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Abstract

We examine the occurrence of spatially modulated structures in several models with competing interactions.
Of particular interest are the situations where, for given values of the interactions, the ground-state is
infinitely degenerate. Most of the work presented here concerns the analysis of how this zero-temperature
multidegeneracy can be removed by the introduction of weak perturbations sush as spin anisotropy, external
magnetic fields, or quantum fluctuations.

In Chapters 2-4, we consider models of finite or semi-infinite chains of spins, where the competition
between surface and bulk effects creates a domain wall (kink) in the ground state. In particular in Chapter 2
we show that, in a chain of ferromagnetically-coupled XY spins with p-fold anisotropy (p ≥ 3), the softening
of the spins removes the degeneracy by stabilizing a sequence of layering transitions. It is also argued that,
when p = 2, the persistence of multidegeneracy in the classical model can be eliminated by quantum effects.
In Chapter 3 the effects of quantum fluctuations on the behaviour of an interface are considered further for
the case of the three-dimensional transverse Ising model.
Finally we study a chain of antiferromagnetically-coupled XY spins with two-fold anisotropy in an external
magnetic field. The analytical and numerical results, presented in Chapter 4, reveal that, in semi-infinite
and finite chains of even length, there is a sequence of layering transitions in the bulk that has not been
previously identified.

The second part of the thesis focuses on the splitting of the multidegeneracy in infinite systems. In
particular, in Chapter 5, we examine the effect of quantum fluctuations near the multiphase point of a
generalised, quantum, axial next-nearest-neighbour Ising model. It is shown that the sequence of phases
stabilized by quantum and thermal fluctuations are dramatically different.

In Chapter 6 we consider the Falicov-Kimball model, which describes a one-dimensional system of in-
teracting ions and electrons. By using Green’s functions techniques we recursively construct the phase
diagram in the limit of large ion-electron coupling. Hence, it is shown that the ion density has a behaviour
characteristic of a devil’s staircase.

Finally we consider a model consisting of a chain of XY spins with six-fold anisotropy and chiral in-
teractions in the presence of a magnetic field. The analysis presented in Chapter 7 gives evidence for the
occurrence of an upsilon point (an infinite checkerboard of modulated phases) in the phase diagram. By
using a recursive analysis technique it is shown that the checkerboard has a self-similar, fractal structure.
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Chapter 1

Introduction

1.1 Modulated structures

In this thesis we examine the occurrence of spatially modulated structures in models with competing

interactions. Typically the competition arises from the presence of two or more physical parameters

that tend to favour states with different periodicity, symmetry or structure. Due to the presence of

this type of competition the stable phases can show complex spatial modulations.

One of the best known examples of a material with many different modulated phases is cerium

antimonide, CeSb. The crystal structure of this alloy is NaCl-like, with the ions of Ce and Sb

occupying alternate vertices of a simple cubic lattice. At low temperatures (T <∼ 8K) the crystal

field splitting causes the lowest energy state of the Ce ions to be a singlet, so that the total magnetic

moment (that for simplicity we shall call spin) of the ions has an Ising-like behaviour.

Several experiments based on neutron scattering have revealed that CeSb samples have a uniaxial

magnetic modulation [1, 2]. In other words, in the planes perpendicular to the modulation vector,

the spins of the Ce ions are essentially parallel while, perpendicular to the planes, complicated

sequences of alternating bands of up and down spins are observed. The various magnetic structures

seen in cerium antimonide are shown in Fig. 1.1.

The phase diagram of Fig. 1.1 is so rich that it seems implausible that is should be possible to

explain it using a simple model. However, it is often the case that the complicated behaviour of

materials with uniaxial modulation can be accounted for by very simple, schematic, models with

competing interactions.

Arguably, the best known example of these is the axial next-nearest-neighbour (ANNNI) model

which was introduced by Elliott (1961) to explain rare-earth magnetism [3]. The simplicity of

the ANNNI model makes it an ideal example for discussing the physics of modulated structures.

Therefore we will devote the next section to a qualitative description of the model and its phase

diagram.
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1.2. The ANNNI model 4

Figure 1.1: Experimental phase diagram for CeSb (after [2]). The arrows denote the orientation of the magnetic
moments of Ce ions in the ferromagnetic planes. The open circles indicate planes where the magnetization is zero to
within experimental accuracy.

1.2 The ANNNI model

The ANNNI model consists of a three-dimensional system of Ising spins occupying the sites of a

cubic lattice. Along one lattice direction the interaction between nearest-neighbour spins, J1, is

chosen to be ferromagnetic, while the next-nearest-neighbour exchange, J2, is antiferromagnetic.

In planes perpendicular to the privileged lattice direction, nearest-neighbour spins interact via a

ferromagnetic exchange, J0. The Hamiltonian for the system is

H = −J0

∑
i〈jj′〉

Si,jSi,j′ − J1

∑
i,j

Si,jSi+1,j + J2

∑
i,j

Si,jSi+2,j , (1.1)

where i labels the ferromagnetic planes and j the sites within the plane. Also 〈jj′〉 indicates a sum

over pairs of nearest neighbours in the same plane and Si,j is an Ising spin at site (i, j). A schematic

representation of the model is given in Fig. 1.2.

At zero temperature the ground state is ferromagnetic for J2/J1 < 1/2 (all spins up or all down)

while, for J2/J1 > 1/2, the favoured configuration is the one corresponding to two planes up, two

down and so on. The point J2/J1 = 1/2 is a multiphase point where all spin configurations consisting

of a sequence of domains of two or more parallel planes with alternate orientation have the same

energy.

