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Abstract

Solving optimal control problems for many different scenarios

obtained by varying a set of parameters in the state system

is a computationally extensive task. We present a reduced

framework for the numerical solution of parametrized PDE-

constrained optimization problems. The proposed framework is

based on a suitable saddle-point formulation of the optimal con-

trol problem and exploits the reduced basis method, leading to a

relevant computational reduction with respect to traditional dis-

cretization techniques such as the finite element method. This

setting is applied to the solution of two problems arising from

haemodynamics, dealing with both data reconstruction and data

assimilation over domains of variable shape (for which a further

geometrical reduction is pursued), which can be recast in a com-

mon PDE-constrained optimization formulation.

1. Problem definition and saddle point formulation

Let Ω ⊂ Rd be a spatial domain andD ⊂ Rp be a p-dimensional
parameter set. Let Y, U be two Hilbert spaces for the state and
control variables y and u respectively, while Z ⊃ Y shall denote
the observation space. We consider the case of a quadratic cost

functional to be minimized

J (y , u;µ) =
1

2
m(y−yd(µ), y−yd(µ);µ)+

α

2
n(u, u;µ), (1)

where α > 0 is a given constant and yd(µ) ∈ Z is a given
parameter-dependent observation function. Let Q ≡ Y denote
the test space, we define the linear constraint equation

B(y , u, q;µ) = ⟨G(µ), q⟩ ∀q ∈ Q, (2)

where the bilinear form B(·, ·;µ) : Y × U ×Q → R is given by
the sum of two contributes

B(y , u; q;µ) = a(y , q;µ)− c(u, q;µ);

the (weakly) coercive bilinear form a(·, ·;µ) represents a linear
elliptic operator while the bilinear form c(·, ·;µ) expresses the
action of the control.

..

The parametrized optimal control problem (OCPµ) reads:

for any given µ ∈ D

min
y ,u
J (y(µ), u(µ);µ) s.t. (y(µ), u(µ)) ∈ Y×U solves (2).

In order to formulate the optimal control problem as a saddle-

point problem, we first define the product space X = Y × U
and denote with x = (y , u) ∈ X, w = (z, v) ∈ X its variables.
We can reformulate the OCPµ as: given µ ∈ D, minx J (x ;µ) =

1

2
A(x, x ;µ)− ⟨F (µ), x⟩, s.t.

B(x, q;µ) = ⟨G(µ), q⟩ ∀q ∈ Q.
(3)

where F (µ) = m(yd(µ), ·) ∈ X ′ and

A(x, w ;µ) = m(y , z ;µ) + αn(u, v ;µ), ∀x, w ∈ X .

The constrained optimization problem (3) falls into the frame-

work of saddle-point problems. The assumptions of Brezzi

theorem can be easily verified [4] and therefore, for any µ ∈ D,
the optimal control problem has a unique solution x(µ) ∈ X
that can be determined by solving the following saddle-point

problem (i.e. the optimality system):

..

given µ ∈ D, find (x(µ), p(µ)) ∈ X ×Q such that{
A(x(µ), w ;µ) + B(w, p(µ);µ) = ⟨F (µ), w⟩ ∀w ∈ X ,
B(x(µ), q;µ) = ⟨G(µ), q⟩ ∀q ∈ Q,

where p(µ) is the Lagrange multiplier (adjoint variable) associ-

ated to the constraint.

2. Reduced basis approximation

The RB method gives an efficient way to compute an approxi-

mation to the FE truth solution (xh(µ), ph(µ)) by considering

only a small subspace of the FE space Xh ×Qh. We thus take
a suitably selected (by a greedy algorithm) set of parameter

values µ1, . . . ,µN (N ≪ Nh) and the corresponding FE so-
lutions (xh(µ

1), ph(µ
1)), . . . , (xh(µ

N), ph(µ
N)). The reduced

basis control space is given by

UN = span{uh(µn), n = 1, . . . , N},

while, in order to guarantee the stability of the RB approxima-

tion, we define the following aggregated reduced basis space for

the state and adjoint variables

YN ≡ QN = span{yh(µn), ph(µn), n = 1, . . . , N}.

Let XN = YN ×QN, the reduced basis approximation reads:

..

given µ ∈ D, find (xN(µ), pN(µ)) ∈ XN ×QN such that{
A(xN(µ), w ;µ) + B(w, pN(µ);µ) = ⟨F (µ), w⟩ ∀w ∈ XN
B(xN(µ), q;µ) = ⟨G(µ), q⟩ ∀q ∈ QN.

