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1 Introduction

Consider a system of coordinates x ∈ Ω. The system evolves according to a
dynamics allowing an equilibrium distribution P (x) = 1

Z exp (−βV (x)) where
β is the inverse temperature and Z =

∫
Ω
dx exp (−βV (x)) . Qualitatively, the

system will display metastability if the probability is large in a set of discon-
nected regions Ai separated by regions in which the probability is low. Hence,
we must have ∑

i

∫

Ai

dxP (x) ≈ 1

In addition one must also require that the regions Ai are well separated, namely
that transitions between these regions are rare. We will come back to this second
condition in detail later.

1.1 Reduced probability distributions and the free energy

In order to define more quantitatively these regions and their properties, it is use-
ful to consider reduced probability distributions. Namely, instead of monitoring
the full trajectory x (t) we only monitor the evolution of a set of collective vari-
ables or reaction coordinates s (x), and look at their trajectory s (t) = s (x (t)) .
Their probability distribution P (s), for an infinitely long trajectory is given by
the histogram of s :

P (s) = lim
t→∞

1
t

∫ t

0

dtδ (s− s (t))

In real applications, P (s) can be estimated as

P (s) ∼ 1
n∆s

n∑
t=1

χs (s (t))

where χs (x) = 1 if x ∈ [s, s+ ∆s] and zero otherwise.
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If the system is ergodic and the dynamics allows an equilibrium distribution
at an inverse temperature β, the knowledge of P (s) allows defining the free
energyF (s):

F (s) = − 1
β

log (P (s))

P (s) (or F (s)) provide a first indication of the metastability properties: in
metastable systems s resides for the big majority of time in disconnected regions
and F (s) has a characteristic shape with wells and barriers. Unfortunately, as
it will be clear in the following, a free energy profile gives useful indications
on the metastability properties of the system only if the variable s is properly
chosen.

1.2 Reactive flux model and the rate constant

A very simple example of Markov process is the reactive flux model that de-
scribes the evolution of the probability to observe the system in a set of states
i:

dpi

dt
=

n∑

j=1

(−ki→jpi + kj→ipj) , i = 1, . . . , n (1)

where n is the number of states. ki→j is the probability to perform a transition
between state i and state j in a unit of time and is called rate constant. This
model is commonly used for studying chemical reaction, etc.

For two wells (A and B), we have

dpA

dt
= −kA→BpA + kB→ApB (2)

dpB

dt
= kA→BpA − kB→ApB (3)

The stationary ptobability is obtained imposing dpA

dt = 0 and is given bypA
.=

peq
A = kB→A

kA→B+kB→A
and pB

.= peq
B = kA→B

kA→B+kB→A
. Thus, Eq. 2 can be written as

dpA

dt
= (peq

A − pA) (kA→B + kB→A) (4)

With initial conditions pA (0) = 1 and pB (0) = 0 we have

pA (t) = 1 +
kA→B

kA→B + kB→A

(
e−(kA→B+kB→A)t − 1

)
(5)

pB (t) = 1− pA (t) (6)
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2 Methods for computing the free energy

We have seen that the equilibrium behavior of a set of CVs is completely defined
by the probability distribution:

P (s) =
exp (−βF (s))∫
ds exp (−βF (s))

(7)

where by s we denote the d dimensional vector (s1, . . . , sd) and the free energy
F (s) is given by

F (s) = − 1
β

ln
(

1
t

∫
dtδ (s− s (x (t)))

)
= (8)

= − 1
β

ln
(∫

dx exp (−βV (x)) δ (s− s (x))
)
. (9)

The free energy as a function of a relevant and smartly chosen variable provides
a very precious insight in the equilibrium and metastability properties of the
system. For instance, the minima in a free energy surface correspond approx-
imately to the metastable sets of a system: the system spends by definition a
lot of time in the minima and only rarely it visits the barrier regions in between
and has a chance to perform a transition.

The free energy profiles can also be also used to estimate the transition time
between two metastable sets. Transition state theory (TST) states that the
average transition time from a states A to a state B is proportional to the free
energy difference between the minimum and the barrier:

tA→B ∝ exp (β (F (smax)− F (sA))) ,

where F (smax) is the maximum of F (s) between sA and sB . . Beside other
important limitations of TST that we will discuss later, we here notice that this
equation requires evaluating F (s) at the extrema (maximum and minimum).
Even if s (x) is a good reaction coordinate for the system, the free energy differ-
ences are pretty ill-defined. Consider in fact another variable σ = σ (s) which
is a invertable function of s. These change of variables are of course allowed
and commonly used: for instance, one can describe a bond breaking in a chem-
ical reaction using as CV the distance between two atoms or their coordination
number defined as a fermi function of the same distance. The free energy profile
as a function of σ and s will NOT look the same. In fact, by the invariance
properties of a probability distribution, we must have P (σ) dσ = P (s) ds and
thus

F (σ) = F (s) +
1
β

log
(
dσ

ds

)

Exercise: deduce this property directly from the definition of F (s)8.
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2.1 Umbrella sampling

Consider a system of coordinates x and potential V (x) , whose dynamics admits
a canonical distribution at an inverse temperature β. For this system we want to
compute the free energy 8 as a function of a collective variable s (x) . In umbrella
sampling the normal dynamics of the system is biased by a suitably chosen bias
potential V B (s (x)) that depends on x only via s (x) .

Consider for example a langevin evolution of the form

dx = −Dβ∂x

(
V (x) + V B (s (x))

)
dt+

√
2DdW

The probability distribution as a function of s for the system evolved with
V (x) + V B (s (x)) will be

PB (s) =
1
ZB

∫
dx exp

(−β (
V (x) + V B (s (x))

))
δ (s− s (x)) =

=
Z

ZB
exp

(−βV B (s)
) 1
Z

∫
dx exp (−βV (x)) δ (s− s (x)) =

=
Z

ZB
exp

(−β (
V B (s) + F (s)

))
(10)

where ZB is the canonical partition function for the potential V (x)+V B (s (x)) .
This equation tells that measuring a probability distribution in the presence of
a bias V B (s (x)) provides a measure for the unbiased free energy (and for the
unbiased probability distribution). In fact we have

F (s) = − 1
β

log
(
PB (s)

)− V B (s)− fB (11)

where
fB =

1
β

log
Z

ZB

is a constant that does not depend on s. Moreover,

P (s) = PB (s) exp
(
β

(
V B (s)− fB

))
(12)

This method for estimating F (s) is called umbrella sampling.
A question that immediatly arises in this approach is how to choose the exact

form for V B (s) . It is clear that the statistical uncertainty in Eq. 11 derives
from errors in the evaluation of PB (s) . Assume we estimate PB (s) from a
time series s1, ss, . . . , sn of n values that the collective variable takes during
the biased simulation. Imagine we observe i entries in the interval [s, s+ ∆s] .
PB (s) can be estimated as

PB (s)∆s ∼ i

n
=

1
n

n∑
t=1

χs (st) (13)

where χs (x) = 1 if x ∈ [s, s+ ∆s] and zero otherwise. This equation can
be easily implemented in a computed program: in practice estimating PB (s)
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requires computing the normalized histogram of s. At finite simulation time, the
value of the probability PB (s)∆s is estimated by i/n. The statistical error on
i
n can be easiliy estimated if the entries are assumed to be totally uncorrelated.
In fact, the the probability to observe i out of n entries in an interval whose
probability is p .= PB (s)∆s is given by the Poisson distribution:

Pp,n (i) =
n!

i! (n− i)!
pi (1− p)n−i

For this distribution, the average value of i
n is given by p:

〈
i
n

〉
=

∑
i Pp,n (i) i

n =
p . The expected error in i

n is

σ2

(
i

n

)
=

〈(
i

n
−

〈
i

n

〉)2
〉

=
∑

i

Pp,n (i)
(
i

n
− p

)2

=
p

n
.

