Introduction to quantum groups

22.12.2023

Problems for the Skoltech course, Fall 2023. There are mistakes here. If
you find any, please write to mbersht@gmail.com
Definitions and hints can be found in the slides and references.

1 Poisson algebras and quantization

Problem 1.1. Show that Moyal formula defines associative product.
Problem 1.2 (*). Find an example of the Poisson algebra which cannot be quantized.
Problem 1.3 (*). Show that HH*(U(g)) = 0 for semisimple Lie algeba g.

Problem 1.4. Show that distribution T is integrable.

2 Poisson-Lie groups and Lie bialgebras

Problem 2.1. a) Let G is Poisson-Lie group, H C G is Poisson-Lie subgroup. Show
that C>=(G)H is Poisson subalgebra.

b) Let H C G is subgroup such that 1|y € TH®RTG +TG®TH. Show that C*(G)Y
1s Poisson subalgebra.

Problem 2.2. Let G = GL(2), Poisson-Lie structure defined by r matriz with r =

1 o a b
lh@h+eof, L = (C .

Check Poisson-Lie property.

>. Find brackets of a,b,c,d. Check skew-commutativity.

Problem 2.3. For any finite dimensional Lie algebra g there exists bijection between
bialgebra structures on g and Manin triples with q4 ~ g.

Problem 2.4. Find Lie bialgebra structure (i.e. §) for Examples 1 and 3 and g = sls.



3 Classical r-matrices
Let 6,(a) = ad, 7.
Problem 3.1. Show that &, maps to Ag if and only if rio + 121 € (g ® g)°.

Problem 3.2. Let r = r° + 4, where ¥ = aQ, r4 € A%g. Show that a) 6, = 5,4.
b) [[r,7]] = [Ir, r*]) + e

Problem 3.3. Show that g — D(g) and (g*)“°°? — D(g) are embeddings of Lie bialge-
bras.

Problem 3.4. For standard bialgebra structure for simple g
a) Find 6(h;), 0(eq), 0(e—y), where « is simple.
b) Find Lie algebra g*.
¢) Show thatr = > h;@h*+2 2aca, €a®e_q defines the same & and satisfies CYBE.

Problem 3.5 (*). Let r € A%g satisfy MCYBE. Show that IL = (\g)«r — (pg)«r is
Poisson bracket.

4 Dual Poisson-Lie groups, symplectic leaves

Problem 4.1 (*). Let G be Poisson-Lie group. For a € g* let ay € QY (G) be corre-
sponding left invariant 1-form. Define vector field by the formula Vo) = Tl(oy) € VectG.
Show that map g* — Vect(G) is Lie algebra homomorphism.

Problem 4.2. a) Find explicitly double Bruhat cells for SL(2) with standard Poisson
bracket (see Problem[2.9).

b) Find symplectic leaves on SL(2). Find Casimir functions (i.e. generators of the
Poisson center) on each double Bruhat cell.

5 Quantum group and algebras. Example of sl;

Problem 5.1. Let B € U(g) such that A(B) = B® 14+ 1® B. Show that B € g.

Problem 5.2 (*). Let Uy(g) is quantization of universal enveloping U(g). Let 6(a) =
A(a)=A(a)
h

mod K. Show that § satisfies cocycle and coJacobi conditions.
Problem 5.3. Let g(h) = 1+ O(h) € U(b)[[R]] is group like element (i.e. A(g) =gxg),
then g(h) = exp(aHh), for a € C[[R]].

GhH _ o—hH

Problem 5.4. Show that relation [E, F| = “3=S=— agrees with coproduct A.

Problem 5.5. Show that exists homomorphism Up(sle) — U(sly)[[h]] such that E — e,
Hw— h, and F +— ®(c,h)f, where c € U(sly) is Casimir element.



6 Hopf algebras

Problem 6.1. Show that S is antihomomorphism of algebra and coalgebra.

Problem 6.2. a) Find formulas for action of E, H, F in basis vy, .
b) Define basis Up,.

Problem 6.3. a) Show ezistence of natural morphisms V* @V — C and C — V @ V*.
b) Show that (V@ W)* = W* @ V*.

Problem 6.4 (*). a) Show directly that L1 @ L; ~ Lj41 & Li_y, for 1 > 1.
b) Show that L, ® Ly, = ®&L;, where summation region |li —la| <1 <Ilj+I1y and 411 +12
1S even.

7 Quantum R-matrices

Problem 7.1. For Uy(sly) show that A°?(E)R = RA(E).

eh(H+1) 4 o—h(H+1)

(e )2 is central.

Problem 7.2. a) Show that Cy, = FE +

b) Find action of Cy and e "Mu on L,y,.
c) Let <I>,§1: U(sl)[[h]] — Un(sle) isomorphism. Let ¢ = fe+h(h+2)/4. Find q)gl(c).
®,1(e), relate to central elements above.

8 Drinfeld-Jimbo quantum groups

Problem 8.1. Show that Serre relations are equivalent to

(AdRP)! "% E; =0, (Adp,)' "9 F; = 0.
Problem 8.2. Show that Vu € U we have S?(u) = KoyuK_s,
Problem 8.3. Show that [Fk,uf]] =0.

