Introduction to cluster algebras and varieties

26 December 2022

Problems for the course Skoltech, fall 2022. There are mistakes here, if you find some please write to mbersht@gmail.com

Definitions and hints are in slides and references.

1 Preliminary examples

Problem 1.1. a) Show that $\mathbb{C}[A_n]$ is generated (as a vector space) by P_T , where T is semi-standard tableau.

b) Show that $\mathbb{C}[A_n]$ is generated (as a vector space) by cluster monomials.

Problem 1.2 (*). Show equivalence of two more definitions (through composition of maps and monodromy) of cross-ratios $[u_1, u_2, u_3, u_4]$ to the one given in the lecture.

Problem 1.3. Show transformation formula for cross-ration coordinates under the flip of triangulation.

2 Seeds. Mutations. Laurent phenomenon.

Problem 2.1. All orientations of tree are mutation equivalent to each other via mutations on sinks or sources.

Problem 2.2. a) If
$$b_{jk} = 0$$
 then $\mu_j \mu_k = \mu_k \mu_j$.
b) If $b_{jk} = 1$ then $(\mu_j \mu_k)^5 = \text{id}$.

Problem 2.3 (*). a) For D_4 quiver find all cluster variables. Establish bijection between them and set $\Phi_+ \sqcup -\Pi$. b) Check the same for another finite root system.

Problem 2.4. Find quiver for Somos-5 sequence.

Problem 2.5. Show that term in Somos-4 sequence with coefficients $z_{k+4}z_k = az_{k+3}z_{k+1} + bz_{k+2}^2$ are integer, if $z_1 = z_2 = z_{\pm}z_4 = 1$ and $a, b \in \mathbb{Z}$.

3 Total positivity. Networks.

Problem 3.1. Prove that eigenvalues of totally positive $n \times n$ matrix are real positive and distinct.

Problem 3.2. Show that network transformations correspond to cluster mutations.

Problem 3.3 (*). Show that any minor appears in seed corresponding to some network.

Problem 3.4. a) Show that for n = 3 unfrozen part of quiver is equivalent to D_4 quiver. b) Find two cluster variables which are not minors.

4 Double Bruhat cells. X-varieties

Problem 4.1. Show that minor conditions that determines Bruhat cell.

Problem 4.2 (*). If $l(us_i)l(u) + 1$ then $Bus_iB = BuBBs_iB$

Problem 4.3. For given cluster seed (Q, \vec{A}) let $x_j = \prod A_i^{b_{ij}}$. Show that mutation of seed leads to mutation of \mathcal{X} -cluster variables.

Problem 4.4. Show that braid moves in reduced decomposition of the word in double Weyl group corresponds to cluster transformations of \mathcal{X} -cluster variables.

5 Cluster Poisson structure. Sklyanin bracket

Problem 5.1. Any totally positive matrix can be represented as \mathbb{E} for the word

$$(\bar{s}_{n-1}\cdot\cdots\bar{s}_1)(\bar{s}_{n-1}\cdot\cdots\bar{s}_2)\ldots(\bar{s}_{n-1}\bar{s}_{n-1})\bar{s}_{n-1}$$

Problem 5.2. The cluster Poisson bracket is preserved by the mutations.

Problem 5.3. a) The cluster closed 2-form is preserved under mutations. b)* This lifts to well defined element of K_2 .

Problem 5.4. Compute Sklyanin bracket for $GL(2) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \}$. Find two algebraically independent Casimir functions.

Problem 5.5 (*). Compute Poisson bracket on the cell $C^{s_i,e}$.

6 Cluster Poisson structure. Integrable systems

Problem 6.1. a) Show that Coxeter element depends only on orientation of Dynkin diagram i.e. for any i what is earlier s_i or s_{i+1} .

