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Chapter 1

Linear differential operators

1.1 Definitions and main examples

Let Q < R? be an open subset. Denote C*(£2) the set of all infinitely differentiable complex valued
smooth functions on Q. The Euclidean coordinates on R? will be denoted z1, ...,z We will use
short notations for the derivatives

0
Op = =—
b oxy
and we also introduce operators
Dp=—idy, k=1,...,d. (1.1.1)

For a multiindex
p=(p1,---,Pd)

denote

pl=p1+...+pa
Pl =p!...p4!
szxlfl...msd

QP =@t bt DP =D DM
The derivatives, as well as the higher order operators DP define linear operators

ol f

DP : C*(Q) - C*(Q > DPf = (—j)lPl—— L
CHO) =€), [ D = ()P

More generally, we will consider linear differential operators of the form

A= Z ap(x)DP

lpl<m
ap(z) € C7(Q) (1.1.2)
A:C*(Q) - C*(Q).
We will define the order of the linear differential operator by

ord A = max|p| such that ap(z) # 0. (1.1.3)



Main examples are

1. Laplace operator

A=0dl+.. . +02=—(D}+...D?) (1.1.4)
2. Heat operator
0
——A 1.1.5
n (1.1.5)
acting on functions on the (d + 1)-dimensional space with the coordinates (t,z1,...,zq).
3. Wave operator
82
— — 1.1.6
ot? ( )
4. Schrodinger operator
0
i — + A. 1.1.7
st (1.1.7)
1.2 Principal symbol of a linear differential operator
Symbol of a linear differential operator (1.1.2) is a function
a(xz, &) = Z ap(z)EP, reQcRY £eRY (1.2.1)
Ipl<m
If the order of the operator is equal to m then the principal symbol is defined by
am(x, &) = Z ap(x)EP. (1.2.2)
Ip[=m
The symbols (1.2.1), (1.2.2) are polynomials in d variables &1, ..., & with coefficients being smooth

functions on 2.
For the above examples we have the following symbols

1. For the Laplace operator A the symbol and principal symbol coincide
a=ay=—(E+...+£3)=-¢&.

2. For the heat equation the full symbol is
a=i1+&

while the principal symbol is £.

3. For the wave operator again the symbol and principal symbols coincide

a=ay=—1>4¢.

4. The symbol of the Schrodinger operator is
—(r+&%)

while the principal symbol is £2.



Exercise 1.1 Prove the following formula for the symbol of a linear differential operator
a(x,i€) = e A (e”f) : (1.2.3)

Here we use the notation
=218+ ... +xg-&

for the natural pairing R? x R4 — R.

Exercise 1.2 Given a linear differential operator A with constant coefficients denote a(§) its sym-
bol (it does not depend on x for linear differential operators with constant coefficients). Prove that

the exponential function
u(z) = =t

is a solution to the linear differential equation
Au=0
iff the vector £ satisfies
a(§) = 0.

Exercise 1.3 Prove that for a pair of smooth functions u(x), S(x) and a linear differential operator
A of order m the expression of the form

e—iAS(@) 4 (u(x)emsu))

is a polynomial in A of degree m. Derive the following expression for the leading coefficient of this
polynomzial
e 4 (u(:c)e“‘s(x)> = i""U(x) A (2, S (2))A™ + O(NL). (1.2.4)

oS oS
Sx: <al'1,,a$d)

is the gradient of the function S(x).

Exercise 1.4 Let A and B be two linear differential operators of orders k and l with the principal
symbols ax(x,&) and by(z,§) respectively. Prove that the superposition C = Ao B is a linear
differential operator of order < k + 1. Prove that the principal symbol of C' is equal to

Ck+l(x7£) = ak(ZC?g) bl(.%',{) (1'2'5)

in the case ord C' = ord A + ord B. In the case of strict inequality ord C' < ord A + ord B prove that
the product (1.2.5) of principal symbols is identically equal to zero.

Here

The formula for computing the full symbol of the product of two linear differential operators is
more complicated. We will give here the formula for the particular case of one spatial variable .

Exercise 1.5 Let a(x,&) and b(x,&) be the symbols of two linear differential operators A and B
with one spatial variable. Prove that the symbol of the superposition Ao B is equal to

(=% %
axb=>) 0t dgh. (1.2.6)
k=0 ’



1.3 Change of independent variables

Let us now analyze the transformation rules of the principal symbol a(x, &) of an operator A under
smooth invertible changes of variables

yi =yi(z), i=1,...,n (1.3.1)

Recall that the first derivatives transform according to the chain rule

6yk 5
1.3.2

(9:1:Z
The transformation law of higher order derivatives is more complicated. For example

02 4 oy oy * 4 o2y,

0x; 0% @wz 0x; &ykﬁy 6:6,83;] 0yk

k1l

etc. However it is clear that after the transformation one obtains again a linear differential operator
of the same order m. More precisely define the operator

- olpl
A= _ )Pl v
Z( Z) ap(y) ayf1 . aySd

by the equation
Af(y(@) = (Afw)

The transformation law of the principal symbol is of particular simplicity as it follows from the
following

y=y(z)

Proposition 1.6 Let am(x, &) be the principal symbol of a linear differential operator A. Denote
am(y,&) the principal symbol of the same operator written in the coordinates vy, i.e., the principal
symbol of the operator A. Then

d
Y, :
hel 61‘1

am(y(2),£) = am(z,€) provided & = (1.3.3)

Proof: Applying the formula (1.2.4) one easily derives the equality

y=y(x)
oS oS oS oS
Sg;—(axl,...,axd), Sy—<ay1,7ayd>
Applying the chain rule
os Oy 0S
or; o0x; Oy



we arrive at the transformation rule (1.3.3) for the particular case

oS ~ 0S
fi= oy b= o
ow; Oy
This proves the proposition since the gradients can take arbitrary values. |

1.4 Canonical form of linear differential operators of order < 2
with constant coefficients

Consider a first order linear differential operator

0 0
A=aj— +...+aq=— 1.4.1
aa s (1.4.1)
with constant coefficients a1, ..., ag. One can find a linear transformation of the coordinates
d ~
&= eribn, i=1,....d (1.4.2)
k=1
that maps the vector a = (ai,...,aq) to the unit coordinate vector of the axis yq4. After such a
transformation the operator A becomes the partial derivative operator
G
ya

Therefore the general solution of the first order linear differential equation
Ap=0

can be written in the form
@(ylv"‘vyd) = QDO(ylv"'vyd—l)' (143)

Here g is an arbitrary smooth function of (d — 1) variables.

Exercise 1.7 Prove that the general solution to the equation
Ap+bp=0 (1.4.4)
with A of the form (1.4.1) and a constant b reads
Pt Ya) = @Y1, Ya—1)e "V

for an arbitrary C* function po(y1, ... Yd—1)-

Consider now a second order linear differential operator of the form

d 02 d o

1,j=1



with constant coefficients. Without loss of generality one can assume the coefficient matrix a;; to
be symmetric. Denote

d
Q) = —ag(x,&) = Y ai&; (1.4.6)

ij=1
the quadratic form coinciding with the principal symbol, up to a common sign. Recall the following
theorem from linear algebra.

Theorem 1.8 There exists a linear invertible change of variables of the form (1.4.2) reducing the
quadratic form (1.4.6) to the form

Q=E+.. . +& -, —.. -, (1.4.7)

The numbers p =0, ¢ = 0, p+ q < d do not depend on the choice of the reducing transformation.

Note that, according to the Proposition 1.6 the transformation (1.4.2) corresponds to the linear
invertible change of independent variables x — y of the form

d
Y = Z ckixi, k=1,...,d. (1.4.8)
i=1

Invertibility means that the coefficient matrix of the transformation does not degenerate:
det (ci)1<pi<a # 0-

We arrive at

Corollary 1.9 A second order linear differential operator with constant coefficients can be reduced
to the form
02 2 2 &y
==t it T — .. — + Y bpyr +c (1.4.9)
2 2 2
G (93/1% 0Yp11 0Ypiq ;;1

A

by a linear transformation of the form (1.4.8). The numbers p and q do not depend on the choice
of the reducing transformation.

1.5 Elliptic and hyperbolic operators. Characteristics
Let an(z,€) be the principal symbol of a linear differential operator A.

Definition 1.10 It is said that the operator A : C*(Q) — C*(Q) is elliptic if

am(z,§) #0 forany & #0, ze. (1.5.1)

10



For example the Laplace operator

0? 02
A=—+...+—
ox? Foe ox?
is elliptic on Q = R%. The Tricomi operator
02 02
A= — — 1.5.2
ox? e 0y? ( )

is elliptic on the right half plane z > 0.

Definition 1.11 Given a point xq € ), the hypersurface in the £-space defined by the equation
am(v0,§) = 0 (1.5.3)

is called characteristic cone of the operator A at xg. The vectors £ satisfying (1.5.3) are called
characteristic vectors at the point x.

Observe that the hypersurface (1.5.3) is invariant with respect to rescalings
E— A VAeR (1.5.4)
since the polynomial a,,(xo,§) is homogeneous of degree m:

am (2, NE) = N apm (2, §).

The characteristic cone of an elliptic operator is one point & = 0. For the example of wave
operator

02 02 02
A=——-A A=—+...+— 1.5.5
ot? ’ ox? o ox? ( )
the characteristic cone is given by the equation
o —2=0 (1.5.6)

Thus it coincides with the standard cone in the Euclidean (d + 1)-dimensional space. The charac-
teristic cone of the heat operator

0
5 A (1.5.7)

is the 7-line

E=...=&=0. (1.5.8)

Definition 1.12 The hypersurface in R is called characteristic surface or simply characteristics
for the operator A if at every point x of the surface the normal vector £ is a characteristic vector:

am(x,&) = 0.
If the hypesurface is defined by a local equation
S(z) =0 (1.5.9)
then S(z) satisfies the equation
A (z,Sz(z)) =0 (1.5.10)

at every point of the hypersurface (1.5.9).

11



As it follows from the Proposition 1.6 the characteristics do not depend on the choice of a
system of coordinates.

Example. For a first order linear differential operator

A—al(x)ail—i—...—i-ad(x)m (1.5.11)
the function S(z) defining a characteristic hypersurface must satisfy the equation
AS(z) = 0. (1.5.12)
It is therefore a first integral of the following system of ODEs
1 = a1(x1,...,2q)
(1.5.13)
Tqg = aq(x1,...,2q)

Indeed, the equation (1.5.12) says that the function S(x) is constant along the integral curves of
the system (1.5.13). It is known from the theory of ordinary differential equations that locally, near
a point ¥ such that (a1(z°),...,aq(2")) # 0 there exists a smooth invertible change of coordinates

(xlv"'7xd)H(yla"'ayd)a yk‘:yk‘(l‘la"'axd)

such that, in the new coordinates the system reduces to the form

=0

(1.5.14)
Yd—1 =0
Ya =1

(the so-called rectification of a vector field). For the particular case of constant coefficients the
needed transformation is linear (see above). In these coordinates the general solution to the equation
(1.5.12) reads

S, ya) = So(y1, - - - Ya—1)- (1.5.15)

Hyperbolic operators. Let us consider a linear differential operator A acting on smooth func-
tions on a domain 2 in the (d + 1)-dimensional space with Euclidean coordinates (t,z1,...,2q).
Denote a,(t, z, 7,§) the principal symbol of this operator. Here

TeR, £=(&,...,&) R

Recall that the principal symbol of an operator of order m is a polynomial of degree m in 7, &,

b

Definition 1.13 The linear differential operator A is called hyperbolic with respect to the time
variable t if for any fized & # 0 and any (t,z) € Q the equation for T

am(t,z, 7,§) =0 (1.5.16)
has m pairwise distinct real roots

T1(t, 2, 8), ..., T (t, x, §).

12



For brevity we will often say that a linear differential operator is hyperbolic if all its character-
istics are real and pairwise distinct. For elliptic operators the characteristics are purely imaginary.

The wave operator (1.5.5) gives a simple example of a hyperbolic operator. Indeed, the equation

2 2 2
TC=6+ ...+

T=iq/€%+...+§§

for any £ # 0. The heat operator (1.5.7) is neither hyperbolic nor elliptic.

has two distinct roots

Finding the j-th characteristic of a hyperbolic operator requires knowledge of solutions to the
following Hamilton—Jacobi equation for the functions S = S(z,t)

oS oS

From the course of analytical mechanics it is known that the latter problem is reduced to integrating
the Hamilton equations

i = 3Hé§f»?)
(1.5.18)
. 0H (t,z,
pi = — 7((;;?: p)

with the time-dependent Hamiltonian H(t,z,p) = 7;(t,z,p). In the next section we will consider
the particular case d = 1 and apply it to the problem of canonical forms of the second order linear
differential operators in a two-dimensional space.

1.6 Reduction to a canonical form of second order linear differen-
tial operators in a two-dimensional space

Consider a linear differential operator
2 2 52

0 0
A= a’(ajvy)i + 2b($,y)7 + C(xvy)aiygv

2
722 223y (r,y) € Q < R (1.6.1)

The characteristics of these operator are curves

z=uat), y=yd).

Here t is some parameter on the characteristic. Let (dx,dy) be the tangent vector to the curve.
Then the normal vector (—dy, dz) must satisfy the equation

a(z,y)dy? — 2b(x, y)dx dy + c(z,y)dz? = 0. (1.6.2)
Assuming a(z,y) # 0 one obtains a quadratic equation for the vector dy/dx

2
a(z,y) <Zz) - 2b(x,y)% + c(x,y) = 0. (1.6.3)

The operator (1.6.1) is hyperbolic iff the discriminant of this equation is positive:

b’ —ac>0. (1.6.4)

13



For elliptic operators the discriminant is strictly negative.

For a hyperbolic operator one has two families of characteristics to be found from the ODEs

@ b(x7y) + \/52(1‘, y) B (1(.1‘, y) c(:v,y)

dr a(r,7) (1.6.5)
@ _ b(xvy) B \/b2(x7 y) - a(xv y) C(:U?y)
de a(z,y) : (1.6.6)
Let
o(z,y) =c1, P(z,y) =c2 (1.6.7)

be the equations of the characteristics'. Here ¢; and ¢y are two integration constants. Such curves
pass through any point (x,y) € Q. Moreover they are not tangent at every point. Let us introduce
new local coordinates u, v by

u=d(z,y), v=1v(zy). (1.6.8)
Lemma 1.14 The change of coordinates

(z,y) = (u,v)

1s locally invertible. Moreover the inverse functions

x:x(u,v), y:y(u7v)

are smooth.

Proof: We have to check non-vanishing of the Jacobian

ou/dr Oufdy \ Gz P
det( ov/ox dv)dy ) = det ( e J; ) # 0. (1.6.9)

By definition the first derivatives of the functions ¢ and 1 correspond to two different roots of the
same quadratic equation

a(z, y) ¢ + 2b(x,y)dady + c(z,y)dy = 0,  al(z,y)Ps + 2b(x, y) ety + c(x,y)¥; = 0.

The determinant (1.6.9) vanishes iff the gradients of ¢ and 1 are proportional:
(bea ¢y) ~ (¢xv¢y)

This contradicts the requirement to have the roots distinct. [

Let us rewrite the linear differential operator A in the new coordinates:
2 _ 52 02

A =a(u,v)=— + 2b(u,v)=—— + ¢(u, v

(1,0) 55 + 26(u,0) 5= -+ E(u, )

where the dots stand for the terms with the low order derivatives.

Szt (1.6.10)

!The function ¢(z,y), resp. 1 (x,y), is a first integral for the ODE (1.6.5), resp. (1.6.6), that is, it takes constant
values along the integral curves of this differential equation.

14



Theorem 1.15 In the new coordinates the linear differential operator reads

Proof: In the new coordinates the characteristic have the form
u=Cc, V= C9

for arbitrary constants ¢; and ca. Therefore their tangent vectors (1,0) and (0, 1) must satisfy the
equation for characteristics

a(u, v)dv® — 2b(u, v)du dv + &(u, v)dv? = 0.
This implies a(u,v) = ¢(u,v) = 0. [

For the case of elliptic operator (1.6.1) the analogue of the differential equations (1.6.5), (1.6.6)
are complex conjugated equations

dy b+ivac—b?

_ - - . 1.6.11
- . , a=alx,y), b=0bxy), c=c(z,y) (1.6.11)

Assuming analyticity of the functions a(x,y), b(z,y), ¢(z,y) one can prove existence of a complex
valued first integral

S(z,y) = ¢z, y) +iv(z,y) (1.6.12)
satisfying

S, + (b—i\/ac—b2> S, = 0. (1.6.13)

Let us introduce new system of coordinates by
u=a¢(x,y), v=1(x,vy). (1.6.14)
Exercise 1.16 Prove that the transformation
(z,y) — (u,v)

is locally smoothly invertible. Prove that the operator A in the new coordinates takes the form

A = a(u,v) ( Lz ) +... (1.6.15)

ou?  v?

with some nonzero smooth function a(u,v). Like above the dots stand for the terms with lower
order derivatives.

15



Let us now consider the case of linear differential operators of the form (1.6.1) with identically
vanishing discriminant

V2 (z,y) — a(x,y) c(x,y) = 0. (1.6.16)

Operators of this class are called parabolic. In this case we have only one characteristic to be found

from the equation
dy _ b(z,y)

. 1.6.17
dr  a(z,y) ( )

Let ¢(z,y) be a first integral of this equation
ady +boy =0, ¢%+¢, #0. (1.6.18)

Choose an arbitrary smooth function ¢ (z,y) such that

Gz Py
det<wx wy);&o.

In the coordinates

’U,Zd)(J?,y), U=¢($ay)
the coefficient a(u,v) vanishes, since the line ¢(z,y) = const is a characteristic. But then the
coefficient b(u,v) must vanish either because of vanishing of the discriminant

W —ac=0.

Thus the canonical form of a parabolic operator is
52
A=c¢(u,v)=—5 +... 1.6.19
(o, 0) 5 (16.19)

where the dots stand for the terms of lower order.

1.7 General solution of a second order hyperbolic equation with
constant coefficients in the two-dimensional space

Consider a hyperbolic operator

02 02 02

(1.7.1)

with constant coefficients a, b, ¢ satisfying the hyperbolicity condition
¥ —ac>0.

The equations for characteristics (1.6.5), (1.6.6) can be easily integrated. This gives two linear first
integrals

U=yY—A\NT, V=YyY— AT
(1.7.2)

b+ Vb2 —ac
)\1722—.



In the new coordinates the hyperbolic equation A ¢ = 0 reduces to

62g0 B
oudv

The general solution to this equation can be written in the form

o= fly—iz) + gy — Aa)

where f and ¢ are two arbitrary smooth? functions of one variable.

For example consider the wave equation
_ 2
Pt = A4 Pza
where a is a positive constant. The general solution reads

o(x,t) = f(z —at) + g(z + at).

(1.7.3)

(1.7.4)

(1.7.5)

(1.7.6)

Observe that f(z — at) is a right-moving wave propagating with constant speed a. In a similar
way g(x + at) is a left-moving wave. Therefore the general solution to the wave equation (1.7.5) is

a superposition of two such waves.

2Tt suffices to take the functions of the C2 class.

17



1.8 Exercises for Chapter 1

Exercise 1.17 Reduce to the canonical form the following equations

Uy + 2Uzy — 2Ugy + 2Uyy + 6u,, =0

Ugy — Ugz + Ug + Uy — Uy = 0.

Exercise 1.18 Reduce to the canonical form the following equations
:E2um + 2Ty ugy — 3y2uyy — 2z u; +4yuy + 162w =0

y2um + 2T Yy ugy + 2x2uyy +yuy =0

Ugg — 2Ugy + Uyy + Uy + Uy = 0

Exercise 1.19 Find general solution to the following equations
22 Upy — y2uyy —2yuy =0

T Uy — 22 Y Ugy + y2uyy +xuz +yuy =0.

18
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Chapter 2

Wave equation

2.1 Vibrating string

We consider small oscillations of an elastic string on the (z,u)-plane. Let the z-axis be the equi-
librium state of the string. Denote u(z,t) the displacement of the point x at a time t. It will be
assumed to be orthogonal to the x-axis. Thus the shape of the string at the time ¢ is given by
the graph of the function u(x,t). The velocity of the string at the point z is equal to u¢(z,t). We
will also assume that the only force to be taken into consideration is the tension directed along the
string. In particular the string will be assumed to be totally elastic.

Consider a small interval of the string from z to x + Ax. We will write the equation of motion
for this interval. Denote T' = T'(z) the tension of the string at the point z. The horizontal and
vertical components at the points z and = + Az are equal to

Thor(z) =Ty cosa, Tyert(z) = Ty sina
Thor(x + Ax) = Thcos 3, Tyert(x + Ax) = Thsin 3

where T1 = T'(x), Ty = T(x + Ax) (see Fig. 1).

Fig. 1.

The angle o between the string and the z-axis at the point x is given by

1 . Uz
COSQ¥y = —— sino =

V1+u2’ V1+u2
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The oscillations are assumed to be small. More precisely this means that the term u, is small. So
at the leading approximation we can neglect the square of it to arrive at
cosa~1, sina =~ u,(x)

cosff~1, sinf ~uy,(x+ Ax)
So the horizontal and vertical components at the points x and x + Ax are equal to

Thor(x) =~ Tlv Tyert (517) ~ Tiug («T)
Thor(x + Ax) ~ Ty, Tyers(z + Azx) = Toug(x + A(z),

Since the string moves in the u-direction, the horizontal components at the points x and = + Ax

must coincide:
T = T(.’L‘) = T(l‘ + A.%') =T5.

Therefore T'(x) = T = const.
Let us now consider the vertical components. The resulting force acting on the piece of the
string is equal to

f=Tasinf —Tisina = Tuy(z + Ax) — Tuy(z) = T uge(z) Az.

On another side the vertical component of the total momentum of the piece of the string is equal
to

T+ Ax
p= J p(x)ug(z,t) ds(z) ~ p(x)u(z,t) Ax

T

where p(z) is the linear mass density of the string and

ds(x) = __dz ~ dx

V1 +u2(x)
is the element of the length'. The second Newton law
pe=f

in the limit Az — 0 yields
p(x)uy = T ugy.

In particular in the case of constant mass density one arrives at the equation

Up = 0 Uy (2.1.1)
where the constant a is defined by
o T
a” = —. (2.1.2)
p

!This means that the length s of the segment of the string between & = z; and & = x» is equal to
T2
s = f ds(z),
T
and the total mass m of the same segment is equal to

m = ij p(z) ds(x).
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Exercise 2.1 Prove that the plane wave
u(z,t) = Aelkztet) (2.1.3)

satisfies the wave equation (2.1.1) if and only if the real parameters w and k satisfy the following
dispersion relation
w=*tak. (2.1.4)

The parameters w and k are called resp. the frequency® and wave number of the plane wave.
The arbitrary parameter A is called the amplitude of the wave. It is clear that the plane wave is

periodic in x with the period

2T
L=— 2.1.
. (2.1.5)

since the exponential function is periodic with the period 27 ¢. The plane wave is also periodic in

t with the period
27

T (2.1.6)

W

Due to linearity of the wave equation the real and imaginary parts of the solution (2.1.3) solve the
same equation (2.1.1). Assuming A to be real we thus obtain the real valued solutions

Reu = A cos(kx +wt), Imu= Asin(kx+wt). (2.1.7)

2.2 D’Alembert formula

Let us start with considering oscillations of an infinite string. That is, the spatial variable x varies
from —oo to co. The Cauchy problem for the equation (2.1.1) is formulated in the following way:
find a solution u(x,t) defined for ¢ = 0 such that at ¢ = 0 the initial conditions

u(z,0) = ¢p(x), u(z,0) =(x) (2.2.1)

hold true. The solution is given by the following D’Alembert formula:

Theorem 2.2 (D’Alembert formula) For arbitrary initial data ¢(x) € C*(R), ¥(x) € C1(R) the
solution to the Cauchy problem (2.1.1), (2.2.1) exists and is unique. Moreover it is given by the
formula

u(z,t) = P(s)ds. (2.2.2)

¢z —at) + ¢p(x +at) 1 [*Hot
2 +2af

r—at

Proof: As we have proved in Section 1.7 the general solution to the equation (2.1.1) can be
represented in the form
u(z,t) = f(x —at) + g(x + at). (2.2.3)

2In physics literature the number —w is called frequency.
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Let us choose the functions f and g in order to meet the initial conditions (2.2.1). We obtain the
following system:

f(@) + g(z) = o(x)
(2.2.4)

Integrating the second equation yields
1 X
@)~ f@) = [ wo)ds+C
a Jg,

where C' is an integration constant. So

1 1 (* 1
F@) = 2o(e) - o= [ w(s)ds - 5C
g(x) = %qﬁ(x) + % ;; p(s)ds + %C.
Thus 1 1 [e—at 1 | [etat
u(z,t) = 5@1)(1: —at) — QaJ P(s)ds + §¢(x +at) + 2af P (s)ds.

This gives (2.2.2). It remains to check that, given a pair of functions ¢(z) € C2, ¢(x) € C! the
D’Alembert formula yields a solution to (2.1.1). Indeed, the function (2.2.2) is twice differentiable
in z and t. It remains to substitute this function into the wave equation and check that the equation
is satisfied. We leave it as an exercise for the reader. It is also straightforward to verify validity of
the initial data (2.2.1). [ |

Example. For the constant initial data
u(x,0) = ug, u(z,0) =vg
the solution has the form
u(z,t) = up + vot.
This solution corresponds to the free motion of the string with the constant speed vy.

Moreover the solution to the wave equation is stable with respect to small variations of the
initial data. Namely,

Exercise 2.3 For any € > 0 and any T > 0 there exists 6 > 0 such that the solutions u(x,t) and
t(z,t) of the two Cauchy problems with initial conditions (2.2.1) and

(x,0) = ¢(z),  @(x,0) = (x) (2.2.5)
satisfy
sup  |a(z,t) —u(z,t)] <e (2.2.6)
z€R, t€[0,T]

provided the initial conditions satisfy

sup|d(z) — ¢(x)] < 6, sup|(x) —P(x)| < 4. (2.2.7)
zeR zeR

Remark 2.4 The property formulated in the above exercise is usually referred to as well posedness
of the Cauchy problem (2.1.1), (2.2.1). We will return later to the discussion of this important

property.

22



2.3 Some consequences of the D’Alembert formula

Let (zo,t0) be a point of the (z,t)-plane, tg > 0. As it follows from the D’Alembert formula the
value of the solution at the point (zg,%yp) depends only on the values of ¢(z) at x = g + atp
and value of ¥ (z) on the interval [zg — aty,zo + atp]. The triangle with the vertices (zo,%p) and
(xo £ ato,0) is called the dependence domain of the segment [xo — ato, o + atp]. The values of
the solution inside this triangle are completely determined by the values of the initial data on the
segment.

to, o

o — aty To + aty T
Fig. 2. The dependence domain of the segment [zg — aty, o + atp].

Another important definition is the influence domain for a given segment [z1,x2] consider the
domain defined by inequalities

r+at=x, x—at<zy, t=0. (2.3.1)

Changing the initial data on the segment [z1, 23] will not change the solution wu(z,t) outside the
influence domain.

Fig. 3. The influence domain of the segment [z, z2].

Remark 2.5 It will be convenient to slightly extend the class of initial data admitting piecewise
smooth functions ¢(x), ¥ (x) (all singularities of the latter must be integrable). If x; are the singu-
larities of these functions, j = 1,2,..., then the solution u(x,t) given by the D’Alembert formula
will satisfy the wave equation outside the lines

r=tat+xz;, t=0, j=12...

The above formula says that the singularities of the solution propagate along the characteristics.

Example. Let us draw the profile of the string for the triangular initial data ¢(z) shown on
Fig. 4 and ¥ (x) = 0.
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t=0
U T
t=¢
U
{
t=—
2a
U
l
t=—
2a+€
n T
l
t=—
a
u x
l
t=—-+e¢
a

Fig. 4. The solution of the Cauchy problem for wave equation on the real line with a triangular
initial profile at different instants of time.

2.4 Semi-infinite vibrating string
Let us begin with the following simple observation.

Lemma 2.6 Let u(x,t) be a solution to the wave equation. Then so are the functions
tu(+x, +t)

with arbitrary choices of all three signs.

Proof: This follows from linearity of the wave equation and from its invariance with respect to
the spatial reflection

and time inversion
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Let us consider oscillations of a string with a fixed point. Without loss of generality we can
assume that the fixed point is at x = 0. We arrive at the following Cauchy problem for (2.1.1) on
the half-line x > 0:

u(x,0) = ¢(x), w(z,0) =1(x), z>0. (2.4.1)

The solution must also satisfy the boundary condition
u(0,t) =0, t=0. (2.4.2)
The problem (2.1.1), (2.4.1), (2.4.2) is often called mized problem since we have both initial condi-

tions and boundary conditions.

The solution to the mixed problem on the half-line can be reduced to the problem on the infinite
line by means of the following trick.

Lemma 2.7 Let the initial data ¢(x), ¥ (x) for the Cauchy problem (2.1.1), (2.2.1) be odd functions
of x. Then the solution u(xz,t) is an odd function for all t.

Proof: Denote
u(x,t) == —u(—z,t).

According to Lemma 2.6 the function u(x,t) satisfies the same equation. At ¢t = 0 we have

u(z,0) = —u(=2,0) = =p(=x) = ¢(x), w(z,0) = —us(=2,0) = —¢p(=2x) = Y(z)

since ¢ and v are odd functions. Therefore @(x,t) is a solution to the same Cauchy problem (2.1.1),
(2.2.1). Due to uniqueness @(x,t) = u(z,t), i.e. —u(—x,t) = u(z,t) for all x and t. [

We are now ready to present a recipe for solving the mixed problem for the wave equation on
the half-line. Let us extend the initial data onto entire real line as odd functions. We arrive at the
following Cauchy problem for the wave equation:

o(x), x>0 P(x), x>0
u(z,0) = { (), x<0 ug(z,0) = { _p(—z), <0 (2.4.3)

According to Lemma 2.7 the solution u(z,t) to the Cauchy problem (2.1.1), (2.4.3) given by the
D’Alembert formula will be an odd function for all ¢t. Therefore

u(0,t) = —u(0,t) =0 for all t.

Example. Consider the evolution of a triangular initial profile on the half-line. The graph
of the initial function ¢(z) is non-zero on the interval [I,3[]; the initial velocity ¢ (z) = 0. The
evolution is shown on Fig. 5 for few instants of time. Observe the reflected profile (the dotted line)
on the negative half-line.

In a similar way one can treat the mixed problem on the half-line with a free boundary. In this
case the vertical component T u, of the tension at the left edge must vanish at all times. Thus the
boundary condition (2.4.2) has to be replaced with

ug(0,8) =0 for all ¢ > 0. (2.4.4)
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initial profile.
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Fig. 5. The solution of the Cauchy problem for wave equation on the half-line with a triangular



2.5 Periodic problem for wave equation. Introduction to Fourier
series

Let us look for solutions to the wave equation (2.1.1) periodic in x with a given period L > 0. Thus
we are looking for a solution u(z,t) satisfying

u(x + L,t) = u(x,t) for any ¢ = 0. (2.5.1)
The initial data of the Cauchy problem

u(z,0) = ¢(x), u(z,0) =¢(x) (2.5.2)

must also be L-periodic functions.

