Affine quantum groups

15.02.2022

Problems for the course Skoltech, fall 2021. There are mistakes here, if you find some please write to mbersht@gmail.com

Definitions and hints are in slides and references.

1 Quantum groups

Problem 1.1 (till **04.10.2021**). Let $\mathfrak{g} = \mathfrak{sl}_3$, $V = \mathbb{C}^3$ a) Compute first and second term in E, F of $\overline{\mathbb{R}}$ using pairing. b) Compute $R_{V,V}$ and R_{V,V^*} . c) Find eigenvalues of $\widetilde{R}_{V,V}$.

Problem 1.2. Let $\mathfrak{g} = \mathfrak{sl}_3$, Compute first and second term in E, F of $\overline{\mathbb{R}}$ using factorization formula.

Problem 1.3. For $\mathfrak{g} = \mathfrak{sl}_3$ and $V = \mathbb{C}^3$ compute C_V, C_{V^*} .

Problem 1.4. a) For $\mathfrak{g} = \mathfrak{sl}_3$ relate l_{ij} generators in RTT realization and Cartan-Weyl elements. b)* The same for $\mathfrak{g} = \mathfrak{sl}_{n+1}$

Problem 1.5. Show that $\langle RL_1^+L_2^+ - L_2^+L_1^+R, - \rangle = 0$.

2 Affine algebras, affine Weyl group

Problem 2.1 (till **11.10.2021**). Show that generators $E_0, \ldots, E_r, H_0, \ldots, H_r, F_0, \ldots, F_r$ satisfies relations of Kac-Moody algebra.

Problem 2.2. a) If $s_i \lambda = \lambda$ (equivalently $(\alpha_i^{\vee}, \lambda) = 0$) then $T_i Y^{\lambda} = Y^{\lambda} T_i$. b)* If $(\alpha_i^{\vee}, \lambda) = 1$, then $T_i Y^{\lambda} T_i = Y^{s_i(\lambda)}$.

Problem 2.3. For $\Phi = A_n$ the elements $Y_i = T_{i-1}^{-1} \cdot \dots \cdot T_1^{-1} \tau T_{n-1} \cdot \dots \cdot T_i$. Here $\tau \in \Omega$ is such that $\tau T_i \tau^{-1} = T_{i+1}$, $\tau T_n \tau^{-1} = T_0$.

- a) For n = 1, 2 find formulas for Y^{ϖ_i} and show above.
- b)* Show above for any n.

Problem 2.4. * Show that $P \in W^{ae}$ is the subgroup of elements with finitely many conjugates.

3 Representations of affine algebra

4 Poincaré-Birkhoff-Witt basis for $U_q(\widehat{sl}_2)$

Problem 4.1 (till 01.11.2021). Show that

$$E_{\alpha+(n+1)\delta}E_{\alpha+m\delta} - q^2 E_{\alpha+n\delta}E_{\alpha+(m+1)\delta} + E_{\alpha+m\delta}E_{\alpha+(m+1)\delta} - q^2 E_{\alpha+m\delta}E_{\alpha+(n+1)\delta} = 0$$

Problem 4.2. * Show that

$$e^{+}(z)e^{+}(w)(z-q^{2}w) + e^{+}(w)e^{+}(z)(w-q^{2}z) = (1-q^{2})(ze^{+}(w)^{2} - we^{+}(z)^{2})$$

5 New Drinfeld realization for $U_q(\widehat{sl}_2)$

Problem 5.1. Finish the proof of

$$[X^{+}(z), X^{-}(w)] = \frac{1}{q - q^{-1}} \Big(\psi^{+}(z) \delta(\frac{Kw}{z}) - \psi^{-}(z) \delta(\frac{w}{Kz}) \Big)$$

Problem 5.2 (till **01.11.2021**). Show that for r > 0

$$[h_r, X^+(w)] = \frac{[2r]_q}{r} w^r X^{\pm}(w), \quad [h_r, X^+(w)] = -K^r \frac{[2r]_q}{r} w^r X^{\pm}(w).$$