- b) Show that using transformations preserving quiver $G^{c,c'}/\operatorname{Ad} H$ (i.e. cyclic permutations, $s_i\bar{s}_2=\bar{s}_2s_i$ $i\neq j,\ s_is_j=s_js_i, \overline{s_i}, \bar{s}_j=\bar{s}_j\bar{s}_i, |i-j|>1$) any word can be reduced to $\bar{s}_{i_1}\cdot\bar{s}_{i_{n-1}}s_{j_1}\cdot s_{j_{n-1}}$.
- c) For $G = GL_{n+1}$ there are no more then 3^{n-1} different quivers for $G^{c,c'}/\operatorname{Ad} H$. All of them are mutation equivalent.

Problem 6.2 (*). Consider cell $G^{c,c}$ Ad H. Take decomposition

$$g = H_1(x_1)F_1H_1(y_1)E_1 \cdot \ldots \cdot H_{n-1}(x_{n-1})F_{n-1}H_{n-1}(y_{n-1})E_{n-1}.$$

- a) Compute Poisson brackets of $x_1, \ldots x_{n-1}, y_1, \ldots, y_{n-1}$.
- b) Compute $I_1 = \operatorname{tr} g$.
- c) Let $\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n$ exponential Darboux coordinates

$$\{\eta_i, \xi_j\} = \delta_{ij}\eta_i \xi_j, \quad \{\xi_i, \xi_j\} = \{\eta_i, \eta_j\} = 0$$

Show that
$$x_i = \eta_i/\eta_{i+1}$$
 $y_i = \xi_{i+1}/\xi_i$ is a Poisson map.
d) Let $L_i = \begin{pmatrix} \mu \xi_i^{1/2} \eta_i^{-1/2} + \xi_i^{-1/2} \eta_i^{1/2} & \mu \xi_i^{-1/2} \eta_i^{-1/2} \\ \xi_i^{1/2} \eta_i^{1/2} & 0 \end{pmatrix}$ be a Lax matrix. Denote com-

ponents of the monodromy matrix $L_1 \cdot L_2 \dots L_n = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$. Let $A = \sum \widetilde{I}_k \mu^{n-k}$. Show

that $\tilde{I}_1 \sim I_1$ (proportional by monomial commuting with $x_1, \ldots, x_{n-1}, y_1, \ldots, y_{n-1}$).

s) Show the same for I_k and $I_k = \operatorname{Tr} \Lambda^k g$.

7 Upper cluster algebras

Problem 7.1. Check that $b'_{ij} = \langle e'_i, e'_j \rangle$ agrees with mutation of matrix B

Problem 7.2. Show that $R[A_1, A_1^{-1}] \cap R[A_1', A_1'^{-1}] = R[A_1, A_1']$

Problem 7.3. Show for quiver with
$$B = \begin{pmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{pmatrix}$$
 that

- a) $\bar{\mathcal{A}}(S) = U(S)$,
- b) $\mathcal{A}(S) \subseteq \mathcal{A}(S)$.

Problem 7.4. Show that unfrozen quiver for $\mathbb{C}[N_{-}]$ for SL_3, SL_3, SL_5 is mutation equivalent to Dynkin diagram A_1, A_3, D_6 correspondingly.

Starfish lemma. Grassmanian

Problem 8.1. Start from the seed $S_{K,N}$ and mutate at each of the mutable vertices of $S_{K,N}$ exactly once, in the following order: mutate each row from left to right, starting from the bottom row and ending at the top row. Denote the obtained seed by $S_{K,N}^1$

- a) Show that quivers $S_{K,N}$ and $S_{K,N}^1$ are isomorphic.
- b) Show that corresponding minors are related as $\Delta_{i_1,...,i_k}$ and $\Delta_{i_1+1,...,i_k+1}$.

Problem 8.2. a) Consider a map $Gr(K,N) \to Gr(N-K,N)$ given $V \mapsto V^{\perp}$. Compute this map in Plucker coordinates.

- b) Show that formula $\Delta_{J^c} = \Delta_J$ defines well map from Gr(K, N) to Gr(N K, N).
- c) Show that this map agrees with cluster structures on Gr(K, N) and Gr(N K, N)up tp change of sign in B.

Problem 8.3. Show that det X is irreducible polynomial in $\mathbb{C}[x_{11},\ldots,x_{NN}]$.