Theorem 2.8 Given L-periodic initial data ¢(x) € C*(R), (z) € CY(R) the periodic Cauchy
problem (2.5.1), (2.5.2) for the wave equation (2.1.1) has a unique solution.

Proof: According to the results of Section 2.2 the solution u(z,t) to the Cauchy problem (2.1.1),
(2.5.2) on —o0 < x < o0 exists and is unique and is given by the D’Alembert formula. Denote

(z,t) :=u(z + L,1).

Since the coefficients of the wave equation do not depend on x the function @(z,t) satisfies the
same equation. The initial data for this function have the form

11(;17,0) = (Zﬁ(.’L' + L) = ¢(x)7 7VNLt(‘Tvt) = ¢($ + L) = w(x)

because of periodicity of the functions ¢(z) and ¢(x). So the initial data of the solutions u(z, )
and (x,t) coincide. From the uniqueness of the solution we conclude that @(xz,t) = u(x,t) for all
x and t, i.e. the function u(x,t) is periodic in 2 with the same period L. |

kx

Exercise 2.9 Prove that the complex exponential function e** is L-periodic iff the wave number

k has the form
k=——, nel. (2.5.3)

In the following two exercises we will consider the particular case L = 27. In this case the
complex exponential

2minx
e L

obtained in the previous exercise reduces to €.

Exercise 2.10 Prove that the solution of the periodic Cauchy problem with the Cauchy data
u(z,0) = ™, wy(x,0) =0 (2.5.4)

is given by the formula A
u(z,t) = e cosnat. (2.5.5)
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Exercise 2.11 Prove that the solution of the periodic Cauchy problem with the Cauchy data

u(z,0) =0, wuy(z,0) =e"® (2.5.6)
1s given by the formula
einx sin mzt’ n#0
u(z,t) = { bon=0. (2.5.7)

Using the theory of Fourier series we can represent any solution to the periodic problem to the
wave equation as a superposition of the solutions (2.5.5), (2.5.7). Let us first recall some basics of
the theory of Fourier series.

Let f(z) be a 2m-periodic continuously differentiable complex valued function on R. The Fourier
series of this function is defined by the formula

D e (2.5.8)

nez

1 21

Cp = — f(z)e " . (2.5.9)
2 0

The following theorem is a fundamental result of the theory of Fourier series.

Theorem 2.12 For any function f(x) satisfying the above conditions the Fourier series is uni-
formly convergent to the function f(x).

In particular we conclude that any C!-smooth 27-periodic function f(z) can be represented as
a sum of uniformly convergent Fourier series

flx) = Z cne™, ey

nez

1 2

=3 ), (z)e™ "% dz. (2.5.10)

For completeness we remind the proof of this Theorem.

Let us introduce Hermitean inner product in the space of complex valued 2m-periodic continuous

functions:
1 27 B

(fr9) =5 | fl@)g(z)de. (2.5.11)

- 2 0
Here the bar stands for complex conjugation. This inner product satisfies the following properties:

(9.f) = (f.9) (2.5.12)
(M1 + 1f2, 9) = A(f1,9) + il f2, 9)
forany A, peC (2.5.13)
(f7 )‘gl + MQQ) = A(fa gl) + :U’(f7 92>
(f,f) >0 for any nonzero continuous function f(z). (2.5.14)

The real nonnegative number (f, f) will be used for defining the Lo-norm of the function:

L=/ (f, 1) (2.5.15)
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Exercise 2.13 Prove that the Lo-norm satisfies the triangle inequality:

If + gl < £+ lgl- (2.5.16)

Observe that the complex exponentials €™® form an orthonormal system with respect to the
inner product (2.5.11):
1, m=n

(e e )=5mn:{ 0 msn (2.5.17)
(check it!).

Let f(z) be a continuous function; denote ¢, its Fourier coefficients. The following formula
cn = (" f), nelZ (2.5.18)

gives a simple interpretation of the Fourier coefficients as the coefficients of decomposition of the
function f with respect to the orthonormal system made from exponentials. Moreover, the partial
sum of the Fourier series

N
Sn(x) = > cne™ (2.5.19)
n=—N

can be interpreted as the orthogonal projection of the vector f onto the (2N + 1)-dimensional linear

subspace ‘ ' ‘
Viy = span (1,et™ e*2 . FNT) (2.5.20)

consisting of all trigonometric polynomials
N .
Py(z)= > ppe™ (2.5.21)
n=—N
of degree N. Here pg, p+1, ...p+nN are arbitrary complex numbers.

Lemma 2.14 The following inequality holds true:

N

DU el < |fI% (2.5.22)

n=—N

The statement of this lemma is called Bessel inequality.

Proof: We have

N . N ‘ N '
0 < ||f(1:) - Z cnelnx”2 = (f(x) - Z Cneznm, f(CC) — Z CﬂéLnx)
n=—N n=—N n=—N
=(f. f)— Z [Cn (f, emx) + ¢, (emx,f)] + Z CmCn, (e”m,em‘”) )
n=-N m,n=—N

Using (2.5.18) and orthonormality (2.5.17) we recast the right hand side of the last equation in the

form
N

(faf) - Z |Cn|2'

n=—N
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This proves Bessel inequality. |

Geometrically the Bessel inequality says that the square length of the orthogonal projection of
a vector onto the linear subspace Vi cannot be longer than the square length of the vector itself.

Corollary 2.15 For any continuous function f(z) the series of squares of absolute values of
Fourier coefficients converges:
D lenl® < o0, (2.5.23)

neZ

The following extremal property says that the N-th partial sum of the Fourier series gives the
best Lo-approximation of the function f(z) among all trigonometric polynomials of degree N.

Lemma 2.16 For any trigonometric polynomial Pn(x) of degree N the following inequality holds
true

|f(x) = Sn(@)| < |f(2) = Pn(z)]. (2.5.24)

Here Sn(x) is the N-th partial sum (2.5.19) of the Fourier series of the function f. The equality
in (2.5.24) takes place iff the trigonometric polynomial Py(x) coincides with Sy(x), i.e.,

1 21

Pn = oo f(x)e™™®dz, n=0,+1,42,..., +N,
™ Jo

Proof: From (2.5.18) we derive that
(f(x) — Sn(z), Py(z)) =0 for any Py(x)e Vy.
Hence

|f(x) = Px(2)|” = |(f = Sn) + (Sn — Px[? =
=(f=Sn,f=SN)+ (f = SN, Qn) + (Qn, f = SN) + (QN, QN)
= (f = Sn. f = Sv) + (Qn,Qn) = (f = Sn. f = Sx) = |If = Sn .
Here we denote
QN = Sny(z) — Py(x) € V.
Clearly the equality takes place iff Qn = 0, i.e. Py = Sy. |

Lemma 2.17 For any continuous 2m-periodic function the following Parseval equality holds true:

D lenl = 1517 (2.5.25)

nez
The Parseval equality can be considered as an infinite-dimensional analogue of the Pythagoras

theorem: sum of the squares of orthogonal projections of a vector on the coordinate axes is equal
to the square length of the vector.

30



Proof: According to Stone — Weierstrass theorem?® any continuous 27-periodic function can be
uniformly approximated by Fourier polynomials

Py(x) = ), pne™. (2.5.26)

That means that for a given function f(x) and any € > 0 there exists a trigonometric polynomial
Py (x) of some degree N such that

SUPze[0,2n] ‘f(x) - PN(J")| <€
Then

1

2m
If = Pn|?* = 271'L |f(z) — Py (z)2dz < €.

Therefore, due to the extremal property (see Lemma 2.16 above), we obtain the following inequality
If = Sn[* < €.

Repeating the computation used in the proof of Bessel inequality

N

If = SnIP=1£17 = D) leal® <€

n=—N

we arrive at the proof of Lemma. |

3The Stone — Weierstrass theorem is a very general result about uniform approximation of continuous functions
on a compact K in a metric space. Let us recall this important theorem. Let A c C(K) be a subset of functions in
the space of continuous real- or complex-valued functions on a compact K. The following requirements must hold
true.
1. A must be a subalgebra in C(K), i.e. for f, g€ A, o, B € R (or o, 8 € C) the linear combination and the product
belong to A:
af+pgeA, f-geA

2. The functions in A must separate points in K, i.e., Vx, y € K, x # y there exists f € A such that

f(@) # f(y).

3. The subalgebra is non-degenerate, i.e., Vo € K there exists f € A such that f(z) # 0.
The last condition has to be imposed in the complex situation.

4. The subalgebra A is said to be self-adjoint if for any function f € A the complex conjugate function f also belongs
to A.

Theorem 2.18 Given an algebra of functions A < C(K) that separates points, is non-degenerate and, for complez-
valued functions, is self-adjoint then A is an everywhere dense subset in C(K).

Recall that density means that for any continuous function F € C(K) and an arbitrary ¢ > 0 there exists f € A
such that
sup,c | F(z) — f(z)] <e
In the particular case of algebra of polynomials one obtains the classical Weierstrass theorem about polynomial
approximations of continuous functions on a finite interval. For the needs of the theory of Fourier series one has to
apply the Stone — Weierstrass theorem to the subalgebra of Fourier polynomials in the space of continuous 27-periodic
functions. We leave as an exercise to verify applicability of the Stone — Weierstrass theorem in this case.
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The Parseval equality is also referred to as completeness of the trigonometric system of functions

1, et E2iT

For the case of infinite-dimensional spaces equipped with a Hermitean (or Euclidean) inner product

the property of completeness is the right analogue of the notion of an orthonormal basis of the space.

Corollary 2.19 Two continuous 27-periodic functions f(x), g(xz) with all equal Fourier coefficients
identically coincide.

Proof: Indeed, the difference h(z) = f(x) — g(z) is continuous function with zero Fourier coeffi-
cients. The Parseval equality implies |h[? = 0. So h(x) = 0. [

We can now prove that uniform convergence of the Fourier series of a C!'-function. Denote ¢,
the Fourier coefficients of the derivative f'(z). Integrating by parts we derive the following formula:

1 o —inx 1 —inx |27 1 o ! —inx i /
Cn =5 . f(x)e dr = —27Tmf(x)e 6™ + Smin f(x)e dx = —Cn:

This implies convergence of the series

Z |cnl.

neZ

lenl 1 1
‘Cn|:7n<§ |CH2+E .

The series Y] |c],|* converges according to the Corollary 2.15; convergence of the series Y -5 is well
known. Using Weierstrass theorem we conclude that the Fourier series converges absolutely and

uniforml
’ Z ’cnemx| = Z len| < 0.

neZ neZ

Indeed,

Denote g(x) the sum of this series. It is a continuos function. The Fourier coefficients of g coincide
with those of f:

(einx’g) =c,.

Hence f(x) = g(x). [

For the specific case of real valued function the Fourier coefficients satisfy the following property.

Lemma 2.20 The function f(x) is real valued iff its Fourier coefficients satisfy

Cp =cC_p forall nelZ. (2.5.27)

Proof: Reality of the function can be written in the form

Since




we have

o= o [ Fged
Cp, = — T T =cC_p
" 271' 0
[ |
Note that the coefficient )
1 ™
o= 5 f(z)dx

is always real if f(x) is a real valued function.

Let us establish the correspondence of the complex form (2.5.10) of the Fourier series of a real
valued function with the real form.

Lemma 2.21 Let f(x) be a real valued 27-periodic smooth function. Denote ¢, its Fourier coeffi-
cients (2.5.9). Introduce coefficients

1 2m

ap =Cp+cp = — f(z)cosnxdx, n=0,1,2,... (2.5.28)
T Jo
1 21

by =i(cp —c—p) = — f(x)sinnxdr, n=12,... (2.5.29)
™ Jo

Then the function f(x) is represented as a sum of uniformly convergent Fourier series of the form

f(z) = ?0 + Z (an cosnz + by sinnx) . (2.5.30)
n=1

We leave the proof of this Lemma as an exercise for the reader.

Exercise 2.22 For any real valued continuous function f(z) prove the following version* of Bessel
inequality (2.5.22):

2 N
By Nt < jfz (2.5.31)
n=1
and Parseval equality (2.5.25)
ag i (a2 1 12) f () (2.5.32)
2 n=1

The following statement can be used in working with functions with an arbitrary period.

Exercise 2.23 Given an arbitrary constant ¢ € R and a solution u(x,t) to the wave equation
(2.1.1) then
w(z,t) = u(cz,ct) (2.5.33)

also satisfies (2.1.1).

4Notice a change in the normalization of the Ly norm.
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Note that for ¢ # 0 the function @(z,t) is periodic in z with the period L = 2% if u(x,t) was

2m-periodic.

For non-smooth functions the problem of convergence of Fourier series is more delicate. Let us
consider an example giving some idea about the convergence of Fourier series for piecewise smooth
functions. Consider the function

1, >0
signx = 0, =0 . (2.5.34)
-1, z<0

This function will be considered on the interval [—m, 7] and then continued 27-periodically onto
entire real line. The Fourier coefficients of this function can be easily computed:

2(1—(=1)"
an =0, bnz—i( ( ))
T n
So the Fourier series of this functions reads
sin(2k — 1)x
— ) 2.5.
}: TR (2.5.35)

k>1

One can prove that this series converges to the sign function at every point of the interval (—m, ).
Moreover this convergence is uniform on every closed subinterval non containing 0 or +7. However
the character of convergence near the discontinuity points x = 0 and z = +7 is more complicated
as one can see from the following graph of a partial sum of the series (2.5.35).

I f
3 D M sicsissmmcisssemiminsnsamimsal]
| -|
05F
-3 -2 i | 1 2 3
‘ —05|
' |
II'II~'I"""-"“""\'"‘-’WW“MMMVMMAWM,-,,W-I-. ":Q E
| I :

Fig. 6. Graph of the partial sum S, (z) = 237 _, Sm(;kk 11) for n = 50.

In general for piecewise smooth functions f(z) with some number of discontinuity points one
can prove that the Fourier series converges to the mean value %( f(zo +0) + f(zo —0)) at every
first kind discontinuity point xg. The non vanishing oscillatory behavior of partial sums near

discontinuity points is known as Gibbs phenomenon (see Exercise 2.51 below).
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Let us return to the wave equation. Using the theory of Fourier series we can represent any
periodic solution to the Cauchy problem (2.5.2) as a superposition of solutions of the form (2.5.5),
(2.5.7). Namely, let us expand the initial data in Fourier series:

$x) = > pne™,  P(x) = Y Yne™. (2.5.36)

neZ nez

Then the solution to the periodic Cauchy problem reads

: 1 _sinant
u(x,t) = Z One™® cosant + Yot + — Z P e smant. (2.5.37)
nez a neZ\0 n
Remark 2.24 The formula (2.5.37) says that the solutions
ul) (z,t) = ™ cos ant
(2.5.38)
t, n=>0
Ug) (IE, t) =

einz sm;mt’ n # 0

forn e Z form a basis in the space of 2w-periodic solutions to the wave equation. Observe that all
these solutions can be written in the so-called separated form

u(z,t) = X(x)T(t) (2.5.39)

for some smooth functions X (z) and T'(t). A rather general method of separation of variables for
solving boundary value problems for linear PDFEs has this observation as a starting point. This
method will be explained later on.

2.6 Finite vibrating string. Standing waves

Let us proceed to considering a finite string of the length [. We begin with considering the oscilla-
tions of the string with fixed endpoints. So we have to solve the following mixed problem for the
wave equation (2.1.1)

U(.I‘, 0) = ¢($)’ Ut(ﬂf,O) = 1/’(95)) T e [07 l] (261)
u(0,t) =0, wu(l,t)=0 forall ¢>0. (2.6.2)
The idea of solution is, again, in a suitable extension of the problem onto entire line.

Lemma 2.25 Let the initial data ¢(x), 1 (x) of the Cauchy problem (2.2.1) for the wave equation
on R be odd 2l-periodic functions. Then the solution u(z,t) will also be an odd 2l-periodic function
for all t satisfying the boundary conditions (2.6.2).

Proof: As we already know from Lemma 2.7 the solution is an odd function for all . So

u(0,t) =0 forall t> 0.
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Next, the solution will be 2-periodic for all ¢ according to Theorem 2.8 above. So
u(l —x,t) = —u(x — I,t) = —u(z + 1,t).
Substituting z = 0 we get
u(l,t) = —u(l,t), id.e. wu(l,t)=0.
[

The above Lemma gives an algorithm for solving the mixed problem (2.6.1), (2.6.2) for the wave
equation. Namely, we extend the initial data ¢(z), ¥(x) from the interval [0, x] onto the real axis
as odd 2[-periodic functions. After this we apply D’Alembert formula to the extended initial data.
The resulting solution will satisfy the initial conditions (2.6.1) on the interval [0,] as well as the
boundary conditions (2.6.2) at the end points of the interval.

We will apply now the technique of Fourier series to the mixed problem (2.6.1), (2.6.2).

Lemma 2.26 Let a 2m-periodic functions f(x) be represented as the sum of its Fourier series

f@) =D ene™, cp = % f_: f(@)e ™ dg.

neZ

The function f(x) is even/odd iff the Fourier coefficients satisfy
c_p = tc,

respectively.

Proof: For an even function one must have
nT —inx mnx
Z e = f(x) = f(—x) = 2 cne = Z c_pe.
nez nez nez

This proves ¢_,, = ¢,. A similar argument gives c¢_,, = —c¢,, for the case of an odd function. [ |

Corollary 2.27 Any even/odd smooth 2m-periodic function can be expanded in Fourier series in
cosines/sines:

2 s
flz) = % + Z ap COSNT, ap = J f(z)cosnxdx, f(r) iseven (2.6.3)
n=1 ™ Jo
2 s
flx) = Z bysinnz, b, = f f(x)sinnxdx, f(x) isodd. (2.6.4)
n=1 TJo
Proof: Let us consider the case of an odd function. In this case we have c_,, = —¢,, and, in

particular, ¢g = 0, so we rewrite the Fourier series in the following form

fz) = Z cne™ + Z cne™®

n=1 n<—1

= Z Cn (e””” — e_m”) =2 Z Cp, Sinn.
n=1

n=1
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Denote
bn = 2ic,, n=1.

For this coeflicient we obtain

2i (T —inT i (7 —in i 0 —inz
= — f@)e ™™ de = — | f(x)e”"™dx + — f(z)e " dx.
2 J_, T Jo T J)_x

In the second integral we change the integration variable z — —x and use that f(—xz) = —f(x) to
arrive at
i (7 , i (° , 2 (7
_ f f(ZE)e_Z”zdIE + J f(q:)emmdx f f e—inT _ znm] dxr = J f(l‘) sinnz dz.
™ Jo ™ Jr ™ Jo
|

Let us return to the solution to the wave equation on the interval [0,!] with fixed endpoints
boundary condition. Summarizing the previous considerations we arrive at the following

Theorem 2.28 Let ¢(x) € C2([0,1]), ¥(z) € C*([0,1]) be two arbitrary smooth functions. Then the
solutions to the mized problem (2.6.1), (2.6.2) for the wave equation is written in the form

t
Z sm— (b cos —|— by sin Tan > (2.6.5)
= l l
. 2
J¢ siandm b, = — w( )sin@dx
man l

Particular solutions to the wave equation giving a basis in the space of all solutions satisfying
the boundary conditions (2.6.1) have the form

NI mant ™I want

ul) (z,t) = sin s, u? (x,t) = sin - sin T = 1,2,... (2.6.6)
are called standing waves. Observe that these solutions have the separated form (2.5.39). The
shape of these waves essentially does not change in time, only the size does change. In particular

the location of the nodes

me=k—, k=01,...n (2.6.7)

of the n-th solution w4 )(x t) or u? (x,t) does not depend on time. The n-th standing waves (2.6.6)

has (n + 1) nodes on the string. The solution takes zero values at the nodes at all times.

2.7 Energy of vibrating string

Let us consider the vibrating string with fixed points x = 0 and = = [. It is clear that the kinetic
energy of the string at the moment ¢ is equal to

1 l
K:QJpﬁ@JMx (2.7.1)
0
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Let us now compute the potential energy U of the string. By definition U is equal to the work done
by the elastic force moving the string from the equilibrium u = 0 to the actual position given by
the graph u(z). The motion can be described by the one-parameter family of curves

v(x;s) = su(x) (2.7.2)

where the parameter s changes from s = 0 (the equilibrium) to s = 1 (the position of the string).
As we already know the vertical component of the force acting on the interval of the string (2.7.2)
between x and x + Ax is equal to

F =T (vg(z + Ax;s) — vz(x;8)) ~ sT uge(x) Az,
The work A to move the string from the position v(zx; s) to v(z; s + As) is therefore equal to
A=—F |v(z;s+As) —v(z;s)] ~ —sTu(x)Azx As

(the negative sign since the direction of the force is opposite to the direction of the displacement).
The total work of the elastic forces for moving the string of length [ from the equilibrium s = 0 to
the given configuration at s = 1 is obtained by integration:

1 ! !
1
U= —f dsj $T Ugg(x)u(z) dr = —J T gy (z)u(x) de.
o Jo 2 Jo
By definition this work is equal to the potential energy of the string. Integrating by parts and using
the boundary conditions
u(0) =u(l) =0

we finally arrive at the following expression for the potential energy:

!
U= ;f T u(z) d. (2.7.3)
0

Summarizing (2.7.1) and (2.7.3) gives the formula for the total energy E = E(t) of the vibrating
string at the moment ¢
l

E=K+U=f

1 1
(2 pul(z,t) + B Tui(m,t)) dzx. (2.7.4)
0

Exercise 2.29 Prove that the same expression (2.7.3) holds true for the total work of elastic forces
moving the string from the equilibrium to the given position u(x) along an arbitrary path

v(z;s), v(x;0)=0, v(x;s)=u(zx)

in the space of configurations.

It is understood that v(x;t) is a smooth function on [0,1] x [0, 1].

We will now prove that the total energy FE of vibrating string with fixed end points does not
depend on time.

Lemma 2.30 Let the function u(x,t) satisfy the wave equation. Then the following identity holds
true

0

1 2 1 2 _ i
5 (3ot s §Teen) = 5 (Tuw). (2.7
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Proof: A straightforward differentiation using uy; = a®ug, yields

0 (1 1
g <2 pu?(x,t) + 5 Tui(:c,t)) = paPuptipy + T gty

Since

(see above) we rewrite the last equation in the form

=T (utigy + Utpty) = T (usuy), -

|
Corollary 2.31 Denote Ej,(t) the energy of a segment of vibrating string
b1 1
2 2
Eap(t) = J <2 pui(x,t) + B Tuac(:n,t)) dx. (2.7.6)
a
The following formula describes the dependence of this energy on time:
d
%E[a’b] (t) = T uptig|pep — T Uty |p—q- (2.7.7)
Remark 2.32 In physics literature the quantity
Lo L
3 PU; (x,t) + 3 T us(z,t) (2.7.8)

is called energy density. It is equal to the energy of a small piece of the string from x to x + dx at
the moment t. The total energy of a piece of a string is obtained by integration of this density in
x. Another important notion is the flux density

—T upig. (2.7.9)

The formula (2.7.7) says that the change of the energy of a given piece of the string for the time
dt is given by the total flux though the boundary of the piece.

Finally we arrive at the conservation law of the total energy of a vibrating string with fixed
end points.

Theorem 2.33 The total energy (2.7.4) of the vibrating string with fized end points does not

depend on t:
d
—F =0.
dt
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Proof: The formula (2.7.7) for the particular case a = 0, b = [ gives

d
%E =T (ut(lat)uac(l7t) - ut(07t)u$(07t)) =0
since
ut(O,t) = 8tu(0,t) = O, ’U,t(l,t) = 8tu(l,t) =0
due to the boundary conditions u(0,t) = u(l,t) = 0. [

The conservation law of total energy makes it evident that the vibrating string is a conservative
system.

Exercise 2.34 Derive the formula for the total energy and prove the conservation law for a vibrat-
ing string of finite length with free boundary conditions u;(0,t) = u,(l,t) = 0.

Exercise 2.35 Prove that the energy of the vibrating string represented as sum (2.6.5) of standing
waves (2.6.6) is equal to the sum of energies of standing waves.

The conservation of total energy can be used for proving unigeness of solution for the wave
equation. Indeed, if u"(z,t) and u( (x,t) are two solutions vanishing at = = 0 and x = [ with the
same initial data. The difference

u(z,t) = u?(z,t) — uVD(z, )

solves wave equation, satisfies the same boundary conditions and has zero initial data u(z,0) =
¢(z) =0, ug(x,0) = ¢(z) = 0. The conservation of energy for this solution gives

B(t) - Ll (;pu?(x,t) + ;Tui(:c,t)> dz — B(0) = ﬂ (;pr(:U) + ;T¢i(ac)> dz — 0,

Hence ug(x,t) = wi(x,t) = 0 for all =, t. Using the boundary conditions one concludes that
u(x,t) =0,

2.8 Inhomogeneous wave equation: Duhamel principle

To give a heuristic motivation of the method we start by reminding that for solving linear first

order ODEs

u(t) + Lu(t) = g(t), (2.8.1)
with L a constant (in ¢) we can use variation of parameters which gives the particular solution
up(t)
t

el g(s)ds = f e Et=9) g(s)ds; up(0) = 0. (2.8.2)
0

up(t) = e M Jt

0

Denoting the integrand of this latter equation by f(t;s) = eL(~9)g(s) we note that it is also a
solution of the homogeneous ODE

Oef(t;s) + Lf(t;8) =0,  f(t;8)|—s = 9(5). (2.8.3)
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This shows that the particular solution (2.8.2) of the non-homogeneous equation (2.8.1) can be
written as a superposition (integral) of homogeneous solutions with g(s) is the initial value at t = s.

Similarly for second order ODEs:
i(t) + Lu(t) = g(t) . (2.8.4)
A particular solution given by the variation of parameters formula appears in the form

" sin(vVL(t — s))
(o) = [ T

Once more we observe that the integral of the above formula f(¢; s) =

g(s)ds , u,(0) =0, u,(0)=0. (2.8.5)

sin(v/L(t—s))

T g(s) is the solution

of the Cauchy problem
0if(t;s) + LEf(ts) =05 flt;s)=g =0,  0uf(t;8)l—y = 9(s)- (2.8.6)

With appropriate interpretation, the same formulae would hold if u(¢) is a function taking values
in an arbitrary vector space (even infinite dimensional, formally) as long as L is a linear operator
independent of t. Since 02 could be construed as such, this motivates the following theorem

Theorem 2.36 (Duhamel formula (principle)) Consider the inhomogeneous equation of the
string with external forcing g(z,t) € CO(R?):

ugt (0, 1) — a2uge(x,t) = g(z,t), u(z,0) = 0 = u(z,0). (2.8.7)

Then the solution is given by the formula

u(z,t) = fo F(z,t;s)ds (2.8.8)

where F(z,t;s) is the solution of the homogeneous wave equation with initial conditions at t = s;

Fy — a*Fpy = 0 (2.8.9)
F(x,t;8)|,_s =0 (2.8.10)
Fy(z,t;8)|,_, = g(x, s) (2.8.11)

Proof. We verify that the formula gives the solution; first of all we observe that from the
conditions we deduce that (using the chain rule)

(F + Fy)l—y =0, Va. (2.8.12)

Now we can compute the derivatives of u as follows

t

t
Uy = O <F(x;t7t) +f Fy(z,t; s)ds> e Fi(x,t;9)| 4, +J Fy(z,t;s)ds =
0 0
¢

=g(z,t) + a2f Frp(x,t;8)dx = g(x,t) + a®Ugy. (2.8.13)

o
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We need to verify the initial conditions: now, clearly u(x,0) = 0 because of the integral. Secondly
we have

0
u(x,0) = F(x,t;8)|,_g_0 + J Fy(z,t;s)ds = 0. (2.8.14)
0

This concludes the proof. |

If we need to solve the nonhomogeneous wave equation with different initial conditions, we
simply write the solution as the sum of the particular solution provided for by Duhamel’s principle
plus the solution of the homogeneous problem with the given initial conditions. See Problem 2.44.

Solution using D’Alembert’s formula Combining Duhamel’s principle (Thm. 2.36) with
D’Alembert’s formula (Thm. 2.2) we obtain

r+a(t— s)
u(z,t) 2aJ J ,8)d&ds. (2.8.15)

—a(t—s)

Remark 2.37 The integral in (2.8.15) has the following nice interpretation: the value of u at (x,t)
in the spacetime plane, is the area integral of g(a’,t") over the whole characteristic cone at (x,t) up
tot = 0. (Picture on board!)

2.9 The weak solutions of the wave equation

In some applications (and some exercises) it is convenient to extend the meaning of the wave
equation to a larger class. As one can plainly see, the D’Alembert equation (Thm. (2.2)) is rather
”agnostic” regarding the regularity class of the functions ¢,, as long as the integration makes
sense. However it is not immediately clear what meaning to attribute to the differential equation
itself if -say- ¢ is a piecewise continuous function.

For this reason we introduce the notion weak solutions, while we refer to the C? solutions as
classical solutions.

Definition 1 (Weak solutions of the wave equation) A function u(z,t) is called a weak so-
lution of the wave equation uy — a?uz, = 0 on (z,t) € R x R if, for every ¢ € CPL(R?) the following
holds:

f J u(z, ) (pu(z, 1) — a2pge(x, t))dzdt = 0 (2.9.1)
R JR

This is accompanied with the definition of weak solution subject to IC and also external forge
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Definition 2 A function u(z,t) is called a weak solution of the wave equation uy — APUyy =
g(z,t) on (x,t) € R x [0,00) subject to the initial conditions (IC)

u(x,0) = d(x);  w(x,0) = ¢(x) (2.9.2)

if 5 for every ¢ € CP(R x [0,0)) the following holds

LOO JR u(ps — a2 gz )dzdt + fR (SOt(SU, 0)op(x) — ¢(x, 0)¢(x)) = JJR gpdadt (2.9.3)

The motivation of these definitions relies on the notion of “distribution” that the reader may
have already encountered. It is motivated by the following

Proposition 2.38 If u(x,t) is a classical solution of the forced DE + IC, then it is also a weak
solution in the sense of Def 2.

Proof. The proof consists of the following chain of identities. For an arbitrary ¢ € C°(R x
[0,00)) let R > 0 be sufficiently large so that suppy < [—R, R] x [0, R]. The value R is understood
to be such that the support of ¢ does not intersect the left, right and top sides of the boundary of
the rectangle [—R, R] x [0, R] but, of course, it may intersect the segment (z,t) € (—R, R) x {0}
(picture on board!)