The presence of a multiphase point is not an uncommon feature in models with competing in-

teractions. As for the ANNNI case, the multidegeneracy is usually encountered when configurations

built by mixing segments of two or more neighbouring phases are degenerate. Usually this type of

multidegeneracy is not robust to small perturbations introduced, for example, by thermal fluctua-

tions, surface effects or additional external fields.
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J0

J0J1 J2

Figure 1.2: Schematic representation of the ANNNI model. The ferromagnetic nearest-neighbour interaction
J1 favours a homogeneous arrangement of spins (all spins up or all down), while the antiferromagnetic exchange J2

prefers the periodic arrangement of two spins up, two down and so on.

Indeed most of the work presented in this thesis is devoted to an investigation of how the multide-

generacy is removed by applications of different perturbations.

1.3 The ANNNI model at finite temperature.

In the case of the ANNNI model, the multidegeneracy encountered at T = 0 is removed at finite

temperature by entropic contributions to the free energy. This is clearly visible in the phase diagram

of Fig. 1.3 where the notation 〈n1 n2 ... nm〉 is used to denote a state consisting of domains of parallel

planes with alternate orientation whose widths repeat periodically the sequence {n1, n2, ..., nm}. It is

important to point out that strictly speaking, this notation should be used only at zero temperature,

where the domain walls, which separate bands of planes pointing in opposite directions are perfectly

flat. Nevertheless, at temperatures below the roughening temperature [4], TR, the walls will be

statistically smooth, and the notation introduced above can still be used.

The first systematic study of the phase diagram of the ANNNI model at finite temperature was

carried out by Fisher and Selke in 1980 [6]. By using a low-temperature analysis, these authors

showed that an infinite sequence of phases,

〈2 3〉, 〈2 2 3〉, 〈2 2 2 3〉, ... (1.2)

springs out from the multiphase point. This result was later corrected by Bak and Von Boehm and

Selke and Duxbury [7, 8] who used mean-field analysis techniques to prove that, at finite temperature,

long-period states appear between the phases of the Fisher-Selke sequence (1.2).

A major step in the direction of understanding modulated structures is represented by the work of
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Figure 1.3: Schematic representation of the finite-temperature phase diagram of the ANNNI model (after [5]).
At the point (T = 0, J2/J1 = 1/2) all the phases appearing in the figure become degenerate (for a more detailed
discussion see Chapter 5). The notation nx

1 is used as shorthand to refer to x + 1 successive domain walls with the
same separation, n1.

Villain and Gordon [9]. These authors suggested that the mechanism responsible for the appearance

of modulated states was an effective interaction between pairs of neighbouring walls. Villain and

Gordon showed that, for the ANNNI model at finite temperature, this effective interaction was due

to thermal excitations of domain walls which caused the latter to occasionally be in contact (see

Fig. 1.4).

The intuition of Villain and Gordon was later perfected by Fisher and Szpilka [10] who turned

it into a rigorous and powerful tool for the analysis of modulated phases. Their technique, which is

known as the wall-wall interaction formalism, differs from the original method of Villain and Gordon

by the inclusion of three- and higher-order wall interactions.

Since it was introduced in 1987, the wall-wall interaction formalism has become an indispensable

tool for analyzing models where modulated structures appear. It is used extensively in this thesis

to examine the series of phases which originate from the splitting of multiphase points. Therefore in

the next section we shall present a qualitative overview of the Fisher-Szpilka technique and discuss

the different models to which we have applied it.
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Figure 1.4: Schematic illustration of a contact interaction induced by thermal excitations of two neighbouring
domain walls.

1.4 Domain-wall interactions

To illustrate the wall-wall interaction formalism we follow Fisher and Szpilka and write the free

energy of a phase with Nw domain walls with separation {n1, n2, ..., nNw−1} as

E = E0 + NwEw +
∑

i

V2(ni) +
∑

i

V3(ni, ni+1) +
∑

i

V4(ni, ni+1, ni+2) + . . . ,

(1.3)

where E0 is the free energy of the system when no walls are present, Ew is the creation energy

of a domain wall, and Vm(x1, x2, ..., xm−1) is the interaction energy of m walls with separation

x1, x2, ..., xm−1. The question is to determine the sequence of wall spacings that minimizes the

expression (1.3).

Since the effective interactions between the walls are mediated by the short range spin interac-

tions, J1 and J2, the V ’s will typically decay exponentially as a function of the wall separation. For

this reason, the dominant term in expression (1.3) is usually the one proportional to Ew.

Indeed, when the wall-wall interaction contribution to (1.3) can be neglected, the lowest energy

phases can be established by simply looking at the sign of Ew. If Ew is positive then the stable

phase is the homogeneous one (no walls) while, if it is negative, the favoured configuration is the

one with the largest density of domain walls, i.e. ↑↑↓↓ ... .

However, near the multiphase point, Ew is approximately equal to 0 and, therefore, the contri-

bution of the Vm’s to the energy cannot be neglected. Fisher and Szpilka have shown that, in these

circumstances, the detailed structure of the phase diagram can be established by considering in turn

the effect of V2, V3 and so on.

