
1. Recollections and highest weight categories

Let G be a connected semisimple Lie group over C. We denote by g the Lie algebra
of G. We denote by U the universal enveloping algebra of g. Let h ⊂ g be a Cartan
subalgebra of g and b ⊂ g is a Borel subalgebra containing h. Let T ⊂ B ⊂ G be
the corresponding maximal torus and Borel subgroup. We will denote by W the Weyl
group of (T,G) (W = NG(T )/T ).

Recall now that we denote by O the Bernstein-Gelfand-Gelfand category O. We have
the decomposition O =

⊕
Oλ. The main object of our interest will be a regular integral

block Oλ which is equivalent to O0 (via translation functors).
Let us recall the main properties of the category O0. Irreducible objects of O0 are

paramerized by W via w 7→ L(w · 0), we denote by P (w · 0) a projective cover of
L(w · 0). We also have Verma modules ∆(w · 0) to be called standard objects. The
following properties of O0 are well-known for us:

(i) We have the morphism P (w ·0)� ∆(w ·0) such that the kernel of this morphism
admits a filtration whose quotients are of the form ∆(w′ · 0), w′ · 0 > w · 0.

(ii) Hom(∆(w1 · 0),∆(w2 · 0)) 6= 0 implies w1 · 0 6 w2 · 0, 6 in the dominance order.
(iii) End(∆(w · 0)) = C.
Let us now give a general definition.

Definition 1.1. Let C be the category of modules over a finite dimensional algebra
A. Let Ξ be the parametrizing set for simples in C . The highest weight structure on C
is the pre-order 6 on Ξ and a collection ∆(λ) ∈ C of standard objects in C such that
the conditions (i), (ii), (iii) hold.

Remark 1.2. One can recover algebra A up to a Morita equivalence by the following
formula: A = End(P )opp, P =

⊕
λ∈Ξ P (λ).

Here is the list of properties of HW categories which are already known for us when
C = O0.

Proposition 1.3. Let C be a HW category then the following holds.
a) Fix λ, µ ∈ Ξ then L(λ) occurs in ∆(µ) only if λ 6 µ. Moreover the multiplicity

of L(λ) in ∆(λ) is one, ∆(λ)� L(λ) and Hom(∆(λ), L(µ)) = δλ,µ.

b) If Exti(∆(λ),∆(µ)) 6= 0 for some i > 0 then λ < µ.
c) If Exti(∆(λ), L(µ)) 6= 0 for some i > 0 then λ < µ.
d) Fix λ ∈ Ξ. Consider the Serre subcategory C6λ (resp. C≯λ) spanned by L(µ)

with µ 6 λ (resp. µ ≯ λ). Then ∆(λ) is the projective cover of L(λ) in C6λ (resp.
C≯λ).

Example 1.4. Let us give an example when Ext1(∆(λ),∆(µ)) 6= 0. Let C = O0(sl2),
λ = −2, µ = 0. Then the object P (−2) includes in the following nonsplit short exact
sequence:

0→ ∆(0)→ P (−2)→ ∆(−2)→ 0.

It follows that Ext1(∆(−2),∆(0)) 6= 0. We see that λ = −2 < 0 = µ so there is no
contradiction with Proposition 1.3.
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Remark 1.5. Let us sketch proofs of b), c), d). To prove b) one should use the induction
by λ starting from maximal λ (in this case ∆(λ) is projective because the morphism
P (λ)� ∆(λ) must be injective and the statement is obvious) and to consider the short
exact sequence

0→ K → P (λ)→ ∆(λ)→ 0

which gives a long exact sequence

→ Exti−1(K,∆(µ))→ Exti(∆(λ),∆(µ))→ Exti(P (λ),∆(µ))→

now by induction hypothesis (using the fact that K is filtered with assosiated graded
∆(λ′), λ′ > λ) we see that Exti−1(K,∆(µ)) = 0 = Exti(P (λ),∆(µ)).