Hence,

σ2
(
PB (s)

)
∆s2 = σ2

(
i

n

)
=
p

n
=

∆sPB (s)
n

. (14)

This formula requires a few comments.

1. In a real case, PB (s) is not known, but is estimated using Eq, 13. Hence,
the error is actually estimated as

σ2
(
PB (s)

)
∆s2 ∼ i

n2

For long simulations, i becomes large, but also n grows. As i
n is approxi-

mately constant, the quadratic error decays as 1/n

2. In real applications, if the time series s1, s2, . . . , sn on which the histogram
is computed is not uncorrelated, the error will be larger than the one
predicted by Eq. 14 by a factor

(
1 + 2 τ(s)

dt

)
where dt is the time interval

between two different s and τ (s) is the correlation time of χs (st) [J. Stat.
Phys. 8, 1, (1973)]. This correlation time can depend non trivially on s
and is in general hard to compute. In practice, instead of computing τ (s)
one can decimate the time series, i.e. one makes dt large discarding the
intermediate st. Of course, this procedure reduces the total number of
entries n and makes the error larger, but at least avoids systematic errors.

Let’s now compute the error on the free energy. From Eq. 11

σ2 (F (s)) =
1
β2

σ2
(
PB (s)

)

(PB (s))2
.

Using 14

σ2 (F (s)) =
1
β2

1
∆sPB (s)

.

5



If one requires the error on the free energy to be constant one has to choose the
bias potential V B (s) in such a way that PB (s) is constant. This implies (see
equation 10)

V B (s) = −F (s) (15)

Hence, the optimal choice for the biasing potential is minus the free energy.
It should be noticed that in real applications F (s) is not known (indeed, this
is what we are trying to estimate). Hence, condition 15 can be imposed only
approximately or by a suitable iterative procedure.

2.2 Weigthted histogram methods

The main problem with umbrella sampling is that it is very difficult to construct
V B (s) without a detailed knowledge of the system. In order to solve this prob-
lem, an efficient strategy is the weigthed histogram method, initially introduced
by Ferremberg and Swendsen[7], then extended by Kapral and Roux[9, 11].
The idea is to combine several histograms constructed with different umbrellas
V Bi (s), i = 1, 2, . . . in order to reconstruct a single estimate of F (s) . A typical
choice for the bias potentials is

V Bi (s) =
1
2
k (s− si)

2

in which the si-s are usually disposed in a regular grid in order to cover all the
interesting values of s.During run i the statistics is collected in the neighborhood
of si.

From equation 12, we have that, for all i-s,

P i (s) = PBi (s) exp
(
β

(
V Bi (s)− f i

))
(16)

is an estimate of the unbiased probability distribution. The best estimate of the
probability distribution P (s) is assumed to be a linear combination of the Pi-s,
with weigths πi that depend on the values of s :

P (s) = C
∑

i

πi (s)P i (s) (17)

The weigths are assumed to satisfy the normalization condition
∑

i

πi (s) = 1 (18)

and C is a constant. The weigths πi (s) are determined minimizing the expected
error on P (s)

σ2 (P (s)) = C2
∑

i

π2
i (s)σ2

(
P i (s)

)

under the constraint 18. Thus we require

δ

δπi (s)

(
σ2 (P (s))− λ

(∑

i

πi (s)− 1

))
= 2C2πi (s)σ2

(
P i (s)

)− λ = 0

6



where λ is a Lagrange multiplier. Imposing the constraint 18 on the solution of
this equation, we have

πi (s) =

(
σ2

(
P i (s)

))−1

∑
j (σ2 (P j (s)))−1

From Eq. 16 and 14, we have

σ2
(
P i (s)

)
= σ2

(
PBi (s)

)
exp

(
2β

(
V Bi (s)− f i

))
=

=
PBi (s)
ni∆s

exp
(
2β

(
V Bi (s)− f i

))
=

=
P (s)
ni∆s

exp
(
β

(
V Bi (s)− f i

))
(19)

and thus

πi (s) =
ni exp

(−β (
V Bi (s)− f i

))
∑

j nj exp (−β (V Bj (s)− f j))
(20)

The final WHAM estimate of the probability is obtained substituting this ex-
pression of the weights into Eq. 17, using Eq. 16:

P (s) = C

∑
k nkP

Bk (s)∑
j nj exp (−β (V Bj (s)− f j))

The constants f i entering in this solution are determined self consistently
from their definition:

e−βfi

=
Zi

Z
=

∫
ds exp

(−β (
V + V Bi

))
∫
ds exp (−β (V ))

=

=
∫
ds exp

(−βV Bi (s)
)
P (s) =

= C

∫
ds exp

(−βV Bi (s)
) ∑

k nkP
Bk (s)∑

j nj exp (−β (V Bj (s)− f j))

Remarks:

1. The procedure is based on the minimization of the estimated error on
P (s) . If the quantity of interest is F (s) , it migth be a better idea to
control directly the error on it. If the WHAM procedure is used, the error
of F is given by

σ2 (F (s)) =
σ2 (P (s))
P 2 (s)

=
∑

i π
2
i (s)σ2

(
P i (s)

)

(
∑

i πi (s)P i (s))2
=

=
1∑

i niPBi (s)
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where we used equations 14 and 20 to estimate πi and σ2
(
P i (s)

)
. This

shows that the error on F (s) is uniform if the cumulative histogram com-
puted using all the biased trajectory is uniform. Remarkably, the error is
complitely independent on the actual form of the biasing potentials and
only depends on the biased histogram. This property allows optimizing
the choice of the distribution and number of biasing potentials: if a region
has not been explored frequently enough, one should add windows in that
region.

2. See point 3 of Umbrella Sampling: if one does not know the correlation
time of the datas, it is always much safer to decimate them.

3. The number of biasing potentials that one has to use scales exponentially
with the dimensionality. The computational price becomes unberable in
d > 2.