Problem 5.3. Show that

$$\tau\Phi(h_r) = h_{-r}, \quad \tau\Phi(\Psi^+(z)) = K\Psi^-(z^{-1}), \quad \tau\Phi(\Psi^-(z)) = K^{-1}\Psi^+(z^{-1}).$$

Problem 5.4. Show the existence of evaluation homorphism

$$\operatorname{ev}_u : U_q(\widehat{\mathfrak{sl}}_2) \to U_q(\mathfrak{sl}_2), \quad E_1 \mapsto E, \ F_1 \mapsto F, \ E_0 \mapsto uF, \ F_0 \mapsto u^{-1}E.$$

Problem 5.5. Find formula for the action of loop generators $X^+[n], X^-[n], h_r, h_{-r}$ for evaluation representation $\mathbb{C}^2(u)$

Problem 5.6 (till **01.11.2021**). Check formula for R matrix acting on the tensor product $\mathbb{C}^2(u_1) \otimes \mathbb{C}^2(u_2)$

6 Factorization of R-matrix

Problem 6.1. Prove any of the formulas for $\Delta(E_{-\alpha+n\delta})$, $\Delta(F_{\alpha-n\delta})$, $\Delta(F_{-\alpha-n\delta})$.

Problem 6.2. Show that

$$\Delta(E_{\alpha+n\delta}) = 1 \otimes E_{\alpha+n\delta} + E_{\alpha+n\delta} \otimes K_{\alpha+n\delta} + (q - q^{-1}) \sum_{p=1}^{n} E_{\alpha+(n-p)\delta} \otimes K_{\alpha+(n-p)\delta} E_{p\delta}$$

+ very low terms

where very low terms are of the form $a \otimes b$, where a contains at least two terms of the form $E_{\alpha+p\delta}$.

Problem 6.3. a) Find Gauss decomposition for $R = R^-R^0R^+$ matrix acting on the tensor product $\mathbb{C}^2(u_1) \otimes \mathbb{C}^2(u_2)$.

- b) Show that $\mathcal{R}_{\mathbb{C}^2(u_1)\otimes\mathbb{C}^2(u_2)}^-=R^-,\ \mathcal{R}_{\mathbb{C}^2(u_1)\otimes\mathbb{C}^2(u_2)}^+=R^+.$
- c)* Show that $\mathcal{R}^0_{\mathbb{C}^2(u_1)\otimes\mathbb{C}^2(u_2)} = f(u_1/u_2)R^0$, for some function f.

Problem 6.4. Check that Drinfeld coproduct preserves some (a couple) of relations in new realization.

7 RLL relaization

Problem 7.1. a) Deduce from RLL relations \mathcal{K}_1^+ , \mathcal{F}^+ relations.

b) Deduce from RLL relations \mathcal{F}^+ , \mathcal{F}^+ relations.

Problem 7.2. Deduce from Yang-Baxter equation that

$$R(a_1/a_3)L_1^+(a_1)L_2^+(a_2) = L_2^+(a_2)L_1^+(a_1)R(a_1/a_3)$$

Problem 7.3. Show that for $U_q(\widehat{\mathfrak{sl}}_2)$ we have

$$L^{+}(a) = \begin{pmatrix} 1 & 0 \\ (q^{-1} - q) \sum_{r \ge 0} E_{\alpha + r\delta} a^{-r} & 0 \end{pmatrix}$$

$$\exp \left(\sum_{r > 0} \frac{[r](q^{-1} - q)}{[2r]} h_r \begin{pmatrix} (aq^{-1})^r & 0 \\ 0 & -(aq)^r \end{pmatrix} \right)$$

$$\begin{pmatrix} 1 & (q^{-1} - q) \sum_{r > 0} K_1 E_{-\alpha + r\delta} a^{-r} \\ 0 & 1 \end{pmatrix}.$$

Problem 7.4. Show that Δ defined by

$$\Delta(L^+(z)) = L_2^+(a) L_1^+(K_{(2)}a), \quad \Delta(L^-(z)) = L_2^-(K_{(1)}^{-1}a) L_1^-(a),$$

agrees with RLL relations.