9 Finite dimensional Representation of U,(g)

Problem 9.1. Show the V®C, @ C, =V for any finite dimensional representation V.

Problem 9.2. a) Describe C" = Lty as representation of Uy(sly,).
b) Check formula for intertwining operator R: C" @ C* — C" @ C™
R= ZEu ® Ey; + Z(Ez] ® Eji + Eji ® Eij + (¢ — ¢ 1) Ej; ® Ey).
i i<j
¢)(*) Hecke algeba Hy for sly is an algebra with generators Ty, ..., Tn_1 and relations
(T — )T +q7") =0, TiTiaTi = T TiTi1, TiTy = TyT;, |i— j] > 1.

Construct an action of Hy on (C")®N commuting with Uy(sl,). This is g-analog of
Schur-Weyl duality.



Problem 9.3 (*). a) For g = sl, construct representation L., , where wy is k-th
fundamental weight. This is g-analog of A*C".
b) For g = sl,, construct representation Lye,. This is g-analog of S*C™.

10 Drinfeld double. Drinfeld theorem.

Problem 10.1 (*). Show that relations (a(1),b))a) * by = by * aqy(ac),be)) is
equivalent to bx a = (a(1y, by)ac) * by las), S~ Hbm))

Problem 10.2. Show nondegeneracy of the pairing Up(b™) @ Up(b™) — C.

n

Problem 10.3. Show that (F", E™) = 4. q=()s,, .

Problem 10.4 (*). For g =sly and V = C? compute Cy .

11 RTT realization

Problem 11.1. Show that (RL{L — Ly LT R,—) = 0.

Problem 11.2. a) Deduce quadratic relations on E, F,H from RTT relations.
b)* Deduce Serre relations from RTT relations.

Problem 11.3. Prove that U(R) is generated by lzﬂ;vl:i-s—lvli;vlz‘;l,i'

Problem 11.4. Find formulas for Lt = (p ®id)R and L~ = (id®p)R~! for U,(sl2).

12 Functions on quantum group SL,

Problem 12.1. Show that qdet is central and group-like.
Problem 12.2. Show that Ly ® L are linearly independent in Uy(sl2)® for 1 > 0.

Problem 12.3 (*). Let Up(g) be quantum universal enveloping algebra. Let A = {x €
Un(g)|(id — €)Ay(z) € Up(g)®",Vn}. Show that A is a Hopf algebra, cocommutative up
to first order in h.

13 Functions on quantum group SL,

Problem 13.1 (*). a) t/—\wo(A),Atl—‘u,A = (Av)‘)—(WO(A’“))tﬁuv/\tﬁwo(A%A.

A N (M) —(wo(A) N A A
D) 12y oyt = g O R -
A/

¢) Elements t’}wo(A)’A, th’,wo(A/) form commutative subalgebra.

Problem 13.2 (*). a) Subalgrebra Ay is generated by tlllklk
b)Subalgebra A_ is generated by t:ll—kJZrkl,,n

¢) Commutative subalgebra from c) above is generated by t}i!iﬂ...n’ t?jﬁ“"'”.



Problem 13.3 (*). For given J = {j1 < ...Jr—1}, I = {i1,... i}, K = {ko,...kr}

show relation

S 11 Zr 21 Zr
ngan: q)” t ks 1tk0 ,,,,, Esokor =0

Problem 13.4 (*). Show that center of C[Maty], is generated by qdet.

14 Lusztig’s braid group
Problem 14.1 (*). Check that [T;(E;), T;(F;)] = T;([E;, F}]) for a;j = —1.

Problem 14.2 (*). Fiz reduced expression of wy = i, - - Wiy -

a) If @iy, iy = 0 then reversing iy, iy + 1 we get reduced expression il with the same
(but reordered) set of Cartan-Weyl elements.

b) If iy, = ipyo, Qi riggyr = Qigpryipgo — —1 then Bry1 = Br+Brt2; E,Bk+1 = _[Eﬁk7E,3k+2]fI'
Replacing iy, tp41, 0 — tkr1ikipr1 we get reduced expression il and the set of Cartan-
Weyl elements {Ej} differs from {EL} only by E  and Eg, .

c) If Br. = o then Eg, = Ej.

k+1
Problem 14.3 (*). Relate l;; generators in RTT realization and Cartan-Weyl elements.

15 Factorization of the universal R matrix

Problem 15.1 (¥). a) Forv € Li[m] show that E(® F®) =0 F—t) pla—t) (™ b+a]q'
b) Let v; € L; be highest weight vector. Let ¥y, = Fs" )Ul € Ly[m]. Show that

tom = (—1) 2 g 2 T .

¢) Show that tFv = —EKtv, tKv = K~ 'tv, tEv = -k~ Ftv.

Problem 15.2 (*). Let R = > >0 q( ) a1/ V9" pn @ F. Show that

[n]q!
7@71 — ano(_l)nq*( )(Q[l}/Q) E"® F™

Problem 15.3 (*). Show that A(t) =R 't ®t
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