Introduction to Quantum Groups Lecture 8 Drinfeld-Jimbo quantum groups • Kac-Moody Lie algebras P-root system $\Pi = 22_1 - 27^2$ Simple roots

Usually assume (2,2)=2 $a_{ij} = \frac{2(2i,2j)}{(2i,2i)} - \frac{2\pi tan}{matrix}$

•Pef $\leq J$ - Lie algebra with generators F_1 , F_1 H_1 . H_1 E_1 , ..., E_r and relations $[H_i, E_j] = a_{ij} E_0$, $[H_i, F_j] = -a_{ij} F_0$ $[H_i, H_j] = 0$ $[E_i, F_j] = \delta_{ij} H_i$ Serre relations $ad_{E_i}^{1-a_{ij}} E_j = 0$ $ad_{F_i}^{1-a_{ij}} F_j = 0$

· It is convenient to rewrite serre relations as

$$\frac{1-a_{i,j}}{\sum_{K=0}^{N}} \left(-1\right)^{K} \left(1-a_{i,j}\right) = 0$$

$$\frac{1-a_{i,j}}{K} = 0$$

· Basic example = Slert

$$\begin{array}{lll}
F_{i} = F_{i+1,i} \\
0 & 100 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 000 \\
0 & 00$$

$$SC_{f+1}$$

$$E_{i} = E_{i+1}$$

$$\begin{cases} 0000 \\ 1000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0010 \\ 0000 \\ 0010$$

Def $u_g(y)$ is an algebra generated by F_1 , F_r $K_1^{\pm 1}$, $K_r^{\pm 1}$ E_1, \dots, E_r $\lambda_i \in \Pi$ and selations $K_i K_i = 1 = K_i K_i$ $K_i E_j K_i' = q^{q_{ij}} E_j$ $K_i E_j K_i' = q^{-q_{ij}} E_j$ $E_i, E_j = \delta_{ij} \frac{K_i - K_i'}{g - g'}$ $K_iK_j = K_jK_i$ Serre relations $\sum_{k=0}^{1-a_{i,j}} (-1)^k \left[1-a_{i,j} \right]_{k} E_i E_j E_i^{1-a_{i,j}-k} = 0$ $\frac{1-a_{i,j}}{\sum_{k=0}^{\infty}(-1)^{k}} \left[\frac{1-a_{i,j}}{k} \right]_{g} F_{i}^{k} F_{j} F_{i}^{k} = 0$ $[n]_q = \frac{q^2 - q^{-n}}{q - q^{-1}}$ Remarks (i) $\begin{bmatrix} n \end{bmatrix}_q = \frac{[n]_q!}{[\kappa]_q! [n\kappa]_q!}$ $[n]_q := [n]_q : [n-1]_q : \dots : [1]_q$ q Pascal [0] = 1 Eriangle

1 82+1+8-2 82+1+82 1

There we assumed
$$P$$
 is simply laced $A_{ij}=0$ $0=L_{ij}=0$ $E_{i}E_{i}-L_{ij}=0$ $E_{i}E_{i}=E_{i}E_{i}-E_{j}E_{i}$

$$a_{ij} = -1 \qquad \begin{bmatrix} 27 \\ 67 \end{bmatrix} = \begin{bmatrix} 27 \\ 67 \end{bmatrix} = 1 \qquad \begin{bmatrix} 27 \\ 67 \end{bmatrix} = 8 + 8^{-1}$$

$$E_0 E_0 - (8 + 9^{-1}) E_0 E_0 E_0 + E_0 E_0^2$$

(3) This generalize $u_g(sl_2)$. Moreover $\forall i \in \exists homomorphism$ $\psi_i : u_g(sl_2) \rightarrow u_g(sl)$

 $(F, K, E) \mapsto (Fi, Ki, Ei)$ CCChII - algebra

4) One can define $u_h(M)$ with generators f_i, H_i, E_i with relations — $u_h(M)$

