M. Caraglio, C. Micheletti and E. Orlandini
Mechanical pulling of linked ring polymers: elastic response and link localisation
Polymers, 2017, 9 , 327
Link to online article
Abstract
By using Langevin dynamics simulations, we study how semiflexible rings that are topologically linked respond to mechanical stretching. We use both constant-force and constant-velocity pulling protocols and map out how the mechanical tension affects observables related to metric quantities such as the longitudinal extension or span, and topology-related ones such as the length of the linked portion. We find that the average extension of linked rings — once divided by that of a single equivalent ring— is nonmonotonic in the applied force. We show that this remarkable feature becomes more prominent as the link complexity is increased, and originates from the different stretching compliance of the linked portion and the rest of the rings’ contour. By comparing the results of different pulling protocols, we also establish the best one for telling apart different types of links from their tensile response.