0 0 R
Jﬁg& = ff <utt — a2um> Y= fdxf dt uyp — a® f dtJ dxdt uy, (2.9.4)
R 0 0 —R

R+XR R+XR

The inner integral in the second term can be integrated by parts twice without contribution from
the boundary x = —R, R; the inner integral in the first term, on the other hand should be handled

with some care:
fdxf dt uppy =

00 R
R 0 R Jo
- fdﬂf w@‘t:(] - J‘de UQOt J‘dxf dt UPtt

- de Yl,_o + de(@ot)\to + fRdxfodt UPyy. (2.9.5)

Recombining the terms yields

Jﬁw = Jdm Yol,_o + de O0t)| o + fde dt u(ey — a*pee) (2.9.6)

R+X

This proves the statement. |
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2.10 Exercises for Chapter 2

Exercise 2.39 We know that a solution (weak or classical) of uy — uze = 0 is the sum of a left
and right traveling waves: u(z,t) = f(x —t) + g(x +t). Suppose now that f,g are only C}(R) so
that u is a weak(er) solution.

1. Show that for any t € R fized, the function u(x,t) is compactly supported with respect to x.
2. Show that the energy

1
E == f (u? + u?)dx (2.10.1)
R

is well defined (i.e. not infinite).

3. Show that the energy s still conserved. Show also that the energy is the sum of the energy
of the left and right traveling waves. Note that f,g are not assumed to be twice differentiable
and hence you cannot use this for showing the conservation of energy.

Exercise 2.40 Prove a similar statement as Prop. 2.38 for the first definition of weak solution,
Def. 1

Exercise 2.41 Give an appropriate definition of the notion of weak solution for the following
DE+IC+BC for the finite string x € [0, /]
(DE> Ut — Ugxe = G,

([C) u<$70) = ¢($)7 ut(:c,O) = TP(UC),
(BC) u(z,0) =0 = u((,0) (2.10.2)

Exercise 2.42 Let f(x) be a piecewise continuous function on R. Show that u(x,t) = f(x —t) is
a weak solution of Uy — Uze = 0.

Exercise 2.43 For few instants of time t = 0 make a graph of the solution u(x,t) to the wave
equation with the initial data

1, X € [1‘0,1’1]

. —00 < T < 0.
0 otherwise ’

u(z,0) =0, wy(x,0) = {

Exercise 2.44 Solve the following DE + IC on the whole line x € R:

Ut — Upy = T — T (2.10.3)
u(z,0) = z* (2.10.4)
u(x,0) = sin(x) (2.10.5)

Exercise 2.45 For few instants of time t = 0 make a graph of the solution u(x,t) to the wave
equation on the half line x = 0 with the free boundary condition

U (0,8) =0

and with the initial data
U(JJ,O) = ¢($), Ut(.’L',O) =0, >0

where the graph of the function ¢(z) is an isosceles triangle of height 1 and the base [, 3l].
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Exercise 2.46 For few instants of time t = 0 make a graph of the solution u(x,t) to the wave
equation on the half line x = 0 with the fixed point boundary condition

u(0,t) =0

and with the initial data

_ (1, ze[,3]]
u(xz,0) =0, wu(z,0)= { 0. otherwise ’ x> 0.
Exercise 2.47 Prove that
=\ sinnz T—x
Z = for 0 <z < 2.
n 2

n=1
Compute the sum of the Fourier series for all other values of x € R.
Exercise 2.48 Compute the sums of the following Fourier series:

sin 2nx
2n

18

, O<z<m

3
Il
—

—1)"
n

18

sinnz, |z| <.

3
Il
—

Exercise 2.49 Prove that

7’1

cosnz, |z|<m.

2 0
:E Zzl

Exercise 2.50 Compute the sums of the following Fourier series:

& cos(2n — 1)

(2n —1)2

n=1

cosnxe
5

R

n

n=1

Exercise 2.51 Denote
4 i sin(2k — 1)z
™= 2k —1
the n-th partial sum of the Fourier series (2.5.35). Prove that
1) for any x € (—m,m)
lim S, (z) = signx.

n—0o0

2) Verify that the n-th partial sum has a mazimum at

T
Ty = —.
2n
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Hint: derive the following expression for the derivative

2 sin 2nx
S’ = — )
n(@) T sinx
3) Prove that
24T Sinw 2 ("sinx
Awmbﬂgﬁ-%ﬁwaﬂL;xmzmmm
= n

for n — co.

Thus for the trigonometric series (2.5.35)

limsup S, (xz) >1 for x> 0.
n—0oo

In a similar way one can prove that

liminf S, (z) < =1 for =z <0.
n—00

Exercise 2.52 Consider the DE uy — ugzy = 0 on the semi-infinite azis x € [0,00) with Neumann
boundary conditions and the following IC:

u(@,0) = ¢(x);  w(x,0) = ¢'(x) (2.10.6)
where ¢ is the smooth compactly supported function

(x—1)32—-2)3 z=el
(;S(CL‘) = { 0 zé [1’

Give a sketch of ¢ and describe the evolution of the string in the following three intervals of time:

? (2.10.7)

te[0,1], te[1,2], t=>2. (2.10.8)

Also answer the same question where the Neumann condition is replaced with a Dirichlet condition.
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Chapter 3

Laplace equation

3.1 Ill-posedness of the Cauchy problem for the Laplace equation

In the study of various classes of solutions to the Cauchy problem for the wave equation we were
able to establish

e cristence of the solution in a suitable class of functions;
e uniqueness of the solution;

e continuous dependence of the solution on the initial data (see Exercise 2.3 above) with respect
to a suitable topology.

One may ask whether these properties remain valid for all evolutionary PDEs satisfying condi-
tions of the Cauchy — Kovalevskaya theorem?

Let us consider a counterexample found by J.Hadamard (1922). Changing the sign in the wave
equation one arrives at an equation of elliptic type
Ut + a2um =0. (311)
(The equation (3.1.1) is usually called Laplace equation.) Does the change of the type of equation
affect seriously the properties of solutions?

To be more specific we will deal with the periodic Cauchy problem

u(z,0) = ¢(x), u(zr,0) =¢(x) (3.1.2)

with two 27-periodic smooth initial functions ¢(x), (). For simplicity let us choose a = 1. We
will see that the solution to this Cauchy problem does not depend continuously on the initial data.
To do this let us consider the following sequence of initial data: for any integer & > 0 denote ug(x, t)
solution to the Cauchy problem

sink x

u(z,0) =0, wu(z,0)= e (3.1.3)

The 27w-periodic solution can be expanded in Fourier series

ao(t) n i [an(t) cosnz + by, (t) sin nx)

n=1
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with some coefficients a,,(t), b, (t). Substituting the series into equation
Ut + Ugy = 0

we obtain an infinite system of ODEs

n =0,1,2,.... The initial data for this infinite system of ODEs follow from the Cauchy problem

(3.1.2):
an(O) = 07 an =0 Vn,

. 1/k, n=k
bn<0):07 bn(o):{ (/] n k.

The solution has the form

an(t) =0 VYn, by,(t)=0 Vn#k

=l sinh kt.

So the solution to the Cauchy problem (3.1.2) reads

1
ug(z,t) = ?sin kx sinh kt.

Using this explicit solution we can prove the following

Theorem 3.1 For any positive €, M, ty there exists an integer K such that for any k >

initial data (3.1.3) satisfy

sup (Jug(z,0)| + |Crug(z,0)]) <€
z€[0,27]

but the solution ug(z,t) at the moment t =ty > 0 satisfies

sup (Jug(z,t0)| + |Orur(z, t0)]) = M.
z€(0,27]

Proof: Choosing an integer K satisfying

1
K1>*
€

(3.1.4)

K the

(3.1.5)

(3.1.6)

we will have the inequality (3.1.5) for any k£ > K. In order to obtain a lower estimate of the form

(3.1.6) let us first observe that
kt

1 1
xes[ggﬂ] (|lug(z,t)] + [Opug(x,t)]) = e sinh kt + Z cosh kt > 2—2
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where we have used an obvious inequality

1 1
- > — for k>1.
k= k2
The function
ea:
V=2
is monotone increasing for x > 2 and
e$
T—>+00 I
Hence for any ¢y > 0 there exists xp such that
eI‘
— > — for x> xp.
2
2t
Let K3 be a positive integer satisfying
x
K2 > 70
to
Then for any k£ > Ko
ek’ to 9 kto 9 eto
=1 > tg— > M.
k2 O(kto)2 T %42
Choosing
K = maX(Kl,Kg)
we complete the proof of the Theorem. [ |

The statement of the Theorem is usually referred to as ill-posedness of the Cauchy problem
(3.1.1), (3.1.2).

A natural question arises: what kind of initial or boundary conditions can be chosen in order
to uniquely specify solutions to Laplace equation without violating the continuous dependence of
the solutions on the boundary /initial conditions?

3.2 Dirichlet and Neumann problems for Laplace equation on the
plane

The Laplace operator in the d-dimensional Euclidean space is defined by

02 02

A=—+...+—.
(9x%+ +(9xfl

(3.2.1)

The symbol (coinciding with the principal symbol) of this operator is equal to
(& 4. 4+8) <0 forall &+0.

So Laplace operator is an example of an elliptic operator.
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In this section we will formulate the two main boundary value problems (b.v.p.’s) for the Laplace
equation
Au=0, u=u(z), zeQcR%. (3.2.2)
The solutions to the Laplace equation are called harmonic functions in the domain ).

We will assume that the boundary 02 of the domain €2 is a smooth hypersurface. Moreover
we assume that the domain Q does not go to infinity, i.e., Q belongs to some ball in R%. Denote
n = n(x) the unit external normal vector at every point x € 02 of the boundary.

Problem 1 (Dirichlet problem). Given a function f(z) defined at the points of the boundary
find a function u = u(x) satisfying the Laplace equation on the internal part of the domain Q and
the boundary condition

u(z)|zeoq = f(z) (3.2.3)

on the boundary of the domain.

Problem 2 (Neumann problem). Given a function g(z) defined at the points of the boundary
find a function u = u(x) satisfying the Laplace equation on the internal part of the domain Q and
the boundary condition

<8u($)

o )mem =g(x) (3.2.4)

on the boundary of the domain.

Example 1. For d = 1 the Laplace operator is just the second derivative
2
-
The Dirichlet b.v.p. in the domain Q = (a,b)
u'(2) =0, wu(a)=fa, u(d)=fp
has an obvious unique solution

a(e) =270 ooy,

b—a
The Neumann b.v.p. in the same domain
u'(z) =0, —u'(a) =ga, w'(b) =g

has solution only if

ga +gp = 0. (3.2.5)
Example 2. In two dimensions the Laplace operator reads.
02 02
A= —+ —. 3.2.6
o0x2 + 0y? ( )
Exercise 3.2 Prove that in the polar coordinates
rT= rcoso
y= rsing } (3.2.7)
the Laplace operator takes the form
2 10 1 0
A (3.2.8)

ot o T g
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In the particular case
Q= {(z,9)|2° +v* < p?} (3.2.9)
(a circle of radius p) the Dirichlet b.v.p. is formulated as follows: find a solution to the Laplace
equation , ,

Au = 2;; + Zyz =0, w=u(z,y), for z?+47y?<p (3.2.10)

satisfying the boundary condition
ulr—p = £(9). (3.2.11)
Here we represent the boundary condition defined on the boundary of the circle as a function
depending only on the polar angle ¢. Similarly, the Neumann problem consists of finding a solution

to the Laplace equation satisfying

(v f;‘) — 9(9) (3.2.12)

for a given function g(¢). The factor p in the left side is only a convenient normalization of the
boundary data.

Let us return to the general d-dimensional case. The following identity will be useful in the
study of harmonic functions.

Theorem 3.3 (Green’s formula) . For arbitrary smooth functions u, v on the closed and
bounded domain Q) with a piecewise smooth boundary 052 the following identity holds true

J Vu-VodV + J uAvdV = u v ds. (3.2.13)
Q Q o0 On

where dv/on denotes the directional derivative of v along the outer normal vector n

Here

d
ou ov
Vu-Vov = Z; oz, 0,

is the inner product of the gradients of the functions,

dV =dzxq...dxg

is the Euclidean volume element, n the external normal and dS is the area element on the hyper-
surface 0f2.

This identity is a consequence of another identity known as the Divergence Theorem:

Theorem 3.4 (Divergence theorem) Let 2 = RY be a bounded domain (open and connected
set) with piecewise smooth boundary 0. Let F : Q — R? be a vector field of class C' () and
C%(Q)). Then

f divFdV = | F-ndS (3.2.14)
Q o2
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Example 1. For d = 1 and 2 = (a,b) the Green’s formula reads

b b
J Uy Vg AT +J U Vg dx = uvx|g

a a

since the oriented boundary of the interval consists of two points d[a,b] = b — a. This is an easy
consequence of integration by parts.

Example 2. For d = 2 and a rectangle 2 = (a,b) x (¢, d) the Green’s formula becomes

b d
(uvy)f dz —i—J (uvm)z dy

C

Jﬂ(u,ﬂvx + uyvy) dz dy + fQ U (Vgg + Vyy) dx dy = J

a

(the sum of integrals over four pieces of the boundary 092 stands in the right hand side of the
formula).

Let us return to the general discussion of Laplace equation. The following corollary follows
immediately from the Green’s formula.

Corollary 3.5 For a function u harmonic in a bounded domain  with a piecewise smooth bound-
ary the following identity holds true

1
f (Vu)? = f ~0,u? dS. (3.2.15)
Q o0 2
Proof: This is obtained from (3.2.13) by choosing u = v. [

Using this identity we can easily derive uniqueness of solution to the Dirichlet problem.

Theorem 3.6 1) éet u1, ug be two functions harmonic in the bounded domain Q and smooth in
the closed domain 2 coinciding on the boundary 0S2. Then u; = usy.

2) Under the same assumptions about the functions ui, ug, if the normal derivatives on the

boundary coincide
8u1 au2

on  on

then the functions differ by a constant.

Proof: Applying to the difference u = ug — u; the identity (3.2.15) one obtains

J (Vu)2dV =0
Q
since the right hand side vanishes. Hence Vu = 0, and thus the function w is equal to a constant.

The value of this constant on the boundary is zero. Therefore u = 0. The second statement has a
similar proof. ]
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The following counterexample shows that the uniqueness does not hold true for infinite domains.
Let Q be the upper half plane:
Q= {(x,y) e R?|y > 0.}.

The linear function u(z,y) = y is harmonic in € and vanishes on the boundary. Clearly u # 0 on

Q.

Our goal is to solve the Dirichlet and Neumann boundary value problems. The first result in
this direction is the following

Theorem 3.7 (Solution of the Laplace equation on a disk: Dirichlet problem) For an
arbitrary Ct-smooth 2m-periodic function f(¢) the solution to the Dirichlet b.v.p. (3.2.10), (3.2.11)
exists and is unique. Moreover it is given by the following formula

1 21 p2 _ 7“2
u(r,¢) = %L P P S () dy. (3.2.16)

The expression (3.2.16) for the solution to the Dirichlet b.v.p. in the circle is called Poisson
formula.

Proof: We will first use the method of separation of variables in order to construct particular
solutions to the Laplace equation. At the second step we will represent solutions to the Dirichlet
b.v.p. as a linear combination of the particular solutions.

The method of separation of variables starts from looking for solutions to the Laplace equation
in the form

u= R(r)®(s). (3.2.17)

Here r, ¢ are the polar coordinates on the plane (see Exercise 3.2 above). Using the form (3.2.8)
we reduce the Laplace equation Au = 0 to

1 1
R(r)®(8) + LR (r)2(6) + 5 R(VP(6) = 0.
After division by T%R(r)@(d)) we can rewrite the last equation in the form

R(r)+ 1R() _ '(9)

=Ry ()]

The left hand side of this equation depends on r while the right hand side depends on ¢. The

equality is possible only if both sides are equal to some constant A. In this way we arrive at two
ODEs for the functions R = R(r) and ® = ®(¢)

1 A
R'+-R - SR=0 (3.2.18)
r r2

" + 2@ = 0. (3.2.19)
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We have now to determine the admissible values of the parameter A. To this end let us begin from
the second equation (3.2.19). Its solutions have the form

Ae\/j’\‘z’+Be_\/j‘¢, A<O0
D(p) = A+ B¢, A=0
A cosVAd+ Bsinvio, A>0

Since the pairs of polar coordinates (r,¢) and (r,¢ + 2m) correspond to the same point on the
Euclidean plane the solution ®(¢) must be a 2r-periodic function. Hence we must discard the
negative values of \. Moreover A must have the form

A=n% n=0,1,2,.... (3.2.20)

This gives
®(¢p) = A cosng + B sinneg. (3.2.21)

The first ODE (3.2.18) for A\ = n? becomes
R" + 1R' — n—jR = 0.
r r
This is a particular case of Euler equation. One can look for solutions in the form
R(r) = r*.
The exponent k£ has to be determined from the characteristic equation
E(k—1)+k—-n*=0

obtained by the direct substitution of R = r* into the equation. The roots of the characteristic
equation are k = tn. For n > 0 this gives the general solution of the equation (3.2.18) in the form

b
R=ar"+ —
T'I’L
with two integration constants a and b. For n = 0 the general solution is

R=a+0blogr.

As the solution must be smooth at » = 0 one must always choose b = 0 for all n. In this way we
arrive at the following family of particular solutions to the Laplace equation

Up = 1" (apcosng + bysinng), n=0,1,2,... (3.2.22)

We want now to represent any solution to the Dirichlet b.v.p. in the circle of radius p as a linear
combination of these solutions:

A
u= 70 + 2 " (Ap, cosng + B, sinng)
n=1

(3.2.23)
ulr—p = f(&).
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The boundary data function f(¢) must be a 27-periodic function. Assuming this function to be

C'-smooth let us expand it in Fourier series

f(o) = % + 2 (an, cosng + by, sinng)
n=1

1 21 27

an =~ | f(6)cosngds, bu=— | f(¢)sinngdo.

™ Jo 0

Comparison of (3.2.23) with (3.2.24) yields

b
An = aZ, Bn - p%a
or, equivalently
n
U= % + Z <;> (an, cosng + b, sinng) .

n=1

Recall that this formula holds true on the circle of radius p, i.e., for

< p.

The last formula can be rewritten as follows:

(3.2.24)

(3.2.25)

U = ifo% [; + ;1 (;>” (cosn¢ cosnip + sinngbsinm[;)] f(p) dyp
1 2m 1 n
= Wfo [2 +7§1 <;> COS"(¢—¢)] f@) dy.

To compute the sum in the square bracket we represent it as a geometric series converging for

r<p:

ncosn(¢—¢> :%_'_Re Z (;)"em(ab—w)

n=1

N |
+

v

\X

7 N
3

~

1 r ez(d)*w) 1 1 r €Z(¢*¢) r eii((ﬁ*d))
R I ) R R WP R ——
B 1 P2 _ 7,2
©2p2—2pr cos(¢p—p) + 12’

)

In a similar way one can treat the Neumann boundary problem. However in this case one has to
impose an additional constraint for the boundary value of the normal derivative (cf. (3.2.5) above

in dimension 1).

Lemma 3.8 Let v be a smooth function on the closed domain € harmonic inside the domain.

Then the integral of the normal derivative of v over the boundary 02 vanishes:

ov
—dS =0.
LQ ﬁn
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Proof: Applying the Green formula to the pair of functions u = 1 and v one obtains

f AvdV :J @ds.
Q o0 0N

The left hand side of the equation vanishes since Av = 0 in €. |

Corollary 3.9 The Neumann problem (3.2.4) can have a solution only if the boundary function g
satisfies

J gds = 0. (3.2.27)
o2

We will now prove, for the particular case of a circle domain in the dimension d = 2 that this
necessary condition of solvability is also a sufficient one.

Theorem 3.10 (Solution of the Laplace equation on a disk: Neumann problem.) For
an arbitrary C'-smooth 2m-periodic function g(¢) satisfying

21
JO 9(¢)dp =0 (3.2.28)

the Neumann b.v.p. (3.2.10), (3.2.12) has a solution unique up to an additive constant. This
solution can be represented by the following integral formula

1 27 p2
u(r, ¢) = %L log 7 2pr cos(p— ) 112 g(¥) dy. (3.2.29)

Proof: Repeating the above arguments one arrives at the following expression for the solution

u = “(7 5 (lb):
2

(3.2.30)

Let us consider the Fourier series of the function g(¢)

9(¢) = % + Z (an, cosng + by sinng) .

n=1

Due to the constraint (3.2.28) the constant term vanishes:

CL(]:O.
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Comparing this series with the boundary condition (3.2.30) we find that

)= 4 B0 () onoomna sy

n=1

1 27 1 27
o = f cosntp g($) dip, by = f sinnep () du.
T T

0

Here Aj is an arbitrary constant. Combining the two last equations we arrive at the following

expression:
Lt

n>1

()n cosn(p — 1) g() di. (3.2.31)

It remains to compute the sum of the trigonometric series in the last formula.

Lemma 3.11 Let R and 0 be two real numbers, R < 1. Then

1 1
" cosnf = 3 log [ 9Reosd £ 2" (3.2.32)

3\'—‘

Proof: The series under consideration can be represented as the real part of a complex series

Zom

The latter can be written as follows:

Rn inf J Z Rn ind dR.
1

We can easily compute the sum of the geometric series with the denominator Re?. Integrating we

" cosnf = Re Z R" inf

n= 1

§\>—‘

n=

obtain
< 1 nzn@ R’ ei@ 0
Hence
o0
1 1 1 1 1 1
—R" 0==11 - 1 [ = =1 .
n;n oSt 2[0g1—3629+ Ogl—Re—’e] 2 %1 2Rcosf + R2

Applying the formula of the Lemma to the series (3.2.31) we complete the proof of the Theorem.
|
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3.3 Properties of harmonic functions: mean value theorem, the
maximum principle

In this section we will establish, for the specific case of dimension d = 2, the two fundamental
properties of harmonic functions.

Let Q < R? be a domain. Recall that a point zg € Q is called internal if there exists a ball
of some radius R > 0 with the centre at zy entirely belonging to 2. For an internal point xg € €2

denote
Sdil(xo,R) ={xe ]Rd\ |z — xo| = R}

a sphere of radius R > 0 with the center at xg.

Remark 3.12 The area aq_1 of the unit sphere in R can be computed with the following “trick”:
we start from the d—dimensional Gaussian integral

d
2

f e~lelPay = 4.
R4

Rewriting it in “spherical” coordinates it reads

© d—1 2 1 d
J r¢ e " er dS =aq—1=T <> (3.3.2)
0 Sd—1 2 2

Comparing the two formulas we obtain

(3.3.1)

d
272

Ag—1 = ———. (3.3.3)
I ()

The radius is chosen small enough to guarantee that the sphere belongs to the domain 2. Denote
aq_1 the area of the unit sphere in R?. For any continuous function f(z) on the sphere the mean
value is defined by the formula

o
ad,le_l

f= f f(z)ds. (3.3.4)
Sa=1(x0,R)

In the particular case of a constant function the mean value coincides with the value of the function.

For example, in dimension d = 1 the “sphere” consists of two points zop + R. The formula (3.3.3)
for the area of the zero-dimensional sphere gives

12
ag = ——~ = 2.
T (3)

So the mean value of a function is just the arithmetic mean value of the two numbers f(zo + R):

f(zo + R) + f(zo — R)

5 .
In the next case d = 2 the sphere is just a circle of radius R with the centre at xy. The area (i.e.,
the length) element is dS = Rd¢. The restriction of f to the circle is a 2m-periodic function f(¢).
So the mean value on this circle is given by

f=

_ 1 2m
F=s5 | s
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Theorem 3.13 Let u = u(x) be a function harmonic in a domain 2. Then the mean value of u
over a small sphere centered at a point xg € 2 is equal to the value of the function at this point:

1
u(xg) = ———— u(x) dS. 3.3.5
<w(%m“mem<> (3.3.5)
Moreover we also have
1
w(zo) = J wdV (3.3.6)
Va(R) JBg (o)

where Vy(R) = ad,l%d is the volume of the ball of radius R.

Proof. We start with d = 2. Denote f(¢) the restriction of the harmonic function u onto the
small circle |z — zg| = R. By definition the function u(z) satisfies the Dirichlet b.v.p. inside the
circle:

Au(z) =0, |z—zo| <R
u(gc)ha:—wo\:R = f(¢)

As we already know from the proof of Theorem 3.7 the solution to this b.v.p. can be represented
by the Fourier series

u(r, ¢) = % + 7;1 (%)n (an, cosng + by, sinne) (3.3.7)
for r:= |z — zo| < R (cf. (3.2.25) above). In this formula a,, and b,, are the Fourier coefficients of

the boundary function
f(9) = u(@)]jo—zo|=R-

In particular

ao 1 2
S =g | S0

is the mean value of the function uw on the circle. On the other side the value of the function u at
the center of the circle can be evaluated substituting » = 0 in the formula (3.3.7):

_ %

u(xo) 5

Comparing the last two equations we arrive at (3.3.5).

For general dimension we can proceed as follows: Let B, (xg) be the ball of radius r centered at
zo € Q < R% Then

0= AT VaudS = rd-1 J ju(aco +ry)dS(y) =
By (x0) By (z0) ga-1 01
_ a1l J w(wo + ry)dS(y) (3.3.8)
(37“ Sd—1

99



Now divide by the volume of the sphere V; = ad_1§ so that (denoting by { the average)

d
o=f Au- ‘3][ w(zo + ry)dS(y) (3.3.9)
Br(l"o) ré’r Sgd—1

The integral under differentiation is the average of u over the surface of the ball B,(zg). Thus we
conclude that

Jf udS = C(ap) (3.3.10)
0By (x0)

is a constant independent of the radius of the ball (within the domain ). Since u € C%(Q2) we know
that it takes a maximum and minimum on 0Bg4(xg) (which is compact), and a simple continuity

argument shows that, as r — 0 the average must converge to u(zo). Thus §, B (o) udS = u(zp).
The second formula is proven by integration of the first:
R
f udV = f <J u(zo + ry)dS(y)) rd=ldr =
BR(IQ) 0 gd—1
R
= adlu(xg)f rdtdr = Vy(R)u(zo). (3.3.11)

0

Dividing by the volume V;(R) concludes the proof. |

Using the mean value theorem we will now prove another important property of harmonic
functions, namely the mazimum principle. Recall that a function u(x) defined on a domain Q < R4
is said to have a local mazimum at the point xg if the inequality

u(z) < u(zo) (3.3.12)

holds true for any x € €2 sufficiently close to xg. A local minimum is defined in a similar way.

Theorem 3.14 Let a function u(x) be harmonic in a bounded connected domain Q2 and continuous
in a closed domain ). Denote

M = sup u(z), m = inf u(z).
200 €02

Then
1) m <u(x) <M for all x €

2) if u(x) = M or u(x) = m for some internal point x € Q then the function u is constant.

Proof: It is based on the following Main Lemma.

Lemma 3.15 Let the harmonic function u(x) have a local mazimum/minimum at an internal
point xg € Q. Then u(zx) = u(xg) on some neighborhood of the point xy.
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Proof: Let us consider the case of a local maximum. Choosing a sufficiently small sphere with
the centre at xy we obtain, according to the mean value theorem, that

1
u(xo) = w RIT ch—xo—R u(x) dS.

We can assume the inequality (3.3.12) holds true for all  on the sphere. So

1 1
— udeéj u(xo) dS = u(xo). 3.3.13
ag—1 R41 flx—l‘ol—R (z) ag—1 R ) po=r (o) (o) ( )

If there exists a point z sufficiently close to zp such that u(z) < u(zp) then also the inequality
(3.3.13) is strict. Such a contradiction shows that the function u(z) takes constant values on some
ball with the centre at xg. The case of a local minimum can be treated in a similar way. |

u(zo) =

Let us return to the proof of the Theorem. Denote

M’ = supu(z)
el
the maximum of the function u continuous on the compact . We want to prove that M’ < M.
Indeed, if M’ > M then there exists an internal point xy €  such that u(zg) = M’. Denote ' < Q
the set of points x of the domain where the function u takes the same value M’. According to the
Main Lemma this subset is open. Clearly it is also closed and nonempty. Hence ' = € since the
domain is connect. In other words the function is constant everywhere in 2. Because of continuity
it takes the same value M’ at the points of the boundary 0. Hence M’ < M. The contradiction
we arrived at shows that the value of a harmonic function at an internal point of the domain cannot
be bigger than the value of this function on the boundary of the domain. Moreover if the harmonic
function takes the value M at an internal point then it is constant. In a similar way we prove that
a non-constant harmonic function cannot have a minimum outside the boundary of the domain. H

Corollary 3.16 Given two functions ui(x), us(x) harmonic in a bounded domain 2 and continu-
ous in the closed domain Q. If

lui(z) —ug(x)| <e for xzedfd

then
lui(z) —uz(x)| <€ for any ze

Proof: Denote
u(x) = uy(x) — ua(x).
The function u is harmonic in € and continuous in Q. By assumption we have —e < u(x) < ¢ for

any x € 0. So

—e < inf u(z), supu(z)<e
zedf €Y

According to the maximum principle it must be also

—e < inf u(z), supu(x) <e.
zeQ) 20

The Corollary implies that the the solution to the Dirichlet boundary value problem, if exists,
depends continuously on the boundary data.
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3.3.1 Boundary problem on annuli

The Poisson kernels for the Dirichlet and Neumann boundary conditions on circles does not work
for other domains. We consider here an annulus Q := {p? < 2? + 3? < R?}.

Since the domain does not contain the origin, the same considerations already used allow us to
say that any harmonic function on €2 must take the form

Cy, cos(n) + D, sin(nd)

T’I'L

u(r,8) = AO + —1 nr+ Z (A cos(nb) + By, 51n(n0))

n=1

(3.3.14)

There are clearly four types of boundary conditions: D-D, D-N, N-D, N-N, where D stands for
Dirichlet and N for Neumann. Here we consider only D-D.

Suppose we want to find the kernel for D-D BCs

Au=0, (z,y)ef (3.3.15)
uly_y = 0); ul_g = 9(6). (3.3.16)
Let the Fourier expansion of f, g be
f= % + Z ay, cos(nb) + B, sin(nh); (3.3.17)
n=1
= % + Z Y cos(nf) + d,, sin(nh). (3.3.18)
n=1

The coefficients A,,, By, Cy, D, must solve the system

Ag + Cy ln(p) = Qq
Ay + Cy hl(R) =Y
Anpn + 073 = Qp

3.1
| B+ 2=, (3319
A R" + %—m
B,R" + 22 =5,

It is more practical, in concrete problems, to solve directly the system rather than writing a kernel.

3.3.2 Laplace equation on rectangles

Consider the equation

D.E.: Au =0, (x,y)€l0,L] % [0,M] (3.3.20)
O { u(@0) = f() uler, M) = g(z)
B.C. {waw=mw {maw=My (3:3.21)

The B.C. are assumed to be continuous; so, for example f(0) = h(0) and so on. We consider here
the simpler case where f(0) = f(M) = h(0) = h(L) = ¢g(0) = g(L) = k(0) = k(M) = 0 so that
each of the functions f, h, g, k admits periodic odd extensions to continuous functions of periods
2L or 2M.
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Namely we assume that all of them have a sin Fourier series representation:

flx) = Z ap sin (mr%) g(x) = Z by, sin (mr%) (3.3.22)
n>1

n=1
hz) =Y easin (nro) k(@) = Y dysin (nr2 3.3.23
(z) ,;1 Cp Sin (mTM> (z) ;1 sin (mrM> ( )

Consider first the problem where g = h = k = 0; if we solve this BVP, then we can analogously
solve the others and the complete solution will simply be the sum of the various solutions.