2.3 Thermodynamic integration

Theermodynamic integration is probably the most commonly used methodol-
ogy for estimating F (s) in complex systems. It was introduced in refs [3, 12]
and is based on the fact that the derivative of F (s) with respect to s can be
expressed as an equilibrium average over an equilibrium ensamble constrained
on the hypersurface s (x) = s. In fact, we have

F ′ (s) = − 1
β

∫
dx exp (−βV (x)) δ′ (s− s (x))∫
dx exp (−βV (x)) δ (s− s (x))

=

=
1
β

∫
dx exp (−βV (x)) ∇s(x)

‖∇s(x)‖2 · ∇δ (s− s (x))
∫
dx exp (−βV (x)) δ (s− s (x))

=

= − 1
β

∫
dxδ (s− s (x)) exp (−βV (x))

(
−β∇s(x)·∇V (x)

‖∇s(x)‖2 +∇ ·
(

∇s(x)

‖∇s(x)‖2
))

∫
dx exp (−βV (x)) δ (s− s (x))

=

=

〈
∇s (x) · ∇V (x)
‖∇s (x)‖2 − 1

β
∇ ·

(
∇s (x)

‖∇s (x)‖2
)〉

s=s(x)

(21)

F ′ (s) is usually referred to as the mean force. Its value can be used to evaluate
F (s) as an integral: for instance,

F (s)− F (0) =
∫ s

0

dxF ′ (x) . (22)

This integral is in practice computed numerically evaluating F ′ (s) on a suffi-
ciently narrow partition of s.

Remarks:

1. The procedure is subject to error propagation, since F (s) is estimated as
a numerical integral. The choice of the optimal partition for evaluating
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the integral depends in general on the smoothness properties if F (s). The
limiting factor is the second derivative of F (s) , namely how fast F ′ (s) is
varying.

2. Like in umbrella sampling, the error of each mean force average Eq. 21 is
determined by the number of independent estimate that are actually used,
i.e. by the correlation time of the argument of the average. This number
cannot expected to be independent on s, except in very special cases.
Hence, investing the same computational time for all the mean forces
F ′ (s) is NOT in general the optimal choice. Exactly like in umbrella
sampling, one can always choose to decimate the data in order to keep
the error under control. But also this choice is usually far from optimal.
A very common procedure is to renounce to an explicit error control and
evaluate the averages using all the available data. The integral is evaluated
in the forward direction as in Eq. 22, and, independently, in the bacward
direction. The two free energy profiles obtained in this way are compared
and their difference provides a rough estimate of the accuracy.

3. Evaluating the average 21 requires running a molecular dynamics or a
montecarlo under the constraint s (x) = s. This can be non-trivial for
complex functions s (x). For molecular dynamics and Langevin dynamics
the problem has been solved in its full generality (see ref. [12]).

Exercise: Consider a 2-dimensional system of potential

V (x1, x2) = −3 log
(
3e−2x2

1−( x2
2 )2

+ 2e−(x1− 3
2 )

2−(x2− 5
2 )

2)

evolving according to a Langevin dynamics at a temperature T=1 and with a
diffusion coefficient D = 0.0001.

1. For s = x1 compute analytically the free energy F (x1). Repeat the cal-
culation for s = x2 and comare the height of the barriers for the original
potential, F (x1)and F (x2)

2. For s = x1write explicitly the expression of the mean force Eq.21.

3. Write a code for simulating the evolution of the system at fixed x1.

4. Using this code, compute the free energy F (x1) numerically using ther-
modynamic integration.

2.4 Metadynamics

The metadynamics method[10, 8, 2], like umbrella sampling, WHAM, and ther-
modynamic integration, is based on a dimensional reduction, and requires the
preliminary identification of a set of collective variables (CVs) s, which are func-
tion of the system coordinates, x, and are able to describe the activated process
of interest.
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In metadynamics the free energy is reconstructed sequentially, beginning
from the bottom of the well by a history-dependent random walk that explores
a larger and larger portion of configuration space. In the simplest molecular
dynamics implementation of the algorithm a small repulsive Gaussian potential
is added every τG MD steps. Thus, the external (“metadynamics”) potential
acting on the system at time t is given by

VG(x, t) = w
∑

t′ = τG, 2τG, · · ·
t′ < t

exp

(
− (s (x)− s (t′))2

2δs2

)
. (23)

where s (t) = s (x (t)) is the value taken by the collective variable at time t.
Three parameters enter the definition of the VG:

1. The gaussian height w

2. The gaussian width δs

3. the frequency τG at which the gaussians are deposed.

These parameters influence the accuracy and efficiency of the free energy recon-
struction. Qualitatively, they define the size of the “barrows of sand” the walker
is throwing. If the Gaussians are large, the free energy surface will be covered
fastly, but the reconstructed profile will be affected by large errors. Instead,
if the Gaussians are small or are placed infrequently the reconstruction will be
very accurate, but it will take a much longer time.

For example, consider the system depicted in Figure 1. This system is
evolved with a Langevin overdamped dynamics at a temperature T=1 with
a diffusion coefficient D=0.0001 on a one-dimensional potential with three min-
ima. If the dynamics starts from the central local minimum, this is filled by the
Gaussians in ∼ 20 steps. After that the dynamics escapes over the well from the
lowest saddle point, filling the second well in ∼ 80 steps. The second highest
saddle point is reached in ∼ 160 steps, and the full free energy surface is filled
in a total of ∼ 320 steps. This example also provides a demonstration of the
two different manners in which metadynamics can be exploited :

• If the method is used for ”escaping free energy minima”, i.e. for finding the
lowest free energy saddle point out of a local minimum, the metadynamics
should be stopped as soon as the walker starts exploring a completely new
region of space. For the example of Figure 1, this happens after ∼ 20
steps. .

• If the aim is to estimate the free energy in a predefined region in the CV
space, metadynamics should be stopped when the walker has explored this
whole region and its motion becomes diffusive. For the example of Figure
1, the full free energy profile is filled after ∼ 320 steps.
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Figure 1: Time evolution of the sum of a one-dimensional model potential V(σ)
and the accumulating Gaussian terms of Eq. (??). The dynamic evolution
(thin lines) is labelled by the number of dynamical iterations (37). The starting
potential (thick line) has three minima and the dynamics is initiated in the
second minimum. After Ref.[10].

The basic assumption of metadynamics is that VG (s, t) defined in Eq. 23
provides an estimate of the underlying free energy:

lim
t→∞

VG(s, t) ∼ −F (s). (24)

This equation states that an equilibrium quantity, namely the free energy, can be
estimated by a non-equilibrium dynamics, in which the underlying potential is
changed every time a new Gaussian is added. In Ref. [10], Eq. ?? is postulated
in a heuristic manner, observing the behavior of the dynamics 37 on free energy
surfaces of known functional form. For instance, in the example of Fig. , it
is clear that the sum of F and VG after ˜320 Gaussians is approximately a
constant, with deviations that would be in different positions for a statistically
independent runs.

For an atomistic system in which the potential depends on the position of
several atoms and the free energy is the result of a complex dimensional reduc-
tion, eq. ?? can be qualitatively understood in the limit of slow ”deposition”
(i.e. w → 0). In this limit, VG(s, t) varies very slowly and the probability to
observe s is always approximately proportional to exp [−β (F (s) + VG(s, t))].
If the function F (s) + VG(s, t) has some local minimum, s will preferentially
be localized in the neighborhood of this minimum and increasing numbers of
Gaussians will be deposed there until this minimum is flattened. Let us consider
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instead the case in which F (s) ∼ −VG(s, t) in a region Ω (s). The probability
distribution will be approximately flat in this region, and the location of the
new Gaussians will not be affected by the bias deriving from the difference
F (s) + VG(s, t). Hence, if w → 0, the only corrugations in the free energy that
are not flattened by the dynamics will be of the order of the size of the new
Gaussians that are deposed.