Details of the method are explained in Chapter 5 where we apply the wall-wall interaction
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formalism to study the modulated structures arising in a generalized quantum version of the ANNNI

model. The aim of this work is to analyse how robust the multidegeneracy is against a novel type

of perturbation, quantum fluctuations. These appear to split the multidegeneracy in a way similar

to thermal fluctuations. However, the sequence of phases springing out from the multiphase point

in the quantum and thermal case are dramatically different.

Although the energy expansion scheme of Fisher and Szpilka was originally introduced for treating

interacting domain walls in magnetic systems, it can be applied to study other types of binary

modulated structures, where segments of two distinct phases are separated by domain walls (or,

more generally, defects).

An example of the flexibility of the method is given in Chapter 6 where we study the phase

diagram of the Falicov-Kimball model. This is a model for interacting ions and electrons on a

one-dimensional lattice in the limit of zero ion mobility. In this case the effective ion-ion interaction

replaces the wall-wall interactions. By using a perturbative technique the general ion-ion interactions

are calculated in the limit of strong ion-electron coupling. The recursive study of the phase diagram

reveals that the ion density has a behaviour characteristic of a devils staircase, as conjectured by

Barma and Subrahmanyam [11].

The defect-defect interaction scheme can also be naturally extended to more complicated cases,

as shown by Bassler, Sasaki and Griffiths [12]. We exploit this in Chapter 7 to explain the effect of

another type of perturbation, the softening of discrete spins on a system with competing interactions.

We consider a spin model with six-fold spin anisotropy and chiral interactions under the influence of

a magnetic field. When the spin anisotropy is infinite, the phase diagram exhibits points where two

multiphase lines meet at a first order transition, as sketched in Fig. 1.5a. As the spin anisotropy is

reduced from infinity, an infinite sequence of phases springs out from each of the multiphase lines.

Near the point P (see Fig. 1.5b) the two sequences interpenetrate, giving rise to a checkerboard

structure of phases which include segments of all three coexisting states A, B and C. By constructing

the phase diagram iteratively, we show that the checkerboard has a self-similar, fractal structure.

1.5 Removal of multidegeneracy in models with a surface

We now turn to consider the effect of multidegeneracy which arises from a competition between sur-

face and bulk effects rather than a competition between different interactions. This can be observed

in models of finite and semi-infinite chains of spins where the competition occurs because surface

and bulk effects tend to stabilize different spin configurations. Below the roughening transition

temperature [4], TR, a statistically flat interface (kink) will separate the bulk and surface phases. In

this case the interesting question regards the determination of the stable positions of the interface as

the temperature or other parameters are varied. In particular it is important to establish whether

the kink is always localised near the surface or if it can depin from it [13, 14].
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A

B

C
C

(b)(a)

P P

A

B

Figure 1.5: (a) Two multiphase lines, AC and CB meet at a first order-transition (dashed line) in P . (b)
When the multidegeneracy is removed a checkerboard of phases with ternary modulation can appear near the point
P .

This type of problem is probably best illustrated with the aid of an example. To this purpose

we follow Duxbury and Yeomans in considering a model which consists of a system of Ising spins

occupying the sites of a three-dimensional cubic lattice [15]. The lattice is chosen to be infinitely

extended in two dimensions and with free surfaces in the third, as shown in Fig. 1.6. An interface is

imposed on the system by applying two infinite opposite fields at the surfaces so that the Hamiltonian

for the system is

H = −J
∑

i〈j,j′〉

Si,jSi′,j′ − h
∑
i,j

Si,j −HS

∑
j

(S0,j − SL,j) , (1.4)

where i labels the planes in the lattice (0 ≤ i ≤ L) and j the sites within the planes, J is the exchange

interaction between neighbouring spins, h is the bulk field and HS the surface field (assumed to tend

to infinity). Also, with 〈j, j′〉 we have indicated a sum over pairs of nearest neighbours in the same

plane.

J

-H s
Hs

h

J

Figure 1.6: Schematic representation of a three-dimensional Ising model with imposed surface fields.
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We first consider the behaviour of the interface at T = 0. If the bulk field, h, is positive [negative]

the interface is pinned to the right [left] surface. Indicating by 〈k〉 the ground state where the flat

interface lies between planes k and k +1, we can write its energy (modulo an irrelevant energy shift)

as

E〈k〉 = Ahk , (1.5)

where A is a positive number. When h = 0 a multidegeneracy is encountered, since all the E〈k〉’s

are equal to zero. By analogy with the ANNNI case, it seems reasonable to expect that thermal

excitations of the interface can introduce an effective coupling between the surface and the interface,

E〈k〉 = Ahk + V (k) . (1.6)

Indeed, the low-temperature analysis of Duxbury and Yeomans showed that, for T > 0, the effective

surface-kink potential, V (k) is non-zero. Hence the interface multidegeneracy is removed by thermal

fluctuations. More precisely, since V (k) is repulsive, one has that, as h changes from positive to

negative, the interface depins from the left surface through a series of layering transitions, where the

position of the kink increases discontinuously [15].

Of particular interest to us are the cases where the interface multidegeneracy is removed at zero

temperature. This possibility was first pointed out by de Oliveira and Griffiths who considered a

pseudo-spin model with a long-range attractive surface potential [16]. They showed that this type of

interactions gives rise to a series of layering transitions even at zero temperature. This is intuitively

plausible since long-range interactions can be expected to introduce a coupling between the surface

and the kink, no matter what their separation is.

It is interesting that quantum fluctuations can have an analogous effect. This is discussed in

detail in Chapter 2, where we consider a quantum generalization of the Duxbury-Yeomans model.