First we look for factorized solutions u(z,y) = X(x)Y (y); plugging into the equation yields
separation of variables

XY +XY"=0 X'"=-)\X; Y'=)\Y. (3.3.24)

Depending on the sign of A we have various possibilities. Since we must have u(0,y) = u(L,y) =0
we quickly conclude that —\ = # with n € N, and we arrive at possible solutions

un(x,y) = sin <nLLx> (AneLzy + Bne_Lzy> (3.3.25)

Imposing also that wu,(x, M) = 0 gives

Un(,y) = sin (?) sinh (W) (3.3.26)

so that

u(z,y) = Z Ay, sin (?) sinh (TW_?”) (3.3.27)

n=1 L

Finally, imposing u(z,0) = f(z) yields:

u(x,y) = Z sinh(z:L”M) sin <nzx) sinh (W) (3.3.28)

n=1 L

Solution of the full problem. Therefore we have the solution of the full problem as follows:

_ an . /nmry\ | nm(M —y)
U(-ray) - 7;1 sinh (%) Sln( I )Slnh <L> + (3329)
+n>1 sinh (222 Sm( L )Smh (T> + (3.3.30)

Cp, . nmy X n7T(L _ :U))
b —— 3.3.31
+n>1 sinh (%) sm( i )sm ( 7 + ( )

dn . (MTYN . nmwT

! ,;1 sinh (2L) 7 ( M ) sinh (ﬁ) (3.3.32)
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3.3.3 Poisson equation

The Poisson equation is the non-homogeneous version of the Laplace equation
Au(z) = g(z) (3.3.33)

possibly subject to some boundary conditions.

Note that if @ = R? typically one requires ¢ to be either compactly supported or decaying at
infinity. Uniqueness of a solution is then based on the following Lemma left as exercise

Lemma 3.17 Let u € C2(R?) be harmonic. If lim,| o u(¥) = 0 then u vanishes identically.

The Lemma 3.17 allows to replace the Dirichlet conditions on a finite domain with an ”asymp-
totic” Dirichlet condition.

The solution can be found according to the general philosophy of finding a particular solution
of the non-homogeneous equation and then adding a suitable solution of the homogeneous equation
that also takes care of the boundary conditions.

We start with the Lemma

Lemma 3.18 The functions

1

Gi(z) = 5\95], zeR! (3.3.34)
1 .
Go(T) = 7 In(|Z]), 7 e R?\{0} (3.3.35)
i
re¢—1 .
Ga(T) = —%, e R\N{0}, d=>3 (3.3.36)
472 | |42

are all harmonic in Rd\{ﬁ}. Here the multiplicative constants are chosen for later convenience.

Observe that all G;’s are functions only of the distance from the origin; furthermore the formula
for G4 gives the same result for d = 1. For d = 2 the function Gs is the limit

Ga(r) = lim (Gd(r) +tam dl_ 5+ s 41;1(”)> (3.3.37)

where v ~ 0.5772... here is the Euler-Mascheroni constant (this is an example of renormalization).

Exercise 3.19 Prove Lemma 3.18.

Definition 3 The functions Gy are called ”Green functions” for the Laplace operator in d-
dimensions.
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Remark 3.20 For the readers who know what the Dirac delta distribution is, we can say that the
Green’s functions of the Laplace operator are function that satisfy the following equation in the
distributional sense (which is precisely what we prove below):

NyGaly — x) = 55(y) (3.3.38)
where 6%(y) denotes the Dirac distribution in the variable y in d—dimensions supported at y = x.
Remark 3.21 (Connection with Maxwell’s equations of electromagnetism) Mazwell’s equa-

tions are a set of PDEs for two 3—dimensional vector-fields E(Z,t),B(Z,t). (electric/magnetic
fields). They read:

divE = p(f’t) (3.3.39)
0

divB = 0 (3.3.40)
B

curlE = 3 (3.3.41)

curlB = pg <600£Z + J(w,t)) (3.3.42)

where p s the density of charge per unit volume, J is the electric current, ey is the permittivity of
space (dielectric constant) and pg the permeability of space (magnetic constant).

If the sources p,J are independent of time and we seek for static solutions (independent of time)
we see that curl E = 0 and hence (in R?) we can write E = —VV (the sign is conventional), where
V' is the electrostatic potential.

p(Z)

Thus the potential solves the Poisson equation AV = -5

You may also notice that G3(Z) is (up to a suitable constant) the Coulomb potential for an
1solated point-like charge placed at the origin.

For these reasons, the study of the Laplace/Poisson equation is usually part of the branch of
mathematics called potential theory.

Proposition 3.22 Let g(Z) be C}(R?). Then
u(®) = | Guli- D@V (@) (3.3.43)

is a solution of the Poisson equation Au(Z) = g(¥).

Proof. We sketch the proof (we discount some analytical details for simplicity).

First of all we observe that the integral is well defined; this is seen by passing to polar coordinates
centered at  and writing ¢ = Z + pn, dV (y) = p?~'dpdS(n). One can also see that it is possible
to differentiate G4 with respect to Z once and still have a convergent integral.
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With that in mind we can integrate by parts
Vau(z) = Ve i Ga(y—)g(y)dV(y) = — » VyGa(§ — 2)g(i)dV (y) =

— | Gu- D)V, 9@av @) (3.3.44)

Now we can compute the divergence:

Au = y VoGa(j— Z)Vyg9(7)dV () = — Ny V,Ga(§ — £)V,9(5)dV () (3.3.45)

Now the integral can be split into R%\ B.(#) and B.(f); since the value is independent of ¢, we are
allowed to take the limit as e — 07

e VyGa(§ = Z)Vyg()dV (4) =

~ lim (J +f )vyad(g—f)vyg(g)dwg) (3.3.46)
ROB.G)  JB.®)

e—0t

Since the integrand is integrable, the second limit tends to zero and we reach the conclusion that

Au(Z) = — lim+ VyGa(§y — Z)Vyg(9)dV (7)) (3.3.47)
0 edseo)
Applying Thm. 3.3 again to the first integral and keeping in mind that A G4(y — ) = 0 for
y € RAB(z), we get

Au(z) = — lim | VaGa(y — 2)g(7)dS(v) (3.3.48)
0" Jobe)
The normal n is the normal pointing towards = (the outer normal of R\ B.(z)) and the gradient is
with respect to y

d—2)r¢ -1 1
aer‘r:e = ( )d (2 ) = d—1 d=3
4z ed—1 Q1€
- o 1
—VaG(y — 37)“1;75\:4 =13 0,Gylrme = — d=2 (3.3.49)
2me
1
aT‘Gd‘T:E = 5 d=1
In all cases d = 1,2,... we have
1
A = lim ———— dsS 3.3.50
u(x) B = LBEW 9(y)dS(y) ( )

Since ¢(y) is continuous at y = z, its average on the surface of the e-sphere at z tends to g(z) as €
tends to zero. [
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Green’s functions for domains

The Green functions presented in Lemma 3.18 allow to solve the Poisson equation on RY (i.e.
unbounded domains). For domains €2 with boundary the corresponding Green’s function is, using
the distributional notation,

—0 (3.3.51)
yed

DyGal(y,x) =6:(y)  Galy,z)

for the Dirichlet problem (analogous formulation for the Neumann problem). In other words, they
allow to solve the Poisson equation

=0, (3.3.52)
o0

Au = g; U

for g € C(£2). In general these Green functions are not invariant under translations.

While the general theory is beyond the scope of the present course, we present here a simple
example of the Green functions of special domains in R?.

It is convenient to identify R? ~ C and write a point in complex notation (see also next section)

z =x +1y. (3.3.53)

Definition 4 Given a domain Q = C ~ R? the Green’s function Gq(z;w) is a function defined
for w e Q, z € Q\{w} satisfying the following properties:

1. Go(z;w) is harmonic with respect to z in Q\{w};
2. Go(z;w) — 5= In|z — w| extends to a harmonic function with respect to z in the whole €.

3. Ga(z;w) estends to a continuous function for z € Q\{w} and Gq(z;w) = 0 for z € 9.

The complex conjugation geometrically represents the reflection around the real axis. Let
H = {z; 3(2) > 0} and define

Ga(ow) = Gz —w) — Gz —w*) = —m F=% (3.3.54)

2 |z —w*|’

Note that if z € R then Gg(z,w) = 0 for any w € H.

Proposition 3.23 The function Gy is the Green’s function of the upper half plane with Dirichlet
boundary conditions; namely, for any g € C(H), the solution of the Poisson-Dirichlet problem

Au=g u(x,0)=0 (3.3.55)
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s given by

[ty ke ul
u(z) = JH o = (3.3.56)

where d?w denotes the Lebesque area measure in C ~ R2.

Similarly one can write the Green’s function for the unit disk (or any other disk by simple
arguments)

Proposition 3.24 Let D = {|z| < 1} = C ~ R? and define

1 _
Gp(z,w) := —1In |2 = vl

Tl s weD. (3.3.57)
2r Jw| |z —

Then G is the Green’s function of D with Dirichlet boundary conditions.

3.4 Harmonic functions on the plane and complex analysis

In solving the wave equation u.; — uy, we have factorized the wave operator into two derivatives
along the characteristic directions:

02 — 205 = (0p — c0y) (0 + cOy) (3.4.1)

so that one easily concludes that the solutions are sums of functions of x + cy and x — cy.

On a formalistic level we may assume that ¢ = ¢ = 4+/—1 and proceed in the same way:
02 + 65 = (0p —10y) (Op + 10y) (3.4.2)

This (heuristic) observation ushers the methods of complex analysis into the study of the Laplace
equation in two-dimensions. In a certain sense, as we shall see momentarily, this is also correct.

First of all we identify R? ~ C? via the obvious map (x,y) — 2z = x + iy. Then we recall that
a differentiable complex valued function f(x,y) = w(x,y) + iv(z,y) on a domain in R? is called
holomorphic if it satisfies the following system of Cauchy — Riemann equations

ou _ v 0

ox oy
(3.4.3)
R
or, in complex form
of .of
== — =0. 3.4.4
ox e oy ( )



Introducing complex combinations of the Euclidean coordinates
z=x+ 1y Z=x—1y
we can also introduce the following two vector fields.
0 1/0 0 0 1[0 0
I (P — = =+i=. 3.4.5
oz 2 <8x ! ﬁy) 0z 2 ((% ! 8y) ( )

Note that, by construction
—z=1= =%, —z=0=—%Z (3.4.6)
Z

so that, in a certain sense, we can view z and Z as independent coordinates.

With the aid of the vectors (3.4.5) the Cauchy — Riemann equations can be rewritten in the

form

of
<o, (3.4.7)

Example 3.25 Let f(z,y) be a polynomial

fla,y) =Y anz"y'.
kol

It is a holomorphic function iff, after the substitution

z2+z
€r =

2
_z—Z
Y=

there will be no dependence on Z:

z+z k z—Z !
_ m
%;akl( : ) < - ) = Y.

m

In that case the result will be a polynomial in z. For example a quadratic polynomial
f(z,y) = ax® + 2bxy + cy?

is holomorphic iff a+c¢ =0 and b= %(a —¢).

More generally holomorphic functions are denoted f = f(z). The partial derivative d/0z of
a holomorphic function is denoted df /dz or f’(z). One can also define antiholomorphic functions
f = f(z) satistying equation

of
= =o. (3.4.8)

Notice that the complex conjugate f(z) to a holomorphic function is an antiholomorphic function.
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From complex analysis it is known that any function f holomorphic on a neighborhood of a
point zq is also a complex analytic function, i.e., it can be represented as a sum of a power series

0
F(2) = an(z = 2)" (3.4.9)
n=0
convergent uniformly and absolutely for sufficiently small |z — zp|. In particular it is continuously

differentiable any number of times. Its real and imaginary parts u(z,y) and v(z,y) are infinitely
smooth functions of x and y.

Theorem 3.26 The real and imaginary parts of a function holomorphic in a domain  are har-
monic functions on the same domain.

Proof: Differentiating the first equation in (3.4.3) in x and the second one in y and adding we
obtain

Pu u
— + 55 =0.
or?  Oy?
Similarly, differentiating the second equation in x and subtracting the first one differentiated in y
gives
0% N 0% _0
oxz  oyr
|
Corollary 3.27 For any integer n = 1 the functions
Rez" and Imz" (3.4.10)

are polynomial solutions to the Laplace equation.

Polynomial solutions to the Laplace equation are called harmonic polynomials. We obtain a
sequence of harmonic polynomials

T, Y, x> —y2, Ty, 23 —3a:y2, 3;172y—y3,....

Observe that the harmonic polynomials of degree n can be represented in the polar coordinates r,

¢ as

Rez" =r"cosng, Imz" = r"sinng.

These are exactly the same functions we used to solve the main boundary value problems for the
circle.

Exercise 3.28 Prove that the Laplace operator
0? 0?
in the coordinates z, Z becomes "

A= 4(9282'

(3.4.11)
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To a certain extent the converse of Theorem 3.26 holds as well

Theorem 3.29 Let u(z,y) be a harmonic function in a simply connected domain Q2 c R? ~ C.
Then there is a holomorphic function f(z) such that w = Rf. The function v = Sf is called the
harmonic conjugate function to u.

Proof. Consider the total differential of u,
du = uydz + uydy (3.4.12)

This is clearly an exact form; now consider the “Hodge dual”

*du 1= —u,de + u,dy. (3.4.13)

Due to the fact that u is harmonic, this form is also closed: u,y = —uz;. Now, since 2 is simply
connected, we can define

(zy)
v(z,y) = J( (—uyde + u,dy) = dv = *du. (3.4.14)

Z0,40)

and the integration is independent of the path (here (zg, o) is some choice of point in ).

By construction we have v, = —u, and v, = u,; namely the function f(z,y) = u(z,y) +iv(z,y)
satisfies the Cauchy-Riemann equations in the domain €2 and hence it is holomorphic. |

Remark 3.30 If we lift the assumption that € is simply connected, then we can only assert
the local existence of v, but in general f will not be single valued. The prototypical example
is u(z,y) = In(y/2? + y2) on C\{0}. In this case f(z) is the complex logarithm, which is not
single—valued.

Using the representation (3.4.11) of the two-dimensional Laplace operator one can describe all
complex valued solutions to the Laplace equation.

Theorem 3.31 Any complex valued solution u to the Laplace equation Au = 0 on the plane can
be represented as a sum of a holomorphic and an antiholomorphic function:

u(e,y) = f() + 9(2)- (3.4.15)

Proof: Let the C2-smooth function u(z,y) satisfy the Laplace equation

0%u

0202 0-
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Denote 5
=2
0z
The Laplace equation implies that this function is holomorphic, F' = F(z). From complex analysis
it is known that any holomorphic function admits a holomorphic primitive,

F() = f(2).
Consider the difference g := u — f. It is an antiholomorphic function, g = ¢g(z). Indeed,
dg Ju y
—=——f"=0.
0z 0z /
So u = f(z) + g(2). [ ]

Corollary 3.32 Any harmonic function on the plane can be represented as the real part of a
holomorphic function.

Notice that the imaginary part of a holomorphic function f(z) is equal to the real part of the
function —i¢ f(z) that is holomorphic as well.

Corollary 3.33 Any harmonic function on the plane is C*-smooth.

Another important consequence of the complex representation (3.4.11) of the Laplace operator
on the plane is invariance of the Laplace equation under conformal transformation. Recall that a
smooth map

FiQ—-Q

is called conformal if it preserves the angles between smooth curves. The dilatations

(z,y) — (kz,ky)

with k # 0, rotations by the angle ¢

(z,y) — (xcosp — ysing, xsin g + ysin @)

and reflections
(z,y) = (z,—y)
are examples of linear conformal transformations. These examples and their superpositions exhaust

the class of linear conformal maps. The general description of conformal maps on the plane are
given by

Lemma 3.34 Let f(z) be a function holomorphic in the domain Q with never vanishing derivative:

df (2)

o #0 VzeQ.

Then the map
z = f(2)
of the domain Q2 to Q' = f(Q is conformal. Same for antiholomorphic functions. Conversely, if the

smooth map (x,y) — (u(z,y),v(x,y)) is conformal then the function f = u + iv is holomorphic or
antiholomorphic with nonvanishing derivative.
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Proof: Let us consider the differential of the map (z,y) — (u(x,y),v(x,y)) given by the real
u = Re f and imaginary v = Im f parts of the holomorphic function f. It is a linear map defined

by the Jacobi matrix
ou/dxr  Ou/dy ou/dx —0v/ox

ov/ox dv/dy ov/ox  Ou/ox

(we have used the Cauchy — Riemann equations). Since

2 2
0+ 17 R = (5) +(5)

we can introduce the numbers r > 0 and ¢ by

= |f'(2)], cosé = ou/ox o ov/ox

The Jacobi matrix then becomes a composition of the rotation by the angle ¢ and a dilatation with

the coefficient 7:
ou/0x  du/dy cos¢p —sing

ov/dx  ov/dy sing  cos¢

This is a linear conformal transformation preserving the angles. A similar computation works for
an antiholomorphic map with nonvanishing derivatives f'(z) # 0.

Conversely, the Jacobi matrix of a conformal transformation must have the form
cos¢p —sing

sin ¢ cos ¢

or
cos ¢ sin ¢

sing —cos¢

In the first case one obtains the differential of a holomorphic map while the second matrix corre-
sponds to the antiholomorphic map. [

We are ready to prove

Theorem 3.35 Let
f: Q-0

be a conformal map. Then the pull-back (composition with f) of any function harmonic in Q' will
be harmonic in €.
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Proof: According to the Lemma the conformal map is given by a holomorphic or an antiholo-
morphic function. Let us consider the holomorphic case,

z—w = f(2).

The transformation law of the Laplace operator under such a map is clear from the following
formula:

62 , 5 62
= ) 3.4.16
ez~ A g (3.4.16)
Thus any function U on € satisfying
02U B
owow
will also satisfy
02U B
0207
The case of an antiholomorphic map can be considered in a similar way. [
A conformal map
f: Q-9
is called conformal transformation if it is one-to-one. In that case the inverse map
JEREE VY

exists and is also conformal. The following fundamental Riemann theorem is the central result of
the theory of conformal transformations on the plane.

Theorem 3.36 (Riemann uniformization theorem) For any connected and simply connected
domain € on the plane not coinciding with the plane itself there exists a conformal transformation
of Q) to the unit circle f : Q) — D.

There is an interesting application of the Riemann Uniformization Theorem.

Theorem 3.37 For an arbitrary simply connected domain  not coinciding with the plane, the
Green’s function for the Dirichlet problem is given by

1
Ga(z,w) = %ln

f(z) = f(w)

Lo 3.4.17
1= f(2)f(w) ( )

The Riemann theorem, together with conformal invariance of the Laplace equation gives a
possibility to reduce the main boundary value problems for any connected simply connected domain
to similar problems for the unit circle.

The proof of Riemann’s theorem belongs to an advanced course in complex analysis and will
not be reported here.
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3.4.1 Conformal maps in fluid-dynamics

Suppose ‘7(1‘, Y, z,t) is a vector field representing the motion of a fluid.
The fluid is called incompressible if divV = 0.

Suppose that V represents a stationary flow (i.e. independent of time) and bi-dimensional (i.e.
independent of z and with zero z—component). Denote by v(z,y) the projection of V' to the z,y
components.

Proposition 3.38 If v is incompressible and irrotational, then there are two functions @, such
that

v = i+ Dyj = Qi — Q. (3.4.18)

These two functions are called the velocity potential and the stream function respectively.

The naming stems from the observation that the level-sets of €2 are stream lines.

A simple consequence of the above proposition is that the function
F(z) = (z,y) + iz, y) (3.4.19)

is analytic. It is called the complex velocity potential. Since F'(z) = ®, + i€, = v1 — ivy we
see that |F’(x)] is the speed of the flow. Le. the complex conjugate of F’(z) represents the velocity
field v interpreted as a complex number.

Suppose that Z is a region in C and we imagine the stationary 2-dimensional motion of an
incompressible and irrotational fluid around it. Assuming that the fluid goes around the region
(an obstacle) then the flow-lines must tightly surround 2. Thus we can use the Riemann mapping
theorem by mapping the complement of & to the upper half plane. If F(z) is said map, then it
provides the velocity potential and stream function. This is used for example for some early models
of airfoils (follow for example this link: Joukowsky map).

3.4.2 Some examples of mappings of regions

We list here some conformal mappings of regions. We start by observing that the upper half-plane
H and the unit disk I are conformally equivalent;

Lemma 3.39 The map

= = TH—->D 3.4.20
w=f()= (3.4.20)
18 a conformal map. The inverse is
1
z=gW%:ﬁH_:DHH (3.4.21)
—w

In view of the above lemma, many conformal maps bring a domain €2 to H instead of .
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Example 3.40 The semiinfinite strip
0= {z : Rz>0, QSze [O,ﬂ]} (3.4.22)

1s mapped to H by

f(z) =cosh(z) : Q - H (3.4.23)

The source of many examples is the Schwarz—Christoffel formula

Theorem 3.41 Let o € (0,27], j = 1,...,n such that Z?Zl aj=Mm—=2)r and a1 < az < ...<
an—1. Let f(C) be the function

¢ dw
f@)=f Toto—a) 2 (3.4.24)

Then this function maps conformally the upper half-plane H to the interior of a polygon with
interior angles a;.

The proof (whose detail we skip) consists in verifying that the the argument of f'(¢) as ¢
traverses the real axis (i.e. the tangent vector to the boundary of the region) is constant and with
jumps as ¢ = a; given precisely by the angles «;. The condition on the sum allows to conclude, by
the argument principle, that the function f(¢) is univalent (injective) in the upper half plane.

For example in the case of the semi-infinte strip one takes a; = —1,a2 = 1 and a1 = a3 = 7.
Then
d
f T < -ocarccosh <) (3.4.25)
(C=1)2(C+1);

(the proportionality constant and the additive constant allow to translate/rotate/dilate the result-
ing polygon).
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3.5 Exercises for Chapter 3
Exercise 3.42 Prove Lemma 3.17.

Exercise 3.43 Let Q be a bounded open set in R with p.w. smooth boundary. Let ui,us,us €
C%(Q2) n CO(Q2) be harmonic functions. Show that if u; < ug < ug when restricted to the boundary
of Q) then the same inequality holds throughout 2.

Exercise 3.44 Let Q) be the semi-infinite strip (0,7) x (0,00). Consider the Laplace problem on )
with B.C.

u(x,0) =0, u(0,y) =0 x€[0,7], ye[0,0) (3.5.1)

Find more than one harmonic solution to this problem. FExplain how that does mot contradict the
uniqueness theorem for harmonic functions.

Solution. One solution is the zero solution; another solution is u(z,y) = xy. There at least two
reasons the solution is not unique. First we did not specify boundary values on the whole boundary.
Second the domain is unbounded.

Even if the domain were the quarter plane [0,0) x [0,00) with zero B.C., we would still have
u(z,y) = zy as harmonic function (and the trivial solution). [

Exercise 3.45 Prove Proposition 3.24.
Exercise 3.46 Prove Proposition 3.23.

Exercise 3.47 Prove that any harmonic polynomial is a linear combination of the polynomials
(3.4.10). [Hint: if p is a harmonic polynomial, then solve the Laplace equation on the disk with BC

ulz)=1 = Plz)=1-/

Exercise 3.48 Find a Green function for the upper half plane H but with Neumann conditions on
R.

Exercise 3.49 Suppose that we have the Poisson equation Au = g where g is only an L function.
Show that

u(z) = y Ga(y — z)g(y)dV (y) (3.5.2)

is a solution in the weak sense, namely show that for all ¢ € C{(RY) we have
f ulNpdV (z) = f gpdV (x). (3.5.3)
R4 R4

Exercise 3.50 Let Q c C ~ R? be an open domain and a € Q2. Recalling Def. 4 prove that

1. If a bounded open set Q admits a Green’s function then Gq(z;w) is unique.
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2. With Q as above plus connected, prove that Gq(z;w) is negative on Q\{a}.

Exercise 3.51 Find a function u(x,y) satisfying
Au = 2% —y?

for r < a and the boundary condition u|,—q = 0.

Solution. We see that 22 — y? = R(2?) = # Since 0,Z = 0 we can “integrate” independently
to find a particular solution; recall 40,05 = A so that we compute

2, 52 25 33 3% 1 53 2
0-4u,(2,2) = szz ;—Z = % + % = duy(z,z) = ZZG# = ‘22(22 +7%)  (3.5.4)
On the boundary of the disk a we have u, = %(z +Z) which is by inspection the restriction
|z[=a
of a harmonic polynomial. In conclusion we find:
2 _ 2
=L o T (22422 (3.5.5)

Exercise 3.52 Let Xp(z) be the characteristic function of the unit disk D := {z € C: |z| < 1}.
Compute

In|z — w|d2w

= (3.5.6)

U(z) = L X ()

Solution The function U(z) is clearly harmonic outside of the unit disk. At infinity it behaves like
Bl 4(D) = Lin|z|.

Inside the disk it satisfies AU = 1 and hence it must be of the form U(z) = %—k harmonic.

The function is also easily seen to be continuous across the boundary; thus we start by sub-
tracting the solution of a Dirichlet problem AV = 0, V“@D = 1. This is easily seen to be the
constant 1.

_ -1

U(z) 1

1
Xp + 5 In |Z‘ X(C\]D)' (3.5.7)

Exercise 3.53 Let Go(z;w) as in Theorem 3.37. Let p(z,y) € C (). Show, directly, that
§o Ga(z;w)Ap(w)d®w = ¢(2) using the fact that Gq is the pullback of the Green’s function of
the unit disk via the uniformizing map f : Q — D.pp
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Solution. Let ( = F(2) : Q@ — D be the Riemann uniformization map to the unit disk

1 F(z)-F
45;555[ Go(z;w)Ap(w)d*w = 40,07 | —1In (Z)—ﬂ Ap(w)d®w (3.5.8)
Q Q21 |1—F(2)F(w)
Denote ¢ = F(z) and £ = F(w); then the above reads
d¢|? d2¢  why? |d¢|? 1
41=| ¢ 5 —1In — = — —_— = 3.5.9
|
Exercise 3.54 Find a harmonic function on the annular domain
a<r<b
with the boundary conditions
Ulpeq = 1, (0u> = cos? 0.
or r=b
Solution We have
AO B n n -n -n
=5+ —m 2] + > ApRz" + BpS2" + CuRz ™" + DSz (3.5.10)
n=1
Note that cos?(#) = H%S(ze) Imposing the BC gives the system:
% -1 = Ag=2. (3.5.11)
A, = —C, (3.5.12)
B, =—-D, (3.5.13)
|

Exercise 3.55 Find a harmonic function u(x,y) solving the the Dirichlet b.v.p. in the rectangle

0<xr<a, 0<y<b
satisfying the boundary conditions

u(0,y) = Ay(b—y), u(a,y) =0
u(z,0) = B sin %, u(x,b) =

Hint: use separation of variables in Euclidean coordinates.
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Chapter 4

Heat equation

4.1 Derivation of the heat equation
The heat equation for the function u = u(z,t), z € R%, t € Rog reads

ou 9

— = a“Au. 4.1.1
n (4.1.1)
Here A is the Laplace operator in R%. We will consider only the case of constant coefficients a =
const. For d = 3 this equation describes the distribution of temperature u(x,t) in a homogeneous
and isotropic medium at the time ¢. It is also used to describe the diffusion of the concentration of
some quantity (e.g. a solute in a solution).

The derivation of heat equation is based on the following assumptions.

1. The heat @ necessary for changing from wu; to us the temperature of a portion of mass m is
proportional to the mass and to the difference of temperatures:

Q = cym(ug —up).

The coefficient ¢, is called specific heat capacity.

2. The Fourier law describing the quantity of heat speading in the time At through a surface
S during the time interval At. It says that this quantity AQ is proportional to the area A(S) of
the surface, to the time At and to the derivative of the temperature v along the normal n to the
surface:

AQ = —k A(S)Z—Z At.

Here the coefficient k£ > 0 is called thermal conductivity. The negative sign means that the heat is
spreading from hot to cold regions.

In order to derive the heat equation let us consider the heat balance within a domain  c R¢
with a smooth boundary 0f).

We remind that the divergence of u(x,t) can be interpreted as the infinitesimal net fluz of the
gradient of u across the six sides (in 3 dimensions) of an infinitesimal box of sides dz, dy, dz centered
at x.
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Then the integral form of our first assumption says that the total exchange of heat between the
domain 2 and the exterior during the time interval At is

AQ = JQ cpp(x) [u(t + At,z) —u(t,z)]dV ~ J;; cpp(x) ug(z,t) dVAL

where p(z) is the mass density, such that the mass of the media contained in the volume is equal
to

m = f p(x)dV.
Q
On the other hand, the Fourier law gives another expression for AQ) in terms of the flux
AQ =k | Vau(z,t)dSAt, (4.1.2)
o0

where the normal here is the outer one and the sign is because we are measuring the heat acquired
by © (but the normal is opposite).

Equating these two expressions yields
f epp(@)ug(z,t)dV =k | Vau(z,t)dS (4.1.3)
Q o0

The divergence theorem now can be used on the right side of (4.1.3) to yield the balance equation
0= J (cpp() u(z,t) + kAu(x,t))dV (4.1.4)
Q

Since this identity must hold for arbitrary domains {2 we must have the equation

0 t k
wz,t) _ Au(z,t). (4.1.5)
ot cpp(x)
In fact, this equation could be derived also if the thermal conductivity k and or the specific heat
capacity ¢, depends on space (inhomogeneous medium).

In the case of a homogeneous media the mass density p, the specific heat ¢, and the thermal
conductivity k are constant and we reach the form (4.1.1) with a constant a

k
a?=—"
Cpp

which is called thermal conductivity or thermal diffusivity.
4.2 Main boundary value problems for heat equation
The simplest is the Cauchy problem of finding a function u(x,t) satisfying
88? = a’Au
(4.2.1)
u(z,0) = ¢(x), x=eR™L
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The physical meaning of this problem is clear: given the initial temperature distribution in the
space to determine the temperature at any time t > 0 at any point = of the space.

Often we are interested in the temperature distribution only within the bounded domain < R
In this case one has to add to the Cauchy data within 2 also the information about the temperature
on the boundary 02 or about the heat flux through the boundary. In this way we arrive at two
main mixed problems in a bounded domain:

The first mized problem: find a function u(z,t) satisfying

a—u:aQAu, t>0, xzel
ot
u(0,z) = (), x€ (4.2.2)
u(z,t) = f(x,t), t>0, xed

The second mized problem is obtained from (4.2.2) by replacing the last condition by

<0u> =g(x,t), t>0, zed (4.2.3)
on €082

In this equation n is the unit external normal to the boundary.

In the particular case of the boundary data independent of time

f=1[f(®) or g=g(x)
one can look for a stationary solution u satisfying
ou
— =0.
ot
In this case the first and the second mixed problem for the heat equation reduce respectively to
the Dirichlet and Neumann boundary value problem for the Laplace equation in RY.