Problems:

• The time required to escape from a local minimum in the free energy sur-
face is determined by the number of Gaussians that are needed to fill the
well. This number is proportional to (1/δs)d, where d is the number of
collective variables used in the system. Hence, the efficiency of the method
scales exponentially with the number of dimensions involved. If d is large,
the only way to obtain a reasonable efficiency is to use Gaussians with a
size comparable to that of the well. On the other hand, a sum of Gaussians
can only reproduce features of the FES on a scale larger than ∼ δs. Al-
ready from these simple considerations it is clear that the metadynamics
parameters w and δs strongly influence the quality of the reconstructed
free energy and that, for a given problem, have to be carefully chosen
in order to ensure the right compromise between accuracy and sampling
efficiency. Large values for w and δs will allow a fast exploration of the
CV space but at the price of a low accuracy.

• If a relevant variable is forgotten the algorithm is inaccurate: if the system
performs a transition in the ”hidden” degrees of freedom, the thermody-
namic forces become inconsistent with the Gaussian potential. In partic-
ular, Eq. 24 holds only if the collective variables on which the history
dependent potential acts are chosen in a smart manner. This might be a
daunting task, since there is no a priori recipe for finding the correct set
of collective variables.

2.4.1 Derivation of Eq. 24 for an overdumped Langevin dynamics

In order to demonstrate equation 24 we model the CVs evolution as a Langevin
type dynamics whose equilibrium distribution as a function of s is proportional
to exp (−βF (s)) :

ds (t) = −D ∂F (s)
∂s

∣∣∣∣
s=s(t)

dt+
√

2DdW

where ds (t) = s (t+ dt)−s (t), dW is a Wigner noise, namely a Gaussian process
of variance 0 and covariance dt , D is a diffusion coefficient and we measure the
energies in unit of temperature. We also assume that the system is confined in
a region Ω, and that the dynamics satisfies reflecting boundary conditions on
∂Ω.In metadynamics, the normal equilibrium dynamics of the CVs is biased by
an history-dependent term that discourages the system from revisiting positions
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in the CV space that have already been explored. The evolution of the system
can be modelled by the SDE

ds (t) = −D ∂

∂s

[
F (s) +

∫ t

0

dt′g(s, s (t′))
]∣∣∣∣

s=s(t)

dt+
√

2DdW . (25)

The time integral term in Eq. 25 is an history dependent potential, generated
through the kernel g(s, s′). If one takes

g(s, s′) =
w

τG
exp

(
−|s− s′|2

2δs2

)

one recovers Eq. 23. We want to prove that for large enough t,
∫ t

0
dt′g(s, s(t′))

is an unbiased estimator of F (s), namely

∫ t

0

dt′g(s, s(t′)) = F (s)

where the overbar denotes an average over several realizations of the dynamic
process (all of time duration t). The kernel g(s, s′) is required to be such that
it exists a function ϕ0(s) such that the equation

∫
ds′g(s, s′)ϕ0(s′) + F (s) = 0 (26)

has a solution (namely, we require the free energy to be representable as a
convolution with the kernel g).

Eq. 25 contains a history dependent term (the bias potential) and is clearly
non-Markovian. In order to circumvent this problem we define a time dependent
field ϕ(s; t)

ϕ(s; t) =
∫ t

0

dtδ(s− s(t)) + ϕ0(s) (27)

that is made of two terms: the histogram of the positions already visited by
the system and a time independent term ϕ0(s). With this choice of the gauge
it is implicitly assumed that the initial conditions are ϕ(s; 0) = ϕ0(s), so that∫
ds′g(s, s′)ϕ(s; 0) = F (s). In terms of the variables s(t) and ϕ(s; t) the stochas-

tic process in Eq. 25 can be rewritten in the simple form

ds(t) = −D
∫
ds′

∂g(s, s′)
∂s

ϕ(s′; t)
∣∣∣∣
s=s(t)

dt+
√

2DdW (28)

dϕ(s; t) = δ(s− s(t))dt (29)

as can be verified by direct substitution. This is the crucial step which al-
lows replacing the non-Markovian evolution of a single dynamic variable s(t)
in Eq. 25 with a Markovian evolution for the extended set of variables which
includes s(t) and the field ϕ(s; t). In fact, the state of the system at time
t+ dt, [s (t+ dt) , ϕ (s; t+ dt)] depends only on the state of the system at time
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t, [s (t) , ϕ (s; t)]. The information related to the underlying free energy F (s) has
disappeared from the equation of motion but is still present through the initial
condition for ϕ(s; t), see Eq. 27.

Using the Markovian property it is possible to analyze in a rigorous manner
the behavior of Eq. 29. In order to study the average properties of an ensemble
of independent metadynamics calculations we have to transform the stochastic
description of Eq. 25 in a probabilistic description. When the stochastic evolu-
tion is Markovian, this is done using the Fokker-Planck equation. Recall that a
SDE of the form

dx = a (x) dt+ bdW

corresponds to a Fokker-Planck equation of the form

∂P (x, t)
∂t

=
∂a (x)P (x, t)

∂x
+
b2

2
∂2P

∂x2

We write a generalized Fokker-Plank equation for the probability distribution
associated with Eq. 29. Afterwards, we study its asymptotic behaviour for large
t. We consider an ensemble of independent metadynamics runs, and define an
ensemble density. Since our dynamic variables are the position of the walker s
and the field ϕ(s), the probability density will be a function of s and a functional
of ϕ. We denote this probability as P ({ϕ}, s; t). The Fokker-Planck equation
for P ({ϕ}, s; t) is

∂P ({ϕ},s;t)
∂t = − δP ({ϕ},s;t)

δϕ(s) +DP ({ϕ}, s; t) ∫
ds′ ∂

2g(s,s′)
∂s2 ϕ(s′)+

+D ∂P ({ϕ},s;t)
∂s

∫
ds′ ∂g(s,s′)

∂s ϕ(s′) +D ∂2P ({ϕ},s;t)
∂s2

(30a)

Here, if the dimensionality of the system is higher than 1, a trace is implied and
the second derivative is in fact a Laplacian.

We now look for the limiting distribution of Eq. 30a namely for the proba-
bility density P̄ which satisfies ∂P̄ ({ϕ},s;t)

∂t = 0. We assume that the equilibrium
probability is independent on the walker position, i.e. P̄ ({ϕ}, s) = P̄ ({ϕ}). In-
serting this ansatz in Eq. 30a we find that if ∂2g(s,s′)

∂s2 is symmetric and negative
definite, the equilibrium distribution is

P̄ ({ϕ}) = C exp
(
D

2

∫
dsds′ϕ(s)

∂2g(s, s′)
∂s2

ϕ(s′)
)

(31)

where C is a normalization constant.
Equation 31 expresses the probability of obtaining a given field ϕ at the end

of a metadynamics simulation. Since the negative of the biasing potential is
used to estimate the free energy, we define the error ε(s) as the sum of the exact
underlying free energy and the biasing potential. Using Equations 26 and 27 we
find that the error is linearly related to the field ϕ through

ε(s) =
∫
ds′g(s, s′)ϕ(s′; t) . (32)
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Equation 31 states that any possible field (or error) is observable at the end
of a simulation, but small fields (or errors) will be more likely to be obtained.
Using Eq. 31 we can explicitly calculate the expected average error of a series
of runs. Since the distribution is even with respect to the field ϕ(s), namely
P̄ ({ϕ}) = P̄ ({−ϕ}), the expectation value of this field is vanishing. The error
ε(s) is linear in the field ϕ(s), and consequently also its expectation value is
vanishing:

〈ε(s)〉 = 0 (33)

Thus, we proved that the average of the biasing potential over a series of meta-
dynamics runs provides an unbiased estimate for the underlying free energy.