The depinning of interfaces induced by quantum fluctuations is also addressed in Chapter 3, where

we study the behaviour of a kink in the three-dimensional transverse Ising model.

Finally, working by analogy with the mechanisms that remove the multidegeneracy in infinite

systems, we also consider the possibility of raising the interface multidegeneracy by allowing spin

softening. In Chapter 2 we analyse the behaviour of an interface in chains of XY spins with p-

fold spin anisotropy and with ferromagnetic interactions. By calculating the effective surface-kink

coupling induced by the softening of the spins, we show that a series of layering transitions is

stabilized.

In Chapter 4 we show that a similar mechanism is responsible for the appearance of several

surface-induced phase transitions in a model of an antiferromagnet with two-fold spin anisotropy in

a magnetic field. In particular, numerical and analytical calculations reveal that, in semi-infinite

and finite chains of even length, there is a sequence of layering transitions in the bulk that has not
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been previously identified. This clarifies the mechanism for the crossover between the surface and

the bulk spin-flop states. The relevance of these results for Fe/Cr multilayers is discussed.
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Chapter 2

Unbinding of interfaces mediated

by spin softening

2.1 Introduction

There is a considerable body of literature discussing the way in which interfaces depin from surfaces

[17]. Depending on the details of the macroscopic interactions and external parameters, such as

the temperature or a magnetic field [18], the unbinding of the interface can occur through a first or

second order transition or, on a lattice, via a sequence of first order transitions.

The latter possibility was first pointed out by De Oliveira and Griffiths[16] for a model in which

the layering is driven by the competition between a long-range bulk interaction and a surface field.

The presence of long range interactions stabilizes the layering transitions even at zero temperature.

Later Duxbury and Yeomans[15] showed that, if the position of the interface relative to the surface

was degenerate at zero temperature, the degeneracy could be split by thermal fluctuations giving

an infinite series of layering transitions at finite temperatures. The stable interface position is

determined as a balance between the binding effect of a bulk field and the entropic advantage for

the interface lying further from the surface.

In this Chapter we aim to discuss the role of a hithertofore unexplored parameter on the unbind-

ing transition: the spin anisotropy. We shall show that, as discrete spins with p-fold spin anisotropy

soften, layering transitions can be stabilised in simple, short-range clock models, even at zero tem-

perature (for p ≥ 3). An expansion in inverse spin anisotropy allows us to prove that an infinite

sequence of layering phase transitions exist. Moreover, because the interesting features occur at

zero temperature it is possible to follow the phase diagram numerically for all values of the spin

anisotropy. In particular, for p ≥ 3, we are able to demonstrate how the boundaries between the

different interface phases end in critical points and to pinpoint these with considerable precision [19].

12



2.2. The model 13

Then we consider the special case p = 2, where the multidegeneracy cannot be lifted for small

values of 1/D. In this case we consider the quantum version of the model and show that quantum

fluctuations can raise the multidegeneracy stabilizing an infinite sequence of layering transitions [20].

2.2 The model

We consider the classical XY model with p-fold spin anisotropy, D, in a magnetic field, H, at zero

temperature. The model is defined by the Hamiltonian

H =
N∑

i=1

{
−J cos(θi−1 − θi)−H(cos θi − 1)−D(cos pθi − 1)/p2

}
(2.1)

where i labels the spins on a one-dimensional lattice and θi can take values between 0 and 2π. The

model (2.1) is used in the theoretical description of rare-earth metals and compounds [21, 22, 23,

24, 25]. In fact, as the physical parameters J , H, D and p are varied, the corresponding ground

states display a variety of periodic spin arrangements that closely resemble the uniaxial magnetic

modulation observed, for example, in Ho and Er.

In order to study the behaviour of an interface in the system we need to create a kink in the

chain. To do so we shall choose

θ0 = 2π/p ,

θN = 0 , (2.2)

and let N →∞. If the interface lies between the spins at sites n− 1 and n, so that

θi < π/p for i ≤ n− 1 , (2.3)

θi > π/p for i ≥ n (2.4)

the corresponding interface phase will be labelled 〈n〉, as shown in Fig. 2.1. We shall show a posteriori

that this choice for the definition of different interface phases is appropriate also for finite values of

D.

Finally we note that, although for simplicity we consider a one-dimensional Hamiltonian, the

study applies to any space dimension with the ground states translationally invariant in the direction

parallel to the boundary plane.

Nθ
θ
1 θn-1

θ
0

θn
. . .. . .<n>

Figure 2.1: Schematic representation of phase 〈n〉 for p = 3 and D = ∞.
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2.3 Qualitative remarks

For infinite D the Hamiltonian (2.1) describes a p-state clock model. For H > 0 the interface is bound

to the surface in state 〈1〉 while, for H < 0, the ground state is 〈∞〉. The point (H = 0 , D = ∞) is

a multiphase point where the interface has the same energy whatever its position on the lattice. It is

known that such a degeneracy can be lifted by thermal fluctuations [15]. Here we will be interested

in the raising of degeneracy operated by the anisotropy D. In fact, for p ≥ 3, as the anisotropy

is reduced from infinity it becomes energetically favourable for the spin angles, {θi}, to relax from

their clock positions, {θ0
i }’s, in a way that depends on the distance between the surface and the

interface. Thus the softening of the spins introduces an effective coupling between the surface and

the interface that can be expected to raise the multidegeneracy.