4.3 Fourier transform

Our next goal is to solve the one-dimensional Cauchy problem for heat equation on the line. To
this end we will develop a continuous analogue of Fourier series.

Let f(z) be an absolutely integrable complex valued function on the real line, i.e.,

[ inar <o (43.)

—00

Definition 4.1 The function
¢ 1 * —ipx
f(p) := 2J f(z)e P*dx (4.3.2)
T J—o0

of the real variable p is called the Fourier transform of f(x).

Due to the condition (4.3.1) the integral converges absolutely and uniformly with respect to
p € R. Thus the function f(p) is continuous in p.
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Example. Let us compute the Fourier transform of the Gaussian function

22

flz) =e"2.
We have o , - ,
J e~ T TWEy = J e~ 3 (@+m)’ =5 g
—00 —0
We want to perform a change of variables
s =z +1ip.
To do this one can consider the integral
22 1.0 .
j@e 2 2P dz, z=ua+1y (4.3.3)

C

over the boundary C' of the rectangle on the complex z-plane
—-R<zx< R, 0<y<p.

It is easy to see that the integrals over the vertical segments z = +R, 0 < y < p in (4.3.3) tend to
zero when R — oo0. The total integral is equal to zero since the integrand is holomorphic on the
entire complex plane. Hence

R 1.2 1.2 R e 2
e 2V TP dx + e 2@t =gy 50 as R — oo,
R

SO

0 22
J e 2dr =27 (4.3.4)

f(p) = e 7. (4.3.5)

Definition 5 (Convolution) Let f,g e L'(R" d"h) and define their convolution

(Fra)@) = | fWgla—m)ah (4.3.6)

We observe that the result of the convolution of two L! functions is still in L'; to see this, let
us denote F'(z) = (f * g)(x) and observe that

|F(x)] < J |f(h)g(x — h)|d"h. (4.3.7)

n
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Now we integrate
J z)|d"z < J J g(z — h)|d"hd"z Féj f |f(h)g(z — h)|d"zd™h =
n n n ]Rn
- [ sl f gla =Wl = | @Ih | lg@)lde <o (138)
n R R” Rn
Reading the chain of inequalities fro right to left shows that F(x) is well defined in L!.

Exercise 4.2 Show that the convolution is Abelian (f xg = g* f) and bilinear. Show that L' with
this operation becomes an Abelian Banach algebra (i.e. |f g1 < |fll1]gl1)-

Proposition 4.3 (Elementary properties of the Fourier transform) The following proper-
ties hold:

~

If f € L'(R) then (0) = %% and |F(p)| < L.

If f € L (R) and g(z) := €' f(z) for a € R then §(p) = f(p — a).
If g(x) = f(z — a) for a € R then §(p) = e~ #*f(p).

If g(x) = f(ax) for a € R\{0} then §(p) = Lf ().

If g(x) = f(~=) then §(p) = f(t)* (complex conjugate).

The Fourier tranform of a convolution is the product of the Fourier transforms:

S & e

—

Fxg(p) = 2in f(p)3(p). (4.3.9)

Proof. We only prove the last point and leave the rest for exercise. Consider the chain of equalities
(we do it in L'(R) but the proof extends to R™ without obstacle)

Fea) = 5= [ dee | fgta =h) = i | dmem e | anpiygle —n) =

1 4 N
~ iz | ansme | dae e Mgt - 1) = 2inf ()3 () (4.3.10)
2Z7T R R
where the exchange of integrals is justified by Fubini’s theorem. |

Other structural properties of the Fourier transform are as follows:
Lemma 4.4 If f € LY(R) then f s continuous and bounded.

Proof.

~ ~

w0~ F) <

o f e () [o~ P+ — v (4.3.11)
™
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The last integral is less than 2| f[; and hence we can use dominated convergence to say that we
can exchange the limit € — 0 with the integral. Thus lim._,o f (p +e)=f (p)

Next we clearly have |f(p)| < ”% "

Remark 4.5 If f € L'(R) then in ]? 1s bounded, continuous and tend to zero, as we have seen.
However in general it does not belong to L".

Lemma 4.6 (Further properties of the Fourier transform) [1] Suppose that f € LY(R) and
also xf(r) € LY(R). Then f € CH(R ) and

d*pf(p) = (—izf(z))(p)- (4.3.12)

[2] Suppose that f € L' and also f € C'(R), with f' € L*(R). Then

F/(x)(p) = f; f’(w)e‘ip“gf: = ip f(p). (4.3.13)

Proof. [1] We need to see that we can differentiate under the integral sign. This is allowed because
of the assumption zf € L' together with Fubini’s theorem.

[2] From the integrability of f/(z) it follows that both limits below exist

r—+00 r—+00

f(£o0):= lim f(z)= f(0)+ lim f 'y

Because of absolute integrability of f the limiting values f(400) must be equal to zero. Integrating

by parts
0 - d . © © . R
| r@ergt = (em 8 i [ pee i - i)
we arrive at the needed formula. [ |

Example 4.7 [1] Let f(z) = fmgitﬁ with a > 0 (Laurentzian function). Then f= Lealpl,
(Exercise).

Exercise 4.8 Show that the convolution of two Gaussians or two Laurentzians (with the same
centers) are still Gaussians/Laurentzians, respectively. Use property [6] in Prop. 4.5.

4.3.1 Invertibility of the Fourier transform.

We will now establish, under certain additional assumptions, validity of the inversion formula for
the Fourier transform:

fo Fp)e™dp = f(a). (4.3.14)

Given a function g(p) in L'(R) We shall use the notation™ for this “inverse” Fourier transform

i) = | atp)e (4.3.15)

Note that this is almost the same formula as the Fourier transform, up to the factor 27 and the
sign in the exponent.
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Exercise 4.9 Show that the inverse Fourier transform of % L $x2+a2 Namely (using Ez. 4.7)

that the inverse Fourier transform is indeed an identity in thzs case.

Proof. We have

. _ o) 0
J* eipr—alp| dp < ) eipr—alp| dp:J e(ir—a)pd£ _’_J e(im+a)pd£ _
R 27 27 0 2m —00 2m

1

2

1 a 1
N _ , 4.3.16
(a—za: a+z:z:> T z? + a? ( )

Remark 4.10 In general the statement is false. Consider f(x) := e~ "X[ox)(x). Then its Fourier

1 1

57 and this is not in L*. The inverse Fourier transform is not defined.
T ip+1

transform is f (p) =

We recall now (without proof) the fact that
Lemma 4.11 The set CJ(R) is dense in L*(R). (In fact in any LP, p > 1).
Based on the above density statement we state and prove the

Lemma 4.12 (Moving average lemma) Let p e L be a non-negative function of total mass 1:
p(z) =0, §pdz = 1. Define py(z) := np(nz) so that Spnda: =1 for allne N.

For an arbitrary f € L' define fn(z) := (f * pn)(z) = §z pu(@ — h) f(h)dh ("moving average”).
Then | fo = fl1 — 0.

Proof. We start with f € CJ(R) and compute

S
8
S~—
|
=
8
S—
_—

i)
3
=
=
8
|
>
S~—
oy
=~
|
=
.
)
[I=
o
—
)
S
=
7N

Fle—h)— f(x))dh (4.3.17)

Consequently we have

fu@) = 1), < [ o [ put)| =0 = s@an = [ o | plo)|r (2= 2) = o] -

ot [l (e 2) - s 439

Since f € C then Af := f (w — %) — f(z) is also in C§ and for any s € R it converges uniformly to
0 as n — oo. Using dominated convergence we establish thus that

Tn(s) = JR do ‘f (x . %) - f(x)| (4.3.19)

is bounded, positive and tends to zero. Thus the whole integral (4.3.18) tends to zero.

If f e L' is now arbitrary, then a simple density argument using the triangle inequality shows
that f, — f in L% |
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Theorem 4.13 (Injectivity of the Fourier transform and invertibility) Let f € L' be such
that f belongs to L*. Then f(az) = f(x) almost everywhere (a.e.).

Proof. We use the moving average lemma 4.12 with

p(x) = %le—k 7= @) (4.3.20)
We know that //)\i = pn because of exercise 4.9:
pn(h) = fR dh pm (p)e™. (4.3.21)
Thus
(F*pu)@) = [ anfa=1) [ angmmet. (4.3.22)

Since § dh|f(z — h)| §z dp|pm(p)| < © we can apply Fubini’s theorem and exchange the order of
integrations in (4.3.22):

(f * pu) () = fR ap jR dh i (p)e™ f(z — h) =

~ [ ap ) | ab sa - meren -
R R

~

= 27TJ dp f ()™ pim (p) Ex’=”f dp f(p)e™ e (4.3.23)
R R

In this last expression we can pass to the limit m — o0 inside the integral sign because we have

assumed that f € L!; the limit gives f{ (z). On the left side, using the Moving Average Lemma 4.12
we have also that the limit converges in L' to f(x) (i.e. almost everywhere). [

A more elementary approach

Given the importance of the subject we provide a more direct proof of invertibility (but for stronger
assumptions on f). For this we need the

Lemma 4.14 (Riemann—Lebesgue lemma) Let a f(x) be absolutely integrable on R. Then

w .
lim f f(x)edx = 0.
—00

A—00

Proof:

We start from a simple exercise: the characteristic function, x4 of an interval [a, b] has the
Fourier transform

0 i b \ | o kb
f € Xfap) () = f eNdr = (e — ') = ez

— ° J 4.3.24
o . i A ( )
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which clearly tends to zero as |A| — .
Next: a function f € L'(R) can be uniformly approximated in the L! norm by a finite linear
combination of characteristic functions of bounded intervals (i.e. by a simple function):
Vfe L'(R) Ve>0 3g(x) simple : J |f —gldx < e (4.3.25)
R
This statement should be familiar in the context of Lebesgue integration and it is a consequence of
monotone convergence.

For any simple function g(z) it follows from (4.3.24) and from the finiteness of the sum appearing
in the simple function, that its Fourier transform tends to zero as |A\| — oo:

Vge L'(R), simple,Ye >0 3R>0: |\ >R = [§(\)]<e (4.3.26)

We combine these two properties with the triangle inequality yields the result as follows. Let
f € L' and g simple within 7e distance (in L!') from f. Then let R as in (4.3.26). We conclude
from the linearity of the Fourier transform that for all |A\| > R we have

Fovl = [F) =g+ ol < | [ m‘;;+;<

J It )24 L < (4.3.27)

This is the definition of limy_ \f(/\)] =0.

The above proof extends to higher dimensions by using the same steps and characteristic func-
tions of bounded multi-intervals. |

We also need

Exercise 4.15 (Dirichlet integral) Prove that

w .
f ST g = I (4.3.28)
0 T 2
Proof. Consider the function
w .
G(t) := j et Sm(m)dx, t>0. (4.3.29)
0 x
We can compute its derivative
®© 1
G'(t) = J{) e Msin(x)dx = 1ig (4.3.30)
from which it follows that
G(t) = —arctan(t) + C. (4.3.31)
Since clearly G(t) — 0 as t — 00, we conclude that
G(t) = g — arctan(t). (4.3.32)
Thus lim;_,¢+ G(t) = §. [ ]
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Theorem 4.16 Let the absolutely integrable function f(z) be differentiable at any point x € R.
Then

R A~ .
lim f f(p)e*dp = f(z). (4.3.33)
“R

R—o0
Remark 4.17 In this theorem the integral is the standard Riemann integral.
Proof: Denote Ig(x) the integral in the left hand side of (4.3.33). Using continuity and uniform

convergence of the Fourier integral (4.3.2) we can apply Fubini theorem to this integral and thus
rewrite it as follows:

R ) R oo ) A
o) = [ iwerap= [ (o[ swemay) iy

0 R o) : _
o [ ([ ) =2 ™I,
R ™ J_—o0

o —o T —y

- 1JOO f(m—i—s)SinRSds = 1JOO [f(x+s)+ f(x—s)] SiHSRSds.

T J_ o s 7 Jo
Using the Dirichlet integral (4.3.28) we can rewrite the difference Ir(x) — f(x) in the form

In(x) - f(z) = ”:O St o) 2@ IC5) G g,

Because of differentiablity
g FE ) 2@+ fams) o S = f) | f@o ) < FE)

s—0 S s—0 S s—0 S

the integrand
flats)—2f@)+flz=s) o,

S Y

F(s;z) =
0, s=0
is a continuous functions in s depending on the parameter z. In order to complete the proof of the
Theorem let us represent the last integral in the form

foof($+8)—2f(x)+f(x—8)
0

1
sindes=f F(s;x)sin Rsds
0
o
sindes—Qf(z)J sin 2 s

1 S

S

® fla+s)+fla—s)
.

ds.

S

The first integral in the r.h.s. vanishes according to the Riemann-Lebesgue lemma. The same is
true for the second and third integrals. Finally the last integral by a change of integration variable

x = R s reduces to » R o .
sin R s sin x
f d8=f dr — 0 for R — o0.
1 S R T
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Exercise 4.18 Let f(x) be an absolutely integrable piecewise continuous function of x € R differ-
entiable on every interval of continuity. Let us also assume that at every discontinuity point xo the
left and right limits f_(xo) and fi(xo) exists and, moreover, the left and right derivatives

lim f(zo +5) — f—(z0) and  lim f(zo +5) — fi(z0)
s—0— S 5—0+ S

exist as well. Prove the following modification of the inversion formula for the Fourier transform

f(x), x is a continuity point

R
}%im f f(p)e*dp = (4.3.34)
—®J-R M, x is a discontinuity point

Hint: re-trace the proof of Theorem 4.16. Replace f(x) in the definition of F(s;x) by M

The main property of Fourier transform used for solving linear PDEs is given by the following
formula:

Denote by F,_,, the map of the space of functions in x variable to the space of functions in the
variable p given by the Fourier transform:

Foop(f) = f(p). (4.3.35)

The inverse Fourier transform will now be denoted F,_,,. The property formulated in the Lemma
4.6 says that the operator of z-derivative transforms to the operator of multiplication by the
independent variable, up to a factor 7:

Fon (41) = 0ol (4.3.30)
and p
Frop (z f) = idfp}—acﬁp(f) (4.3.37)

valid for functions f = f(x) absolutely integrable together with xf(x). We leave the proof of this
formula as an exercise for the reader.

4.3.2 Extension to R"

For completeness we give the definition of Fourier transform in n—dimensions; we denote by x =
(x1,...,2yn) and p = (p1,...,pn). Then

FUIP) = e | P F " (4.3.38)
F ) = [ e Prgp)dp (1.3.39)
The properties that we have stated for n = 1 extend as follows
(F )60 = | dhrc—myg(h), (4.3.40)
and
F(f*9)(p) = (2m)"f(P)3(p)- (4.3.41)

The formulation of the interplay of derivatives and Fourier transform is left as exercise.
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4.4 Solution to the Cauchy problem for heat equation on the line

Let us consider the one-dimensional Cauchy problem for the heat equation

du _ 20%

— = t>0
ot Yo

(4.4.1)
u(x,0) = (), xeR.

Theorem 4.19 Let the initial data ¢(x) be absolutely integrable function on R. Then the Cauchy
problem (4.4.1) has a unique solution u(x,t) absolutely integrable in x € R for all t > 0 represented
by the formula

) = [ 60 o) ay (4.4.2)

where G is the Gaussian distribution

1 _ 22
e 4a%t, 4.4.3
2a+/7t ( )

G(z;t) =

The integral representation (4.4.2) of solutions to the Cauchy problem is called Poisson integral.

Remark 4.20 We have the following remarks:

1. The formula above is rewritten also using the convolution operator as
u(a,t) = (Glo51)  6) (@) (4.4.4)

2. Even if ¢ € L' is not continuous/differentiable, one observes that u(x,t) is C* for any t > 0;
thus the heat equation “regularizes” (or has a smoothing effect) on the initial datum. Note
that the formula does not make sense for negative times (for general ¢ ).

Proof: Denote |
u(p,t) = f u(z, t)e”Prdx
2m J_o
the Fourier-image of the unknown solution. According to Lemma 4.6 the function 4(p,t) satisfies
equation

= —a’p*a(p, ).

This equation can be easily solved

2,2

ap,1) = lp, 0)e 7,

Due to the initial condition we obtain

a(p,0) = d(p) = % Lo o(w)e P d
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Thus A L,
ap,t) = p(p)e™ . (4.4.5)

It remains to apply the inverse Fourier transform to this formula:

uwst) = [ it iy = o [ (et [T e ay)
o | ot ([ erteneiay) gy

The integral in p is nothing but the (inverse) Fourier transform of the Gaussian function. A
calculation similar to the above one gives the value for this integral

0 2
f ip(z—y)—a’p’t g _ VT _?
e P = e 4a?t

This completes the proof of the Theorem. |

Remark 4.21 The formula (4.4.2) can work also for not necessarily absolutely integrable functions.
For example for the constant initial data ¢(x) = ¢o we obtain u(x,t) = ¢o due to the following

integral
_=p?

4a2t dy = 1 (446)

2a/7t J_

4.4.1 Heat equation in R?

We can similarly pose and solve the Cauchy problem inR? as follows:

ou

gu _ 2
5 = hu, >0 (4.4.7)

u(x;0) = p(x). (4.4.8)

The idea is to take the Fourier transform of both sides in x; we proceed a bit formally (without
great regards to inversion of order of derivatives and integrals) and we obtain

ou
= (1) = —a*|p[*a(p, 1) (4.4.9)
where |p| = Z?Zl p? is just the square of the Euclidean norm of p. This ODE is easily solved:

i(p,t) = e IPI*G(p, 0) (4.4.10)

This now appears to be the product of two Fourier transforms, where

L S S (TR - e S (4.4.11)
(a?mt)2 Jrd

Therefore the Poisson kernel (or "heat kernel”) is defined as
1 BE

G(x;t) := ————e 4a?t. (4.4.12)
(4a2mt)z
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This allows us to solve the Cauchy problem (4.4.7) as a convolution exactly as before;

1 _lx—y|?

u(xit) = (G30)+0)x) = | ay e o(y). (4.4.13)

We will now use the Poisson integral (4.4.2) (or (4.4.12) in order to prove an analogue of the

maximum principle for solutions to the heat equation.

Theorem 4.22 The solution to the Cauchy problem represented by the Poisson integral (4.4.2) for
all t > 0 satisfies

inf ¢(z) < u(z,t) < sup ¢(z). (4.4.14)

zeR z€R

Moreover, if some of the inequalities becomes equality for somet > 0 and x € R then u(x,t) = const.

Proof: The inequalities (4.4.14) easily follow from positivity of the Gaussian function and from
the integral (4.4.6). Due to the same positivity the equality can have place only if ¢(z) = const.
But then also u(x,t) = const. [

Corollary 4.23 The solution to the Cauchy problem (4.4.1) for the heat equation depends contin-
uwously on the initial data in the sup norm.

Proof: Let uj(x,t), ug(x,t) be two solutions to the heat equation with the initial data ¢, (z) and
¢2(x) respectively. If the initial data differ by e, i.e.

|p1(x) — pa(z)| <€ VreR
then from the maximum principle applied to the solution u(x,t) = uy(z,t) — ua(z,t) it follows that

‘ul(xat) - ’U,Q(Z’,t)| S€

|
4.5 Mixed boundary value problems for the heat equation
Let us begin with the periodic problem
ou 2(32u
T ﬁ t>0
w(z +2m,t) = u(z,t), t>0 (4.5.1)
u(z,0) = o(x)

where ¢(x) is a smooth 27-periodic function.
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Theorem 4.24 There exists a unique solution to the problem (4.5.1). It can be represented in the
form

27
uwt) = o= [ O —yito@)dy, >0 (45.2)
™ Jo
where Y
O(z;t) = Y e @ mitine, (4.5.3)

nez

Proof: Let us expand the unknown periodic function u(x,t) in the Fourier series:

u(z,t) = Yt (t)e™

neZ
2w

1 A
Up(t) = J u(x,t)e” " dx.
27 0
The substitution to the heat equation yields
Ot (t)
ot

— —a’n?a,(t),

SO
2n2¢

in(t) = G, (0)e™0", neZ.

At t = 0 one must meet the initial conditions, hence we arrive at the formula
'&n(t) = (Z)ne_(ﬂn%

. 1 2?7 ,
bn=5 | oyl ™dy.
™ Jo

For the function u(zx,t) we obtain

1 o —a‘n in(x—
(e, t) = o ) fo e~ N (E=Y) () dy,

neZ

In order to complete the proof of the Theorem it suffices to show that the series (4.5.3) converges
absolutely and uniformly for all x € R and all ¢ > 0. This easily follows from convergence of the
integral

o0
j ety < o0 for t> 0.
0

In a similar way one can prove that the series (4.5.3) can be differentiated any number of times.
The theorem is proved. |

The functioned defined by the series (4.5.3) is called theta-function. It is expressed via the
Jacobi theta-function

O3(¢p|7) = ). eminirming (4.5.4)

nez
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by a change of variables

Olwit) = 0(0|7), b ! (455)
x;t) = T =—x, T=i—. 5.

M 7 27[_ ) T

The convergence of the series (4.5.4) for Jacobi theta function takes place for all complex values of
7 provided

Im7 > 0. (4.5.6)

The function O(x;t) is periodic in z with the period 27 while the Jacobi theta-function is periodic
in ¢ with the period 1. It satisfies many remarkable properties. Some them will be now formulated
as a series of exercises.

Exercise 4.25 Prove that

27
f O(z;t)dr = 2. (4.5.7)
0
Exercise 4.26 Prove that the series
Z e—a’n?ttinz (4.5.8)
nez

converges for any complex number z = x+iy uniformly on the strips |Im z| < M for any positive M.
Derive that the theta-function (4.5.3) can be analytically continued to a function ©(z;t) holomorphic
on the entire complex z-plane.

Exercise 4.27 Prove that the function ©(z;t) satisfies the identity

O(z+ 2ia’t; t) = e“zt_iZG(x; t). (4.5.9)
The complex number 2ia’t is called quasi-period of the theta-function.

Exercise 4.28 Prove that the theta-function has zeroes at the points

Tpe =72k +1) +ia’t (20 +1), k,leZ. (4.5.10)

Exercise 4.29 Prove that the theta-function has no other zeroes on the complex plane. Derive
that, in particular
O(z;t) >0 for xzeR. (4.5.11)

Hint for the last two exercises: Compute the integrals

1 [dO(zt) 1 dO(z;t)

omi | O(z,t) 2mi ) O(z1)
C C

over the oriented boundary of the rectangle
C={0<z<2m 0<y< 2%}

on the complex z-plane, z = x + iy. The first counts the number of zeroes inside, the second
computes the sum of their positions. o

Another proof of positivity of the theta-function follows from the following Poisson summation
formula that is of course of interest on its own.
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Lemma 4.30 (Poisson summation formula) Let f(x) be a continuously differentiable abso-
lutely integrable function satisfying the inequalities

[f@)] < CA+]a) % fp)l < CL+p) "

for some positive €. Here f(p) is the Fourier transform of f(x). Then

> f@m) =), fm). (4.5.12)

neZ meZ

Proof: We will actually prove a somewhat more general formula
Z f(z+2mn) = Z f(m)e™=. (4.5.13)
neZ meZ

Since the function in the left hand side is 27-periodic in x, it suffices to check that the Fourier
coefficients ¢, of this function coincide with f(m). Indeed, the m-th Fourier coefficient of the left

hand side is equal to
1 (% A
= 2 —imx .
c a7 ), ( E flz+ 7rn)> e dx

nez

Due to absolute and uniform (in x) convergence of the series

Z f(z + 2mn)

neZ
one interchange the order of summation and integration to arrive at
1 2m )
Cm = — Z f f(z + 2mn)e " dz.
2m nez Y0

Doing a shift in the n-the integral
y =+ 2mn

one rewrites the sum as follows:

2m(n+1) ) ) © ) A
e = QL Z f f(y)efzmyf%mmndy _ 1f f(y)efzmydy — f(m)

nez Y2 27 —00

since e~ 2mimn — 1 [ |

Using the Poisson summation formula we can prove the following remarkable identity for the
theta-function.

Proposition 4.31 The theta-function (4.5.1) satisfies the following identity

1 _(:c+27rn)2
O(z;t) = a\/fZ e 4%t . (4.5.14)

neZ
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Proof: It can be obtained by applying the Poisson summation formula to the function

Remark 4.32 The formula (4.5.14) is the clue to derivation of the transformation law for the
Jacobi theta-function under modular transformations

r T e deZ. ad—be=1.
ct +d

Let us now consider the first mixed problem for heat equation on the interval [0,1] with zero
boundary conditions:

ou 282

E = a EWoL 0 <z < l, t>0

w(0,t) = u(l,t) =0 (4.5.15)
u(z,0) =¢(z), 0<z<l

Like in Section 2.6 above, let us extend the initial data ¢(z) to the real line as an odd 2l-periodic
function. We leave as an exercise for the reader to check that the solution to this periodic Cauchy
problem will remain an odd periodic function for all times and, hence, it will vanish at the points
x =0 and = = [. In this way one arrives at the following

Theorem 4.33 The mized b.v.p. (4.5.15) has a unique solution for an arbitrary smooth function
o(x). It can be represented by the following integral

[
w(z, t) = HO O (x,y: )b (y) dy (4.5.16)

where

(x,y;t) =2 Z smﬂ81 @ (4.5.17)

4.6 More general boundary conditions for the heat equation. So-
lution to the inhomogeneous heat equation

In the previous section the simplest b.v.p. for the heat equation has been considered. We will now
address the more general problem

2
‘;7:— 20U 0, 0<z<l (4.6.1)

02
u(0,t) = fo(t), wu(l,t) = fi(t), t>0
u(z,0) = ¢(z), O0<z<l.
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The following simple procedure reduces the above problem to the b.v.p. with zero boundary
condition for the inhomogeneous heat equation

Eza@—i-F(x,t), t>0, O0<z<l (4.6.2)
v(0,t) =v(l,t) =0, t>0

v(z,0) =®(x), 0<z<l
where the functions F'(x,t), ®(z) are given by

dfo(?) N % (dfl(t) B dfo(t))]

Pl - - |

dt dt dt
(4.6.3)
(@) = 6(x) = [ fo(0) + T(f1(0) = fol0)) |
Indeed, it suffices to do the following substitution
u(e,t) = vla,t) + [ folt) + T(f1(0) = folt) | (4.6.4)

observing that the expression in the square brackets is annihilated by the operator 02/dz2. More-
over, the function in the square brackets takes the needed values fy(t) and fi(¢) at the endpoints
of the interval.

In the more general case of multidimensional heat equation with non-vanishing boundary con-
ditions
ou
ot
u(z,t)|zeon = f(z,t), t>0
u(x,0) = ¢(z), x€

=a?Au, t>0, rzeQcR? (4.6.5)

the procedure is similar to the above one. Namely, denote ug(z,t) the solution to the Dirichlet
boundary value problem for the Laplace equation in x depending on ¢ as on the parameter:

Aug =0, zeQcR? (4.6.6)
uo(z,t)|zeo0 = f(,1).

We already know that the solution to the Dirichlet boundary value problem is unique and depends
continuously on the boundary conditions. Therefore the solution ug(z,t) is a continuous function
on © x R-(. One can also prove that this functions is smooth, if the boundary data f(x,t) are so.
Then the substitution

u(z,t) = v(x,t) + uo(x,t) (4.6.7)

reduces the mixed b.v.p. (4.6.6) to the one with zero boundary conditions
v(x,t)|geon =0, t>0
with the modified initial data

v(z,0) = ¢(x) —up(x,0), x€f
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but the heat equation becomes inhomogeneous one:

% = a’Av + F(x,t), F(z,t)=—

Oup(x,t)

Fra x € (.

We will now explain a simple method for solving the inhomogeneous heat equation. For the sake
of simplicity let us consider in details the case of one spatial variable. Moreover we will concentrate
on the infinite line case. So the problem under consideration is in finding a function w(z,t) on

R x R+ satisfying

Ju N
ot Ox2
u(z,0) = ¢(z).

The solution is found using the same Duhamel principle explained in Sect. 2.8.

Theorem 4.34 The solution to the inhomogeneous problem (4.6.8) has the form

wat) = [(ar [~ Go—yit=n) Sy + [ G-y o) dy

—0Q0

where the function G(x;t) was defined in (4.4.3).

Proof: As we already know from Theorem 4.19 the second term

ug(x,t) = Jm Gz —y;t)o(y) dy

—o0
in (4.6.9) solves the homogeneous heat equation and satisfies initial condition
’LLQ(l',O) = ¢(x)
The first term
t ©
w(et) = [ dr [ G-yt =) 5wy
0 —00

clearly vanishes at t = 0. Let us prove that it satisfies the inhomogeneous heat equation

6u1 _ 252’&1

Denote o
v(x,t;7) =f Gz —y;t—7) f(y,7)dy.
—0

(4.6.8)

(4.6.9)

Like in the Theorem 4.19 we derive that this is a solution to the homogeneous heat equation in z,¢
depending on the parameter 7. This solution is defined for ¢ = 7; for ¢t = 7 it satisfies the initial

condition
v(z,7;7) = f(, 7).
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Applying the heat operator to the function
t
ui(z,t) = J v(x,t;T)dr
0
one obtains

LD uen=vetn s [ (&l v in = oo = S
5~ @A | wlt) = vzt a @ o | vz, tr)dr = v(x, 1) = f(z,1).

4.6.1 A caveat
Let us reconsider the infinite rod case with zero boundary condition:
Up = Ugg, u(z,0) =0. (4.6.10)

If we do not assume that u isin L' for ¢ > 0 then the uniqueness fails. The following (counter)example
is provided by Tychonov.

Let f(t) = e (and extended to f(0) = 0). A calculus exercise shows that f and all derivatives
of f(t) at t = 0 exist and are zero.

Define
u(w, t) = éof(n) (t)é:;!. (4.6.11)

The series is absolutely convergent for all ¢t > 0, 2 € R and we can differentiate under the
summation symbol. A direct inspection then shows that u(x,t) solves the DE with zero initial
conditions. The key to reconcile the apparent contradiction is that u(x,t) is unbounded in z for
any t > 0.

Indeed, in deriving the solution we tacitly assumed that u(x,t) is L' in x for ¢ > 0 (since we took
the Fourier transform). Thus our derivation would not apply if we allow u(x,t) to be unbounded
in the x—direction.

In general the uniqueness holds if we add the following “boundary conditions”

lim sup |u(zx,t)] =0. (4.6.12)
T=ED0 4 (0,7
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4.7 Exercises for Chapter 4

Exercise 4.35 Let the function f(x) belong to the class C¥(R) and, moreover, all the functions

f@), f'(x), ..., f*®(x) be absolutely integrable on R. Prove that then
A 1
flp)=0 <pk’> for |p| — oo. (4.7.1)

Exercise 4.36 Let f(p) be the Fourier transform of the function f(x). Prove that ei“pf(p) is the
Fourier transform of the shifted function f(x + a).

Exercise 4.37 Find Fourier transforms of the following functions.