Using Eq. 31 we can also address the problem of the accuracy, determining
the expected quadratic deviation 〈ε2(s)〉 of a single metadynamics run from the
average. Since the distribution in Eq. 31 is a Gaussian with respect to ϕ, this
expectation value can be easily calculated on a suitable basis, for instance, the
eigenvectors of the Laplacian operator on Ω. Assuming a cubic d dimensional
domain with side S and reflecting boundaries, the eigenvectors of the Laplacian
are ak(s) =

√
2

Sd cos(πk·s
S ), where k is a d dimensional array of integers. Thus

we have
g(s, s′) =

∑

k 6=0

gkak(s)ak(s′), with gk > 0 , (34)

and

〈ε2(s)〉 =
∑

k

gka
2
k(s)S2

Dπ2k2
(35)

The average value of the error on the domain Ω is

〈ε2〉 =
1
Sd

∫
ds〈ε2(s)〉 = S2−d

∑

k

gk

Dπ2k2
(36)

This expression for the error has been shown to reproduce the standard
deviation of many metadynamics realizations in real system.

15



3 Metastability from the spectral properties of
the transfer operator

In this section we provide a general and quantitative definition of metastability,
which is valid if the dynamics of the system is described by a Markov process.

The time-dependent probability of the system is assumed to satisfy the equa-
tion

P (x, t+ τ) =
∫
dx′πτ (x′ → x)P (x′, t) (37)

The transfer operator πτ is a transition probability, namely it satisfies

πτ (x′ → x) ≥ 0 (38)∫
dxπτ (x′ → x) = 1 (39)

The first consequence of properties 39 is that the dynamics 37 preserves the
normalization of P. In fact, integrating both members of eq. 37 and using 39,
we have

∫
dxP (x, t+ τ) =

∫
dx

∫
dx′πτ (x′ → x)P (x′, t) =

∫
dx′P (x′, t)

In MC and MD, πt satisfies a supplementary condition called detailed bal-
ance. Namely, it exists a positive defined function Peq (x) such that

πτ (x′ → x)Peq (x′) = πτ (x→ x′)Peq (x)

It is easy to see that Peq (x) is the equilibrium distribution for the dynamics 37.
In fact we have

P (x, t+ τ) =
∫
dx′πτ (x′ → x)Peq (x′) =

=
∫
dx′πτ (x→ x′)Peq (x) = Peq (x)

The latter equation also says that Peq (x) is an eigenfunction of the operator
πτ (x→ x′) associated with an eigenvalue 1.

If the transition probability is known only for short times, eq. 37 is more
conveniently written in the form of a master equation. Using 39 we have

P (x, t+ τ)− P (x, t) =
∫
dx′πτ (x′ → x)P (x′, t)− P (x, t) =

=
∫
dx′ (πτ (x′ → x)− δ (x′ − x))P (x′, t)

and thus
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∂P (x, t)
∂t

=
∫
dx′m (x′ → x)P (x′, t) (40)

where

m (x′ → x) = lim
τ→0

πτ (x′ → x)− δ (x′ − x)
τ

3.1 En example: the transfer operator for Langevin dy-
namics

Consider an ovrerdumped Langevin process in x:

x (t+ dt) = x (t)− dtβD∇V +
√

2DW (t) (41)

where V (x) is the potential, β is the inverse temperature, D is the diffusion
coefficient and W (t) is a Wiener process, namely a stochastic process satisfying
the following properies:

1. Zero mean: 〈W 〉 = 0

2. Gaussian probability distribution, with covariance equal to dt: P (W ) =
1√

2πdt
exp

(
−W 2

2dt

)

3. Markovian: 〈W (t)W (t′)〉 = 0 for t 6= t′

We now write the evolution defined by this equation in the tranfer operator
form introduced in the previous Section. Denoting x (t+ dt) = x′ and x (t) =
x, the explicit form of the transition probability πdt (x→ x′) can be deduced
noticing that the probability distribution of W is Gaussian of covariance dt.
From equation 41 we have W = x′−x+Dβ∇V dt√

2D
. Hence

πdt (x→ x′) =
1√
2D

P
(
W 2

)
=

=
1√
2D

1√
2πdt

exp
(
−W

2

2dt

)
=

=
1√

4πDdt
exp

(
− (x′ − x+Dβ∇V dt)2

4dtD

)

It is easy to verify that πdt (x→ x′) > 0 and
∫
dx′πdt (x→ x′) = 1. Moreover,

lim
dt→0

(πdt (x→ x′) exp (−βV (x))− πdt (x′ → x) exp (−βV (x′))) = 0

namely, for dt small enough, πdt satisfies detailed balance for Peq (x) = 1
Z exp (−βV (x)).

This conditions are sufficient to ensure that the equilibrium distribution of a dy-
namics generated with eq. 41 is canonical.
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3.2 Properties of the transfer operator

We now discuss the properties of Markov processes using the more general form
eq. 37.

1. The eigenvalues of πτ satisfying detailed balance are all real. The eigen-
value equation for πτ is

∫
dx′πτ (x′ → x)ϕi (x′) = λiϕi (x) (42)

Consider the operator

hτ (x′ → x) =

√
Peq (x′)
Peq (x)

πτ (x′ → x)

hτ is Hermitian (its elements are real and it satisfies hτ (x′ → x) = hτ (x→ x′))
and has the same eigenvalues of πτ : from 42

∫
dx′πτ (x′ → x)

√
Peq (x′)
Peq (x)

ϕi (x′)√
Peq (x′)

= λi
ϕi (x)√
Peq (x)

and thus ∫
dx′hτ (x′ → x)ψi (x′) = λiψi (x)

where

ψi (x) =
ϕi (x)√
Peq (x)

Since the ψi-s are the eigenfunctions of an hermitian operator, they form
an orthonormal set: ∫

dxψi (x)ψj (x) = δij (43)

2. The eigenvalue of πτ satisfying 39 are all smaller than one in absolute
value (Perron-Flobenius theorem). In fact, consider the absolute value of
both members of the left eigenvalue equation:

|λi| |ϕi (x)| =
∣∣∣∣
∫
dx′πτ (x→ x′)ϕi (x′)

∣∣∣∣

Next, using the triangular inequality and πτ (x′ → x) ≥ 0 for the second
member

|λi| |ϕi (x)| ≤
∫
dx′πτ (x→ x′) |ϕi (x′)|

Denoting by C the maximum of |ϕi (x′)|, and using
∫
dx′πτ (x→ x′) = 1

∫
dx′πτ (x→ x′) |ϕi (x′)| ≤

∫
dx′πτ (x→ x′)C = C
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Thus,
|λi| |ϕi (x)| ≤ C

This inequality must be valid for all x, including the x̂ one for which
|ϕi (x̂)| = C. This gives |λi| |ϕi (x̂)| = |λi|C ≤ C, and thus λi ≤ 1, c.v.d.