Depending on the sign of the effective coupling, the transition from phase 〈1〉 to 〈∞〉 can occur

either discontinuously or through a sequence of intermediate states, 〈k〉, in which k decreases mono-

tonically with H. This sequence can be finite, so that there is a first-order transition from a state

with k = kmax to 〈∞〉, or it can be infinite. In general, one expects the first possibility when the

effective interaction between the surface and the interface is attractive and the second when this

effective interaction is repulsive. Our results indicate that reducing the anisotropy from ∞, gives rise

to the second possibility and that the sequence of layering transitions 〈1〉, 〈2〉, 〈3〉 . . . is an infinite

one.

2.4 The inverse-anisotropy expansion

Since we are interested in studying how the degeneracy is lifted near the multiphase point, we will

consider 1/D as a small parameter in our theory. As a consequence the spin deviations from the

clock positions

θ̃i = θi − θ0
i (2.5)

will be considered sufficiently small to expand the Hamiltonian (2.1) keeping only terms quadratic

in the {θ̃i}’s

H =
∞∑

i=1

{
−Jci −H(cos θ0

i − 1) + Jci{θ̃i−1 − θ̃i + si/ci}2/2− Js2
i /2ci+

H cos θ0
i {θ̃i + tan θ0

i }2/2 −H sin2 θ0
i /2 cos θ0

i + Dθ̃i
2
/2
}

(2.6)

where

si = sin(θ0
i−1 − θ0

i ), ci = cos(θ0
i−1 − θ0

i ). (2.7)

The equilibrium values of the θ̃i are given by minimising the Hamiltonian (2.6). This leads to

linear recursion equations

−Jci{θ̃i−1 − θ̃i + si/ci}+ Jci+1{θ̃i − θ̃i+1 + si+1/ci+1}+ H cos θ0
i (θ̃i + tan θ0

i ) + Dθ̃i = 0. (2.8)
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If the full Hamiltonian (2.1) is used non-linearities appear in the recursion relations (2.8). However,

these do not affect the leading order terms needed for the subsequent calculations.

The best strategy to find the leading order angle deviations θ̃i for phase 〈n〉 is to start by

calculating θ̃n and θ̃n−1 to leading order in 1/D using (2.8),

θ̃n = (J/D) sin(2π/p) +O(1/D2)

θ̃n−1 = −J/D sin(2π/p) +O(H/D, 1/D2). (2.9)

The deviations of the remaining spins on the left [right] side of the interface can then be found using

(2.9) and solving iteratively (2.8) for decreasing [or increasing] values of i, thus obtaining

...

θ̃n+2 = (J/D)3 sin(2π/p) +O(1/D4)

θ̃n+1 = (J/D)2 sin(2π/p) +O(1/D3)

θ̃n = (J/D) sin(2π/p) +O(1/D2)

θ̃n−1 = −J/D sin(2π/p) +O(H/D, 1/D2)

θ̃n−2 = −(J/D)2 sin(2π/p) +O(H/D, 1/D3)
...

θ̃1 = −(J/D)n−1 sin(2π/p) +O(H/D, 1/Dn). (2.10)

The final result for the interface phase boundaries derived below will demonstrate that it is

consistent to neglect terms O(H/D) in (2.10). Note that for p = 2, for D large, the {θ̃i}’s are all

zero, suggesting that the spins do not lower their energy by canting. This will be proven in section

2.7. Meanwhile we will implicitly restrict ourselves to the case p ≥ 3.

2.5 Calculation of E〈n〉 − E〈n+1〉

In this section we shall use the harmonic approximation (2.6) to calculate the energy differences,

E〈n〉 − E〈n−1〉, between neighbouring interface states. For simplicity we will evaluate the energy

difference for a chain of finite length, N , and take the limit N →∞ at the end of the calculations.

Let 〈n− 1〉 have spins {αi} with α1 the surface spin and 〈n〉 have spins {βi} with β0 the surface

spin. Then in both cases the interface lies between i = n − 1 and i = n and α0
i ≡ β0

i , as shown

below.

With this choice of labelling we have

En − En−1 = −H

[
cos(2π/p)− 1

]
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. . .

β n

N
ααn+1

β n+1
β

0
β

1

. . .

α nα1 α2

<n-1>

<n> . . .

. . .

β N-1

Figure 2.2: Schematic illustration of the labelling chosen for phases 〈n− 1〉 and 〈n〉.

+
N−1∑
i=2

1
2
Jci

{[
(β̃i−1 − β̃i) +

si

ci

]2 − [(α̃i−1 − α̃i) +
si

ci

]2}

+
N−1∑
i=1

1
2
H cos β0

i

[
(β̃i + tanβ0

i )2 − (α̃i + tanα0
i )

2
]
+

1
2

N−1∑
i=1

D(β̃2
i − α̃2

i )

+
1
2
Jβ̃2

1 −
1
2
Jα̃2

N−1 (2.11)

where, according to our choice of boundary conditions (2.2), α̃1, α̃N , β̃0 and β̃N−1 must be set equal

to zero.

