Uncertainty quantification for human arterial network
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Abstract: This work deals with identifying and quantifying uncertainties from various sources in a relatively complete human arterial network that is validated against clinical measurements
for the first time. We establish a stochastic multiscale system consisting of one dimensional fluid structure interaction model (FSI) and zero dimensional lumped parameter model to describe the
pulse wave propagation of blood flow and pressure. Distinct uncertainty effect is studied through statistics and sensitivity of the solution with respect to many different parametric uncertainties.

Stochastic Multiscale Model

Uncertainties in Arterial Network Approximation & Simulation

e Stochastic multiscale arterial network model

f The complete model for the arterial network presented in
o = 00625, 5, = 0.25 | Figure 1 is constructed by coupling the equations (2) and

* (3) for each large scale arterial segment , equation (4)
for each small scale terminal network feeding boundary
conditions, equation (5) for wave propagation at each bi-

We investigate diverse uncertainties in the human arte- We consider the following elements in building the stochas- W . al mati £ the stochasti |
rial network with schematic representation in Figure 1. tic multiscale model to describe uncertainty effect for wave i © slpemm )(;nlurrrilzricamap?r?xizn? 'f[)rn to fersc.)rcn a]lsticnmu?
ropagation of blood flow and pressure in arterial network. Istale modet and computationat strategy 1or simuiation as.
5 propag P S o _
UV e FSI: reduced from 3D to 1D in large scale e Deterministic approximation in physical space
By integrating the 3D Navier-Stokes equations over the We split the flow rate and thus the model into the (a)
0 o\ T oo T foow cross section, we obtain the reduced 1D fluid equations elastic and (b) viscoelastic parts for simplicity, and then
\ /- e\ ‘ with state variables (A, Q, P) : (0,T] x [0, L] x Q — R3 [2] solve the FSI problem in two steps by second order Taylor
) ) , Galerkin approach using nonlinear Richardson scheme
v . oA 1 oQ — 0, and Broyden algorithm for updating Jacobian matrix [3].
< 82 ox (2) (initial ) Y (inner step solve FSI ) > save )
L 20 ® R 8@ X 0 OzQ— 1 éa_P 1 k( >Q 0 — solve (a) —>> solve (b) —> coupling
" : Ot or A p Ox A ’ (outer step couple FSI ) |
\

_ _ | | which is closed with the pressure-area relation e Stochastic approximation in probability space
Figure 1: Representation of the human arterial network [1] We use the non-intrusive spare grid stochastic colloca-
In general, they can be classified as 1. Computational P — Pyt = ¥p(Ao, A, E) + 1y (Ao, 4, 0A,T), (3) tion method for approximation in probability space [4]
geometries: e.g. cross section area in lumen, wall thick- bein . :

. o i ) . g P.,+ external pressure, 3,1~ elastic and vis- K —1 | |
Ness, Image anle, 2. rl]l/lathen:]atlcal modlels. ©-9- ”9'0: coelasticeftjerms A reference area 5E \?oung modulus and Sfy)= 2 (U (q— ii|> U@ oU™) fly),  (6)
or compliant walls, with or without viscoelastic or inertia N e . . 0—K+1<lil<q D |
oroperties: 3. Physical parameters: e.g. Young's modu- T characteristic time accounting for material properties. V\{here _iii — S, with the muit,\,ar,ate index i - (ii,--_- 7Z-K.> defined
lus, characteristic time, the density, diffusivity; 4. Boundary e 0D lumped parameter model in small scale via various sets, e.g. type | (|¢| < w) and Il (][ < w) in Figure 3.
conditions: e.g. inlet velocities or flux, outlet resistance, The lumped parameter model with analogy to electrical
compliance; 5. External sources or forces: e.g. external network is applied to describe blood flow in small scale: ) ; )
pressure from surrounding tissue, work efforts. D 10 i i i
These uncertainties can be represented in the probabil- P—F,+ CRQE = RQ + 03132%7 (4) ‘ ) )
ity framework and calibrated from measurements through ,
regression, maximum likelihood estimation, maximum en- where F, Is venous pressure, C and £ = R + i are s s 0 O
tropy and other inference techniques. In the absence of compliance and resistance with assumption 7t} = 41
sufficient data, we use a parametric uncertainty form with « Domain decomposition at the bifurcation Figure 3: Tensor product grid and sparse grid of type 1 & 11
lognormal distribution that is positive and concentrated Conservation of mass the continuity of oressure lead 1o o o
y orp The statistics (mean E, standard deviation S = v/V) and
n(t, z,w) = exp (e + ovY (w))n(t, z) (1) N, N, sensitivity (main effect G, 1 < k < K) is evaluated as [2]
with different (u.,o,) for different degrees of uncertain- > Qh=> Q% and P=Pr], (5) : 2 VIE[ |yl
ties. Figure 2 depicts the standard normal distribution func- n=1 m=1 B~ /FSQf W)ply)dy; VU]~ E [S,f]-(EIS,f)"; Gilf] = V]
tion of ¥ and several lognormal distribution functions. at each bifurcation for proximal and distal state variables e Simulation: two level parallel computation in LifeV
P pp d pd _ _ . . .
G S i B (@n, Pr) and (@, Prp), Vno=1,... . Np,m =1,..., Ng. Due to the non-intrusive property of collocation approach,
035/ 35/ Ho=001,0,0.1 * we parallelize the simulation in V stochastic groups in the