Using the eigenvector expansion, it is easy to construct the formal solution for
the dynamics 37 for an initial condition P (x, 0). We look for a solution of the
form

P (x, t) =
∑

i

ci (t)ϕi (x)

where ci (t) are coefficients to be determined. Substituting in the dynamics
equation 37 we have

∑
i ci (t+ τ)ϕi (x) =

∑
i ci (t)λiϕi (x), which is solved by

ci (t+ τ) = λici (t), and thus

ci (nτ) = λn
i ci (0)

From the initial condition and using Eq. 43 we have

ci (0) =
∫
dx

ϕi (x)
Peq (x)

P (x, 0)

Notice that, since ϕ1 (x) = Peq (x), c1 (0) =
∫
dxP (x, 0) = 1.The probability

after n steps will be given by

P (x, nτ) = ϕ1 (x) c1 (0) +
∑

i>1

λn
i ϕi (x) ci (0) = Peq (x) +

∑

i>1

λn
i ϕi (x) ci (0)

Since |λi| < 1 for all i > 1, limn→∞ P (x, nτ) = Peq (x) regardless on the initial
conditions P (x, 0) .

Imagine now that we sort the eigenvalues according to their absolute value
and that |λ2| À |λ3| (namely a spectral gap exists). In these conditions, after a
small number of steps only the contributions from λ1 = 1 and λ2 will survive:

P (x, nτ) ∼ Peq (x) + λn
2ϕ2 (x) c2 (0) (44)

This observation leads to a very popular definition of metastability: a system
is metastable if the spectrum of its evolution operator has a gap. Of course it
is necessary to specify what a gap is...

Eq. 44 allows also the regions Ai-s which have been introduced in Section 1
for giving a first definition of metastability. We notice in fact that

∫
dxϕ2 (x) = 0

(to show this integrate both members of Eq. 44). Thus, ϕ2 (x) is somewhere
negative and somewhere positive. Eq. 44 states that at small time (small n)
it is more likely to observe the system in values of x in which ϕ2 (x) > 0. For
large n this will not be the case anymore. Thus Eq. 44 describes transitions
from the region

A = {x ∈ Ω : ϕ2 (x) > 0} (45)
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to its complement. If λ2 is very close to one, these transitions will be unlikely,
rare, and a large number of steps will be required before the system reaches
equilibrium.

More in general, the number of metastable subsets (the number of regions Ai)
depends on the number of eigenvalues of the propagator close to its maximum
eigenvalue λ = 1 and before the gap.

3.3 The rate constants from the microscopic transition
probability

If the spectrum of the transfer operator of the system has a gap, it is possible
to write its dynamics in the form of a rate equation3. Consider for example
the case in which a single eigenvalue λ is close to one. As we have shown, the
probability at time ndt has the form P (x, ndt) ∼ Peq (x) + λnϕ2 (x) c2 (0) and
the probability pA to observe the system in the region A defined in Eq. 45 is

pA (ndt) = peq
A + λnα (46)

with pA =
∫

A
dxP (x, ndt)and α = c2 (0)

∫
A
dxϕ2 (x). We derive from this a

differential equation for pA:

dpA

dt
=

pA ((n+ 1) dt)− pA (ndt)
dt

=

= λnα
(λ− 1)
dt

=

=
(1− λ)
dt

(peq
A − pA)

where, in the second passage, we have solved Eq. 46 with respect to λnα.
Remarkably, this has exactly the form of Eq. 4. This allows identifying explicitly
the rates from the eigenvalues and the eigenvectors of the microscopic transition
probability. Indeed, we have

(1− λ)
dt

= kA→B + kB→A

∫

A

dxPeq (x) =
kB→A

kA→B + kB→A

These two equations, if Peq (x), ϕ2 (x) and λ are known, can be easily solved
with respect to the rate constants.

It is also easy to verify that the macroscopic rate equation inherits the prop-
erties of the microscopic dynamics 37 from which it can be derived. Indeed, Eq.
3 can be written in the form p (t+ dt) = wdtp (t)with

wdt =
(

1− dtkA→B dtkB→A

dtkA→B 1− dtkB→A

)

It can be easily verified that:
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1. wdt satisfies the sum rule 39

2. Its eigenvalues are λ1 = 1 and λ2 = 1− dt (kA→B + kB→A).

3. wdt satisfies detailed balance with respect to peq =

(
kB→A

kA→B+kB→A
kB→A

kA→B+kB→A

)
, the

eigenvactor corresponding to λ = 1

4. Finally,

p (t)− pequilibrium ∝ λ
t/dt
2 = (1− dt (kA→B + kB→A))t/dt = exp (−t (kA→B + kB→A))

This is consistent with the explicit solution Eq. 5.

3.4 Relaxation dynamics on a network

Consider a network of sites labeled by i. The connettivity of the network is
defined by a matrix χij , whose elements are equal to 1 if a link between nodes i
and j exists and 0 otherwise. The transition probabilities in a time dt are given
by

πi→j =
dt

τij
χij exp

(
β

2
(Fi − Fj)

)

πi→i = 1−
∑

j 6=i

πi→j

where β is the inverse temperature and τij is a constant that fixes the time scale
of the transitions and that, in general, depends on i and j. Clearly, if dt is
sufficiently small, this dynamics satisfies Eqs. 39. Moreover, it satisfies detailed
balance with respect to a probability

peq
i ∝ exp (−βFi)

Exercise: consider a one dimensional network with 100 sites, χij = δi,i+1. Take
dt/τij = 0.001, F1 = F100 = ∞ and

Fi =
(
i− 50

25

)4

− 3
(
i− 50

25

)2

Compute the spectrum of the transfer operator as a function of β and discuss
the result in terms of the metastability properties of the system. For β = 1 also
plot the eigenfunctions corresponding to the three largest eigenvalues.
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4 Microscopic definition of the rate constants:
transition state theory

In Section 1 we described a general procedure for computing the rate constant
from the eigenvalues of the transfer operator. Unfortunately, the approach re-
quires evaluating explicitly the spectrum of the transfer operator. If the dimen-
sionality of the system is too large, this can be very difficult or impossible. In
this section, we introduce transition state theory, a more traditional manner of
estimating the rate constant, that is less general, but that can be applied also
for systems with many degrees of freedom. In this Section we partially follow
the derivation in Ref. [6].

4.1 The rate constant as the ratio between flux and pop-
ulation

Consider once again a system whose phase space Ω can be divided in a region
A and a region B. We have seen that if the system displays metastability, the
population of the two regions satisfies a rate equation of the form:

dpA

dt
= −kA→BpA + kB→ApB (47)

dpB

dt
= kA→BpA − kB→ApB (48)

We want to estimate kA→B and kB→A appearing in this equation from the
microscopic properties of the system, If the two regions are ”well-defined” in
a sense that we will specify in the following, the rate constant kA→B can be
estimated as the ratio between the flux ΦA→B between A and B and the equi-
librium probability pequilibrium

A to observe the system in A . In fact, in the rate
model 48 we have

ΦA→B =
probability per unit time
to observe a transition

between A and B
=

1
τA→B + τB→A

=
kA→BkB→A

kA→B + kB→A

where we used τA→B = 1/kA→B and τB→A = 1/kB→A. Moreover

pequilibrium
A =

kB→A

kA→B + kB→A

Thus, as we anticipated, kA→B = ΦA→B/p
equilibrium
A .