 $[H_i, E_i] = a_{ij} E_j \qquad [H_i, F_j] = -a_{ij} F_i \qquad [E_i, F_j] = \delta_{ij} \frac{e^{\hbar H_i} - e^{-\hbar H_c}}{e^{\hbar} - e^{-\hbar}}$

Let $\mathcal{U}_g(\mathcal{O}_J)$ be an algebra with generators F_i, H_i, f_i , $\lambda_i \in \Pi$ and relations without serre For shortness Tig(os), rig(os) ~> Ti, ri Let ut, ut subalgebras u, u generated by E; Let u, u subalgebras u, u generated by Fi Let W, W Subalgebras U, W generated by Kit! • For any $\lambda \in Q$ - root lattice $\lambda = \sum_{i=1}^{m} \sum_{$ $K_{\lambda} E_{i} K_{\lambda}^{-1} = q^{(\lambda_{i} J_{i})} E_{i}$ $K_{\lambda} F_{i} K_{\lambda}^{-1} = q^{-(J_{i}, \lambda)} F_{i}$

Sometimes it is convenient to extend U, û adding K, $\lambda \in P$ - weight lattice.

For $U_{t}(y)$ - no such issue.

· Algebras U, U are Q-graded.

deg Ei=Li, deg Ki=0 deg Fi=-Li

Prop There is a Hopf algebra stron \mathcal{L} given by $\Delta(E_i) = E_i \otimes K_i + 1 \otimes E_i$ $\Delta(E_i) = E_i \otimes K_i + 1 \otimes E_i$ $\Delta(E_i) = 1$ $\Delta(E_i) = 0$ $\Delta(E_i) = 0$ $\Delta(E_i) = 0$ $\Delta(E_i) = -E_i \otimes K_i^{-1}$ $\Delta(E_i) = K_i^{-1}$ $\Delta(E_i) = K_i^{-1}$ $\Delta(E_i) = -K_i \otimes E_i$

Remark Determined by property: ϕ_i : $\mathcal{U}_g(sl_2) \rightarrow \tilde{\mathcal{U}}_i$ is homom. of Hopf algebras

 $\frac{Proof}{[A(E_i), A(E_i)]} = [E_i \otimes K_i + 1 \otimes E_i, F_i \otimes 1 + K_i \otimes F_i] = [E_i \otimes K_i, K_i \otimes F_i]$ $= E_i K_j \otimes K_i F_j - K_j E_i \otimes F_i K_i = (g^{a_{ij} - a_{ij}} - 1) K_j E_i \otimes F_i K_i = 0$

RK Let $X \in \mathcal{U}_{X}$, $X \in \mathcal{U}_{M}$ ada, $X = XX - g^{(A,M)}YX$ Serre relations adq, G; G; =0 adq, F; F=0 Def Adjoint action Hopf algebra A on itself $Adab:=a_{(1)}bS(a_{(2)})$ Example (1) A = CCG] Adgh = ghg! $(2) A = U(01) \qquad Adx y = xy - yx$ Problem Show that Serre relations are equivalent to $(Ad_{E_i}^{coop})^{t-a_{ij}} = 0 \qquad (Ad_{F_i})^{t-a_{ij}} F_j = 0$ $adjoint \ action \ for$ $\Delta \mapsto \Delta^{op} \ (this \ leads \ to \ S \mapsto S^1)$

