Topics in Representation Theory, 2025

Assignment 2.

The ground field is \mathbb{C} , unless stated otherwise.

Problem 1. Using Frobenius character formula show that $\chi_{(n-1,1)}(C_{\vec{i}}) = i_1 - 1$. Here i_1 denotes number od cycles of length 1 in conjugacy class \vec{i} .

Hint. It is sufficient to take N=2, i.e. to find coefficient of $x_1^{n-1}x_2$ in $(1-x_1^{-1}x_2)\prod_m(x_1^m+x_2^m)^{i_m}$.

Problem 2. Show that $s_{\lambda}(x_1,\ldots,x_{N-1},0)=s_{\lambda}(x_1,\ldots,x_{N-1})$ if $l(\lambda)\leq N-1$ and 0 otherwise.

Problem 3. Let V be a finite dimensional complex vector space, and let GL(V) be the group of invertible linear transformations of V. Then S^nV and Λ^mV $(m \leq \dim(V))$ are representations of GL(V) in a natural way. Show that they are irreducible representations.

Hint: Choose a basis $\{e_i\}$ in V. Find a diagonal element H of GL(V) such that $\rho(H)$ has distinct eigenvalues (where ρ is one of the above representations). This shows that if W is a subrepresentation, then it is spanned by a subset S of a basis of eigenvectors of $\rho(H)$. Use the invariance of W under the operators $\rho(1 + E_{ij})$ for all $i \neq j$ to show that if the subset S is nonempty, it is necessarily the entire basis.

Problem 4 (Piery formula). Show that $s_{\lambda}h_{k} = \sum_{\lambda} s_{\mu}$ where h_{k} is a complete homogeneous symmetric polynomial and the sum is over all partitions μ obtained from λ by adding k elements, no two in the same column.

Problem 5 (Transposition). Show that $V_{\lambda} \otimes \operatorname{sgn} = V_{\lambda^t}$, where sgn is one dimensional sign representation and λ' is the conjugate partition to λ .

Hint: Use Vershik-Okounkov approach. Another possible plan: use that $\mathbb{C}[S_n]b_{\lambda}a_{\lambda} \simeq V_{\lambda}$ and authomorphism $\phi \colon \mathbb{C}[S_n] \to \mathbb{C}[S_n]$ sending w to $(-1)^{l(w)}w$ for any permutation w.

Problem 6 (Gelfand-Zeitlin subalgebra). Show that subalgebra of group algebra kS_n generated by Jucys-Murphy elements J_1, \ldots, J_n coincides with subalgebra generated by centers of $Z(S_1), Z(S_2), \ldots, Z(S_n)$.

Hint: Prove tow inclusions by induction

Problem 7 (Action in Gelfand-Zeitlin basis). Let $\{v_T|T \text{ SYT of form } \lambda\}$ be a Gelfans-Zeitlin basis in V_{λ} . Show that

(a) If i and i+1 are in the same row of T then $(i, i+1)v_T = v_T$.

- (b) If i and i+1 are in the same column of T then $(i, i+1)v_T = -v_T$.
- (c) Let i, i + 1 are not in the same row neither in same column of T. Let T' be standard Young tablew obtained for T by permuting i and i + 1. Then $(i, i + 1)v_T = av_T + bv_{T'}$, where $a = (c(s_{i+1}) c(s_i))^{-1}$ where s_i, s_{i+1} are boxes numbered by $i \cdot i + 1$ in T and c(s) is a content of box in λ .

Hint: Use description of representations of degenerate Hecke algebra H(2).

Problem 8 (Murnaghan-Nakayama rule). (a) The border strip is a connected skew Young diagram without 2×2 boxes. The height $\operatorname{ht}(\rho)$ of border strip ρ is a number which is one less than the number of rows it touches. Show the Murnaghan? Nakayama formula

$$s_{\lambda} p_k = \sum_{\mu} (-1)^{\operatorname{ht}(\mu/\lambda)} s_{\mu}$$

where summation goes over all μ such that μ/λ is border strip of k boxes.

- (b) Let $C_{(n)}$ be conjugacy class in S_n corresponding to the cycle of length n. Show that $\chi_{V_{\lambda}}(C_{(n)}) = (-1)^i$ if λ is hook partition $(n-i, 1^i)$ and zero if λ is not a hook.
- (c) (*) Show that

$$\chi_{V_{\lambda}}(C_{\mu}) = \sum_{T} (-1)^{\operatorname{ht}(T)}.$$

The summation runs over tableaux of shape λ such that each integer i appears μ_i times, the integers in every row and column are weakly increasing and the set of squares filled with the integer i form a border strip. The height, $\operatorname{ht}(T)$, is the sum of the heights of the border strips in T.

Hint: (a) Use definition of s_{λ} as ratio of determinants. (b) Use (a) and Frobenius character formula. (c) Use scalar product $\langle s_{\lambda}, p_{\mu} \rangle = \chi_{V_{\lambda}}(C_{\mu})$, induction on $l(\mu)$, and (a).