1
f(z) = Ha(z) { 0, otherwise (4.7.2)
f(z) =1 a(z) coswz (4.7.3)
1(q - lal
fla)={ 4 (1 A) o lel< A (4.7.4)
0, otherwise
f(z) =cosazr® and f(z)=sinaz® (a>0) (4.7.5
fz) =272 and f(z)=|z|"ze  (a>0). (4.7.6)
Exercise 4.38 Find the function f(x) if its Fourier transform is given by
flp)=e Pl k>o. (4.7.7)

Exercise 4.39 Let u = u(x,y) be a solution to the Laplace equation on the half-plane y = 0
satisfying the conditions

Au(z,y) =0, y>0

u(z,0) = o(x)

u(z,y) >0 as y— +oo forevery xzeR (4.7.8)

1) Prove that the Fourier transform of u in the variable x

a( ) — i OO fimcd
Py =5 u(z,y)e T
—00

has the form
i(p,y) = (p)e ¥,
Here ¢(p) is the Fourier transform of the boundary function ¢(z).
2) Derive the following formula for the solution to the b.v.p. (4.7.8)

u(z,y) = % f OOOO mqﬂs) ds. (4.7.9)
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Exercise 4.40 Show, by a (formal) use of the Fourier transform and convolution theorem, that

y'(z) —y(x) = f(z) (4.7.10)

has a particular solution of the form

yp(z) = —% f_woo e~ 175l f(5)ds. (4.7.11)

Then show directly by differentiation that this expression is a valid solution if f(x) is continuous
and absolutely integrable.

Exercise 4.41 Using Poisson’s summation formula, compute:

2\ sin(ak O rgin(ak)\ 2 o )
(a) ];1 Eﬂ; (b) Z( ;>>; (c) EOM (@#0).  (47.12)

k=1

(d) Using the same formula, show that the function
1
w(t) := Zet Z omnrelt (4.7.13)
neZ

is even: w(t) = w(—t).
Remark (x) Consider the cosine transform of w

o(p) = LOC w(t) cos(tp)dt.

Show that it has only real zeros. If you manage let me know.

Exercise 4.42 Consider the Heat kernel on R
1 o2

e 1a%t 4.7.14
VAara?t ( )

Why is it obvious that G(-;t) x G(-;s) = G(x; s + 1) ? (i.e. without computing).

G(x;t) =

Exercise 4.43 This exercise gives an alternative proof of Riemann—Lebesque lemma. Suppose that

lim
a—0 Jp

f(z)— f(zx +a)|de =0 (4.7.15)

(for example: f € L' and p.wise continuous). We can show that f(p) — 0 as |p| — o as follows:
first show that

2y —ipa—m)dT T\ _ipe do
f(p)——JRf(fv) = ij<m+p> e (4.7.16)

Then note that 2f(p) = § (f(:v) —f (iL’ + %)) eiprdr,
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Exercise 4.44 Solve the problem

1 a2
(DE) : Up = a gy + me 1a%t (4.7.17)
(IC): u(z,0) = 0. (4.7.18)

Exercise 4.45 Let f(x) be p.wise continuous, bounded.

0

e Show that u(z,t) = - {* e f(z+2sVat)ds is the solution of the heat equation u; = %z,

™ o0

with 1C u(x,0) = f(x).

e using Dominated Convergence show that if f is continuous at xo then u(xg,t) — f(xo) for
t — 04. What happens if f is discontinuous at xo but both one-sided limits exist?
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Chapter 5

Non homogeneous Heat equation and
Sturm—Liouville theory

5.1 Generalization of the homogeneous rod

If we reconsider the derivation of the heat equation in Sect. 4.1 when the thermal conductivity k,
the specific heat capacity ¢ and the (linear) density p depend on the position, we get a more general
PDE

c(z)p(x)uy(z,t) = (k(x)ug(x,t)), - (5.1.1)

On a finite (or infinite) rod, the method of separation of variables is still viable; seeking a solution
of the form wu(z,t) = T(x) X (z) gives promptly

Ti(t) _ (kXa)a

= 5.1.2
T(t) epX ( )

and hence one is lead to studying the second order ODE
(kX2)z = AepX. (5.1.3)

This equation fall in the general framework of Sturm—Liouville theory which we set out to analyze.

Definition 6 The Sturm—Liouville problem consists in finding solutions of the ODE

(DE)  (P(2)fe(z))e + Q@) f(x) = —AR(2)f(z), wel (5.1.4)

where I is an interval and P € C*(I), Q,R € C°(I) are given functions; the function P(x) is
a positive function on I, P(x) > 0. If the interval I is bounded I = [a,b] then the problem is
supplemented by general boundary value conditions (BVCs)

(BC) arf(a) + aeP(a)f(a) =0 B1f(b) + B2P(b)f(b) = 0. (5.1.5)

where the constants aj, B; (not identically zero) are part of the data of the problem.
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The values of the constant \ for which there exist solutions of (5.1.4) + (5.1.5) are called the
eigenvalues of the Sturm-Liouville problem.
If P, R are strictly positive on I then the problem is called regular.
If P> 0 on (a,b) and R > 0 and P(a) = P(b) = 0 then the problem is called singular.
If we are in the finite-interval case I = [a,b] and impose boundary conditions f(a) = f'(b) and
f'(a) = f'(b), then we speak of the periodic problem.

The conditions (BC) include both Dirichlet and Neumann like conditions, depending on the
choice of the values of the constants «;, 85, j = 1, 2.

If P,@, R are constant functions, we are reduced to the problem we have already studied in the
context of the wave equation.

Definition 7 The form of the Sturm—Liouville equation (5.1.4) is called self-adjoint form.

Any second order ODE of the form
Hp] = Pa(2)¢"(z) + Pi()¢(z) + Po(z)p(x) = 0 (5.1.6)

can be recast in the form (5.1.22) by a simple change of dependent variable; indeed, setting p(z) =
w(z) f(x) for a function p(z) to be determined, the equation (5.1.6) becomes

P (uf” +2u' f + u"f) + P (uf/ + u’f) + Popf =
= uPof" + (2Pop + Prpp) f' + (Pop” + Py’ + Pop) f =0 (5.1.7)

To identify with the equation £[f] = 0 and £ given by (5.1.22) we need to impose P = Pu and

P,
(Pop) =2Pop’' + Pip = P’ +(PL—P)u=0 = pu=Pyexp (—JP;da:) . (5.1.8)

Example 5.1 The (parametric) Bessel equation

22y + xy’ + (N2 —m*)y =0 (5.1.9)

is recast in the self-adjoint form (5.1.4) by dividing by x:
2
zy +y + <)\2x - ”;) y =0 (5.1.10)

so that P =, Q:—m—2, R =z

xT

Example 5.2 The Legendre differential equation

2z u
" /
— +
Vo1 Yt

=0 5.1.11
22 ( )
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1s equivalently written

El —22)y" — 2zy +py =0 (5.1.12)

"

<(1—x2)y/>/

and hence it is of the form (5.1.4) with P = (1 —2%), Q =0, R =1.

Example 5.3 The Chebyshev equation
(1—a22)y" —xy +n%y =0 (5.1.13)

can be recast in the form (5.1.4) by dividing by v/1 — x? so that
2

x n
\/1—3:2 =0 5.1.14
4 \/1—x2 . \/1—952 ( )

()

<

— — 2 _ _ 1
so that now P =+/1—x%, @Q =0, R—m.

Example 5.4 Consider the SL problem

(DE) f"+\f =0, zel0,L], L< g (5.1.15)
(BC) f(0)— f(0)=0; f(L)+ f(L)=0. (5.1.16)

Let us find the spectrum (eigenvalues) of this problem.

For A < 0 it is easy (exercise) to see that there is only the trivial solution. Let A > 0: then
the solution of the DE is

f(x) = Acos(zV\) + Bsin(zv\). (5.1.17)
Imposing the BCs gives the system for A, B

A—+VAB=0 .
Acos(LVN) + Bsin(LvV) + \fA( — Asin(LV)) + Bcos(L\/X)> = (5.1.18)
The problem has nontrivial solution if and only if the matrix is degenerate:
1 —VA
det = =LV 1.1
¢ { cos(q) — v Asin(q) sin(q) + v/ cos(q) ] 0. 4 VA (5.1.19)
Thus we have
(1 — ) sin(LVA) 4+ 2v/Acos(LVA) = 0 (5.1.20)
Since L < § the value A = 1 is not a solution; the eigenvalues are given by the implicit equation
2
tan(LV\) = f (5.1.21)

At this point one is usually reduced to a graphical analysis; considering that L < 7 the typical
spectrum consists of the intersection of the graphs of the two functions as in the Figure 5.1
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- tan(\/T L) ﬁ x=1

A—1

Figure 5.1: The spectrum of the Sturm-Liouville problem in Example 5.4. The horizontal axis is

the v/ axis. There is an eigenvalue in each interval v/ € (k:l (k+ 2)%), k=1,2,....

2L>

5.1.1 Spectral properties

Denote by £ the Sturm—Liouville linear differential operator

a1l = 3 (P ) + Qo)

Definition 8 Given an arbitrary linear differential operator H of the form

For example, the adjoint of H (5.1.6) is

d? d

H () = @(Pﬂﬁ) 1z

The relevance of this notion to our discussion is the following:
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(P1Y) + Pop = Py + (2P — Py + (Po + Py — P{)i.

(5.1.22)

(5.1.23)

(5.1.24)
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Proposition 5.5 The Sturm—Liouville operators L are formally self-adjoint: L = L*.

Proof. We have

LIf]=Pf"+ P +Qf. (5.1.26)
Thus the formal adjoint is

L'g] = (Pg)" — (P'g9)' + Qg = Pg" + 2P'g' + P4 — P*g— P4 + Qg =
=Pg" + P'g +Qg = L[g]. (5.1.27)

This completes the proof. |

The notion is intimately related to “integration by parts”. To explain this remark we prove

Proposition 5.6 Let I = [a,b] be a finite interval and consider the space
Coo = {f e C*(I): f satisfies the BCs (5.1.5)} (5.1.28)
Then, for every f,g € CJQBC we have

J fL[g]ldx = j gL[f]dz. (5.1.29)
1 I

Namely, L is symmetric on the domain C%C.

Proof. This is a direct computation:

b b
+J (—g'Pf’+ng>dx =

" jb <(g’P)'f + ng) dz — R+ Lfﬁ[g]dx (5.1.30)

a a

b
f g((Pf’)’ T Qf) dz = gPy'

a

b
—g'Pf

a

=gPf

where R is the contribution of the boundary terms. Because of the conditions (5.1.5) we have
g (b)P(b) = —g—;g(b) and similarly f’(b)P(b) = —%f(b) (we assume (2 # 0 and leave the case
B2 = 0 as exercise) and similarly for the values at © = a. Thus

W+W+W—W (5.1.31)

Thus we have proved the statement.

= (gPf -

The Proposition 5.6 has the following simple but important consequence.
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Corollary 5.7 [1] The spectrum of a regular Sturm-Liouville problem

L[f] = —AR(z)f(z) (5.1.32)

with any BC (5.1.5) is real.
[2] Eigenfunctions with distinct eigenvalues are orthogonal with respect to the standard inner product

in L*(I, R(x)dx).
Proof. [1] Recall that R(x) > 0 and that we are looking for a nontrivial solution of the equation

(5.1.32) within CJQBC. Suppose that A is an eigenvalue. Since P, Q, R are real-valued functions, we
can take the complex conjugate of the equation (5.1.32) and obtain that f satisfies

L[f] = —ARf. (5.1.33)

Now we multiply by f and integrate over I;

f L7 J)\Rf\ dz (5.1.34)

Using that £ is symmetric on the domain we obtain:

f Folf J)\Rﬂ dz (5.1.35)

Repeating the argument with the role of f and f interchanged and subtracting we obtain

b

b
_ f (FLIF) - FLlfN)dr = f (X — N R()| f*da (5.1.36)

a a

Since R(z) > 0 (strictly) on I, we conclude that A = X is real.
[2] Let A # u be two eigenvalues and f, g the respective eigenfunctions. Then

)\ff(x)g(aj)R(a;)dx = —f L[ flgdz Symgmy—f fL[g]dz u;uf pfgRdz (5.1.37)
I I I
Thus, taking the difference of the two sides of the equation we get:
(A= u)f wfgRdx = 0. (5.1.38)
I

Since A # p by assumption, the two functions f, g must be orthogonal. |

Theorem 5.8 (Simplicity of the spectrum) Consider a regular Surm-Liouville problem with
BC as in (5.1.5). Then the spectrum is simple, namely, if f1, fo are eigenfunctions with the same
etgenvalue, then they are proportional to each other.

Proof. Consider the function
W(z) := f3(a)fi(x) — fi(a)fa(). (5.1.39)
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Since it is a linear combination of fi, fo, it is also an eigenfunction with the same eigenvalue.
Assume that (f](a))? + (f5(a))? # 0. Then W solves

LIW] = —-ARW | W(a) = W'(a) = 0. (5.1.40)

By the theorem of existence and uniqueness for linear ODEs, we conclude W (x) = 0. If (f](a))? +
(f4(a))? # 0 then it means that both f; have zero derivative at z = a and hence they are linearly
dependent. |

5.1.2 Definite Sturm—Liouville operators

Theorem 5.9 Consider a reqular Sturm—Liouville problem
(Pf'Y +Qf = —=ARf (5.1.41)
with Q@ < 0 and with BC as in (5.1.5); we assume now that the signs of the coefficients o, B; satisfy
aray <0, P12 = 0. (5.1.42)

Then the eigenvalues are non-negative. If A\ = 0 is an eigenvalue, then necessarily Q(z) = 0 and

=1 =0.

Proof. Let A be an eigenvalue and f the corresponding eigenfunction, which we assume real
without loss of generality (the ODE is real and the BC are real, so both real and imaginary parts
of a solutions are solutions in their own regard). Then (we write Q = —|Q| to emphasize the
assumption on its sign)

A Rifpac = | cifipas = | ((Pf’)’ - Q|f> fdz =
b

— Jb (P(f’)2 v |Q\f2)dx (5.1.43)

a

The boundary terms are non-positive because P(a) > 0 < P(b) (the operator is regular) and
a1 f(a) = —asf'(a) so that f(a)f'(a) = 0. Similarly f(b)f (b) < 0 and thus

(5.1.44)

Therefore each term on the right side of (5.1.43) is non-positive and thus the eigenvalue A is = 0.
The only possibility to have A = 0 is that @ = 0, f' = 0 and (hence), ay = 31 = 0. |

5.1.3 Sturm comparison theorem

Consider the following motivating example
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Example 5.10 Suppose that A2 > A1 > 0 and y1,y2 are solutions of yj = —\;y; respectively.
We now see that between any two consecutive zeros of y; there is a zero of yo. Indeed y; =
Asin(v/ A1z + ¢) and yo = Bsin(y/Aex + §). The period of y; is longer than the period of y, and
thus between two zeroes of y; there is (at least) one zero of y;.

The above example is the motivation for the following theorem

Theorem 5.11 (Sturm comparison theorem) Let L[f] = (Pf’)+Qf with P> 0 and P',Q €
C%([a,b]). Suppose that fi, fo are two nontrivial solutions of the problems

(Pf1) + (MRi(z) + Q(z)) fi(z) =0, (Pf3) + (M2Ra(z) + Q(x)) fa(x) = 0. (5.1.45)

with R; € C°(I). Suppose that AaRo(z) = MRi(z) for z € I. Let a < 2 < w < b be two zeros of
f1 and assume that the inequality Ao Ro = A1 Ry is strict somewhere in between. Then between two
zeros a < z < w < b of f1 there is at least one zero of fo.

Remark 5.12 The theorem is stated in this form for convenience later on (only \;jR; enters).
Note also that in typical examples Rj(x) are analytic functions and hence the zeroes are isolated
and the inequality strict almost everywhere.

Proof. Let z,w be the two consequtive zeroes of y; and consider the following chain of equalities

f” (AQRQ—MRl)flfzdx: jww[fl]fg—z[fz]fodx‘“éP(f{fz—ﬁfﬁ) . (5.1.46)

z z z

w
Since f1 vanishes at the endpoints we are left with Pf{fa| Since f; has the same sign within the

interval [z, w] (and is not identically zero) it follows that f{(z) f1(w) < 0 (the two derivatives have
opposite signs). Note that fi(z) # 0 # f{(w) (why?, exercise).

For clarity and without loss of generality we can assume that f; > 0 in (z,w); then f{(z) > 0 >
f1(w). Thus the right side of (5.1.46) is fa(w)P(w) f1(w) — fa(2) f1(w) P(w) = — fa(w) P(w)|f](w)|—
f2(2) f{(w)P(w). Suppose that fo does not have any zero within (z,w) (w.l.o.g fo > 0): then
fa(w) = 0 < fa(2) and we have thus found the right side of (5.1.46) to be non-positive. But this is
in contradiction with the fact that the left side is strictly positive (it can’t be zero because of the
assumptions on \;R;). [

5.1.4 Existence of eigenvalues

For a general regular Sturm-Liouville problem there are infinitely many (countable) eigenvalues.
In order not to obfuscate the idea of the proof we consider a special case
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Theorem 5.13 Let L[f] = f” + Q(z)f(z) and R(x) > 0 and continuous on [a,b]. Consider the
problem

f@)" + Q) f(z) = —AR(z)f(x) (5.1.47)
fla) =0 = f(b) (5.1.48)
Let ®(x; \) be the solution of
" + <Q - )\R) b =0 (5.1.49)
D(a;\) =0, ®'(a;)) =1. (5.1.50)

Then ®(x; \) is jointly continuous and the problem (5.1.48) has infinitely many eigenvalues, bounded
from below A1 < Ag < ..., with lim,_ A, = +00. Furthermore the eigenfunctions f, have exactly
n nodes; the between two nodes of f, there is exactly one node of fn+1 (interlacing).

Proof. The proof exploits the Sturm comparison Theorem 5.11. Consider the function ®(b; A) as
a function of A\ (Evans’ function). Then we claim (why?, exercise) that its zeros are precisely the
eigenvalues.

First off we claim that ®(z; A) cannot have infinitely many zeros in [a, b], see Exercise 5.23.

We also know that ®(x;\) is continuous in A in the sup-norm (hence, jointly continuous) by
the general theory of (global) existence and uniqueness of solutions to linear ODEs.

Next, if g € [a,b] is a zero of ®, then ®'(xp;\) # 0 (why?) and hence necessarily ®(x;\)
changes sign at zo. Thus if )¢ is a value such that ®(b; A\g) # 0 then the number of zeroes in (a, b) is
constant in (Ao — €, Ao + €) for sufficiently small e. This reasoning shows that the number of zeroes
jumps by one exactly for A\; such that ®(b, A;) = 0.

We know from the Comparison Theorem that if ®(z; A) has a root at zo then for A > X there
must be a root at Ty < xg. In fact, as an application of the theorem of continuity with respect to
parameters, one could show that any root of ®(x;\) is a continuous decreasing function of A; the
fact that it is decreasing is precisely a direct consequence of the Comparison Theorem.

Combining this with the previous observations, we see that all the (finitely many) roots of
®(x; A) in (a,b) move to the left (but never cross = a because ®'(a, \) = 1).

It remains to show that zeroes do occur; to this end, let us compare ®(x; \) with the solution

of
F'+k°F =0, F(a;k)=0, F'(a;k)=1, = F(z;k) = %sin(k(w —a)) (5.1.51)
Let & > 0 be fixed and choose A sufficiently large so that
Q(z) + AR(z) > k* Vzx € [a,b]. (5.1.52)

This is possible because inf R = min R > 0 since R is continuous on [a,b]. Then F' plays the role

of fi in the comparison theorem 5.11 and ® of fs; between two consecutive zeroes of F' there is at

least one of ®. Clearly, for k large than ;- there is at least one zero of F in (a,b) and thus also
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one of ®. As k grows, the number of zeroes of F' grows as well, and thus the number of zeroes of
®(x;\) in (a,b)

Z(\) =tz e (a,b): Bz, \) = 0} (5.1.53)

is a monotonic, integer—valued function that grows without bounds. By the discussion above, the
points of discontinuity of Z(\) are the eigenvalues of the SL problem. Since we have shown that
Z(\) is unbounded, there must be infinitely many eigenvalues. [

Completeness of eigenfunctions

The important question we address now is the completeness of the eigenfunction set for a regular
Sturm-Liouville problem on an interval I (possibly infinite).

(PfY +Qf = =ARf; P,P',Q,ReC’I), P>0, R>0. (5.1.54)

The boundary conditions can be set in many different ways without changing the properties of
completeness. We will stick with (5.1.5) in the case of finite intervals (although one can impose
periodic boundary conditions as well). If I is (semi)-infinite we require that the solutions of the
problem be square-summable (L?).

Let
H = Ch(I) (5.1.55)

where the bar on top denotes the closure with respect to the norm of L?(I, R(z)dxz). We have seen
that there are infinitely many eigenvalues bounded from below which we label A\g < A; < ... and
correspondingly eigenfunctions fy, fi,...,.

Without loss of generality we assume that f,(z) are real-valued and that §,|f,[?Rdz = 1
(normalized).

We now want to give a (sketch of) proof of the following theorem

Theorem 5.14 (Completeness of eigenfunctions) The eigenfunctions {fn}nen form a com-
plete orthonormal set; namely, for every ¢ € H we have

N—-1
lim Hqs— 2 (& Fdfa| = 0. (5.1.56)

7=0

where the inner product and norm are in L*(I, Rdx).

Proof. Let us define (note the different use of the symbol £ in this proof, as opposed to earlier
in the chapter)

L[f] = ) [(Pf) +Qf] (5.1.57)
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In particular now the eigenfunctions satisfy simply L[ f,,] = A f5, with A, — +00. For every ¢ € C%,
be arbitrarily chosen we use the Rayleigh quotient

RWL=£@£@D (5.1.58)

($,9)
Define

Wy := Span{fo,..., fy_1}- (5.1.59)

The eigenvalues can be expressed by the following variational problems (Courant—Fisher)

Ao = ¢€r§1{i\?0}7€[q5]. (5.1.60)
Aj = ¢evr[2ir\1{0}72[¢]. (5.1.61)
Now fix ¢ € (31230 and define
N-1
On =0 Z;]<¢, Iifi e W (5.1.62)
j=

We assume that gbﬁ is nonzero for every N € N (otherwise there is nothing to prove). Because of
the variational property of the eigenvalues we have

Rlon] = A (5.1.63)

Using the orthonormality of the eigenfunctions one finds

N-—1
(N, LIOND = <, L[6]) — Y Py (5.1.64)
7=0
Therefore we have
1 N-1
o (O LD = X ey ) > ok (5:1.65)
=

where ¢; are the Fourier coefficients in the orthonormal system: ¢; = (¢, fn).

Recall that Ay — +00 and hence the eigenvalues are positive from some Ny onwards. This
allows us to write

1 No 1 N-1
w (@2~ Bly) > (@b~ D laly) et 516

The numerator in the left side of (5.1.66) is independent of N and thus the left side tends to zero
since Ay — o0. This way we have proved by the squeeze theorem that

lim |¢x|% =0 (5.1.67)
N—o0
which proves the completeness. u
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5.2 Examples

The above theorems allow generalizations of the ordinary Fourier (series) analysis. To see this
consider the simple SL problem

"+ Af=0, f(0)=0= f(L). (5.2.1)

We know that the eigenfunctions are sin(nw/Lx) with eigenvalues A, = (n7/L)?. The completeness
that we proved directly in the case of Fourier series follows from the general Sturm-Liouville theory.

There are other cases of class of functions of great importance in applications and we report on
some of them.

For each SL problem one obtains a different “Fourier series” decomposition theorem where the
role of sin(nz) is played by the eigenfunctions of the SL problem.

5.2.1 Separation of variables in polar and spherical coordinates

In solving the heat or wave or Schrodinger equations:

(W) : uy = c2Au
(H) : Uy = kQA’U,
(9): ihW, = <—§;A + V(:E)) v (5.2.2)

it is convenient to rewrite them in different coordinate systems and seek factorized solutions, espe-
cially depending on the geometry of the boundary conditions (and the group of invariance of V (&),
called the ”"potential” of the Schrédinger equation).

The separation of variables between the time ¢ and the space variables immediately brings about
the Helmholtz equation (A + A?)u = 0. In turns this equation needs to be solved according to
the supplementary boundary conditions. In the case of the Schrodinger equation we get the ”time
independent” Schrodinger equation

( h? S . 2
g B4 VD) ) 5(EN) = V(@A) (523

5.2.2 Spherical coordinates

Exercise 5.15 Show that in R? the Laplace operator in the spherical coordinates (r,$,0) € Ry x
[0, 7] x [0,27) reads as follows

A
RrR+R = 1o (r2a)+i s (sin¢a)+i(92 (5.2.4)
Ty TR 2 T2 \sing ? ¢ sin?¢ ¢ o
where
r =rsin¢cosh , y =rsingsinf | Z =1 oS ¢. (5.2.5)

and Ag2 indicates the Laplace operator on the sphere with the induced Riemannian metric.
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Thus the Helmholtz equation can be solved by separation of variables u(r, ¢,0) == R(r)Y (¢, 0) =
R(r)®(¢)©(#). In the case of the Schrodinger equaton with a potential V' that depends only on
the distance r we the equation can also be effectively separated. In either cases we get something
of the form

(PR 1 AgeY  (FPR) 1 (singd') 1 e
r’R r2 Y  r2R(r)  r? ®sing r2sin? ¢ ©

=\ -V(r) (5.2.6)

Thus we need to find first off the eigenfunctions/eigenvalues of the Laplace operator on the
sphere S2, called spherical harmonics:

5¢<sin qﬁ(%Y&m)) 1

AYyn(0,0) = pYym = L +1)Y, 0 5.2.7

n(6,6) e g Ve =~ DYin(0.0) (527)

where we anticipate that the spectrum of consists of the numbers —¢(¢ + 1) for £ = 0,1,2,... and
m = —/, ..., ¢ labels the eigenfunctions with the same eigenvalue.

This equation can be further factorized Yy, (¢,6) = @1 (0)O, () and we are lead to three
equations (where the constants of separation of variables are written in this form for later conve-
nience)

d’R 2dR 04+1)
—_— + —— Vir)y —-————=—-X)R=0 5.2.8
dr? + r dr + < (r) r2 ( )

m2
% ((1 — x2)d§im> + (E(E +1) - 12) Pun=0 (z=cos¢e[-1,1]) (5.29)

0" +m?0 =0 (5.2.10)

The continuity and boundedness of the solution implies that © must be periodic and Py, (x) should
be bounded at x = +1. This implies immediately that m = 0,1,2,... and © = A,, cos(mf) +
By, sin(m@).

The values of the parameter £(¢ + 1) are determined by the boundary conditions (the equation
(5.2.9) is an irregular Sturm-Liouville problem because the function K of the general form (5.1.4)
vanishes at the endpoints). We anticipate that ¢ = 0,1, ... turns out to be a nonnegative integer.

Remark 5.16 There is a simple way of describing spherical harmonics in R™. In general it can
be shown that A = r'="0,.(r""10,) + T%Aan.

Take a homogeneous polynomial P(Z) of degree { that satisfies AP = 0 ; since r0,P(Z) =
(P(Z) we see that

L +n—2)

r2

1 1
0=AP=10"""0, (" ?P) + 5 Agn1P = P+ —5AgnP (5.2.11)
r r

so that we conclude that any harmonic polynomial, restricted to the sphere r = 1 gives an eigen-
function of the Laplace operator of the sphere with eigenvalue —¢(¢ + n — 2). It can be shown that
all spherical harmonics come in this form.

Furthermore (Miles-Williams, ”A basic set of Homogeneous Harmonic Polynomials in k vari-
ables”, Proc. AMS ’55) one can actually construct such harmonic polynomials.
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Radial equation in spherical coordinates

The radial equation (5.2.8) depends on V (r); we focus now on that equation for V(r) = 0.

Proposition 5.17 The solutions of the radial equation on r > 0 (radial Bessel functions)

&R 2dR , e+ 1)
2 2 _ 2.12
dr? * r dr * ((_))\ i ) R=0 (5 )
are of the form
(1L ZRiw) (5.2.13)
rdr 0 -

where RE are the solutions of the equation (5.2.12) for £ =0

ag cos(r) + bg sin(r) R _ % cosh(r) + bg sinh(r) (5.2.14)
) _ 2.

T r

RSP =

Proof. The proof for £ = 0 is a direct inspection (the change of variables R(r) = f(r)/r turns
the equation into a constant—coefficient equation for f). For the proof of the first statement the
interested reader is referred to, e.g. [?Basic Partial Differential Equations” (Bleecker-Csordas "92),
section 9.4.]

A direct proof can be obtained by playing with commutators. Let

2 2 (1.
L:=0; + ;&, Qp:=r ;@ . (5.2.15)
One verifies by induction that
(0+1
(£, Q] = ( 3 )Qe- (5.2.16)

Suppose we have proved (5.2.16) and Ry is a solution of LRy = cRy for some ¢. Then we define
Ry := Q)R and

Z(E;rl)QeRO: <C+£(£J2rl)> O, Ry —
r r

_ <C L e 1)) Ry, (5.2.17)

LRy = L(QiRy) = QLRy +

r2
which proves the theorem.

To verify the formula (5.2.16) we observe the following commutation relations
2 1 2
aI‘ = 7&7‘7 sy | & _767
L£,0r] 72 [£ r} r2
1 £+1 1 L /
Qpyy = <rar> = ‘o, <rar> = 0rQp — ;Qe (5.2.18)

Using (5.2.18) one verifies the induction step directly without obstacles. |
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Angular equation and spherical Harmonics: Legendre functions

The functions
Yo (,0) = Pun(cos(¢))e™, meZ (5.2.19)

are called spherical harmonics because they are eigenfunctions of the Laplace operator on the
2—sphere

The functions Py, (x) solve (5.2.9) which we now analyze.

Consider first the ODE
!
((1 - xz)u’) +Au =0 (5.2.20)

with the boundary condition that u(x) is bounded at x = +1.

Proposition 5.18 The solutions of (5.2.20) which are bounded at +1 occur only for A = £({ + 1)
and £ € N. They are given by the Legendre polynomials

1 d*((z%2 - 1)")

Py=1 Pp= = — )
0= 5 ST dzn ’

0=1,2,... (5.2.21)

which are alternatively written as

1< 0\ (29) o,
Pg(m)zwsgo(—w <>Mx2 £ (5.2.22)

S

Proof. The fact that P, solves the ODE is derived by differentiating (¢ + 1) times the equation

d
(2 = 1) (¢ - 1) = 262(2? — 1) (5.2.23)
x
(Exercise)
The equation (5.2.20) in normal form is

p 2z, A

u — u + U=
1— 22 1— 22

0 (5.2.24)

which shows that the solutions are defined in the interval (—1,1) but in general have a singularity
at one or both endpoints.

If u = f(z) is a nontrivial solution then so is f(—z); thus f(x) 4+ f(—x) and f(x) — f(—=x) are
solutions as well and at least one of them is nonzero.

We now show that if u is an even or odd solution to (5.2.20) and bounded at +1 then it is a
the Legendre polynomial.