To prove c) one should use a) and b), induction on µ starting from a minimal (in
this case L(µ) = ∆(µ) and we are done by b)) and the short exact sequence

0→ Q→ ∆(µ)→ L(µ)→ 0.

Part d) follows from c).

Corollary 1.6. Let M be a standardly filtered object, [M ] =
∑

[∆(λi)] for some
λ1, . . . λk ∈ Ξ. Assume also that if λi < λj then i > j. Then there exists a filtration

0 = F 0M ⊂ F 1M ⊂ . . . ⊂ F k−1M ⊂ F kM = M such that F i/F i−1 ' ∆(λi).

Proof. We prove by induction on the length ofM . LetG•M be some standard filtration.
Let i be such that GiM/Gi−1M ' ∆(λ1). We obtain a short exact sequence

0→ Gi−1M → GiM → ∆(λ1)→ 0. (1.1)

It follows from Proposition 1.3 and our assumptions that Ext1(∆(λ1), Gi−1M) = 0,
hence, the sequence 1.1 splits and we have GiM ' ∆(λ1) ⊕ Gi−1M . So we have an
embedding ∆(λ1) ⊂ GiM such that GiM/∆(λ1) is standardly filtered, hence, M/∆(λ1)
is standardly filtered and we are done by the induction hypothesis. �

Let us now recall that in O0 there are also costandard objects ∇(λ) (contragradient
Verma modules). In general situation they can be constructed in the following way.

Definition 1.7. By the definition, ∇(λ) is the injective envelope of L(λ) in C6λ or in
C≯λ.

Remark 1.8. For C = O0 we have the contravariant functor •∨ : O0 → O0 given by
M 7→ M∨ (graded dual) with the action g y M∨ via x · f(v) = f(−τ(x)v), where

τ : g ∼−→ g is the Cartan involution. This functor sends ∆(λ) to ∇(λ) and interchanges
projectives and injectives (this follows from the fact that •∨ induces an equivalence

O0
∼−→O

opp
0 ).

Remark 1.9. The category C opp is HW with respect to Ξ with standard objects ∇(λ).

We already know that the following lemma holds for C = O0.

Lemma 1.10. Pick λ, µ ∈ Ξ then dim Hom(∆(λ),∇(µ)) = δλ,µ.
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Remark 1.11. Let us sketch the proof of Lemma 1.10. Suppose that µ ≯ λ and consider
the category C≯λ. Recall now that ∆(λ) is the projective covering of L(λ) in this
category and ∇(µ) ∈ C≯λ has a filtration with quotients L(µ′), µ′ < µ and L(µ) ↪→
∇(µ). It follows that none of µ′ equals λ (otherwise λ = µ′ < µ) so if µ 6= λ then
Hom(∆(λ),∇(µ)) = 0. For µ = λ we see that the composition ∆(λ) � L(λ) ↪→ ∇(λ)
gives us a desired morphism.

Suppose now that λ ≯ µ then we consider the category C≯µ and realise ∇(µ) as an
injective envelope in this category.

Remark 1.12. Let us point out that the BGG reciprocity holds for C . Pick λ, µ ∈ Ξ
then the multiplicity of ∆(µ) in P (λ) coincides with the multiplicity of L(λ) in ∇(µ):

[∆(µ) : P (λ)] = dim Hom(P (λ),∇(µ)) = (L(λ) : ∇(µ))

where the first equality holds by Lemma 2.1. The dual statement says that
[∇(µ), I(λ)] = (L(λ) : ∆(µ)), where I(λ) is the injective envelope of L(λ).

2. Standardly and Costandardly filtered objects

Lemma 2.1. dim Hom(∆(λ),∇(µ)) = δλ,µ and Exti(∆(λ),∇(µ)) = 0 for i > 0.