Problem 7.5. Using the formula for L^+ show that $\Delta E_1 = E_1 \otimes K_1 + 1 \otimes E_1$, $\Delta E_0 = E_0 \otimes K_0 + 1 \otimes E_0$.

8 Finite dimensional representations of $U_q(\widehat{\mathfrak{sl}}_2)$

Problem 8.1. Show that $\mathbb{C}^2(u_1) \otimes \mathbb{C}^2(u_2)$ is irreducible unless $u_1/u_2 = q^{\pm 2}$. In last case show that

$$0 \to \mathbb{C} \to \mathbb{C}^2(u) \otimes \mathbb{C}^2(uq^2) \to \mathbb{C}^3(uq) \to 0$$
$$0 \to \mathbb{C}^3(uq) \to \mathbb{C}^2(uq^2) \otimes \mathbb{C}^2(u) \to \mathbb{C} \to 0$$

Problem 8.2. $V(u)^* \simeq V(q^2u)$ for any finite dimensional evaluation representation V(u).

Problem 8.3. Any irreducible (type I) representation of $U_q(\widehat{\mathfrak{sl}}_2)$ of dimension 2 is isomorphic to $\mathbb{C}^2(u)$ for some u.

Problem 8.4. Let V_{λ} be highest weight representation of $U_q(\mathfrak{sl}_2)$ with highest weight vector ξ_{λ} such that

$$K\xi_{\lambda} = q^{\lambda}\xi_{\lambda}, \quad E\xi_{\lambda} = 0.$$

Then, for evaluation representation $V_{\lambda}(u)$ of $U_q(\widehat{\mathfrak{sl}}_2)$ show that

$$\Psi^{+}(z)\xi_{\lambda} = \Psi^{-}(z)\xi_{\lambda} = \phi_{\lambda}(u,z)\xi_{\lambda}, \quad \phi_{\lambda}(u,z) = q^{\lambda} \frac{z + uq^{-\lambda - 2}}{z + uq^{\lambda - 2}}.$$

Problem 8.5. Any finite multiset in \mathbb{C}^* can be uniquely presented as a union of string pairwise in general position

9 *q*-characters for $U_q(\widehat{\mathfrak{sl}}_2)$

Problem 9.1. Assume that all l-weight spaces in V are one dimensional, $\zeta \in V_{(\phi)}$, $\zeta' \in V_{(\phi')}$, are such that $\langle \zeta' | X^-[n] \zeta \rangle = a^n \langle \zeta' | X^-[0] \zeta \rangle$.

a) Show that
$$\langle \zeta | X^+[n] \zeta' \rangle = a^n \langle \zeta | X^+[0] \zeta' \rangle$$
.
b)* Show that $\langle \zeta' | X^-[0] \zeta \rangle \langle \zeta | X^+[0] \zeta' \rangle = \frac{1}{a(q-q^{-1})} \operatorname{Res}_{z=a} \phi(z)$.

Problem 9.2. * Find irreducible finite dimensional representation of $U_q(\widehat{\mathfrak{sl}}_2)$ whose *q*-character contains more the one dominant term.

Problem 9.3. For strings S_1, S_2 in special position let $S_3 = S_1 \cup C_2$, $S_4 = S_1 \cap S_2$, \bar{S}_4 is S_4 with two nearest neighbors and $S_3 \setminus \bar{S}_4 = S_5 \sqcup S_6$. Then we have equality in K_0

$$V(S_1) \otimes V(S_2) = V(S_3) \otimes V(S_4) + V(S_5) \otimes V(S_6)$$

Problem 9.4. * Let $S = \{a, aq^{-2}, ..., aq^{-2l}\}$. The classes V(S') in $K_0(\text{Rep}_{f,d_s})$, for strings $S' \subset S$ satisfy relations of cluster algebra of type A_l , the only frozen variable is V(S).

