techniques in the study and analysis of dynamical systems, and in particular in the study of dynamical systems originated from delay-
differential equations (DDEs). DDEs are a generalization of ODEs in which the derivative of the state variables depends also on the past values of the state (Box 1). The techniques
of interest are Dynamic Mode Decomposition (Box 2) - a decomposition method - and the SINDy algoritm (Box 3) - an algorithm which is used to discover non-linear dynamics in
dynamical systems. We applied the DMD to DDEs to decompose time series originated from DDEs in linear modes and exploit this decomposition to identify the most important
modes to reconstruct the state of the system and to predict its future values (Box 4). We then tried to improve the future prediction applying the SINDy algorithm in a multy-fidelity
context, where the low fidelity data are the modes identifyied by the DMD (Box 5).

1 - Delay-Differential Equations [3]

A generic DDE is a differential equation for y(t) ∈ Rn of the form

y′(t) = f(t, yt(·))

where yt(·) denotes the map s 7→ y(s) for all s ≤ t. Among this general class of
functional differential equations we concentrate on the autonomous case with a single
fixed delay τ > 0, i.e.

y′(t) = f(y(t), y(t− τ)).

A very famous DDE is the Mackey-Glass equations

y′(t) = β
y(t− τ)

1 + y(t− τ)n
− γy(t) γ, β, n > 0,

which describes some processes in physiology and cell production.
DDEs lie in the middle between ODEs and PDEs: they describe an infinite dimensional
object, admit a finite dimensional formulation and can exhibit chaotic behaviour even
in the scalar case.

2 - Dynamic Mode Decomposition (DMD) [2]
With the DMD one want to approximate a dynamical system with a discrete linear one
governed by the equation

xn+1 = Axn.

The main objectives of this method are identifying the most relevant spatio-temporal
modes of the system and use them to perform a low-rank reconstruction of the state of
the system and a prediction of the future state.
To do this one operates as follows:

• creation of two matrices: snapshots X and time-shifted snapshots Y where we want
Y = AX;

• using SVD of X = UΣV∗ to obtain A, or its reduction to a certain rank Ã =
U∗YVΣ−1;

• using the eigendecomposition of A, i.e. ÃW = WΛ to compute the modes Φ =
YVΣ−1W;

• using the modes to recontruct and forecast xk = ΦΛkb.

4 - DMD applied to DDEs
We applied the DMD to time series obtained from delay-differential equations. The time
series onsidered were characterized by different behaviours: asymptotically stable, stable,
unstable, periodic and chaotic. We were interested both in the recontruction and in the
prediction of the state.

We perform a comparative analysis of the error with respect to different criteria used in
the selection of the rank of the approximation.

3 - Sparse Identification of Nonlinear Dynamics [1]
SINDy is an algorithm used to identify non-linear dynamics through a sparsity criterium
using data collected from a dynamical system.
This is done proceeding as follows:

• collect the measurements of the state variable and its derivative in two matrices X
and X′;

• select the functions of the state variable to be used in the reconstruction of the
derivative Θ(X);

• impose an equation of the form X′ ≈ Θ(X)Ξ, where Ξ is a coefficients matrix;

• solve the equation promoting the sparsity of the matrix Ξ.

The condition of sparsity in the coefficients is promoted using an L1 regularization.

5 - SINDy in a Multy-Fidelity Context
We applied SINDy in a multy-fidelity context: we used it to find possible relations between
high-fidelity and low-fidelity. We used then the relation provided by the algorithm to
extrapolate the value of the high-fidelity data when just the low-fidelity data are known.
We tested this approach with toy examples from the literature.

We tested this approach also on time series coming from dynamical systems, in particular
from DDEs. We used as high-fidelity data the training values of the time series, and as
low fidelity data the DMD modes.

6 - Possible future developments
Possible future developments of this methodology include the applications to the following
examples:

• non scalar DDEs with low dimension;

• non scalar DDEs with high dimension;

• partial delay differential equations.

4 - Computational science and engineering softwares
PyDMD
github.com/mathLab/
PyDMD
mathlab.github.io/PyDMD

PySINDy
github.com/dynamicslab/
pysindy
_

PyDMD is a Python package that
uses Dynamic Mode Decomposition
for a data-driven model simplifica-
tion based on spatiotemporal coher-
ent structures.

PySINDy is a sparse regression pack-
age with several implementations for
the Sparse Identification of Nonlinear
Dynamical systems (SINDy) method
introduced in [1].
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