Proof. We prove by induction on λ starting from maximal λ for which it’s obvious
because ∆(λ) = P (λ) in this case. Consider now the short exact sequence

0→ K → P (λ)→ ∆(λ)→ 0

and apply Hom(−,∇(µ)). We obtain the long exact sequence

→ Exti−1(K,∇(µ))→ Exti(∆(λ),∇(µ))→ Exti(P (λ),∇(µ))→
and by the induction hypothesis (using the fact that K is filtered with assosiated graded
∆(λ′), λ′ > λ) we have Exti−1(K,∇(µ)) = 0 = Exti(P (λ),∇(µ)) for i > 1.

It remains to show that Ext1(∆(λ),∇(µ)) = 0. Suppose that µ ≯ λ. Consider the
category C≯λ. Object ∆(λ) ∈ C≯λ is projective so Ext1

C≯λ
(∆(λ),∇(µ)) = 0. But the

category C≯λ is closed under extensions so Ext1
C (∆(λ),∇(µ)) = 0.

The analogous argument works if λ ≯ µ. �

Remark 2.2. Note that the fact that Ext1(∆(λ),∇(µ)) = 0 in O0 was already proven
by Nikita. He also considered two cases – µ ≯ λ, λ ≯ µ and took dual spaces in the
second case.

Proposition 2.3. Object M ∈ C is standardly (resp. costandardly) filtered iff
Exti(M,∇(λ)) = 0 (resp. Exti(∆(λ),M) = 0) for any i > 0.

Proof. In one direction it follows from Lemma 2.1. We prove by induction by the length
of M . Let λ be a minimal element of Ξ such that we have a surjection ϕ : M � L(λ).
Let us prove that the map ϕ gives rise to a map ϕ̃ : M → ∆(λ). To do so consider the
exact sequence

0→ K → ∆(λ)→ L(λ)→ 0

and the corresponding long exact sequence:

→ Hom(M,∆(λ))→ Hom(M,L(λ))→ Ext1(M,K)→
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so to construct ϕ̃ it is enough to show that Ext1(M,K) = 0. Recall that K can be
filtered with quotients L(µ), µ < λ so it is enough to show that Ext1(M,L(µ)) = 0 for
any µ < λ. To show this let us consider the short exact sequence

0→ L(µ)→ ∇(µ)→ N → 0.

We have the corresponding long exact sequence:

→ Hom(M,N)→ Ext1(M,L(µ))→ Ext1(M,∇(µ))→
and Hom(M,N) = Ext1(M,∇(µ)) = 0 (here we use the fact that N can be filtered
with quotients L(µ′), µ′ < µ < λ for which Hom(M,L(µ′)) = 0). So it follows that
Ext1(M,L(µ)) = 0.

Let us now show that the map ϕ̃ : M → ∆(λ) is surjective. Let V be the image of
ϕ̃. Suppose V 6= ∆(λ). Note that we have a surjection V � L(λ). It follows that the
multiplicity of L(λ) in ∆(λ)/V equals to zero. It follows that there exists λ′ 6= λ and a
surjective morphism ∆(λ)/V � L(λ′), hence, we have a surjection ∆(λ) � L(λ′) and
so a surjection P (λ)� L(λ′) but this is impossible.

We obtain a short exact sequence

0→M0 →M
ϕ̃−→ ∆(λ)→ 0.

Pick µ ∈ Ξ, we have the long exact sequence

→ Exti(M,∇(µ))→ Exti(M0,∇(µ))→ Exti+1(∆(λ),∇(µ))→
we see that Exti(M0,∇(µ)) = 0 for any i > 0 now the desired follows by the induction
hypothesis. Note that the same proof works to show that if Ext1(M,∇(λ)) = 0 for any
λ ∈ Ξ then M ∈ C ∆. �

Remark 2.4. Note that the surjectivity of ϕ̃ is obvious for C = O0.

3. Tilting modules

Definition 3.1. An object in C is called tilting if it is both standardly and costandardly
filtered.

Let us point out that by Proposition 2.3 for any tilting object T we have Exti(T, T ) =
0 for i > 0. Note also that if T is tilting and T ' T1⊕ T2 then both T1 and T2 are also
tilting. It follows that each tilting is a direct sum of indecomposable tilting objects.
We describe indecomposable tiltings in the following proposition.