The expression for En−En−1, (2.11) can be simplified considerably using the linearised recursion

equations (2.8). To this purpose it is convenient to define the quantity

A =
N−1∑
i=2

1
2
Jci

{[
(β̃i−1 − β̃i) +

si

ci

]2 − [(α̃i−1 − α̃i) +
si

ci

]2} (2.12)

and rewrite it in the form

A =
N−1∑
i=2

1
2
Jci

(
β̃i−1 − β̃i + α̃i−1 − α̃i + 2

si

ci

)[
(β̃i−1 − α̃i−1)− (β̃i − α̃i)

]

=
N−2∑
i=2

[
−1

2
Jci(β̃i−1 − β̃i + α̃i−1 − α̃i + 2

si

ci
)

+
1
2
Jci+1(β̃i − β̃i+1 + α̃i − α̃i+1 + 2

si+1

ci+1
)
]
(β̃i − α̃i)

+
1
2
Jc2(β̃1 − β̃2 + α̃1 − α̃2 + 2

s2

c2
)(β̃1 − α̃1)

−1
2
JcN−1(β̃N−2 − β̃N−1 + α̃N−2 − α̃N−1 + 2

sN−1

cN−1
)(β̃N−1 − α̃N−1). (2.13)

Substituting (2.13) back into (2.11) and using the recursion equations (2.8) the energy difference

simplifies to
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En − En−1 = −H

[
cos(2π/p)− 1

]
+

1
2
Jβ̃2

1 +
1
2
H cos β0

1(β̃1 + tanβ0
1)2

+
1
2
Dβ̃2

1 +
1
2
Jc2(β̃1 − β̃2 + α̃1 − α̃2 + 2

s2

c2
)(β̃1 − α̃1)

−1
2
Jα̃2

N−1 −
1
2
H cos α0

N−1(α̃N−1 − tanα0
N−1)

2 − 1
2
Dα̃2

N−1

1
2
JcN−1(β̃N−2 − β̃N−1 + α̃N−2 − α̃N−1 + 2

sN−1

cN−1
)(β̃N−1 − α̃N−1) (2.14)

where we set α̃1 = α̃N = β̃0 = β̃N−1 = 0. Then, taking the limit N →∞, one has

E〈n〉 − E〈n−1〉 = −H {cos(2π/p)− 1}+ Hβ̃1 sinβ0
1/2− Jβ̃1α̃2/2 n ≥ 3

E〈2〉 − E〈1〉 = −H {cos(2π/p)− 1}+ Hβ̃1 sinβ0
1/2

−J cos(2π/p)β̃1α̃2/2 + J sin(2π/p)β̃1/2 . (2.15)

The formulae (2.15) are exact for the quadratic Hamiltonian (2.6). Higher order terms in the full

Hamiltonian (2.1) appear as higher order corrections.

Substituting in the values for the surface spins from (2.10) gives, for n ≥ 2,

E〈n〉 − E〈n−1〉 = −H(cos(2π/p)− 1)− J2n−2 sin2(2π/p)/(2D2n−3) +O(1/D2n−2) (2.16)

It follows immediately from (2.16) that the boundary between phases 〈n − 1〉 and 〈n〉 is given, to

leading order, by

H〈n−1〉:〈n〉 = J2n−2 sin2(2π/p)
{
2 (1− cos(2π/p))D2n−3

}−1
(2.17)

indicating that the unbinding proceeds via an infinite series of phases 〈n〉 of widths O(1/D2n−3).

Although these conclusions are rigorously based on the leading order calculation of E〈n〉 − E〈n−1〉

it must be noticed that neglected higher-order interactions could dominate for large values of n,and

therefore they could qualitatively change the phase diagram. However, we notice that in Hamiltonian

(2.1) we do not have any competing interactions that could make E〈n〉 − E〈n−1〉 oscillatory as a

function of n. Therefore, since for large n we do not expect the sign of E〈n〉 − E〈n−1〉 to change,

it is unlikely that higher-order terms in (2.17) can introduce qualitative modifications in the phase

diagram.

2.6 The phase diagram

These results were confirmed numerically for the case p = 3 by iteratively studying the equations

(2.1) which minimize the energy. The numerical approach allowed us to obtain the interface phase

diagram for all values of D which is shown in Fig. 2.3.
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Figure 2.3: Phase diagram of the classical X-Y model in a magnetic field, H, with three-fold spin anisotropy,
D, and an imposed interface. There are an infinite number of interface layering transitions. The first order boundaries
between them terminate in critical points.

The first order boundaries between the different interface phases end at a series of critical points

at

〈1〉 : 〈2〉 D∗
1,2 = 1.1268± 0.0003 H∗

1,2 = 0.2566± 0.0009 (2.18)

〈2〉 : 〈3〉 D∗
2,3 = 0.9360± 0.0003 H∗

2,3 = 0.04357± 0.00001 (2.19)

〈3〉 : 〈4〉 D∗
3,4 = 0.7281± 0.0005 H∗

3,4 = 0.01029± 0.00004 (2.20)

〈4〉 : 〈5〉 D∗
4,5 = 0.5931± 0.0003 H∗

4,5 = 0.00295± 0.00002 (2.21)
...

These were identified as the points where both the energy E and its partial derivative with respect

to H become the same in the two phases, as shown in Fig. 2.4.

Assuming that D∗
n,n+1 and H∗

n,n+1 have a power law dependence on n, extrapolation to n →∞

shows that (D∗
∞,H∗

∞) = (0, 0) is consistent with the data. However, due to finite numerical accuracy,

it was only possible to obtain results for n ≤ 5, and so we cannot be confident that this is the true

asymptotic behaviour.