4.2 The rate constant in one-dimensional Langevin Dy-
namics

4.3 Transition state theory

In transition state theory both ΦA→B and pequilibrium
A are expressed as ensem-

ble averages over the probability P (x, v) to observe the system in (x, v) . The
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equilibrium population to observe the system in A is given by

pequilibrium
A =

∫
dx

∫
dvP (x,v)χA (x)

where χA (x) is the characteristic function of the region A. The flux ΦA→B

between A and B is approximated by the flux through the boundary of A (we
will comment later on the validity of this assumption):

Φ∂A =
1
2

∫

∂A

dσ (x)
∫
dvP (x,v) |n (x) · v|

where n (x) is a unit vector orthogonal to ∂A in x. If we assume that ∂A is
parametrized by an equation s (x) = 0 we have n (x) = ∇s(x)

‖∇s(x)‖ and
∫

∂A
dσ (x) =∫

dxδ (s (x)) ‖∇s (x)‖ . Thus,

Φ∂A =
1
2

∫
dxδ (s (x))

∫
dvP (x,v) |∇s (x) · v|

Putting all together, we have

kTST
A→B =

Φ∂A

pequilibrium
A

=
∫
dx

∫
dvP (x,v) δ (s (x)) |∇s (x) · v|

2
∫
dx

∫
dvP (x,v)χA (x)

We now take P (x,v) ∝ e−β(m
2 ‖v‖2+V (x)) (to simplify the notation we have

assumed that the system is made of identical particles of mass m). The integral
on the velocities can be computed explicitly. This gives

kTST
A→B =

√
4

πmβ

∫
dxδ (s (x)) |∇s (x)| exp (−βV (x))∫

dxχA (x) exp (−βV (x))
(49)

The rate constant evaluated by Eq. 49 is well-defined only if the regions
A and B are properly chosen. In fact, while the integral at the denominator
is well behaved and largely insensitive to the exact definition of A, the surface
integral in the numerator depends strongly on the specific choice of ∂A. Indeed,
a trajectory that has just crossed the boundary of A might have a chance to
recross it back right away, giving no contribution to the true (macroscopic) flux
between A and B. In other words,

ΦA→B ≤ Φ∂A

The ratio
kA→B

kTST
A→B

=
ΦA→B

Φ∂A

.= κ

is by construction smaller than one and is called transmission coefficient of ∂A.
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4.4 Bennett-Chandler procedure for computing κ

In order to define more rigorously the rate constant between two regions it
is necessary to assume that these are ”well-separated” by a buffer region in
which the equilibrium probability to observe the system is almost zero. In order
to estimate the rate, we need to count the reactive trajectories, namely the
trajectory actually leading from A to B, and not the flux across a surface in
between them. Let’s consider in detail the case of Hamiltonian dynamics, in
which the evolution of the system depends only on the initial conditions (x, v) .
We choose a dividing surface Σ belonging to the buffer region between A and
B. For all (x, v) with x ∈ Σ, we can evolve the system backward and forward
in time until it reaches A or B. For this trajectory, we compute the number
of times NΣ (x, v) it crosses Σ. If NΣ (x, v) is even, the trajectory connects A
with A or B with B. Thus, it gives no contribution to the macroscopic flux
between A and B. If instead NΣ (x, v) is odd, the trajectory connects A with
B, and gives a contribution to the flux. We also notice that looping over all the
possible (x, v) , we will find this trajectory NΣ (x, v) times. Thus, in order to
quantify the macroscopic flux, we introduce a function

gΣ (x, v) =
1− (−1)NΣ(x,v)

2NΣ (x, v)

For non reactive (x, v) this function is zero. For reactive trajectory it is equal
to 1/NΣ (x, v) . The flux between A and B can be written as an explicit average
of this function.

kA→B =
flux between A and B

equilibrium population of A

=

∫
Σ
dσ (x)

∫
dvP (x, v) gΣ (x, v) |n (x) · v|∫
dx

∫
dvP (x, v)χA (x)

=

= kTST
A→B

∫
Σ
dσ (x)

∫
dvP (x, v) gΣ (x, v) |n (x) · v|∫

Σ
dσ (x)

∫
dvP (x, v) |n (x) · v| =

= kTST
A→B 〈gΣ (x, v)〉Σ

where kTST
A→B is the TST rate constant associated with Σ . This manner of com-

puting kA→B was introduced by Bennett and Chandler[1], but the derivation
presented here is taken from [6]. Its advantage is that the result is insensitive
on the choice of Σ. Its practical implementation requires first choosing a rea-
sonable Σ and computing kTST

A→B using Eq. 49. Afterwards, the transmission
coefficient κ = 〈gΣ (x, v)〉Σ is estimated running several short trajectories. The
initial points of these trajectories are located on the surface Σ and are distributed
with a probability proportional to P (x, v) |n (x) · v| . Then, one evolves (x, v)
backward and forward in time until the trajectory reaches A or B, computes
gΣ (x, v) on this trajectory and evaluates the average 〈gΣ (x, v)〉.

The problem of this procedure is that if Σ is not properly chosen, κ can
be very small and the true value of kA→B can be obtained only computing
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accurately this very small number. This, in practical applications, can be com-
putationally heavy. Moreover, if the dynamics is intrinsically diffusive, whatever
Σ is chosen the trajectories will cross it several times. In these cases, NΣ can
be intrinsically large, and computing gΣ is difficult even if the best possible
dividing surface is chosen.

4.5 Optimizing TST: minimize the flux through the divid-
ing surface

From what we discussed in the previous section, it is clear that in order to
estimate kA→B it is necessary to choose Σ in such a way that kTST

A→B is minimum.
In these conditions, κ will be as close as possible to 1 and it will be easy to
compute. Since the denominator in 49 is practically unchanged by the choice of
Σ, minimizing kTST

A→B is equivalent to minimizing the flux

ΦΣ =
∫
dx exp (−βV (x)) ‖∇s (x)‖ δ (s (x))

We now compute the first order variation of ΦΣ corresponding to a variation
u (x) = δs (x) of s (x) (the notation u (x) is used in order to avoid confusion
between the variation δs (x)of s (x) and the Dirac delta δ (s (x))):

δΦΣ =
∫
dxe−βV (x) [δ (s (x))n (x) · ∇u (x) + ‖∇s (x)‖ δ′ (s (x))u (x)]

where n (x) = ∇s(x)
‖∇s(x)‖ is the unit vector orthogonal to Σ in x. Using δ′ (s (x)) =

∇s(x)