Remark 3.2. Let us also point out that by Proposition 2.3 one can think about tilting
objects as about injective objects in the category C ∆ or as about projective objects in
the category C∇. From this point of view the proposition bellow looks more natural.

Proposition 3.3. For each λ ∈ Ξ there exists an indecomposable tilting object T (λ)
uniquely determined by the following property: T (λ) ∈ C6λ, [∆(λ) : T (λ)] = 1 =
[∇(λ) : T (λ)] and we have ∆(λ) ↪→ T (λ)� ∇(λ).

Proof. Fix λ ∈ Ξ and order linearly elements of {µ ∈ Ξ |µ 6 λ} refining the original
poset structure on Ξ. Say λ = λ1 > λ2 > . . . > λk. Let us construct the object
T i(λ), i = 1, . . . , k inductively as follows. Set T 1(λ) = ∆(λ). Further, if T i−1(λ) is
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already defined let T i(λ) be the extension of Ext1(∆(λi), T
i−1(λ))⊗∆(λi) by T i−1(λ)

corresponding to the unit endomorphism of Ext1(∆(λi), T
i−1(λ)) i.e. we have the

following short exact sequence

0→ T i−1(λ)→ T i(λ)→ Ext1(∆(λi), T
i−1)⊗∆(λi)→ 0. (3.1)

We claim that T (λ) = T k(λ) is tilting and satisfies all the desired properties. Note
that by the definitions T i are standardly filtered (we will sometimes drop λ from the
notation).

Let us first of all show that Ext1(∆(λj), T
i(λ)) = 0 for any j 6 i. We prove it

by induction on i. For i = 1 it follows from Proposition 1.3. Let us now prove the
induction step. Let us apply Hom(∆(λj),−) to the sequence 3.1:

→ Extk(∆(λj), T
i−1)→ Extk(∆(λj), T

i)→ Extk(∆(λi), T
i−1)⊗Extk(∆(λj),∆(λi))→

we see that for j < i by the induction hypothesis and Proposition 1.3 we have
Extk(∆(λ), T i(λ)) = 0.

Assume now that j = i. We still have Ext1(∆(λi),∆(λi)) = 0.
We apply a functor Hom(∆(λi),−) and obtain the following exact sequence

→ Ext1(∆(λi), T
i−1(λ))⊗ End(∆(λi))

ψ−→ Ext1(∆(λi), T
i−1(λ))→
→ Ext1(∆(λi), T

i(λ))→ 0.

Note that End(∆(λi)) = C. It is easy to see from the definition of T i(λ) that ψ = Id
so ψ is an isomorphism, hence, Ext1(∆(λi), T

i(λ)) = 0.
Here is the other approach which is more clear for me. Let us apply now a functor

Hom(Ext1(∆(λi), T
i−1(λ))⊗∆(λi),−). and obtain the following sequence (we drop λ

from the notation)

→ End(Ext1(∆(λi), T
i−1)⊗∆(λi))

ψ−→ Ext1(Ext1(∆(λi), T
i−1)⊗∆(λi), T

i−1)
φ−→

φ−→ Ext1(Ext1(∆(λi), T
i−1)⊗∆(λi), T

i)→ 0.

which can be rewrited in the following way:

→ End(Ext1(∆(λi), T
i−1)⊗∆(λi))

ψ−→ End(Ext1(∆(λi), T
i−1)⊗∆(λi))

φ−→
φ−→ Ext1(∆(λi), T

i−1)
∗ ⊗ Ext1(∆(λi), T

i)→ 0.

It follows from the construction of T i(λ) that the morphism ψ sends Id to Id and for
any x, y, ψ(x ◦ y) = ψ(x) ◦ y so ψ is an isomorphism (see Remark 3.5). It follows that
Ext1(∆(λi), T

i(λ)) = 0.
We have shown that Ext1(∆(µ), T (λ)) = 0 for any µ 6 λ. Note now that T (λ) ∈ C6λ

so it follows from Proposition 1.3 that Ext1(∆(λ′), T (λ)) = 0 for any λ′ not less then
λ. It follows that T (λ) is tilting. It also follows from the construction that [∆(λ) :
T (λ)] = 1, ∆(λ) ↪→ T (λ), T (λ) ∈ C6λ.