The mechanism for the occurrence of the end-points can be understood by considering the soft-

ening of the interface spins. From equation (2.10) it is clear that, as D is lowered, the spins move

to close the gap at the interface, β̃n− β̃n+1 and α̃n− α̃n+1. As we move along the 〈n〉|〈n− 1〉 phase

boundary for decreasing values values of D, the interface angles αn+1 and βn will move in opposite
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Figure 2.4: Plot of the derivative ∂E/∂H for phases 〈1〉 and 〈2〉 along the 〈1〉 : 〈2〉 boundary for p = 3.

directions as shown in the example of Fig. 2.5.

When the critical point is reached, the angles αn+1 and βn have the same value and, consequently

the two chains {αi} and {βi} become identical. The critical value for αn+1 (or equivalently βn) for

which the end point is attained is π/p. This justifies, a posteriori our definition of the interface

phases given in (2.4).

Finally, we conclude the description of the phase diagram noting that, for D = 0 the interface

shape varies continuously from being a domain wall at the surface for H large to a uniform spiral

for H = 0.

2.7 Persistence of degeneracy for p = 2

In the rest of this Chapter we will consider the model (2.1) for p = 2. As previously observed, this is

a special case, since equation (2.10) shows that the leading order expressions for the {θ̃i}’s vanish.

As we show this result is not approximate but is exactly true if D is sufficiently large.

To see this consider the full recursion equations for p = 2

∂H
∂θi

= Jci sin(θ̃i − θ̃i−1) + Jci+1 sin(θ̃i − θ̃i+1)

= Hc0
i sin θ̃i +

D

2
sin 2θ̃i = 0 . (2.22)
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<2>

D=4.00000
h=0.003427

<3>

<2>

D=1.90000
h=0.019166

<3>

<2>

D=1.04485
h=0.043380

<3>

Figure 2.5: Configurations of the first 10 spins for phases 〈2〉, 〈3〉 along the 〈2〉:〈3〉 boundary for p = 3 (the
surface spins are the left-most ones). As the critical point (H∗

2,3 = 0.04357, D∗
2,3 = 0.9360) is approached, the third

spin from the surface tends to the value π/3 for both chains.

For very large D, equation (2.22) shows that θ̃i must be at least of order 1/D. Now suppose that

the θ̃i’s are not all identically zero. Then consider the spin deviation θ̃k of maximum modulus

|θ̃k| = max
i
{|θ̃i|} . (2.23)

For simplicity we assume that there is only one value of k satisfying (2.23), but this is not essential

for the following discussion. The recursion equations ∂H/∂θk = 0 give

(D + Hc0
k) sin θ̃k cos θ̃k + Jck sin(θ̃k − θ̃k−1) + Jck+1 sin(θ̃k − θ̃k+1) = 0 . (2.24)

The last two terms of (2.24) are, at most, of order J sin(2θ̃k), while the first one is of order D sin(θ̃k).

When D is sufficiently large the recursion equation (2.24) cannot be satisfied if θ̃k 6= 0 since the

term D sin θ̃k cos θ̃k can never be cancelled out by the contribution of the other two (remember that

the θ̃i are O(1/D)). Therefore, for large D, the spin deviations must be exactly zero.

Since, for large D, the spins remain locked in their Ising positions, it implies that, for H = 0,

the multidegeneracy for D = ∞ persists for finite values of D.

In the next section we will study how quantum fluctuations affect this multidegeneracy. We

show that, for p = 2, zero-temperature quantum fluctuations are strong enough to modify the phase

diagram by raising the multidegeneracy.
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2.8 Quantum fluctuations

We consider the quantum mechanical version of the model (2.1) for spins with two-fold anisotropy,

H = − J

S2

N−1∑
i=0

~Si · ~Si+1 +
H

S

N∑
i=0

Sz
i −

D

S2

N∑
i=1

(Sz
i )2 − K

S
(Sz

i − Sz
N ) (2.25)

where ~Si is a quantum mechanical spin of modulus S at site i and, K is thought to tend to ∞ in

order to enforce the appropriate boundary conditions, cf. relations (2.2), on the chain.

We will consider the case S � 1. In the limit S → ∞ we expect to recover the results for

the classical p = 2 case. As for the classical case, we are interested in determining the qualitative

features of the phase diagram near the multiphase point, (D = ∞,H = 0). Therefore, 1/D will be

treated as a small parameter.

For D = ∞ the spins will be locked in the Ising positions Sz
i = σiS, where σi = ±1. To study the

effect of quantum fluctuation for small 1/D we introduce the Dyson-Maleev transformation [26, 27].

Sz
i = σi(S − a†iai) ,

S+
i =

√
2S

(
δσi,1

[
1− a†iai

2S

]
ai + δσi,−1a

†
i

[
1− a†iai

2S

])
,

S−i =
√

2S
(
δσi,1a

†
i + δσi,−1ai

)
, (2.26)

where a†i and ai are bosonic operators that create/destroy a spin excitation at site i and S±i =

Sx
i ± iSy

i . The Dyson-Maleev transformation, which is often regarded as a truncated Holstein-

Primakov transformation [28, 29, 30], preserves the canonical commutation relations between Sz,

S+ and S−. The advantage of using (2.26) is that, when the Hamiltonian (2.25) is recasted in bosonic

form, only terms involving at most four bosonic operators (a† and a) appear, while the Holstein-

Primakov transformation involves an infinite expansion in terms of a† and a. The Holstein-Primakov

transformation is accompanied by the additional requirement that the number of spin deviations at

any site cannot exceed 2S, (so that −S ≤ Sz
i ≤ +S). This physical requirement is not enforced by

the Dyson-Maleev transformation, where the bosonic occupation numbers, a†iai, can be arbitrary

large. This has the consequence of introducing some spurious eigenvalues in the eigenspectrum of

H. However, Dyson has shown that these spurious eigenvalues are separated by a gap of order TN

(TN being the Néel temperature for the system) from the physical band of eigenvalues [26]. Hence,

for temperatures not too close to TN , the Dyson-Maleev transformation allows an almost exact

treatment of spin models. However, as we shall point out later, we will eliminate rigorously the

effect of spurious states by using standard Schrödinger-Rayleigh perturbation theory.