We seek power-series solution u(z) = > ja,z™ and plugging into the equation yields the
recurrence relation
(n—1)(n—2)— A
n(n —1)

an = An—2. (5.2.25)
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We claim that the solution is a polynomial if and only if A = ¢(¢+1) for £ = 1,2, .... The sufficiency
is clear; if A = /(¢ — 1) we see that ay = 0 even if ay_5 # 0. Subsequent terms in the series are also
all zero and v has the same parity as £.

For ¢ ¢ N the series is infinite and standard criteria show that the radius of convergence is
1. It is known also that the only singularities of a solution to the ODE (5.2.20) can be poles at
the singularities of the coefficients (this we don’t show but it is a standard result in the study of
Fuchsian singularities of ODEs in the complex plane). Thus z = 1 or &z = —1 (or both) are a pole
and the solution cannot be bounded. (One can prove directly that the solution is unbounded at
x = 1 because the coefficients have all the same sign for n sufficiently large and the series can be
estimated by the harmonic series from below. See Courant—Hilbert’s texbook, pag. 326). |

The general equation for Py, is obtained as follows.

Definition 9 The Legendre functions of m-th order are defined by

m

dam

40
2

Prm(z) := (1 — %)

Py(z) (5.2.26)

Proposition 5.19 The Legendre functions Py, solve the ODE (5.2.9)

d APy, 2
dx((1—x2) di >+(£(£+1)—1Tx2>Pgm:0 m=0,1,....0.  (5.227)

and are only solutions which are bounded at x = +1. For m > { there are no bounded solutions.

Proof. We give a sketch of the proof but we won’t prove that they are the only bounded
solutions. Taking the derivative of (5.2.20) with A\ = £(£41), and defining u,, := V1 — 22" 7" Py(x)
one sees that it solves (5.2.27) by direct computation. Note also that if m > ¢ the proposed
expression yields the trivial solution (because Py is a polynomial of degree /). |

5.2.3 Separation in polar coordinates: Bessel equation.

Exercise 5.20 Show that in R? the Laplace operator in polar coordinates (r,0) € Ry x [0,27) reads
as follows

1

1 1 1
02+ 00 = ~0r (rdy) + T—Qag =02+ ~0r+ ﬁag. (5.2.28)

where

x =rcosb , y = rsinb. (5.2.29)
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In this case the Helmholtz (Schrédinger) equation leads to

d’R  1dR m?

—_— + —— Vi )——=+ X )R=0 5.2.30
dr? +7’d7’+< (r) r2 * ) ( )
0" +m?0 =0 (5.2.31)

Note that (5.2.30) and (5.2.8) differ only in the coefficient in front of R’. The Bessel (or cylindrical)
equation is the case with V(r) = 0:

1 5 m?
R'(r) + ;R’(T) + (A — T2> R(r)=0 (5.2.32)
or, in self-adjoint form,
m2
(rR') — R+ MrR =0 (5.2.33)

The interval is typically [0,00) or [0,a]. In either case this is an irregular problem because the
function K (z) = z in (5.1.4) vanishes at one of the endpoints.

In keeping with the introduction to the chapter we will consider the case of the wave equation
(or heat) on a circular membrane;

r?F" +rF + (PN —m*)F =0, F([R)=0 (5.2.34)

With the transformation p = Ar the problem is recast into the ODE

d? 1dF m?
—F +-—— 1-— | F=0. 5.2.35
a2 Todp " ( P > ( )
F) =0 (5.2.36)
where £ = R\ and we recall that m = 0,1,2,... is an integer because the only periodic solutions

of (5.2.10) occur for m € Z (as we have observed in the study of the Laplace equation in two—
dimensions).

Proposition 5.21 Consider the Bessel equation on R
22" v zf + (22 -mAf=0 (5.2.37)

Then any solution has infinitely many zeroes on R .

The proof is contained in the two Exercises 5.24 and 5.25.

Expressions for the Bessel functions are contained in Exercises 5.30 and 5.31
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Figure 5.2: The first few modes of the membrane; the plot is of Jy, (A, n7) cos(mf) for m = 0,1, .., 4
(rows) and n = 0,1,2,3 (columns), r € [0,1], § € [0, 27].

The circular membrane

Suppose now that we want to solve the Helmholtz equation for the circular membrane (disk) i.e.
with the need to solve the ODE with boundary condition

d?R  1dR m?
i i Mo JRr=0 R(p) =0 5.2.38
T +( 7‘2) ’ () ( )

and also R(r) bounded at r = 0. Then we see that the Bessel function J,,(Ar) is a solution of
the ODE and that A needs to be chosen so that Ap is one of the zeroes of J,,,. We know from the

Proposition 5.21 that there are infinitely many zeros and so there are infinitely many eigenvalues.
A plot of the first few Bessel functions is in Fig. 5.3

For each m = 0,1,2,... denote by Ap, s, s = 1,2,... the positive zeroes of J,,(z); Then the
solution of the Heat equation

ur = kz(uxw + uyy) (5.2.39)
u(z,y,t) =0,  a?+y*=p’ (5.2.40)
uly_g = ¢z, y) (5.2.41)

is of the form

0
u= 13 Ao Amist g, (AM%) e'mf (5.2.42)

meZ s=1
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Figure 5.3: The plot of the first few Bessel functions.

where we have used the fact (see Ex. 5.30) that J_,,(z) = (—1)"J,,(z). The coeflicients of A,, s
are the Fourier coefficients of ¢ and are given by

1
A =
e Qm s

)

2m 0 )
[ a8 [ ot 01 g Oy /i (5.2.43)
0 0

Remark 5.22 If ¢ depends on r alone, then we have the ”Fourier—Bessel series” of order 0 for
the function ¢.
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5.3 Exercises for Chapter 5

Exercise 5.23 Show that for any fired X\ the function ®(x;\) solving (5.1.49) in Thm. 5.13
cannot have infinitely many zeroes in [a,b]. Hint: If there were infinitely many zeroes, they would
accumulate somewhere. Show that the derivative at the point of accumulation is zero and deduce a
contradiction.

Exercise 5.24 Show that if fi,(x) is a solution of (5.2.37) and we pose Y, = /T fm(x) then the
function y,, solves the ODE

1/4 —m?
Y+ (1+/m)y=0, x>0 (5.3.1)

22

Exercise 5.25 Let Uy, (x) := (1 + 1/4x_2m2>. Show that for every e > 0 we have the inequality

Un(z)>1—¢, ze <:7Eoo> (5.3.2)

Deduce that the solution y,, (and hence fy,(x) has infinitely many zeroes on the positive half-line.

Exercise 5.26 Find eigenvalues A\, and eigenfunctions y, of the Sturm—Liouville problem
(DE) : v +Ay=0, zel0,L], (5.3.3)
subject to the BC'’s

(@) y(0)=0; y'(L)=0;  (b) y'(0)=0=y'(L). (5.3.4)

Solution to Problem (5.26) (a) For A < 0 we have y = sinh(4/|\|z) to match the condition at
0. To match the condition at L is impossible because 3’ is never zero for  # 0. For A = 0 we have
a straight line with zero slope (because y'(L) = 0 and starting from zero; hence also trivial. So we
are left with A > 0.

We must have y = sin(v/Az); v/ (L) = v/Acos(v/AL) = 0 and hence
1 /7w 2
M= 75 (5 n lm) . k=0,1,2,.. (5.3.5)
(the negative k’s give the same set of eigenvalues).

(b) For A < 0 we must have y = cosh(v/Az) (v/(0) = 0) and 3/(L) = v/Asinh(v/AL) = 0 which
has only v/A = 0 solution. For A = 0 we have the constant solution yo(z) = 1. For A > 0 we have

2
y =cos(VAz), o(L)=VAsin(vV/AL)=0 < \= (%T) , n=12,.... (5.3.6)
|
Exercise 5.27 (a) Show that every real value A is an eigenvalue of the problem
(DE): "+ Xy =0, z € [0,1]
(BC): y(0)—y(1) =0,  ¢/(0)+y/(1) =0 (5.3.7)
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(b) Show that the problem

(DE): y"+Xy=0, z€el0,n]
(BC): 7y(0) + —y(m) =0, 7y (0) + ¢/ (7) =0 (5.3.8)

has no real eigenvalues.

Are the above examples in contradiction with Theorem 5.13%

Exercise 5.28 (a) Show that every linear second order ODE
Poy" + Piy + Pyy =0 (5.3.9)

(with Py > 0 and Py, PyP1, Py continuous) can be transformed in an equation in self-adjoint form
by multiplication with exp (S PIP;Q%da:). (b) Transform the following ODE’s in self-adjoint form;

G) 2% +ay + (@ —m?)y=0, 2>0 (Bessel)

() (1—2®)y" —22y +mm+1)y=0 ze[-1,1] (Legendre)

(i) (1—22)y — a2y +m?y=0 ze[-1,1] (Chebyshev)

(iv) ¢" =2z +2my=0 xR (Hermite)

(iv) a2y +(1—2)y +my=0 zeRy (Laguerre) (5.3.10)

Exercise 5.29 Consider the Legendre polynomials

1 dY((@® — 1))

P, =
£ oty da’

(5.3.11)

(a) Show that they are orthogonal to each other in L*([—1,1],dx). Deduce that they are obtained
by Gram-Schmidt orthogonalization process from the ordered basis {1,z, 2%, ..., 2", ...} of L?.
(b) Consider their generating function

G(z,t) == i Py(x)t* (5.3.12)
£=0

Show that it equals

1
V1 — 2ty + t2
Hint: express Py as a residue using Cauchy’s formula. Swap sum and integral and find a geometric

series. Evaluate the resulting integral.
(c) Deduce that

G(z,t) = (5.3.13)

1
2
f 1 Pidx = TR (5.3.14)
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Exercise 5.30 Show that the following two series are solutions of the Bessel equation (5.2.32) for
mé¢ N and X\ =1 (for X # 1 a simple rescaling can be used):

Inlo) = (2)" 3 LA

— nl(m +n)!
\-m S (—x2/4)"
= (5) " S i (5:3.15)

n=0

Show also that for integer m J_p,(z) = (—=1)"Jy(x). Using that the Wronskian of two independent
solutions of (5.2.32) is W = exp(—{1dz) = % deduce that there can be at most one bounded
solution at x = 0.

Exercise 5.31 [1] Show that the following integrals

(s a1 ("
I (2) = § ezu_tlhm'lzé_sz‘(DS(WW——ZQHGD)dG, meZ (5.3.16)
0
jo[=1

give a solution of the equation (5.2.32);
s 1, m?

[2] Show that the above Bessel functions solve the recurrence relation

LHKA+LWAQ:2?LA@. (5.3.18)
[3] Show that
% (2" Im(2)) = 2" Im—1(2). (5.3.19)
[4] Compute
0 —pr B 1
Jo Jo(z)e PPda = 7m, (p>0). (5.3.20)

Give a formula for

a0
f Im(z)e Pd, m=12,..., p>1 (5.3.21)
0

Solution of part [1]. We use the expression with the cos:

J = L sin(f) sin(nf — z sin 9)% (5.3.22)
" T -2 . d9
J, =— | sin®(0)cos(nb — zsin 9)? (5.3.23)
0
(5.3.24)
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We compute J' by parts

J = f sin(#) sin(nf — z sin 9)% =
0 s
= —cos(f) sin(nf — zsin(0))| + J cos @ cos (nf — zsinf) (n — zcosh) =
o Jo
0
= njcos@cos(n@ — zsinf) — zJ, + zf sin?(6) cos(nh — zsinf) =
0

= nfcos&cos(n& —zsin®) — 2J,, — zJ),

Rearranging the terms above we have shown

1
I+ =J) 4 Ty = L fcos@cos(n@ — zsin0)
z z

Thus
1 2 " 2 trig. i
Tp + =Ty + <1 - 712) Jn = nj cos 0 cos(nf — zsinf)— — n—zjn i
z z z 0 T z
=%(5in(2’51n 0))’ =—%(cos(z sin(0))’ ,
s — _N_\
= J cos(n#) cos(z sin @) cos O + sin(nf) cos  sin(z sin §) o _ n—QJn -
Z Jo z
n (" n n dg n?
p; L (z sin(nf) sin(z sin @) + ~ cos(nf) cos(z sin )2 3

=cos(nf—zsin )
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Chapter 6

Introduction to nonlinear PDEs

6.1 Method of characteristics for first order quasilinear equations

Let us recall (see Section 1.5 above) the procedure of construction of the general solution for the
first order linear homogeneous equation

ou —Zdla-(x t) Ou (6.1.1)
(7t_i:1 N Oy o
Here and below = = (x1,...,24). One has to consider the system of equations for the characteristics

of (6.1.1)

a'cz-zai(:r,t), ’i=1,...,d
t=—1.
Using t as the parameter along the characteristics one can recast the above system into the form

dl‘i
dt

+a(z,t)=0, i=1,...,d. (6.1.2)

Any solution to the system (6.1.1) is a function u = wu(x,t) constant along the characteristics.
Recall that such functions are called first integrals of the system of ODEs (6.1.2).

In order to construct the general solution to (6.1.1) one has to find d independent first integrals,

i.e., d particular solutions vy (z,t), ..., vg(z,t) to the PDE (6.1.1) satisfying the condition
81}1/8951 e 01)1/@336[
det #0 (6.1.3)
61}d/ax1 e 6vd/&xd

at a given point (z9,t9) € R* x R. Then the general solution to the PDE (6.1.1) near this point
can be written as follows

u(z,t) = U (vi(z, 1), ... ,vq(z, t)) (6.1.4)

where U(uy,...,uq) is an arbitrary smooth function of d variables. Indeed, the following simple
statement holds true.
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Proposition 6.1 Let u(x,t) be a solution to the Cauchy problem for the equation (6.1.1) defined
in a neighborhood of the point (xg,tg) and satisfying the initial condition

u(z,ty) = ¢(x), |z —mo| <p (6.1.5)
with a smooth function ¢(x) defined on the ball |x — xo| < p for some positive p. Then there exists
a smooth function U(vy,...,vq) on some neighbourhood of the point

u’ = (vf,...,v) = (vi(x0,%0), - . ., val(wo, to)) € R?

such that the solution u(x,t) can be represented in the form (6.1.4) for |v — xo| < p1 for some
positive p1 < p.

Proof: Applying the theorem about the inverse mapping to the system

v1 = vi(x, o)

vg = vq(, o)

one obtains smooth functions

X1 =x1(v1,...,vd)

g = fUd(Ul»---yUd)

defined on some neighborhood of the point u" and uniquely determined by the conditions

This can be done due to the assumption (6.1.3). We put

Ulur, ..., uq) = ¢ (z1(w1, ..., uq), ..., za(u1,. .., ud)).

Such a function gives the needed representation of the solution u(x,t). [

Let us now consider a quasilinear equation, not necessarily homogeneous. By definition such
an equation has the form

d
; u, X, t) é’atz + b(u, x,t) (6.1.6)

with the coefficients a1 (u,x,1), ..., ag(u,x,t), b(u,x,t) being smooth functions on some neighbor-
hood of a point (ug,zo,to) € R x R? x R. The following trick reduces the problem (6.1.6) to the
previous one. Let us look for solutions to (6.1.6) written in the implicit form

flu,x,t) =0 (6.1.7)
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where f(u, x,t) is a smooth function defined on some neighborhood of the point (ug, Xg, t9) satisfying
the condition
fu(uo,x0,t0) # 0. (6.1.8)

According to the implicit function theorem, the assumption (6.1.8) implies existence and uniqueness
of a smooth function u(x,t) defined on some neighborhood of the point (xg,%) € R? x R and
satisfying u(xg, tg) = ug. Let us derive the condition for the function f that guarantees that u(x,t)
satisfies (6.1.6). According to the implicit function theorem the partial derivatives of the function
u(x,t) determined by (6.1.7) can be written in the form

du  fi(u,x,) ou  fa(u,x,t)

g = m, axz = m, 1 = ]., “e e ,d. (619)

The substitution to (6.1.6) yields a linear homogeneous PDE for the function f of d + 2 variables

of & of of
= = D ai(u,x,t) = = blu,x, 1) = (6.1.10)
i=1 ¢

The solution f(u,x,t) to this PDE with the initial data chosen in the form
flu,x,tp) = u— P(x) (6.1.11)
give a solution to the original PDE (6.1.6) specified by the initial data
u(x,to) = ¢(x), |x—%o| <p (6.1.12)

for some positive p. Note that the function ¢ must satisfy ¢(xg) = ug. The PDE (6.1.10) can be
solved by the method of characteristics. The characteristics in the (d + 2)-dimensional space with

the coordinates u, x1, ..., 4, t can be determined from the following system of ODEs
Ox:
% +ai(u,x,t) =0, i=1,...,d
(6.1.13)
0
a—? = b(u,x,t).

Like above, one has to find (d + 1) independent first integrals, i.e., (d + 1) particular solutions
folu,x,t), ..., fa(u,x,t) satisfying

8fo/6u 5f0/5$1 “ee (9f0/(9xd
afl/au afl/axl e (9f1/(91‘d

det # 0 (6.1.14)
8fd/6u &fd/&:cl PN 6fd/6xd

at the given point (ug,xg,%o). The general solution to the PDE (6.1.10) can be represented in the
form

flu,x,t) = F (fo(u,x,t), fi(u,z,t),..., fa(u,x,t)). (6.1.15)
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The smooth function F' of (d + 1) variables has to be determined from the Cauchy data (6.1.11)

F (f()(u, X, to), ey fd(u, X, to)) =Uu— ¢(X) (6.1.16)

Then the function v = u(x,t) is the function defined implicitly by (6.1.16).
The local existence and uniqueness of such a solution is established as before.

Let us consider in more details the case of quasilinear homogeneous equations in one spatial
dimension with coefficients independent from x and ¢

up = a(u)uy. (6.1.17)

The equations for the characteristics become very simple in this particular case:

d
di; +a(u) =0
(6.1.18)
du
— =0.
dt
The solutions are straight lines
u = const, x + a(u)t = const. (6.1.19)
Thus the general solution can be written in the implicit form
x +a(u)(t —to) = f(u). (6.1.20)

The function f(u) has to be determined from the initial condition
u(z, to) = ¢(x).
This gives
z=[f(p(x)).

The solution to the last equation exists if the initial function ¢(z) is monotonous near the point
x = xg. Then the function f coincides with the inverse function ¢—1.

Example. In the proof of the Cauchy—Kovalevskaya theorem we arrived at the following Cauchy
problem

Mn
Ut = 1—%1}’01
M
v(z,0) = T
p—x

(see (7.2.26) above). The general solution to the PDE in the implicit form reads

for an arbitrary function f(v) to be determined by the initial data. To do this one has to solve the

equation
Mz

p—x

Vv =
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for z. This gives

v
x = Mp—i—v =: f(v).
Thus the solution to the above Cauchy problem has to be determined from the algebraic equation
z+ 1]\_47;1) - Mpiv. (6.1.21)
This coincides with (7.2.27).
For the particular case a(u) = c=const the equation
ut + a(u)ug =0 (6.1.22)

describes propagation of waves with constant speed c. The characteristics in this case are just
parallel lines
T =ct+ xg.

We will now concentrate our attention at the simplest example of a nonlinear PDE of the above
form
v+ vvy =0 (6.1.23)

called Hopf equation. This equation can be used as the simplest example of equations describing
motion of an ideal incompressible fluid. The fluid can be considered as a system of an infinite number
of particles distributed with some density p that in the incompressible case will be assumed to be
constant. The particles can be “labeled” in two different ways. In the Lagrange parameterization
one can label the particles by their positions £ € R at a certain initial moment of time. The motion
then will be described by a pair of functions

r =x(&,t) (6.1.24)
v=uov(,1)

where x(§,t) and v(&,t) are the coordinate and the velocity of the particle with the “number £” at
the moment ¢. By definition we have

o0x(&,t)
ot

In the Euler parameterization we just follow the motion of the particle passing through the point
x at the moment t. Any physical quantity f assigned to every particle (e.g., the temperature' of
the particle) will be characterized by a function f = f(z,1t).

= (&, t). (6.1.25)

Proposition 6.2 If the quantity f is conserved, i.e., it depends only on the initial position of the
particles, f = f(§), then the function f(x,t) satisfies the equation

afgi’t) + ”(“"’t)(w —0. (6.1.26)

Tn the case f=temperature of the water in the river the function f(z,t) is obtained by measuring the temperature
sitting on the beach while f(&,t) can be measured from the boat drifting freely along the stream of the river.

131



Proof: By using the chain rule along with (6.1.25) we obtain

_d _ofdx of Of of
e Ay A A A
|
Exercise 6.3 In the three-dimensional case of a fluid moving with the velocity v = (vg, vy, v;)
derive a similar equation for dependence of a conserved quantity f = f(x,y,z;t):
0 0 0 0
o + vz—f + vy—f + vz—f = 0. (6.1.27)

ot ox oy 0z

Let us consider the free motion of an ideal compressible fluid; we recall that this means that
the fluid does not oppose any ”resistance” to being compressed, as opposed to an incompressible
fluid, for which the velocity field must satisfy divey = 0 at all times; clearly in dimension 1 the
incompressibility forces v to be independent of x and hence nothing interesting can happen.

Thus, in the case of a free ideally compressible fluid, no external forces act on the particles of
the fluid. Because of this the momentum of every particle conserved. From the Proposition 6.2 one
immediately obtains

Corollary 6.4 For the free motion of an ideal incompressible fluid the velocity v(x,t) satisfies
equation (6.1.23).

According to the general procedure the Cauchy problem for the equation (6.1.23) with the initial
data

v(z,0) = ¢(x) (6.1.28)

for small time ¢ can be written in the implicit form

x=vt+ f(v) (6.1.29)
f(o(x)) = .

on every interval of monotonicity of the initial data ¢(x). Let us try to figure out what can happen
when the time is not that small.

The solution v = v(x,t) to the equation (6.1.29) exists provided the conditions of the implicit
function theorem hold true:
t+ f'(v) #0. (6.1.30)

At the moment where fails, let’s say tg,vp, the function vt + f(v) is not locally monotone any
more, so the equation (6.1.29) cannot be solved for v. Let us assume for simplicity that the initial
data is a globally monotone decreasing function. Then the inverse function f(v) will be monotone
decreasing as well. Denote t( the first moment of time for which the function X (v,t) := vt + f(v)
becomes not a monotone function at some point vg. Since tg is the first such time, the function
X (v,tp) must be decreasing on the left and the right of v = vy, and hence vy must be an inflection
point of the graph
x=vt+ f(v)

i.e., at this point one must have

f”(vo) = 0.
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Figure 6.1: The Hopf-evolution. Each point (x,v) on the graph of v = u(x,t) travels to the right
with constant speed equal to v; after the time of catastrophe the solution given by the method of
characteristics loses significance because it is not a function of x any longer.

In this way we arrive at 1the following “bad points” (x¢, to, vg) where the implicit function theorem
does not work any more. The coordinates of these points can be determined from the following
system

xo = voto + f(vo)
to+ f'(vo) =0 (6.1.31)
f"(vo) = 0.

Such a point (zg, to) is called the point of gradient catastrophe. The solution to the Cauchy problem
(6.1.28) exists for all z € R only for ¢ < tp; the derivatives u, and u; become infinite at the point
of gradient catastrophe.

133



Example 6.5 Consider the Hopf equation with the initial datum (see Fig. 6.1)

p(x) =e " (6.1.32)

We can find the inverse function in the two intervals Ry :
fi(v) = +vV=Inv,  ve(0,1] (6.1.33)
Then the two branches evolve according to the implicit equations
x =vt+ fi(v) (6.1.34)

The point (xo,v9) = (0,1) follows the characteristic line xo(t) = vot =t and for each t fived we can
expect two branches of the solution in the intervals (—oo,t) and (t,0).

For t # 0 we cannot explicitly invert the equation (6.1.34) but we can nonetheless plot the
parametric curves z = Xy (v,t) = vt + f4(v); the plots for various times are in Fig. 6.1.

Let us find the point of gradient catastrophe: we have

1 21 1
:$7L: = Vo = € % = t0=—f/(e_5)=

~ 1.1658 (6.1.35)
4 (~1n(v))20?

iy
@
sl

and xo = /2. For times t > to the parametric curves cannot be functions of x.

6.2 Higher order perturbations of the first order quasilinear equa-
tions. Solution of the Burgers equation

As we have seen in the previous section the life span of a typical solution to the equations of motion
of an ideal incompressible fluid is finite: the solution does not exist beyond the point of gradient
catastrophe. Such a phenomenon suggests that the real physical process can be only approximately
described by the equation (6.1.23). Near the point of catastrophe higher corrections have to be
taken into account.

We will consider two main classes of such perturbations of Hopf equation: Burgers equation
Ut + VU = b Vpp (6.2.1)
and Korteweg - de Vries (KdV) equation
Vg + Vg + Vppy = 0. (6.2.2)

The small parameters p and € will be assumed to be positive. The Burgers equation arises in
the description of one-dimensional waves in the presence of small dissipative effects; the small
parameter p is called the wviscosity coefficient. The Korteweg - de Vries (KdV) equation describes
one-dimensional waves with no dissipation but in the presence of small dispersion. It turns out that
in both cases the perturbation, whatever small it be, resolves the problem with non-existence of
solutions to the Cauchy problem for large time. However we will see that the properties of solutions
to the equations (6.2.1) and (6.2.2) are rather different.
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Let us first explain in what sense the equation (6.2.1) has to be considered as a dissipative
equation but there is no dissipation in (6.2.2). First observe that both equations have a family of
constant solutions

v =c.

We will now apply the general linearization procedure in order to study small perturbations of
constant solutions. The idea is to look for the perturbed solutions in the form

v(x,t) = c+ ov(x,t). (6.2.3)

The perturbation is assumed to be small, so we will neglect the terms quadratic in dv. In such a
way we arrive at the linearized Burgers equation

ovp + €Oy = 14 OVgy (6.2.4)
and the linearized KdV equation
Svt + € OUy + €203, = 0. (6.2.5)

Let us look for the plane wave solutions to these equations:
Sv = aez’km—iwt‘

The substitution to (6.2.4) and (6.2.7) yields the dispersion relation between the wave number k
and the frequency w. Namely, we obtain that

w=ck—ink? (6.2.6)

for Burgers equation and
w=ck— k3 (6.2.7)

for the KdV equation. We conclude that the small perturbations of the constant solutions to the
Burgers equation exponentially decay at ¢ — +o0

v = qetlE—c—nk*t |ov| = \a|e*“]Czlt -0
while for the KdV equation the magnitude of small perturbations remains unchanged:
ik(x—ct)+ie2k3t

v=ae , |ov] = |al.

We postpone the explanation of the dispersive nature of the KdV equation till Section 6.4. We
will now concentrate our attention on the solutions to Burgers equation. We will first prove global
solvability for (6.2.1) for a suitable class of initial data.

Theorem 6.6 The solution to the Cauchy problem

v(m, 0) = ¢($)

for the Burgers equation (6.2.1) exists and is unique for all t > 0. It can be represented in the
following form

(@, t) = —2%‘11%{2 \/ert f; exp [—(”“’4;?;)2 _ ;M fo Y o) dy/} dy} (6.2.8)
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Proof: The central step in the derivation of the formula (6.2.8) is in the following

Lemma 6.7 (Cole - Hopf transformation). The substitution

v = —2,u%10gu (6.2.9)

transforms the Burgers equation (6.2.1) to the heat equation

U = [ Ugg- (6.2.10)

Proof: We have
UtUgy — U Uyt

’Ut=2
H w2
u% — U Ugy
Ve = 2T e
U

U UpUgy — U Ugpy — 2u%

Vgg = 20 w3

After substitution into the Burgers equation and division by (—2u) we arrive at

u (U — PUgs), — Up (W — PUgg) 0 Up — PUgy

0= -
u2 ox u

So, if u = u(x, t) satisfies heat equation (6.2.10) then the function v given by (6.2.9) satisfies Burgers
equation. m

We can now complete the proof of the Theorem. The solution to the heat equation (6.2.10)
with the initial data u(z,0) = ¢ (x) can be represented by the Poisson integral

( t) 1 joo _(ac;y)2 ( )d
= pt .
WO =y mat )¢ viy)dy

According to (6.2.9) the initial data for the Burgers and heat equations must be related by
¢(x) = —2p [logp(z)], -

Integrating? one obtains

Hence . )
u(x, t) = ! f o i S o) dy' dy.
’ 2Tt J_o
Applying the transformation (6.2.9) one arrives at the formula (6.2.8). m

Example. Let us consider the solution to the Burgers equation (6.2.1) with the step-like initial
data

p(x) = { borso (6.2.11)

-1, >0

2Tt is easy to see that another choice of the integration constant changes u — cu with a nonzero constant ¢. Such
a change leaves invariant the logarithmic derivative % log u.
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Integrating one obtains the initial data for the heat equation The Poisson integral gives the solution
in the form

So

=
=

t 1 JO - (m4_yt)2 72ld + JOO - (14_yt)*2 +2id
R — e o w e m W
2ympt | o Y 0 Y
1 0 7(y—x+t)2+t72z 0 7(y—x—t)2 +t+2;v
— e 4t m d —+ e apt Em d
2y/mpt [foo Y J;) Y

—leﬁ <€ﬁ+€_ﬁ> +leﬁ e Erf vl — ¢ % Exf vt
2 2 2/t 2/t

where

is the error function.

0.3

-D.5

-1.0

Fig. 7. Graph of the error function

Observe that the error function takes values very close to +1 away from the interval (—2,2); near
the origin it is well approximated by the linear function with the slope

s

Erf/(0) = \Qf ~ 1.128.
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Substitution to the formula (6.2.8) gives, after simple computations, the solution to the Burgers
equation with the step-like initial data

sinh £ + 1 [eQuErf T+t - +e 3 Erf 5 ]
o(zt) = —— " ? vk t 2V t (6.2.12)
+
coshﬁ + 5 [62#Erf fﬁ — e ZErf fﬁ]

When ¢t — +0 the arguments of the Erf functions tend to +oo for x > 0 or x < 0 respectively. So
for positive x the numerator and the denominator both tend to sinh 5 + cosh 5, thus the function
v(x,t) tends to —1. For negative x the numerator tends to sinh ﬁ — cosh ﬁ, and the denominator
tends to cosh 57 — sinh 57, thus v(z,t) — +1.

It is also easy to describe the large time asymptotics of the solution (6.2.12). Indeed, for t — +o0
one has

T+t o r—t
23/t T2/t
Hence T
tl}gloov(:c t) = —tanh T (6.2.13)

Observe that for small p the limiting curve is very close to the original step-like profile.

—_ 10
N\ =00
t=1.0 his
-4 -2 \ 2 4
-05) |

-1.0

Fig. 8. Solution to the Burgers equation with p = 1 with the step-like initial data (6.2.11)

From Fig. 8 it is clear that, for small time the solution v(z,t) departs rapidly from the initial
data but then the deviation becomes more slow. The next picture suggests that the smaller is the
viscosity p the closer to the initial step-like data remains the solution.
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Fig. 9. Solution to the Burgers equation with p = 0.2 with the step-like initial data (6.2.11)

Exercise 6.8 Prove that the solution (6.2.12) for any x, t (with t > 0) for p — 0 tends to the
step-like function (6.2.11).