1st level and use M processors for each deterministic
solver in the 2nd level. In practice, we use 10 x 16 proces-
sors, i.e. 16 processors (Intel Xeon Nehalem 2.66 GHz,
costing 25 minutes) for each of 10 deterministic solvers
at 10 collocation nodes for a period of 6 heart beats.

ue =0.25,06,=0.5

0.05f

% o o5 1 5 2 &5 3 furcation, as well as some prescribed physiological flow LifeV (stochastic mulsticale model) wwwlifevorg ‘
Fiqure 2: Normal. loanormal brobability density function rate () at the heart and suitable initial conditions, e.g. ot et + 1t . o [mocstcgrou!
: . . 1 ° ° s ° ° N
gu e_ ormal, loghormar probabllity aensity iunctions A=Ay, Q =0, P = P, for the entire arterial network. - -
Wlth nOIse'tO Slgna/ ratlo around 10%7 25%7 50%1 reSPeCt’VG/y A” the Uncertainties in red are parametrized Via (1 ) (deterministic groupjl,lj oo @eterministic groupjl,ia 2nd [deterministic groupJ1,1]°“ [deterministic groupjl,iﬂ
Experiments in 10 dimensions Experiments in 103 dimensions
We impose physiological flow rate at Ascending aorta 1 and i i ir i .
’ ’ 9 via main eftect iy, 1 < & < 10, see laple 2 and Figure randomized with 1.i.d. Y;,, ~ N(O, 1) and ue = 0.01,0, = 0.1
Ascending aorta 1 (1) - Left common carotid (15) - Abdominal aorta A (28) 1o Basilar artery 2 (56) ocatio n/parameter p Iu 2 2 Q = G T = m m _
B . Ascending aorta2  0.086 0.046 6.496 0.070 62.034 21.776 0.007 0.001 1.296 6.661 AO (:I?,w) exp(,ue —i—Jva(w))Ao(az )’1 < m < 103,
. . 7 \,\\:,jj;iii;:;:\ N Left common carotid  0.083 0.046 6.845 0.068 62.171 21.443 0.007 0.000 1.232 6.479 With small noise (10%), we use the first level of interpo|a_
3 254 | S Left radial 0.048 0.072 5.649 0.087 61.563 28.581 0.008 0.000 0.964 1.124 _ i _
o Abdominal aorta A 0.063 0.044 6.817 0.071 62.062 22567 0.007 0.000 1.180 5.544 tion to evaluate the sensitivity, with results for flow rate and
| Right anterior tibial ~ 0.892 0.111 4.641 0.125 52.807 36.620 0.006 0.001 0.838 1.484 : : , -
il Right post. cerebral 2 0.146 0.066 7.104 0110 59.873 28.080 0.007 0.001 0.907 0.181 pressure displayed in Table 3 and 4 respectively, from which
i . . o Basilar artery 2 0.001 0.057 6.483 0.101 62.221 25149 0.007 0.001 1.083 3.080 ' ' At
Figure 4: Prescribed inflow rate Q and the statistics E,E + S, E — S R?gstlita\::rt[eeb?al 0.041 0.048 7.000 0.078 62.399 22.382 0.007 0.000 1.140 5.158 we conclude that the Inﬂuen_tlal uncertainties come from the
Left ophthalmic 0.116 0.076 8.085 0.055 60.976 26420 0.006 0.001 0.905 0.420 nearest segments for (), while near heart (e.g. 27,95) for P.
TO explore the Convergence property Of the StOChaStiC COl' Table 2: Sensitivity analysis: sensitivity G, of different parameters to pressure P at 18 locations ()
. . . location/order 1st 2nd 3rd 4th 5th 1-5
location method, we define the relative error for E and S as . M e e Ascending aorta 2 (95)  77.616 (95) 7.039 (1) 5.138(98) 1.907 (27) 1.225 (46) 92.925
N~ s AN . AN Left common carotid (15)  58.289 (16) 10.457 (12) 7.408 (15) 3.479 (69) 3.311 (68) 82.943
|E[S,+1f] — E[S,f]l] [S|Sy+1f] — SIS, fll| Left radial (22) 89.126 (22) 2.912(21) 2.443(27) 1.362(95) 0.994 (7) 96.837
error(I;| f]) = EIS ; error(S;| f]) = SIS ; Abdominal aorta A (28)  15.811 (95) 10.886 (7) 10.786 (21) 8.570 (52) 8.570 (46) 54.623
E[S+1/1] SISy f]l] Right anterior tibial (55)  92.292 (55) 6.218 (52) 0.329 (54) 0.318(95) 0.181(7) 99.338
. . . Right post. cerebral 2 (64) 91.862 (64) 1.878 (27) 1.287 (95) 0.743 (21) 0.670 (18) 96.441
We consider noise 10%, 25%, 50% (see Figure 2) for refer- Basilar artery 2 (56) 27.970 (9) 18.040 (20) 15.745 (16) 15.338 (6) 15.088 (12) 92.181
- Right vertebral (6) 63.532 (6) 19.705(20) 6.048 (9) 3.454 (16) 3.319(12) 96.058
ence area A, resistance R and Young modulus E, respec- Left ophthalmic (82) 98.458 (82) 0.491 (16) 0.267 (27) 0.180 (95) 0.096 (9) 99.492
’[ively, and use different collocation level | = q — K : with Table 3: The largest five values and their summation of main effect (value in percent (%)) of ) with