‖∇s(x)‖2 ·∇δ (s (x)) = 1
‖∇s(x)‖n (x) ·∇δ (s (x)) and integrating by part the term

in ∇δ (s (x)) we have

δΦΣ =
∫
dxe−βV (x) [δ (s (x))n (x) · ∇u (x) + n (x) · ∇δ (s (x))u (x)] =

=
∫
dxδ (s (x))

[
e−βV (x)n (x) · ∇u (x)−∇ ·

(
e−βV (x)n (x)u (x)

)]
=

=
∫
dxδ (s (x)) e−βV (x)

[n (x) · ∇u (x) + β (∇V (x) · n (x))u (x)−∇ · n (x)u (x)− n (x) · ∇u (x)] =

=
∫
dxδ (s (x)) e−βV (x) [β (∇V (x) · n (x))−∇ · n (x)]u (x)

At the minimum we must have δΦΣ = 0 for all u (x). Then, the last equation
implies

β (∇V (x) · n (x))−∇ · n (x) = 0 (50)

This is an equation in n (x) that can be used for finding the optimal dividing
surface.
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Let’s consider the case in which A and B are divided by a single saddle point
of coordinates xS. In a neighbourhood of xS we have

V (x) = V S +
1
2
HS

αβ

(
x− xS

)
α

(
x− xS

)
β

where V S = V
(
xS

)
and HS

αβ = ∂2V (x)
∂xα∂xβ

∣∣∣
xS
. Since xS is a saddle point, HS

αβ has

one negative eigenvalue, that we denote by ωS
1 . It is straightforward to see that

the surface Σ solving Eq. 50 is an hyperplane passing from xSand orthogonal
to the eigenvector v1 associated to ωS

1 . In fact, for an hyperplane ∇ · n (x) = 0
as n (x)does not depend on x. Moreover,

∇V (x) · n = HS
αβ

(
x− xS

)
α
nβ =

= HS
αβ

(
x− xS

)
α
v1,β =

= ωS
1

(
x− xS

)
α
nα = 0

for all x belonging to the hyperplane.

4.6 Harmonic (or canonical)TST

(Missing: this part should be done using mass-reduced coordinates. This deriva-
tion is valid only if m is the same for all the particles)

This choice for the dividing surface leads to naturally a very useful expres-
sion for the rate constant that is usually referred to as ”canonical TST rate
constant” or simply ”TST rate constant”. We also Taylor expand V (x) around
the minimum A :

V (x) = V A +
1
2
HA

αβ

(
x− xA

)
α

(
x− xA

)
β

Under these assumptions, the integrals appearing in eq. 49 can be evaluated
explicitly:

kTST
A→B =

√
4

πmβ
exp

(−β (
V S − V A

)) ∏
α>1 ω

S
α∏

α ω
A
α

where ωA
α and ωS

α are, respectively, the eigenvalues of HA
αβ and of HS

αβ .

5 Transition path sampling

In transition path sampling techniques[4, 5], an ensemble of ”reactive” trajec-
tories is generated by a montecarlo procedure in trajectory space.The weight of
a reactive trajectory {x0, . . . , xn} is equal to

P ({x0, . . . , xn}) = P ({xt}) = CpA (x0)χB (xn)
n−1∏
t=0

π (xt → xt+1) (51)

where C is a normalization constant and:
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1. pA (x0) is the probability distribution of the initial points of the trajectory.
We take

pA (x0) ∝ exp (−βV (x0))χA (x0) (52)

2. π (xt → xt+1) is the transition probability from x to x′. For an overdumped
langevin process of the form

dx = −βD∂xV (x) dt+
√

2DdW

we have

π (x→ x′)
1√

4πDdt
exp

(
− (x′ − x+Dβ∂xV (x) dt)2

4dtD

)

In any case, we assume that π satisfies detailed balance:

π (x→ x′) exp (−βV (x)) = π (x′ → x) exp (−βV (x′)) (53)

We generate a new path by a ”shooting procedure” that consists in generating
a forward and backward trajectory from a point xl chosen at random. The
probability to generate the path {x′t} is given by

Pgen ({xt} → {x′t}) = G (xl → x′l′)
1∏

t=l′
π

(
x′t → x′t−1

) n−1∏

t=l′
π

(
x′t → x′t+1

)

where G (xl → x′l′) is the probability to generate a new shooting point x′l′ from
the old one. We require G (x→ x′) = G (x′ → x) . We now apply metropolis cri-
terion, namely we accept the new path with a probability min (1, r ({xt} , {x′t})) ,
with

r ({xt} , {x′t}) =
Pgen ({x′t} → {xt})P ({x′t})
Pgen ({xt} → {x′t})P ({xt}) = (54)

=
pA (x′0)
pA (x0)

χB (x′n)
w (l′, {x′t})
w (l, {xt})

where we assumed χB (xn) = 1 (the old trajectory belongs to the TPE) and

w (l, {xt}) =
0∏

t=l−1

p (xt → xt+1)
p (xt+1 → xt)

Using detailed balance (Eq. 53) we have

w (l, {xt}) =
0∏

t=l−1

exp (−βV (xt+1))
exp (−βV (xt))

= exp (β (V (x0)− V (xl)))

Using also pA (x0) ∝ exp (−βV (x0))χA (x0) , we finally have

r ({xt} , {x′t}) = χB (x′n)χA (x′0) exp (−β (V (x′l′)− V (xl)))
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The acceptance only depends on the difference between the potential energies
of the two shooting points (old and new) a topological requirement (the new
trajectory must begin in A and end in B). Of course this latter condition is the
most difficult to satisfy. In practice, χB (xn)χA (x0) is likely to be different from
zero only if the shooting point is in the transition state region. If a successful
shooting point is available, the new trial shooting point has to be generated
from from a G (xl → x′l′) that has to be localized, both in time and in space,
namely l’ must be rather close to l and the distance ‖xl − x′l′‖ must be rather
small. As it is usual in montecarlo procedures, no big jumps are allowed, but
too short jumps imply slow decorrelation, and a compromise has to be seeked.

5.1 The committor

Let us imagine that for every x not belonging to A or B we run several trajecto-
ries until they reach the boundary of A or the boundary of B. Then, we compute
the fraction of these trajectories that reach the boundary of A. This fraction is
called committor function and is denoted as CA (x) . Of course CA (x) ∈ [0, 1]
and CA (x) = 1 for x ∈ ∂A and CA (x) = 0 for x ∈ ∂B. We define a configura-
tion x to be a transition state (TS) if both states A and B are equally accessible
from that configuration, namely if

CA (x) = 0.5 (55)

This equation in general defines an hypersurface of dimensionality n− 1, where
n is the dimensionality of the system. This surface is called in the literature
”transition path ensamble” (TPE). The ”shape” of this surface, can of course
be far from trivial in real cases. The committor CA is, by definition, the best
possible reaction coordinate.

TPS provides a very natural manner to find the configurations x satisfying
equation 55. In fact, it is clear that from a configuration x it is likely to generate
a reactive trajectory, for which χB (xn)χA (x0) = 1 only if CA (x) ∼ 0.5.More
rigorously, the expected value of χB (xn)χA (x0) is equal to CA (x) (1− CA (x)) .Hence,
the shooting points generated in a TPS procedure are approximately distributed
according to e−βV (x)CA (x) (1− CA (x)) .
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