Let us show now that the objects T (λ) are indecomposable. To do so let us prove
that T i(λ) is indecomposable for any i. We prove it by induction on i. Case i = 1 is
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clear. We have an exact sequence

0→ T i−1(λ)→ T i(λ)→ ∆(λi)
li → 0,

where li = dim(Ext1(∆(λi), T
i−1(λ))).

Assume now that T i(λ) ' A ⊕ B. Note that A,B are standardly filtered with
associated graded ∆(µ) such that µ > λi, hence, Ext1(∆(µ),∆(λi)) = 0 for any such
µ. It follows (see Corollary 1.6) that we have surjections A � ∆(λi)

r1 , B � ∆(λi)
r2

with r1 + r2 = li. It follows from the induction hypothesis that A ' ∆(λi)
r1 (otherwise

T i−1(λ) is not indecomposable). We obtain an exact sequence

0→ T i−1 → B → ∆(λi)
r2 → 0

and apply Hom(∆(λi),−). We get

Cr2 → Cl1 → Ext1(∆(λi), B) = 0

where the last equality holds because 0 = Ext1(∆(λi), T
i(λ)) = Ext1(∆(λi),∆(λi)

r1)⊕
Ext1(∆(λi), B) = Ext1(∆(λi), B). It follows that r2 = l1, hence, A = 0.

Let us now show that if T is an indecomposable tilting object then T ' T (λ) for
some λ ∈ Ξ. To do so let λ ∈ Ξ be a maximal such that the multiplicity of ∆(λ) in
T is nonzero. It follows from Proposition 1.3 (see also Corollary 1.6) that we have an
embedding ι : ∆(λ) ↪→ T . Consider now the exact sequence

0→ ∆(λ)→ T (λ)→ N → 0

we obtain an exact sequence

0→ Hom(N,T )→ Hom(T (λ), T )→ Hom(∆(λ), T )→ Ext1(N,T )→

but Ext1(N,T ) = 0 because N ∈ C ∆ and T ∈ C∇ so the embedding ι extends to a
map ι̃ : T (λ) → T . By the same reasons an embedding j : ∆(λ) ↪→ T (λ) extends to a
map j̃ : T → T (λ). We see that ι̃ ◦ j̃ and j̃ ◦ ι̃ are Id on ∆(λ) so they are not nilpotent
hence they are isomorphisms (we use the structure theorem for endomorphism rings of
indecomposable objects, Misha explained it to us).

Let us finally show that for λ ∈ Ξ the multiplicity of ∇(λ) in T (λ) equals to one and
T (λ) � ∇(λ). Consider the category C6λ. Let T∨(λ) ∈ C6λ be the indecomposable
tilting such that the multiplicity of ∇(λ) in T∨(λ) equals to one and T∨(λ) � ∇(λ)
(use the HW category C opp to construct it). Our goal is to show that T∨(λ) = T (λ).
Otherwise T∨(λ) = T (µ) for some µ < λ. Note that T (µ) ∈ C6µ, hence, ∇(λ) appears
in T (µ) with multiplicity zero. Contradiction. �

Remark 3.4. Let us point out that the category C opp is HW with respect to the poset
Ξ and the object T (λ) considered as an object of C opp is an indecomposable tilting
with label λ (it follows from Proposition 3.3). For C = O0 we have an equivalence
•∨ : O0 → O

opp
0 so T (λ) = T∨(λ).

Remark 3.5. Recall that if we have a short exact sequence

0→ A→ B → C → 0
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then the element b ∈ Ext1(C,A) which corresponds to B can be constructed as follows:
apply Hom(C,−) and obtain the long exact sequence

→ Hom(C,C)
ψ−→ Ext1(C,A)→

then b is the image of Id ∈ Hom(C,C). Let us also point out that End(C) = Ext0(C,C)
acts on Hom(C,C),Ext1(C,A) on the right and the map ψ is a homomorphism of
End(C)-modules.