Problem $\forall u \in \mathcal{U}$ $S'(u) = K_{2p} u K_{2p}$ here $2p = \sum_{z \in P_{+}} \lambda_{z} (2p, z_{z}) = 2 \forall z_{z} \in \Pi$ Prop Let $u_{c_j}^{\dagger}$, $u_{i_j}^{\dagger} \in \mathcal{U}$ S.t. $1-a_{i_j}^{\dagger} = \sum_{k=0}^{1-a_{i_j}} [-1]^k \left[1-a_{i_j}^{\dagger} \right] \mathcal{E}_i^{\dagger} \mathcal{E}_j \mathcal{E}_i^{\dagger} \mathcal{E}_i$ $U_{ij}^{t} \in \mathcal{U}_{\lambda_{j}+(1-q_{ij})\lambda_{i}}$ $u_{ij} = \sum_{k=0}^{1-a_{ij}} (-1)^k \begin{bmatrix} 1-a_{ij} \end{bmatrix}_{F_i}^{K} F_j F_i$ $u_{ij} = \sum_{k=0}^{1-a_{ij}} (-1)^k \begin{bmatrix} 1-a_{ij} \end{bmatrix}_{F_i}^{K} F_j F_i$ $u_{ij} = \sum_{k=0}^{1-a_{ij}} (-1)^k \begin{bmatrix} 1-a_{ij} \end{bmatrix}_{F_i}^{K} F_j F_i$ Then $\Delta u_{ij}^{+} = u_{ij}^{+} \otimes K_{degu_{ij}}^{+} + 1 \otimes u_{is}^{+}$ $\Delta u_{ij}^{-} = u_{is}^{-} \otimes 1 + K_{degu_{is}}^{-} \otimes u_{is}^{-}$ Lie" algebra like elements

C. f $\Delta(E_i) = E_i \otimes K_i + 1 \otimes E_i$ $\Delta F_i = F_i \otimes 1 + K_i \otimes F_i$

$$\frac{Pf}{(E_{1}\otimes K_{1}+1\otimes E_{1})} = \Delta(E_{1}^{2}E_{2}-(g+g^{1})E_{1}E_{2}E_{1}+E_{2}E_{1}^{2}) = (E_{1}\otimes K_{1}+1\otimes E_{1})(E_{1}\otimes K_{1}+1\otimes E_{1})(E_{2}\otimes K_{2}+1\otimes E_{2}) - (g+g^{1})(E_{1}\otimes K_{1}+1\otimes E_{1})(E_{2}\otimes K_{2}+1\otimes E_{2})(E_{1}\otimes K_{1}+1\otimes E_{1})(E_{1}\otimes K_{1}+1\otimes E_{1}) + (E_{2}\otimes K_{2}+1\otimes E_{2})(E_{1}\otimes K_{1}+1\otimes E_{1})(E_{1}\otimes K_{1}+1\otimes E_{1})$$

$$= U_{12}^{\dagger} \otimes K_{1}^{2} K_{2} + E_{1}^{2} \otimes E_{2} K_{1}^{2} (\bar{g}^{2} - \bar{g}^{1} (g + \bar{g}^{1}) + 1)$$

$$+ E_{1} E_{2} \otimes E_{1} K_{1} K_{2} ((1 + g^{2}) - (g + \bar{g}^{1}) g) + E_{2} E_{1} \otimes E_{1} K_{1} K_{2} (-g + \bar{g}^{1}) + g^{-1} (1 + g^{2}))$$

$$+ E_{2} \otimes E_{1}^{2} K_{2} (1 - (g + \bar{g}^{1}) g^{1} + g^{-2}) + E_{1} \otimes E_{1} E_{2} K_{1} ((g + \bar{g}^{1}) - (g + \bar{g}^{1}))$$

$$+ E_{1} \otimes E_{2} E_{1} (-g (g + \bar{g}^{1}) + (1 + g^{2})) + 1 \otimes U_{12}^{\dagger} = U_{12}^{\dagger} \otimes K_{1}^{2} K_{2} + 1 \otimes U_{12}^{\dagger}$$

computation for une - similar

Th I Hopf algebra Str. on U given by the same formulas

Pf By Prop above ideal generated by ut , ut is also Hopf ideal

 $\Delta(\alpha u_{ij}^{\dagger} B) = \Delta(\alpha)(u_{ij}^{\dagger} O K_{degu_{ij}} + 10u_{ij})\Delta(b) \in \mathbb{T} \otimes u + u \otimes \mathbb{T} \square$

• For any sequence $I = (\beta_1, ..., \beta_e)$ of simple roots let $E_I = E_{\beta_i}$. E_{β_e} $F_I = F_{\beta_i}$. F_{β_e} $wt(I) = \sum_{i=1}^e \beta_i$ In particular $E_{\phi} = F_{\phi} = 1$

