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Introduction
Coanda effect is the tendency of a fluid jet to be attracted to a nearby surface. In cardiology, this effect is responsible for
the wall hugging jets in certain cases of mitral valve regurgitation: regurgitant blood flow through a leaky mitral valve
sometimes hugs the wall of the left atrium. This makes it difficult to assess the severity of mitral regurgitation using
classical color Doppler imaging techniques.

Method
The aim is to study the onset of the Coanda effect in a simplified setting with the Reduced Basis (RB) method. We
focus both on the planar and three dimensional case (figure 1). In this work, only the influence of the Reynolds number,
the contraction width wc (for the 2D case), and the channel height (3D case) is considered.
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Figure 1: Scheme of the 2D (left) and 3D (right) domains Ω considered in this work. The nomenclature is the same used in [1].
We introduce the following quantities, useful in the characterization of the numerical simulation [1]:

aspect ratio AR =
h

wc
; normalized channel depth H =

h

h+ wc
=

AR

AR + 1
;

average horizontal velocity 〈vx〉 =
Q

wch
with Q flow rate; Reynolds number Re =

〈vx〉wc

ν

2AR

AR + 1
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The sampling process is based on a Chebyshev collocation method. After the sampling, a POD procedure is used to
compute the velocity basis functions {φ}Ni=1. If the map adopted for the geometry deformation is used also to map basis
functions between the reference and the parametrized domains, it is not necessary to sample the pressure space. This
transformation is called Piola transformation.
Given a target parameter µi ∈ D, the approximation problem consists in searching for a couple (uN (µi), pN (µi)) ∈
V N ×QN such that:(
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From the algorithmic viewpoint, we can set up a bifurcation detection method as follows. Suppose that an initial RB
solution uN (µi) is known for a given value of the parameter µi, characterized by a sufficiently small Reynolds number
Rei so that the solution is surely unique. Then, for the 3D case, we proceed as follows. Set k = 1 and Rek = Rei, then:

1. Keeping fixed the value of the geometric parameter Hi, increase the value of the Reynolds number by a sufficiently
small increment ∆Re and set µk+1 = (Rek + ∆Re,Hi).

2. Compute the RB solution uN (µk+1) for the new parameter value µk+1.

3. Compute the Galerkin projection of the linearized operator L on the RB space V N to form the matrix L(µi+1):

Lkl(µk+1) = (φk,L(uN (µk+1))[φl]).

4. Compute the eigenvalues of L(µk+1) and check if there is one eigenvalue that has changed sign with respect to the
previous iteration. If not, set k = k + 1 and go back to step 1.

We remark that the above algorithm may be unstable in the sense that in a neighborhood of the bifurcation point it may
abruptly switch the approximated solution branch, or fail to converge. To make sure that the approximation is always
lying on the correct branch a continuation method may be used [2].

Conclusion
The first results are encouraging: the Reduced Basis method is able to detect correctly the steady state bifurcation points
for a wide range of aspect ratio and channel width.
The computational costs of the reduced order method amount to roughly 52.7% of the full order method for a 2D case
with only one parameter and 0.5% for the 3D case with two parameters. We expect that such results would provide a
further justification of the RB method for this problem with more (mainly geometrical) parameters, and consequently
this method could be of interest in the applied medicine community.
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Results

Figure 2: (left) Anatomy of the heart showing the mitral
valve; (center) echocardiographic image of central regurgitant
jet flowing from the left ventricle (LV) to the left atrium (LA).
The colors denote different fluid velocities; (right) echocardio-
graphic image of eccentric regurgitant jet, hugging the walls of
the left atrium (LA) known as the Coanda effect.

Figure 3: 3D case: streamlines on the xy-plane (left) and
yz-plane (right) forλ = 15.4, H = 0.9517, and Re = 76.82.
(a) and (b) unstable solution, (c) and (d) stable solution. The
projection on the yz-plane for symmetry reasons shows only
half of the geometry.

Figure 4: Bifurcation diagram for the 2D case as recon-
structed by the Reduced Order Method.

Figure 5: Path of the eigenvalues in the complex plane for
the 3D case. The eigenvalue in red crossing the imaginary axis
is responsible for the bifurcation point.
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