10 *q*-characters in general

Problem 10.1. For $\mathfrak{g} = \mathfrak{sl}_3$ find q-characters and graphs corresponding to two different 8 dimensional irreducible representations.

Problem 10.2. For $\mathfrak{g} = \mathfrak{so}_8$ find q-characters and graphs corresponding to fundamental representations.

Problem 10.3. * For $\mathfrak{g} = \mathfrak{sl}_2$ show that $\operatorname{Ker} S = \mathbb{C}[Y(a) + Y^{-1}(aq^2)]$.

11 Schur-Weyl duality

Problem 11.1. Show that formulas

$$E_i e_h = \delta_{i \equiv h+1} e_{h+1}, \quad F_i e_h = \delta_{i \equiv h} e_{h-1}, \quad K_i e_h = q^{\delta_{i \equiv h} - \delta_{i \equiv h+1}}, e_h$$

defines representation of $U_q(\widehat{\mathfrak{sl}}_n)$

Problem 11.2. Show formula $T_i = s_i^Y \tilde{R}_{i,i+1} + \frac{q-q^{-1}}{Y_1/Y_{i+1}-1}(s_i^Y-1)$.

Problem 11.3. Check formula $T(e_h \otimes e_g)$ (or $T(e_g \otimes e_h)$) for g > h, s > 0,

Problem 11.4. Check commutativity of E_i and T on $e_h \otimes e_g$ for g = h + nk + s, $k \geq 0$, s > 0, N = 2.

Problem 11.5. * a) For N=2 M_{a_1,a_2} is irreducible if and only if $a_1/a_2 \neq q^2, q^{-2}$. b) If $a_i/a_j \neq q^2$, $\forall 1 \leq i, j \leq N$, then $M_{\vec{a}}$ is irreducible.

12 Semi-infinite construction

Problem 12.1. Show that $e_g \wedge e_h = -qe_h \wedge e_q$ for 0 < g - h < n.

Problem 12.2. Let $i_1, \ldots, i_N \in \mathbb{Z}$ such that $\sum_{k=1}^N (i_k + m - k) > 0$ and $i_k + m \leq N$. Then $e_{i_1} \wedge \cdots \wedge e_{i_N} = 0$.

Problem 12.3. * Show that

- $\begin{array}{l} a) \ K_i |\lambda\rangle_{N,m} = q^{|\lambda|_{i-1}-2|\lambda|_i+|\lambda|_{i+1}+\delta_{m\equiv i}-\delta_{m+N\equiv i}} |\lambda\rangle_{N,m}, \ where \ |\lambda|_j = \#\{\Box \in \lambda |c(\Box)=j\}. \\ b) \ K_i |\lambda\rangle_{N,m} = q^{\#\{\Box \in \mathrm{Add}(\lambda)|c(\Box)=i\}-\#\{\Box \in \mathrm{Rem}(\lambda)|c(\Box)=i\}-\delta_{m+N\equiv i}} |\lambda\rangle_{N,m} \end{array}$

Problem 12.4. $\forall k, \exists B_k \ acting \ on \ \mathcal{F}_m \ s.t. \ \lim_{N\to\infty} \varphi_{\infty,N} b_k |\lambda\rangle_{N,m} = B_k |\lambda\rangle_m.$

Problem 12.5. Compute $B_1B_{-1}|\varnothing\rangle_m$

13 Bosonization, vertex operators

Problem 13.1. a) Check X^-, X^- relation.

- b)* Check $[X^+, X^-]$ relation.
- c) For $L_{0,1}$ check $X^{-}[0]|0\rangle = X^{+}[-1]^{2}|0\rangle = 0$.

Problem 13.2. * Check intertwining property of Φ^D with $X^+(w)$.

Problem 13.3. Find dependence of $\Psi^{*,D}_{\perp}$ and $\Psi^{*,D}_{-}$ on a_r, a_{-r}

Problem 13.4. Find normalization f(u) of the R matrix on relations of vertex operators.