respect to reference area from their corresponding boundaries in bracket (-) at 10 locations

pressure shown at 18 representative locations in Figure 5

10 at 18 locations 10 at 18 locations 10 at 18 locations 10 at 18 locations location/order 1st 2nd 3rd 4th 5th 1-5
o Ascending aorta 2 (95) 24.309 (27) 16.979 (95) 8.655(18) 7.586 (21) 7.217 (7) 64.745
1 | e Left common carotid (15) 24.982 (27) 16.981 (95) 8.859 (18) 7.841 (21) 7.411(7) 66.074

E g £ | Ef\ Left radial (22) 44.965 (22) 13.821 (21) 12.215(27) 7.231 (95) 3.974 (7) 82.208
Sl S o | ~ﬁ\ Abdominal aorta A (28) 22.207 (95) 10.407 (21) 9.691 (7) 8.295(18) 8.071(9) 58.672

‘ 1 s Right anterior tibial (55) 50.087 (55) 40.073 (52) 2.088 (95) 2.007 (54) 1.093 (7) 95.347

- o | ow) Right post. cerebral 2 (64) 63.271 (64) 8.232 (27) 5.648 (95) 3.260 (21) 2.936 (18) 83.346
T . R Basilar artery 2 (56) 21.416 (27) 14.728 (95) 8.760 (21) 7.740(7) 7.629 (18) 60.272
_ . _ Right vertebral (6) 23.829 (27) 16.475(95) 10.724 (7) 8.473(18) 8.384 (21) 67.885
Flgure 9: Pressure at 18 representative locations for Q,Aq,R and E Left ophthalmic (82) 62.446 (82) 11.727 (16) 6.309 (27) 4.281 (95) 2.287 (9) 87.050
Table 4: The largest five values and their summation of main effect (value in percent (%)) of P with

Th e 3 pOSteri Ori re|ative error (VaIU e in XlO—S) iS dISplayed respect to reference area from their corresponding boundaries in bracket (-) at 10 locations
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Table 1: A posteriori error of the statistics of (), Ao, R, E) in different levels (x107°) Figure 6: Time dependent statistics and sensitivity at 18 locations

Conclusion: The uncertainty quantification strategy we presented is helpful to detect systematically and quantitatively the importance of various parameters to human arterial network.