3. Efficiency and reliability

At the algebraic level we obtain the linear system(
AN(µ) B

T
N(µ)

BN(µ) 0

)
︸ ︷︷ ︸

KN(µ)

(
xN(µ)
pN(µ)

)
=

(
FN(µ)
GN(µ)

)
︸ ︷︷ ︸
fN(µ)

. (4)

Thanks to the affine assumption, we can write

KN(µ) =

Qk∑
q=1

Θqk(µ)K
q
N, fN(µ) =

Qf∑
q=1

Θqf (µ)f
q
N ,

where KqN and f
q
N are µ-independent, and we can therefore pro-

vide the usual Offline-Online computational decomposition.RB Method: the “complete game”

FE kernel

affine decomposition

assembly K
q
h
, Fq

h
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assembly K
q
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N

a posteriori

error estimation
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KN (µ)UN (µ) = FN (µ)
Θq
∗(µ)µ ∈ D
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functional ∆J
N (µ)
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Offline stage involves precomputation of FE structures required for the RB space

construction and the certified error estimates.

Online stage has complexity only depending on N and allows resolution of the Optimal

Control Problem for any µ ∈ D with a certified error bound.

Recasting the problem in the general Babuška framework [3] we

can provide an efficient and rigorous a posteriori error estimate

on the solution variables (as well as on the cost functional [2]):

∥(xh(µ), ph(µ))− (xN(µ), pN(µ))∥X×Q ≤
∥r(·;µ)∥
β̂LB(µ)

= ∆N(µ)

where 0 < β̂LB(µ) ≤ β̂h(µ) is a lower bound of the inf-sup
constant of the optimality system.

4. A surface reconstruction problem

We wish to reconstruct, from areal data provided by eco-

dopplers measurements, the blood velocity field in a section

of a carotid artery. The problem can be seen as a problem

of surface reconstruction starting from scattered data, and it

turns out [5] that it can be modeled as a minimization problem

for a suitable PDE-penalized least-square cost functional:

..
min
y ,u
J (y , u;µ) =

1

2

5∑
i=1

∫
Ωobs,i

|y(µ)− zi |2dΩ+
α

2
∥u(µ)∥2L2

s.t.

{
− ∆y(µ) = u(µ) in Ω(µg)

y(µ) = 0 on ∂Ω(µg)

•Geometrical parametrization: Free Form Deformation
µg ∈ (−0.15, 0.15)4 displacements of the control points • •
•Parametrized observation values: µiobs = zi , 1 ≤ i ≤ 5

Number of FE dof Nh 3.3 · 104
Regularization constant α 10−4

Number of parameters P 9

Number of RB functions N 42

Affine components Qk 53

Linear system dimension red. 160:1

RB solution tonl ineRB (s) 13ms

Speedup 100x
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In each box we report the observation values zi on the right and the
reconstructed surface y on the left.

5. Stokes constraint: a boundary inverse problem

The methodology has been extended to treat OCPµ with Stokes

constraints. The stability of the RB approximation can be ful-

filled by introducing suitable supremizer operators [3] and by

defining suitable aggregated spaces for state and adjoint vari-

ables [1].

As a possible application, we consider an inverse boundary prob-

lem in haemodynamics (inspired by the work in [6]) where the

state equation models the blood flow (supposed to obey the

Stokes equations) in a parametrized arterial bifurcation and we

suppose to have a measured velocity profile on the a transverse

section, but not the Neumann flux on ΓC that will be our control

variable.
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Figure 1: An (idealized) example of inverse boundary problem in haemodynamics. Given a

geometrical configuration and some velocity measurements on some sections of the domain

(both obtainable via medical image and data assimilation devices, e.g. MRI), we want to

retrieve the whole pressure and velocity fields in order to detect possible pathologies, e.g.

occlusions or flow disturbance in arterial bifurcations.

..

min
v ,π,u

J (v , π; u;µ) =
1

2

∫
Γobs

|v − vd(µobs)|2 dΓ

+
α1
2

∫
ΓC

|∇u · t|2dΓ +
α2
2

∫
ΓC

|u|2dΓ

s.t.



−ν∆v +∇π = 0 in Ω(µ)

div v = 0 in Ω(µ)

v = 0 on ΓD(µ)

v = g(µin) on Γin(µ)

−πn + ν
∂v

∂n
= u on ΓC(µ).

Number of FE dof Nh 4.6 · 104

Number of parameters P 8
Number of RB functions N 65
Affine components Qk 71
Linear system dimension red. 60:1
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Representative solution for µ = (1, π/5, π/6, 1, 1.7, 2.2, 0.8, 1).
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