One can prove that, more generally speaking a generic solution to the Burgers equation in the
limit of small viscosity 4@ — 0 tends to a discontinuous function within a certain region of the
(x,t)-half-plane. In fluid dynamics such discontinuities can be interpreted as shock waves. The
proof of this statement will not be given in the lectures. Our nearest goal is to study the behaviour
of generic solutions to the Burgers equation for g — 0. In the next section we will introduce a
necessary analytic tool for such a study.

6.3 Asymptotics of Laplace integrals. Stationary phase asymp-
totic formula

If we rewrite the solution of Burgers’ equation (6.2.8)

o = [ (52 o))

f (z — y)e”w B dy
R

= —2ud; In [J eﬂlﬁs(y;x’t)dy] = (6.3.1)
R of f ok Swt) gy
R
where the phase function S(y;z,t) is in our case
o y—2)? 1Jy _y-2)? 1
Syt = YD M gas= WD Lo 632)
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(where we put Q(y) an antiderivative of ¢).

Problem: Find the behaviour of the solution v(z,t) as u — 0.

The type of integrals we are facing are the so—called Laplace integrals of the form

<m=Lﬂwa

with smooth functions f(y), S(y). The basic idea is that, for ¢ — 40 the main contribution to the
integral comes from the minima of the phase function S(z). More precise statements are contained

(6.3.3)

in the following propositions.

Proposition 6.9 Let S : R — R be C? and bounded from below, and f(y) continuous. Consider

_5@)
)i= | feHay. (6.3.4)
Then
[1] If I(1) converges for puy > 0 then it converges for every 0 < p < pyg.

[2] Suppose now that S(y) has a unique global minimum aty = yo with S” (yo) > 0 (strict inequality)
and that for 6 > 0 sufficiently small the set

= {y © 0< S(y) — Smin < 5} (6.3.5)

consists of a single open interval containing yy. Then

I(p) = 53,7&)1’ (yo)e™ (1 + 0(1)> (6.3.6)

Remark 6.10 There are several generalizations to integrals on bounded intervals. If the functions
S, f have higher regularity, the infinitesimal o(1) can be shown to be an asymptotic series in (.

Proof. [1] Since S is bounded below let Smin = infr S. Suppose (o) is a convergent integral.
Then for p < pg we have —= 0 < T - and

stLU@e

[2] Let Js as in (6.3.5) and the assumptions hold. Then we consider the expression

S(y) SIIlll’l

mo < oo. (6.3.7)

Hlln

e ¢ 1 J ~L(S(y)~Sumin) j ~L(S(y)=Sumin)
F(p) = I(p) = fly)e *» ™ dy + fly)e = ™ dy 6.3.8
(1) N () \/ﬁ[ B (¥) o (v) (6.38)

We show that the second integral above tends to zero faster than any positive power of p. Indeed

f( )e m S(y) min)dy
R\Js

<e_6/“f f(y)[e s S@=Smin=0)qy _ (1) (6.3.9)
R\ Js
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This latter integral is easily seen to be a increasing function of u and bounded for p = pug; hence
)
(*) < Ke (6.3.10)

for p < pg. Thus this expression tends to zero faster than any power of p. We express this by the
symbol O(u®). Thus we have shown

1 7L(S(y)7smm) o0
F(u) = — e w dy+ 0O . 6.3.11
(1) N Jéf(y) Yy (™) ( )

Now define

n(y) ==/ Sy) — S(yo)sign (y — vo)- (6.3.12)

We observe that 7(y) is a C! function with 7/(y) > 0) in J;. In particular

S//
7' (yo) = (21/0) (6.3.13)
We can thus rewrite the integral over Js in the coordinate 7
1 () Sumin) 1 (v dy _»*
Flye w WSy — — | f(y(m) e dn (6.3.14)
N2 Vi )5 dn
The latter integral is of the general form

1 (v 2
— g(n)e wdn 6.3.15
Vi e (6:519)

with g(n) continuous over the interval. Letting g(n) := g(n)xs(n) we can write the integral as

fj Ty = JRg(\/ﬁs)e_Sst. (6.3.16)

By Lebesgue dominated convergence theorem, we can take the limit under the integral sign as
wu — 04 and see that the limit gives g(0)4/m. Thus,

y _n° 2
e wdn = f(yo)vVm———+0(1) = fyo)y| 5— +o(1)  (6.3.17)
\ff d—y’y:yo 5" (yo)
Thus, summarizing
¢ I(p) = . 1 6.3.18
7 (1) = f(wo) mﬂ)()- (6.3.18)
whence the asymptotic formula
I(n) = f(vo) S?f(w) N1+ 0(1)). (6.3.19)
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This concludes the proof. We remark that if we have higher regularity for f and S one can prove
that the term o(1) is o(u*) with k the smoothness class of f and S”. In particular if S, f are
analytic, then there is a full asymptotic expansion in place of o(1) (in the Poincaré sense). [

Let us apply the Laplace formula to the study of small viscosity solutions to the Burgers equation
(6.2.1). According to the previous Section the solution is proportional to the logarithmic derivative

of the function
1 © - St)
u(x,t) = e+ dy
-0

NI

where the phase function S(y;z,t) depending on the parameters z, ¢ is given by

x—y)? Y
S(y;z,t) = m + ;L oY) dy'. (6.3.20)

Here ¢(z) is the initial data for the Burgers equation.

Theorem 6.11 Let ¢(x) be a monotone increasing smooth function. Then
[1] The solution of the Hopf equation

wt + wwg = 0, w(z,0) = ¢(x) (6.3.21)

exists globally.
[2] The solution v = v(z,t; ) to the Cauchy problem to the Burgers equation

Ut + VUp = V%, v(z,0; 1) = ¢(x) (6.3.22)
with the initial data ¢(x) satisfies
lv(x, t; ) —w(z,t)] >0 for pu—0 (6.3.23)

uniformly on compact subsets of the half-plane (z,t). The same asymptotics (6.3.23) holds true
for monotone decreasing initial data for the times before the time ty of gradient catastrophe for the
solution to the Hopf equation (6.3.21) provided that the derivative ¢'(x) of the initial function is
bounded on the real line.

Proof. [1] Since ¢(z) is increasing the method of characteristics gives a global solution;
w=¢(x) z="T(w) (6.3.24)
and
tw+ V(w) =z (6.3.25)

Note that ¥(w) is an increasing function and ¢ > 0, so that the LHS is a monotone increasing

function and hence defines a unique function w(z,t) for all ¢ > 0 and z € R.

[2] The stationary point y = y(z,t) of the phase function is determined from the equation

y—x
2t

Sy(y;z,t) = + %cﬁ(y) =0
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equivalent to
r=y+1tP(y). (6.3.26)

For ¢t = 0 the solution is unique, y(x,0) = z. For a monotone increasing function ¢ the solution
remains a unique one also for all ¢ > 0 since the y-derivative of the equation (6.3.26) remains
positive for all y € R. This stationary point is a nondegenerate minimum. Indeed, the second
derivative at the stationary point is always positive

1+td
Syy(y(x,t);2,t) = +2Z§(y) > 0.
Applying the Laplace formula one obtains
1 _SW(.t)w.t)
u(w,t) = ————e b (1+0(u).

VI+td(y)

Taking the logarithmic derivative yields

ou(x,t)

v(x,t) = —2u o

= 25:(y(z, t); 2, 1) + O(p) = d(y(x, 1)) + O(p)-
It remains to observe that the function w = ¢(y(x,t)) satisfies the implicit function equation
r=V(w)+tw

where, as above, the function V¥ is the inverse function to ¢. Thus w = w(x,t) coincides with the
solution to the Cauchy problem (6.3.21).

For the case of monotone decreasing initial function ¢(z) with bounded derivative ¢'(z) all above
arguments remain valid for small times, ¢ < ¢y, where ¢y is the time of the gradient catastrophe for
the solution to the Cauchy problem (6.3.21). [

6.3.1 A worked out example; shock formation

What happens when ¢ is not increasing? We know that if ¢ has intervals of decrease, then eventually
the solution of Hopf equation given by the method of characteristics will cease to exist because it
gives ambiguous solutions.

By the way of example we consider in some detail the initial condition ¢(z) = 5¢=*". We know
that the point of gradient catastrophe occurs for

2¢1/2
(1‘0, to, UJ(]) = <\/§, \/;T), 5e_é> . (6.3.27)
Now the limit of Burgers’ equation v(x,t; ) tends to

v(z,t;0") = d(yo(x,t)) = 5e~v8(@:t) (6.3.28)

where yo(z,t) is the point of absolute minimum of S(y;z,t):

2
?) + 5ﬁErf
t 4

—2)? Yy
ﬂ%%w=@4t)+;L¢@@:i@ ) (6.3.29)
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Figure 6.2: The plot of S (red) for ¢/tp = 2 and for two different values of z. Note that S has
three critical points, of which two are local minima. The location of the absolute minimum has a
discontinuity w.r.t. x somewhere in between the two indicated values. Note that for x = 1.9 the
minimum is on the left and for z = 2.2 the minimum is the other critical point. In green is plotted
(y — x)?/4t and blue is the term containing the Erf function.

Let us consider t > tg; the plot of S(y;x,t) is shown in Fig. 6.2. As one can see, there are as
many as three critical points yg, y1, y2 depending on x, ¢, of which two are local minima and the one
in between is a local maximum. According to the strategy for Laplace integrals, only the absolute
maximum enters in the leading order asymptotics.

It does not take long to convince oneself that there is a critical x.(t) such that:
for z < x.(t) the global minimum of S is at yo(z,t) and for z > x.(t) it is at ya(z,t).

Therefore the solution v(z,t;0") exhibits a discontinuous behaviour:

56_(3/0 (I:t))Q Tr<x (t)
.Nt) — *
v(@, £;07) = { Be~ W0 x> 2, (1) (6.3.30)

Example 6.12 The Euler Gamma function
o0
d
[(x) = J e ss T (6.3.31)

can be studied in the limit x — +00 by the use of Laplace integrals (here the interval of integration
is [0,00) but it won’t cause problems as we see not). With a change of variable s = vy we get

e} o0
o) = [errmeds e [ sy 632)
0 S 0 Yy
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Figure 6.3: Plot of the level lines of v(z,¢;07). Note that the level lines follow the characteristics
and there is a visible line of shock (the jagged line; this jaggedness is just an issue with the numerics,
the shock-line is smooth in reality). The same plot in 3d on the right.

The phase function is S(y) = y + Iny which has an absolute minimum at y = 1 with S”(1) =1 and
S(1) = 1. Thus the formula of Laplace gives (here p = %)

I'(z) = \/?exlnx”‘“(l + 0z 1) (6.3.33)

In this case the O(x~1) can be expanded into a full asymptotic series in x~' and the coefficients
have been worked out.

6.3.2 Oscillatory integrals

At the end of this Section let us give, without proof, the complex version of the Laplace formula.
This is the so-called stationary phase formula for the asymptotics of the integrals with complex
phase function

b i5(2)

I(e) J Fa)e "2 dy. (6.3.34)

a
Like in the case of Laplace integrals the localization principle says that the main contribution to the
asymptotics comes from the stationary points of the phase function S(z) and from the boundary
of the integration segment. However, differently from the Laplace method, the stationary phase
asymptotics involve contributions from all stationary points of the phase function, not only from
the minima. More precisely,

Proposition 6.13 Let f(x), S(z) be C* functions, such that f(z) vanishes at the boundary of the
segment [a,b] with all derivatives, and S'(x) # 0 Yz € (a,b). Then

b 1.5 (x)
ff(:v)e e = O(") Vne Zuo.
a
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Proposition 6.14 Let f(z), S(x) be C* functions, such that f(x) vanishes at the boundary of the
segment [a, b] with all derivatives, and S(x) has a unique nondegenerate stationary point xq € (a,b).
Then

+5sign S"(20) ( £(20) + O(e)) . (6.3.35)

f@)e e dx =, | —=—e€

f’ i S(z) 2me  iS(z)
a |S” (o)

The crucial step in the derivation of the stationary phase formula is in the computation of the
following integral.

Exercise 6.15 Prove that

f e de = e (1+0(e)). (6.3.36)
-1

6.4 Dispersive waves. Solitons for KdV

We are now in a position to explain the effect of dispersion in the theory of linear waves. Let us
assume that a linear PDE admits plane wave solutions

v(z,t) = a ek (6.4.1)
for any real k. Moreover we assume that the dispersion law
w = w(k) (6.4.2)
is a real valued function satisfying
w"(k) #0 for k +#0. (6.4.3)
These assumptions hold true, e.g., for the linearized KdV equation (6.2.7) where
w(k) = ck — k3.
Another example is given by the Klein—Gordon equation
Vi — Vg + m2v = 0. (6.4.4)
In this case the dispersion relation splits into two branches
w(k) = £VE2 + m2. (6.4.5)
For the linear wave equation

2
Vtt = A Ugy
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the dispersion relation reads
w(k) = tak.

The condition (6.4.3) does not hold.

More general solutions can be written as linear superpositions of the plane wave
v(z,t) = f a(k)ekr=wk)b) gp; (6.4.6)
K

where the integration is taken over a domain in the space of wave numbers. Here a(k) is the complex
amplitude of the k-th wave. Let us describe the asymptotic behaviour of the solution (6.4.6) for
large x and t. More precisely the question is: what will see the observer moving with a constant
speed c for sufficiently large time? The answer is given by the following

Lemma 6.16 Let us assume that the equation
c=uw'(k) (6.4.7)

has a unique root k = ko belonging to K. Then for t — o the solution (6.4.6) restricted onto the
line

T = ct + xg
behaves as follows
21 . i " ; 1
1) = k it[cko—w(ko)]— T signw” (ko) +tkozo 1 of= ) 6.4.8
vlat) = oy atko)e : +0(5 (6:48)
Proof: It follows immediately from the stationary phase formula (6.3.35). |

Let us apply the result of the Lemma to the case of wave-trains, i.e., solutions of the form
(6.4.6) obtained by integration over a small neighborhood of a point k.. In this case the remote
observer will be able to detect a nonzero value of the wave only if

€T /

— ~w' (ky).
. (Kx)
We conclude that., from the point of view of the remote observer the wave-train with the wave
number k, propagates with the velocity w'(ky). For this reason the number w'(k,) is called the
group velocity of the wave-train.

In short we can say that the velocity of propagation of dispersive waves depends on the wave
number.

The linearized KdV equation is an example of a dispersive system. Indeed, the group velocity
is equal to
W'(k) = ¢ — 3%k

That means that the rapidly oscillating (i.e., |k| >> 1) small perturbations propagate
from right to left. At the same time, as we know from the analysis of Hopf equation, the slow
varying solutions with positive magnitude propagate from left to right.

The full mathematical theory of solutions to the KdV equation is too complicated to present
here. Here we will present only a small output of this theory describing an important class of
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particular solutions to the KdV equation. They are created by a balance between the nonlinear
and dispersive effects. The idea is to look for solutions in the form of simple waves

v(a,t) =V (9” — Ct) . (6.4.9)

€

Substitution to (6.2.2) yields an ODE for the function V = V(X))
—cV' +VV + V" =0.
Integrating one obtains a second order ODE
1
V' + 5V2 —cV=a (6.4.10)

where a is an integration constant. This equation can be interpreted as the Newton law for the
motion of a particle in the field of a cubic potential

oP(V)

ov

One should expect to apply the law of conservation of energy to integration of this equation. Indeed,
after multiplication of (6.4.10) by V' one can integrate once more to arrive at a first order equation

gV2 —aV. (6.4.11)

1
V' = , P(V)= 6V3 -

%V” + évi” —SVi—aV =)
where b is another integration constant (the total energy of the system (6.4.11)). The last equation
can be integrated by quadratures
f av
\/2 (—gV3+5V2+aV +b) '

X - Xo= (6.4.12)

For general values of the constants a, b, ¢ the solution (6.4.12) can be expressed via elliptic functions.
We will now determine the values of these parameters that allow a reduction to elementary functions.
This can happen when the cubic polynomial under the square root has a multiple root. Moreover
we will assume that this double root is at V' = 0. To meet such a requirement one must have

a=b=0.
We arrive at computation of the integral
v
av 2 ¢c—3
XX~ | LIRS (i
Vile—ly Ve Ve
Inverting one obtains
V=3¢ <1 ~ tann? YOE = XU)) - 5c
2 Ve(X=Xo)
2 cosh %

We arrive at the following family of solutions to the KdV equation

3k?

2 k(z—z0)—k3t
h 2e

v(z,t) = (6.4.13)

COS
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where we put k = 4/c.

30
251 |
20 |
150 |

\ £=|
1o- |

| =3
05 \

e=1/3,
3 ) ' 4

Fig. 10. Soliton solutions to the KdV equation with ¢ = 0, k = 1 for various values of €
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6.5 Exercises for Chapter 6

Exercise 6.17 Derive the following formula for the solution to the Cauchy problem

ov(z,0) = ¢(x)
for the linearized Burgers equation (6.2.4):

v ) = 5 | o
= o .
B W I oly) dy

Exercise 6.18 Obtain the following representation for solutions to the linearized KdV equation
(6.2.7) with the initial data dv(x,0) = ¢(x) rapidly decreasing at |x| — o0:

0
M@ﬁzf Alz =y — ct, &2)(y) dy
—00
where
1 (> 3
A(w,t):f ! 2k g (6.5.1)

2 J_

The integral (6.5.1) can be expressed via Airy function

1 . x
A@”:@wwm<mWQ

defined by the integral

. 1 @ i(sx-i—%)
Ai(x) = — e ds.
21 J)_o
~  Ai(x)
04
02
=10 -3 5 10
X
-0.2
-0.4

Fig. 11. Graph of Airy function
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Chapter 7

Cauchy problem for systems of PDEs.
Cauchy - Kovalevskaya theorem

7.1 Formulation of Cauchy problem

Consider a system of order K > 1 of n PDEs for the functions u;(x,t),...,u,(z,t) of the form
5K :fi(t,:c,u,ut,...,uz,um,..., i xu), i=1,...,n. (7.1.1)
(<K-1, (+m<K (7.1.2)

where the functions f; depend on the derivatives of u(¢,z) up to £ = K — 1 in t. We say that the
vector-valued function u(z,t) = (ui(x,t),...,uy(x,t)) defined for z € (xg,x1), t € (to,t1) satisfies
the system (7.1.1) if, after the substitution

du;  Ouy(z,1)

ot ot

u=(u(z,t),...,up(z,t)), u, = <(9ula(f,t)7“"(9una(§,t)> e

the system is identically satisfied. Without loss of generality we can assume that

to <0< t.
The Cauchy problem is formulated as follows. Given n functions ¢1(z), ..., ¢,(z) find a solution
ui(x,t),...,up(x,t) defined for 0 < ¢t < t; such that
u1(2,0) = ¢1(2), ..., un(x,0) = Pn(2). (7.1.3)

In the next section we will prove that the Cauchy problem (7.1.1), (7.1.3) has a unique solution
provided the right hand sides of the equations and the initial data are analytic functions.

With some preliminary manipulation similar to those used to reduce higher order ODEs to
(systems) of first order ODEs one can always reduce the problem to the first order case K = 1

where the equation is thus
u = f(t,z,u,uy). (7.1.4)
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Remark 7.1 The theorem can be formulated also in the case where x is a vector; this generalization
only adds complication in the notation but introduces no significant conceptual hurdles.

Example 7.2 Consider the case of a scalar PDE of second order
Ut = f(tax7u7uwautautx7u:cx) (715)

If we introduce the vector y = [u,ug,ut] = [qo,q1,p] we note that now f depends on y,yx and the
system takes the form

q0 U p
q1 = Uy = Px (716)
p t Ut t f(t7x7q07q17p7pl‘7q1,l‘)

so that we are reduced to a system of first order PDFEs. o

The idea of the proof is very simple: using the system (7.1.1) we can compute the time derivatives
of any order of the solution at the point ¢ = 0. For example for the first derivative we have

i) = a{;ﬁw = 51(0,2,6(2), 62(2)),

Bil@) = im0 = tha it L Fusa 2

etc. Here all the functions f;, f; and their derivatives have to be evaluated at the point
(0,z,¢(x), . (x)). The operator 0, is defined as follows

O f (t,x,u,uy) = aaf t,z,u,u, —i—E (u —— + Jaﬁ )f(t,x,u,ux). (7.1.7)

(we use interchangeably the flyspeck ' notation or the subscript , for the differentiation w.r.t. x).
In a similar way one can compute all the derivatives 0%u;/0t* at t = 0. We obtain then the solution
in the form of Taylor series

. t . 2
wi(z,t) =¢i(:v)+¢i(m)ﬁ +¢i(1:)§+... (7.1.8)

In the next section we will prove convergence of this series.

7.2 Cauchy - Kovalevskaya theorem

Theorem 7.3 Let the functions in the right hand sides of the system (7.1.4) be analytic in some
neighborhood of the point

t=0, z=0, u=g¢0), u,=¢(0). (7.2.1)

Moreover assume that the initial data (7.1.3) is analytic at x = 0. Then the Cauchy problem
(7.1.1), (7.1.3) has a unique solution analytic in some neighborhood of the point x =t = 0.
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Proof: First of all, without loss of generality, we assume ¢(0) = 0 = ¢'(0); simply re-define
u(z,t) — u(z,t) — ¢(0) — 2¢/(0). ] At the first step we will reduce the Cauchy problem (7.1.1),
(7.1.3) to another problem for a system of first order quasilinear equations. For simplicity let us
consider the case n =1, m = 1:

up = f(t,z,u,uy), u(x,0)=o(z). (7.2.2)

Introduce new functions
p=1u, q=Ug.
One obtains a first order quasilinear (i.e., linear in derivatives) system of three equations
U =p (7.2.3)
4t = Px
pe = fi(t, @, u,q) + fult, @, u,q)p + folt, z, u,@)pe

along with the initial data

u(z,0) = ¢(z), q(x,0) =¢(x), p(z,0)=f(0,2,0(z) ¢ ). (7.2.4)

Conversely, let us show that the Cauchy problem (7.2.3), (7.2.4) gives a solution to the original
Cauchy problem (7.2.2). First, using the first and the last equations one obtains

0
Uy = Pt = af(tyxvua Q)

Integrating in ¢ we obtain
Uy = f(t,ac,u, Q) + g(.ﬁU)
where g(x) is the integration constant. At t = 0 we have

ut(w,0) = p(z,0) = f(0,z,¢(x),¢'(z)).

Hence g(x) = 0, that is
Up = f(tv T, u, Q)

Next, differentiating the first equation in (7.2.3) in x and using the second equation gives
Ugt = qt-

Integrating in ¢ we arrive at
uz = q + h(x)

with a new integration constant h(x). The initial data (7.2.4) imply
ugz(z,0) = ¢'(z) = q(x,0).

So h(z) = 0 and thus u, = g.

We have reduced the original problem to a Cauchy problem for a system of first order quasilinear
equations
u; = A(t,z,u)ux + b(t,z,u) (7.2.5)

with a Cauchy data
u(z,0) = ¢(z). (7.2.6)
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Here A(t,z,u) and b(¢,z,u) are some matrix-valued and vector-valued functions respectively. At
the next step we eliminated the explicit dependence on x and ¢ by means of the following trick.
Introduce two new unknown functions 7, ¢ and consider the new Cauchy problem

u; = A(7,0,u)ux + b(1,0,u)0,
Tt = Og
ot =10
(7.2.7)
u(z,0) = ¢(x), 7(x,0) =0, o(x,0)=uwx.

It can easily be derived that the functions 7(z,t), o(z,t) satisfying (7.2.7) must be of the form
T(z,t) =t, o(x,t) ==z

So 0, =1 and the problem (7.2.7) is equivalent to (7.2.5), (7.2.6).

We have arrived at a system of first order quasilinear PDEs with coefficients with no explicit
dependence on the space-time variables x and ¢. Moreover, the right hand sides of the system are
linear homogeneous functions of the derivatives. For these reasons it suffices to prove the Theorem
for the Cauchy problem of the form

u = A(u)u,
(7.2.8)
u(z,0) = ¢(z)

with

u = (ur(z,1), .. un(z, 1), A() = (Ai(0) ¢ <> ¢(@) = (91(2), -, du(@)).

We will now apply the procedure of solving the system (7.2.8) in the form of power series explained
in the previous section and prove convergence of this procedure.

Without loss of generality we may assume that

#(0) = 0.

Indeed, if this was not the case then one can shift the dependent function

u— u—¢(0).

The analyticity assumption implies that the functions ¢;(z) and A;;(u) can be represented as sums
of power series

Gi(x) = 3, dips”
p=1

(7.2.9)
e}
Aijw) = Y Aypul* .o
P1ye-Pn=0
convergent for
x| <p, Juil <7, i=1,...,n. (7.2.10)

154



We want to prove that the Cauchy problem (7.2.8) admits a solution in the form of a power series

u,-(w,t) = 2 ’U,Z'7pq£L‘ptq, U3,0,0 = 0 (7.2.11)
p,g=0
convergent for
x| < ¢, |t|<T (7.2.12)

for some positive §, 7. From the previous arguments it is clear that such a solution is unique.

Observe that the coefficients u; p, can be expressed as polynomials in ¢; ;,, A;jp

Uipq = ]Di,pq (¢j,r7 Ajk,s) (7.2.13)

with universal coefficients. Universality means that these coefficients do not depend on the partic-
ular choice of the system. For example,

Uip0 = Pip-
In order to compute the coefficients w; 1 of the Taylor expansion of the function

&ui (IL’, 0)
ot

one has to use the equations (7.2.8) along with the initial data:
n
Dluipra? = >0 Y Ayedit(@) ... o () (). (7.2.14)
p=0 Jj=181,.--,8n
Expanding the right hand sides in Taylor series one obtains expressions for u; ;1. For example,
n
Ui 01 = Z Aijodin
j=1

etc. Observe that the assumption ¢(0) = 0 is crucial to arrive at polynomial expressions. It is clear
that the coefficients of these polynomials are nonnegative integers.

We will consider also another Cauchy problem

vi = B(v)v,

(7.2.15)
v(z,0) = (x)
of the same size with analytic initial data and analytic coefficients
0
7/11(56) = Z d}i,pxp
p=1
(7.2.16)

o0]
.. — .. Pl D
Bij(v) = Z Bijpvy" .. vp"
P15---,pn=0

155



that gives a majorant for the Cauchy problem (7.2.8), that is, all coefficients of the series (7.2.16)
are nonnegative real numbers satisfying inequalities

Vip = |bipl,  Bijp = [Aijpl (7.2.17)
Let
vi(z,t) = Z Vi pgPt? (7.2.18)
p=1, ¢=0

be the solution to the Cauchy problem (7.2.15) in the class of formal power series. Like above one
has

Vipq = Pipg (Vjr, Bjk,s) (7.2.19)
with the same polynomials P;p, with nonnegative integer coefficients. Hence the inequalities
(7.2.17) imply

Vipg = Ui pql- (7.2.20)

Our goal is to find a majorant for the Cauchy problem (7.2.8) in such a way that the formal
solution (7.2.18) to (7.2.15) converges for sufficiently small || and |¢|. Then the inequalities (7.2.20)
will imply convergence of the series (7.2.11) for the same values of x and ¢.

In order to construct such a majorant let us recall the Cauchy inequalities for the coefficients
of convergent power series:

M
‘¢i,p| < E
(7.2.21)
M
|Aij,p| < rP1+-+Pn
for some positive constant M. The radii p and r are defined in (7.2.10). We choose
M
Yip = ﬁ
(7.2.22)
B _ it M
ij,p = | 1 Pitotpn
pil...pp! o
Observe obvious inequality
Biip > M
UPZ it tpn
SO
Bijp = |Aijpl
We obtain the initial data for the majorant Cauchy problem
© P
T Mx
Gile) = MY, () M <, (7.2.23)
=1 \P p—z
and the coefficient matrix
e ! p Pn
Bi(v)=M ] (p1 + +€)n) (ﬁ) o (@)
e S S LRRRS 7 r r
(7.2.24)
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We arrive at the following majorant Cauchy problem

ov; M X Ov; )
= - —, 1=1,....n
ot 11— Uhetin L oy
r 7j=1
(7.2.25)
M
vi(x,0) = L
p—x
Let us look for a solution to the problem (7.2.25) in the form
vi(z,t) =v(z,t), i=1,...,n.
The function v = v(x,t) must satisfy the following scalar Cauchy problem
Mn
vy = v
t 1— %'U T
(7.2.26)
M
v(x,0) = L
p—

Lemma 7.4 The solution of the Cauchy problem (7.2.26) is determined from the quadratic equation
n n
(v—f-M)[(l—fv)x—ant] =pv (1—fv> (7.2.27)
T T
where one has to choose the root of the quadratic equation vanishing at x =0, t = 0.

Proof: Let us apply the implicit function theorem to the equation (7.2.27). Differentiating the
quadratic equation in x and ¢ one finds

(M +v) (1 — %v)

vx:p(l—QT"v)—Mnt—(l—@—Q”Tv)x
v — Mn (M + v)
t (=B~ Mt — (1- BB

Applicability of the implicit function theorem is guaranteed by non-vanishing of the denominator

at the point x =t = 0:
2
p(l—nv)zp#o
r

(we have used the condition v(0,0) = 0). Substituting the above formula into the PDE we obtain

Mn
Vy = Ve
1-2v
At t = 0 the quadratic equation simplifies to
(v+ M) (1—ﬁv>$=pv(1—ﬁv)
r r

that gives the needed solution

Mx

v =
p—x



It remains to observe that at x = t = 0 the quadratic equation (7.2.27) reduces to

v(l—ﬁv>=0.
r

r
vy =0 and vy =—.
n

The latter has two distinct roots

Hence the roots of the quadratic equation remain distinct for sufficiently small |z| and [¢|. The
lemma is proved. u

The root we are looking for can be written explicitely

e-rner(1-2) y[Berro-z(1-5)] e
1

X xr
-z 2 :

N | =

This function is analytic for

M T 2\ 17 ort
lz|] <p and |—(z+71t)——(1—— —4M*— > 0.
p n p p
These inequalities hold true for sufficiently small |z| and |¢|. Hence the above arguments based on
the technique of majorants prove convergence of the series for the solution of (7.2.8). n

Remark 7.5 The theorem can be extended to the systems with complex coefficients replacing the
real variable x to a complex one z. The assumption of analyticity remains crucial in the proof. Recall
that a complex analytic function f = f(z) can be considered as a function of two real variables x,
Yy, where z = x + iy, satisfying the Cauchy - Riemann equation

of
=0

o_1(e, 2
z 2\ oz 2(9y ’

(7.2.29)

o))
|

Remark 7.6 The analyticity assumption is fundamental for validity of the theorem. Indeed, in
1956 Hans Lewy found the following counterexample. He considered the following equation

Up + tuy — 2i(x + iy)us = g(x,y,t). (7.2.30)

This equation has solutions analytic near the origin provided the right hand side is analytic. How-
ever Lewy proved existence of C* functions g such that (7.2.30) has no solutions in any neighborhood
of x =y =1t=0. Later (1962) S.Mizohata found another counterexample considering the equation

Uy +izuy = g(x,y). (7.2.31)
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