Lemma $\Delta(E_{I}) = \sum_{A,B} C_{A,B}^{I}(g) E_{A} \otimes E_{B} K_{wt(A)}$

 $\Delta(F_{I}) = \sum_{A,B} \widetilde{C}_{A,B}(g) F_{A} K_{-wt(B)} \otimes F_{B}$

wt(A)+wt(B)= wt(I)

 $C_{A\phi}^{I} = \delta_{A,I}^{I} / C_{\phi,B}^{I} = \delta_{I,B}^{I}$

 $\Delta(E_i) = E_i \otimes K_i + 10E_i$ $\Delta F_i = F_i \otimes 1 + K_i \otimes F_i$

Fr (Fd)

ullet Prop (Universal) Verma module $\mathcal{M}_{\mathcal{L}}$ over \mathcal{U} has a basis $V_{\mathcal{I}}$ with $F_i V_I = V_{(\lambda_i, I)}$ $K_i V_I = C_i g^{-(\lambda_i, wt I)} V_I$ action $E_i V_I = \sum_{\substack{1 \le j \le e \\ \beta_i = \lambda_i}} \frac{c_i g^{(\lambda_i, N)} - c_i g^{(\lambda_i, N)}}{g - g^{-1}} V_{\beta_1, \dots, \beta_{n-1}, \beta_i, \beta_{n-1}, \dots, \beta_e} \quad here \quad M_i = \sum_{p=1}^e \beta_p$ In other words, we have highest weight vector V_{ϕ} s.t. $E_i V_{\phi} = 0$, $K_i V_{\phi} = C_i V_{\phi}$, $F_{\underline{I}} V_{\phi} = V_{\underline{I}}$ Similarly we define Mer with Five=0, Kive=Cive, EIV=VI Theorem The elements FIKNEY form a Basis in The Corolloig û-8û°8û+ > ũ uguzus +>u, uzuz is isomorphism

Pf Assume that there is a relation $X = \sum a_{I,n,J} F_{I} K_{n} E_{J} = 0$ Take I_{0} with maximal $wt(I_{0})$ s.t $\exists a_{I_{0},n,J} \neq 0$ Consider action on $M_{C^{\vee}} \otimes M_{C}$. Consider $\Delta(X) v_{0}^{\vee} \otimes v_{0} = 0$ Recall $\Delta E_{J} = \sum c_{A,B} E_{A} \otimes E_{B} K_{wt(A)}$ For $B \neq \emptyset$ $E_{B}v_{0} = 0$. Hence

 $O=\Delta(X)V_{0}\otimes V_{0}=\sum_{I,n,J}\alpha_{I,n,J}\Delta(F_{I})\Delta(K_{n})\left(C_{A,B}E_{A}V_{0}\otimes E_{B}K_{w+l(A)}V_{0}\right)$ $=\sum_{I,n,J}C_{n,J}\Delta(F_{I})K_{n}\otimes K_{n}V_{0}\otimes V_{0}$ $=\sum_{I,n,J}C_{n,J}\Delta(F_{I})K_{n}\otimes K_{n}V_{0}\otimes V_{0}$ $=\sum_{I,n,J}C_{n,w+J}\Delta(F_{I})\left(V_{0}\otimes V_{0}\right)$ $=\sum_{I,n,J}C_{n,w+J}\Delta(F_{I})\left(V_{0}\otimes V_{0}\right)$

Recall $\Delta(F_{I}) = \sum_{A,B} \widetilde{C}_{A,B}(g) F_{A} K_{-wt(B)} \otimes F_{B}$. Hence, the only terms of the form $*\otimes V_{I_{o}}$ come from $I=I_{o}$, $B=I_{o}$, $A=\phi$