9 Plabic graphs. Grassmanians

Problem 9.1. Show that zig-zags starting at different vertices terminate at different vertices.

Problem 9.2. Show that π_G is invariant under the moves M1,M2,M3.

Problem 9.3. a) Moves M2, M3 preserves Δ_I . b) Move M1 corresponds to mutation of Δ_I .

Problem 9.4. a) Find plabic graph corresponding to triangular seed. b) Find plabic graph corresponding to square seed.

10 Poisson structures on Grassmanians

Problem 10.1 (*). Show that $\{y_{i,j}, y_{i',j'}\} = (\operatorname{sgn}(i-i') - \operatorname{sgn}(j-j'))y_{i,j'}y_{i',j}$

Problem 10.2. Compute $\{F_{p,q}, F_{p',q'}\}$ from Sklyanin bracket.

Problem 10.3 (*). Compute $\{F_{p,q}, F_{p',q'}\}$ from cluster bracket.

11 Geometric approach to cluster varieties

Problem 11.1 (*). Find toric varieties for given fans.

Problem 11.2 (*). Show that the new difinition agrees with formulas for mutation of cluaster variables introduced above.

Problem 11.3 (*). *Prove Lemma 1.*

Problem 11.4 (*). *Prove Lemma 2*.

12 Cluster structures on the moduli space of PGL_2 local systems

Problem 12.1. Find monodromy matrices for the 1 punctured torus. Find the corresponding quiver.

Problem 12.2. Show that monodromy around a puncture is conjugated to $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ where $\lambda_1/\lambda_2 = x_1 \cdot \cdots \cdot x_k$.

13 Pinnings

Problem 13.1. Let $G = PGL_m$, B, B' be pair of Borel subgroups in general position, F, F' — corresponding flags. Let $L + i = F_i \cap F_{m+1-i}$. Show is correspondence between 1) pinnings over B, B', 2) projective bases $v_i \in L_i$ 3) Generic lines $\langle f \rangle \subset \mathbb{C}^m$.

Problem 13.2. For any two pinnings p, p' show that there exists and unique $g \in PGL_m$ such that $g \cdot p = p'$.

Problem 13.3. Quivers and bipartite graphs for triangulations related by flip are mutation equivalent. (Check for PGL_3 , PGL_4).

14 Cluster structures on the moduli space of PGL_m local systems

Problem 14.1. Let

$$F^{(2)} = \{0 \subset \langle e_1 \rangle \subset \langle e_1, e_2 \rangle \subset \cdots \subset \langle e_1, \dots e_{m-1} \subset \mathbb{C}^m \rangle \},$$

$$F^{(4)} = \{0 \subset \langle e_m \rangle \subset \langle e_{m-1}, e_m \rangle \subset \cdots \subset \langle e_2, \dots e_m \subset \mathbb{C}^m \rangle \},$$

and $p = \langle \alpha_1 e_1 + \dots \alpha_m e_m \rangle$. Find p' such that gluing conditions are satisfied.

Problem 14.2. Show that $v^{A^BC}S = v^{C_BA}$.

Problem 14.3. Show some of the relations

- a) $v^{A_pC}H_1(x_1) \cdot \dots \cdot H_{m-1}(x_{m-1}) = v^{A^BC}$.
- b) Gluing conditions are satisfied iff $v^{A_pC} = v^{A^{p'}C}$.
- c) $v^{A_DC}H_1(x_1) \cdot \dots \cdot H_{m-1}(x_{m-1}) = v^{A^BC}$.

Problem 14.4 (*). a) For m = 2 we have $v^{A_qC}H_1(x_1)E_1H_1(x_2) = v^{A^rB}$.

- b) For m = 3 we have $v^{A_qC}H_1(x_1)H_2(x_2)E_21E_1H_2(x_4)E_2H_1(x_3)H_2(X_6) = v^{A^rB}$.
- c) For generic m we have $v^{A_qC}\mathbb{E}_{w_0}(\vec{x}) = v^{A^rB}$.