Example 3.6. Let us consider the example C = O0(sl2). We see that T (−2) =
∆(−2) = L(−2) = ∇(−2). It is also easy to see that T (0) = P (−2).

Example 3.7. More general T (0) = P (w0 · 0) = Pmin, T (w0 · 0) = T 1(w0 · 0) =
∆(w0 · 0) = Lmin. Actually if we order linearly elements of W · 0: 0 = λ1 > λ2 > . . . >
λk = w0 · 0 then T 1(0) = ∆(0), T k(0) = Pmin. To see this we note that Pmin is both
injective and projective, hence, tilting, we also now that Pmin is indecomposable and
that [Pmin] =

∑
w∈W [∆(w · 0)]. It follows that we have an embedding ∆(0) ↪→ Pmin

(because Ext1(∆(0),∆(w · 0)) = 0 for any w ∈W ). Now it follows that Pmin = T (0).

Remark 3.8. Let us point out that the objects Pmin, Lmin are selfdual.

4. Ringel duality

Set T :=
⊕

λ∈Ξ T (λ). Set A∨ := End(T )opp. Recall that RHom(T, T )opp = A∨.
Recall also A = End(P )opp. We set C ∨ := A∨-mod. This category is called Ringel dual
to C .

Let us now recall a definition of the derived category D(C ). Objects of this category
are classes of right bounded (bounded) complexes of objects from C . Two objects are
called equivalent if there exists a morphism between them which induces an isomor-
phism on cohomologies.

Remark 4.1. Let us point out that in a HW category any object has a finite projective
resolution.

Proof. It is enought to show that C has finite homological dimension i.e. there exists d
such that for any λ ∈ Ξ and i > d we have Exti(L(λ),M) = 0 for any M ∈ C (actually
ane can take d = 2|Ξ|). Let us firs of all prove by induction on λ starting from a
maximal that for i > |{λ′ |λ′ > λ}| we have Exti(∆(λ),M) = 0 for any M ∈ C . It
immediately follows from the fact that for a maximal λ object ∆(λ) is projective and
from the axact sequence

0→ K → P (λ)→ ∆(λ)→ 0

which induces the long exact sequence

→ 0→ Exti−1(K,M)→ Exti(∆(λ),M)→ 0→ .

Now we can prove by induction on λ starting from the minimal one that for any
i > d + |{λ′ |λ′ < λ}| we have Exti(L(λ),M) = 0 for any M . It can be easily derived
from the exact sequence

0→ Q→ ∆(λ)→ L(λ)→ 0.

�
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Theorem 4.2. The functor T := RHomA(T,−) : D(C ) ∼−→D(C ∨) is the derived equiv-
alence.

Proof. Let us construct the inverse functor. Note that T is an A =
End(P )opp- End(T )opp = A∨ bimodule and the left adjoint to HomA(T,−) is a functor

T ⊗A∨ −. We claim that the derived functor T
L
⊗A∨ − : D(C ∨) → D(C ) is inverse to

T. Let us first of all show that the adjunction morphism T
L
⊗ (RHom(T,−))

TH−−→ Id
is an isomorphism. We see that T 7→ RHom(T, T ) = A∨ 7→ T ⊗A∨ A∨ = T .
Note now that if for M ∈ Db(C ) the morphism TH(M) is an isomorphism and
M 'M1 ⊕M2 then TH(M1),TH(M2) are isomorphisms. It follows from the fact that
TH(M) = TH(M1) ⊕ TH(M2). So we see that for any λ ∈ Ξ morphsim TH(T (λ)) is
an isomorphism. It is enough to show that for any λ ∈ Ξ the morphism TH(P (λ)) is
an isomorphism (see Remark 4.3). Note that each P (λ) is ∆-filtered so it is enough
to show that for any λ ∈ Ξ morphism TH(∆(λ)) is an isomorphism because of the
following general fact: if 0 → A → B → C → 0 is a short exact sequence in C and
TH being applied to two elements of the set {A,B,C} is an isomorphism then it is
also an isomorphism being applied to the third one (see Remark 4.3). It remains to
prove that TH(∆(λ)) is an isomorphism. We prove it by induction on λ starting from
a minimal λ (in this case ∆(λ) = T (λ) and there is nothing to prove). Consider the
exact sequence