There fore

$$0 = \sum_{n,j} (wt(j)) (wt(n)) (v) wt n g(n, wt j) a_{I_0, n, j} K_{-wt(I_0)} \otimes F_{I_0} (v_j \otimes v_0)$$

$$= \sum_{n,j} (wt(j)) (wt(n)) (v) wt n g(n, wt j) g - (wt(I_0), wt(J)) a_{I_0, n, j} (v) wt T_0 v_j \otimes v_{I_0}$$

$$= \sum_{n,j} (wt(j)) (wt(n)) (v) wt n g(n, wt j) g - (wt(I_0), wt(J)) a_{I_0, n, j} (v) wt T_0 v_j \otimes v_{I_0}$$

For given Io vectors vy over are linearly independent

Hence
$$\leq c^{wt(n)}(c^{v})^{wt(n)}g^{(n,wt^{j})}a_{To,NiJ}=0$$

Since c, c^v are arbitrary we have a_{I0,11,1}=0

<u>Contradiction</u>

Problem [Fx, uit]=0 (Similarly [Ex, ui,]=0)

Theorem a) The multiplication USUSUT -> U is isomorphism of vector spaces B) The algebra ut is isomorphic to the algebra with generators En, Er and Serre relations C) = 1/-1000 - 1/-1000 d) Kn , MEQ form a Basis in 20° Pf Let Icu ideal generated by uit, uit Itcut — 11 — uit, Pf. Let Icu $\mathcal{L} = \mathcal{L} =$

Due to Prof. above $F_{\underline{I}} K_{n} E_{\underline{J}} U_{ij}^{t} F_{\underline{I}} K_{n'} E_{\underline{J}} = F_{\underline{I}} K_{n} E_{\underline{J}} F_{\underline{I}} K_{n'} q^{-(n', wt | u_{ij})} U_{ij}^{t} E_{\underline{J}} \in \overline{U} \otimes \mathcal{U} \otimes \underline{I}^{t}$ $F_{\underline{I}} K_{n} E_{\underline{J}} U_{ij}^{-} F_{\underline{I}} K_{n'} E_{\underline{J}} = F_{\underline{I}} U_{ij}^{-} q^{-(n', wt | u_{ij})} K_{n} E_{\underline{J}} F_{\underline{I}} K_{n'} E_{\underline{J}} \in \overline{I} \otimes \mathcal{U} \otimes \mathcal{U}^{t}$

Therefore $I = \widetilde{u} \otimes \widetilde{u}' \otimes I' + I \otimes \widetilde{u}' \otimes \widetilde{u}'$

Hence $I \cap \tilde{\mathcal{U}}^t = I \cap (1 \otimes 1 \otimes \tilde{\mathcal{U}}^t) = 1 \otimes 1 \otimes I^t = 0$ $I \cap \tilde{\mathcal{U}}^t = I \cap (\overline{\mathcal{U}} \otimes 1 \otimes 1) = \overline{I} \otimes 1 \otimes 1 = 0$ $I \cap \tilde{\mathcal{U}}^0 = I \cap (1 \otimes \tilde{\mathcal{U}} \otimes 1) = 0$ $\Longrightarrow d$

 $\mathcal{U} \simeq \frac{\widetilde{\mathcal{U}}}{I} = \frac{\widetilde{\mathcal{U}} \circ \widetilde{\mathcal{U}} \circ \widetilde{\mathcal{U}}}{\widetilde{\mathcal{U}} \circ \widetilde{\mathcal{U}} \circ \widetilde{\mathcal{U}}} = \frac{\widetilde{\mathcal{U}}}{I} \circ \widetilde{\mathcal{U}} \circ \widetilde{\mathcal$

 $= \mathcal{U} \otimes \mathcal{U} \otimes \mathcal{U}$

COTOPLOTY $\phi_i: U_g(\mathcal{S}l_2) \to U_g(\mathcal{S}l)$ is embedding.

Pf Relations in u^t has weights $wt(u_{je}) = J_j + J_e$, \Rightarrow no relations of the weight $nJ_i \Rightarrow E_i^n \neq 0$.

References

Jantzen Lectures on Quantum groups Ch. 4