0→ ∆(λ)→ T (λ)→ N → 0.

It follows from Proposition 3.3 that N ∈ C<λ and is standardly filtered so
TH(T (λ)),TH(N) are isomorphisms, hence, TH(∆(λ)) is an isomorphism.

Now we need to show that the natural transformation from Id to RHomA(T, T
L
⊗A∨−)

is an isomorphism. Category D(C ∨) = D(End(T )opp) is generated by End(T )opp = A∨

thus to finish the proof its enough to note that RHomA(T, T
L
⊗A∨ End(T )opp) = A∨.

�

Remark 4.3. Sequence 0 → A → B → C → 0 gives a distinguished triangle A →
B → C → A[1] in the derived category D(C ). Functor TH being a composition of
derived functors maps distinguished triangles to distinguished triangles. We have a
commutative diagram of distinguished triangles:

TH(A) //

��

TH(B) //

��

TH(C) //

��

TH(A[1])

��
A // B // C // A[1]

which induces the commutative diagram between long exact sequences

// H i(TH(A)) //

��

H i(TH(B)) //

��

H i(TH(C)) //

��

H i+1(TH(A))

��

//

// H i(A) // H i(B) // H i(C) // H i+1(A) //
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we see that if two of each three arrows are isomorphisms then the rest are also isomor-
phisms.

Let us also point out that we use the following fact – any object C• of D(C ) is
isomorphic to a complex of projective modules P •. So if we know that for any P i the
morphism TH(P i) is an isomorphism then TH(P •) is also an isomorphism.

Proposition 4.4. The category C ∨ is HW with respect to the poset Ξopp with standard
objects Hom(T,∇(λ)) and costandard objects Hom(T,∆(λ)), projectives Hom(T, T (λ))
and tiltings Hom(T, P (λ)). The functor T sends ∆C (λ) to ∇C∨(λ), TC (λ) to PC∨(λ),

IC (λ) to TC∨(λ). The functor T induces equivalences C ∆ ∼−→C ∨,∇,C∇ ∼−→C ∨,∆.

Proof. Let us show that Hom(T, T (λ)) are indecomposable projective. They are pro-
jective as direct summands in Hom(T, T ) ' ⊕λ∈Ξ Hom(T (λ), T ), indecomposibility
follows from Theorem 4.2. Now it follows that Hom(T,∇(λ)) satisfy the property (i):
we just should apply Hom(T,−) to the epimorphism T (λ) � ∇(λ). Let us note now
that by Theorem 4.2 and using the fact that RHom(T,∇(λ)) = Hom(T,∇(λ)) we see
that Hom(Hom(T,∇(λ)),Hom(T,∇(µ))) ' Hom(∇(λ),∇(µ)) which is nonzero only if
λ > µ and is one-dimensional if λ = µ. The properties (ii), (iii) follows.

Let us show that the functor T induces equivalences C ∆ ∼−→C ∨,∇,C∇ ∼−→C ∨,∆.

Note that RHom(T,−) = Hom(T,−) on these categories, hence, T ⊗ − = T
L
⊗ − on

these categories (because they are left adjoint to RHom(T,−), Hom(T,−) respectively).
It follows that Hom(T,−) and T ⊗− are our mutually inverse equivalences. �

5. BGG category O and self dual HW categories

Definition 5.1. We say that a HW category is Ringel self dual if there exists an
equivalence C ' C ∨.

Lemma 5.2. An object M ∈ O0 is tilting iff it is standardly (resp. costandardly)
filtered and selfdual i.e. M 'M∨.

Proof. Follows from Proposition 3.3 and the equivalence •∨ : O0
∼−→O

opp
0 . �

Remark 5.3. Let us give another construction of T (λ) which works only for C = O0.
We will construct them using translation functors.

Lemma 5.4. An object P ∈ C is projective iff Exti(P,∆(λ)) = 0 for any λ ∈ Ξ and
i > 0 iff Ext1(P,∆(λ)) = 0 for any λ ∈ Ξ.

Proof. Suppose that Exti(P,∆(λ)) = 0 for any λ ∈ Ξ and i > 0. Let us prove by
the induction on µ starting from a mininal µ that Ext1(P,L(µ)) = 0 for any i > 0.
Consider the exact sequence

0→ K → ∆(µ)→ L(µ)→ 0.

We apply Hom(P,−) and by the induction hypothesis the desired follows.
Note now that if Ext1(P,∆(λ)) = 0 for any λ ∈ Ξ. Then Exti(P,∆(λ)) = 0 for any

λ ∈ Ξ and i > 0. Because ∆(λ) has a projective resolution with standardly filtered
kernels and cokernels . �

Lemma 5.5. Category C is Ringel self dual if categories C ∆,C∇ are equivalent.
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Proof. Suppose that there exists an equivalence Ψ: C ∆ ' C∇. Recall that an object
P of an additive category A is projective if Hom(P,−) sends epimorphisms to epimor-
phisms. We claim that the projective indecomposable objects of C ∆ are P (λ), λ ∈ Ξ.
Otherwise there exists a projective object M ∈ C ∆ whis is not projective in C i.e. by
Proposition 1.3 there exists λ ∈ Ξ such that Ext1(M,∆(λ)) 6= 0. We obtain a short
exact sequence

0→ ∆(λ)→ Q→M → 0.

Note that ∆(λ),M ∈ C ∆, hence, Q ∈ C ∆. We apply Hom(M,−) and obtain a long
exact sequence

→ Hom(M,Q)
ϕ−→ Hom(M,M)→ Ext1(M,∆(λ))→

and see that the morphism Id ∈ Hom(M,M) does not lie in the image of ϕ.
Using Proposition 2.3 and the same arguments we see that projective indecomposable

objects of C∇ are T (λ), λ ∈ Ξ. It follows that the equivalence Ψ sends P =
⊕

λ∈Ξ P (λ)
to T =

⊕
λ∈Ξ T (λ) and induces the isomorphism End(P ) ' End(T ) so C ' C ∨.

�

Proposition 5.6. The category O0 is Ringel selfdual i.e. there exists an equivalence
Φ: O0 ' O∨0 . The equivalence Φ maps ∆(w ·0) to ∇(w0w ·0) and P (w ·0) to T (w0w ·0)

(here we identify O
∨,∆
0 ' O∇0 ).

Proof. It follows from Lemma 5.5 that it is enough to construct an equivalence

Φ: O∆
0
∼−→O∇0 . Recall the triangular decomposition g = n− ⊕ h ⊕ n. We denote by

U(n−) the universal enveloping of n−. Let 2ρ : h → C be the sum of positive roots of
g. Set S2ρ := U(n−)∨ ⊗U(n−) U. Note that the space S2ρ has an U-bimodule structure.
The right action comes from the action of U on U via right multiplication. The left
action comes from the isomorphism

S2ρ = U(n−)∨⊗U(n−) U ' U(n−)∨⊗U(b) ' Hom(U(n−),U(b)) ' Homb(U,C2ρ⊗U(b)),

where the last isomorphism.
We claim that the functors S2ρ ⊗U −,HomU(S,−) are mutually inverse functors

between O∆
0 and O∇0 . �

Corollary 5.7. Composing equivalences D(O0) ' D(O∨0 ),O0 ' O∨0 we obtain a derived

equivalence Tw0 : D(O0) ∼−→D(O0).