When recasting (2.25) in bosonic operator form, it is important to notice that the product ~Si ·~Si+1

will take different forms for σi = σi+1 or σi = −σi+1. If σi = σi+1

−J ~Si · ~Si+1

S2
= −J +

J

S
(a+

i − a+
i+1)(ai − ai+1) ; (2.27)
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whereas if σi = −σi+1

−J ~Si · ~Si+1

S2
= J − J

S
(a+

i + ai+1)(ai + a+
i+1) +

J

S
, (2.28)

where the last term comes from normally ordering the boson operators. Likewise the magnetic field

term becomes
HSz(i)

S
= H − a+

i ai

S
(2.29)

for σi = 1 and
HSz(i)

S
= −H +

a+
i ai

S
(2.30)

for σi = −1. The anisotropy energy becomes

−DSz(i)2

S2
= −D +

2D

S

∑
i

a+
i ai −

D

S2

∑
i

a+
i aia

+
i ai . (2.31)

Now we can discuss how quantum fluctuations break the degeneracy with respect to the wall

position which exists classically when h = 0. We will denote with |0〉k the ground state that reduces

to {σ1, σ2 = 1, ...σk = 1, σk+1 = −1, ...σN = −1} when D = ∞, as shown in Fig. 2.6.

k-1 k1 2 3

k+1 NN-1. . . . . .| k >

Figure 2.6: Arrangements of spins in configuration |k〉 when D = ∞.

The Hamiltonian (2.25) becomes

H({σi}) = EI +H0 + V|| + V 6‖ + V4 , (2.32)

where

EI = −J
N−1∑
i=1

σiσi+1 + H
N−1∑
i=2

σi −K[σ1 − σN ] (2.33)

H0 =
N−1∑
i=2

[
2D + Jσi(σi−1 + σi+1)−Hσi)

]
S−1a+

i ai, (2.34)

V4 represents the four operator terms proportional to 1/S2, and V|| (V 6‖) is the interaction between

spins which are parallel (antiparallel)

V|| = −
N−1∑

i=2;i 6=k

JS−1(a+
i ai+1 + a+

i+1ai), (2.35)

V 6‖ = −JS−1(a+
k a+

k+1 + ak+1ak). (2.36)

We work to lowest order in 1/S and therefore neglect terms like V4 which are higher order than

quadratic in the boson operators.
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We will regard H0 as the unperturbed Hamiltonian, since it is diagonal in a†i and ai. The role of

the perturbative terms V 6‖ is to create or destroy a pair of excitations (i.e., spin-deviations) at the

sides of the interface, while V‖ has the effect of hopping these excitations to nearest-neighbouring sites

(though they can never be hopped past an interface, to ensure conservation of the total magnetization

of the chain). The energies Ek will be calculated at H = 0 using standard perturbation techniques

[31]

Ek = k〈0|(V|| + V 6‖)|0〉k − k〈0|(V|| + V 6‖)
Q0

H0 − E0
(V|| + V 6‖)|0〉k + . . . (2.37)

where the vector |0〉k corresponds to the configuration with the interface at position k and no

excitation present and Q0 = 1 − |0〉k k〈0|. All the vectors |0〉k are eigenstates of H0 with the same

eigenvalue E0. However, the perturbative term (V||+V 6‖) conserves
∑

i Sz
i and thus it can never cause

a transition between two different ground states. Therefore we may use non-degenerate perturbation

theory to check whether the excitations can lift the degeneracy of the interface states.

At this stage it is important to point out that in equation (2.37) there might be terms where a

physical state |P 〉, with −S ≤ Sz
i ≤ S for all i’s, is connected to an unphysical one, 〈U |, as shown

below,

〈U |V |P 〉 , (2.38)

However, the Dyson-Maleev transformation (2.26), which is non-Hermitian, guarantees that

〈P ′|V |U〉 = 0 (2.39)

where 〈P ′| is an arbitrary physical state. In other words it will never be possible to connect two

physical states through unphysical intermediate ones. Therefore, the effect of spurious states in

(2.37) is automatically eliminated without having to impose from the outside the constraint that

only physical states can appear.

Contributions to the energies Ek arise from spin deviations at the interface created by V 6‖ which

are propagated away from and then back to the interface by V|| and subsequently destroyed by V 6‖.

However only such processes which are k-dependent are of interest to us. Amongst all the the k-

dependent processes, the ones that will give the leading order contribution to ∆Ek = Ek−Ek+1 are

those involving the least number V ’s since, for each V , the energy denominators in (2.37) introduce

a factor of order 1/D.

The lowest order term which contributes to ∆Ek corresponds to an excitation which is created

at the interface at position k and propagates to the surface and back before being destroyed. This

graph is illustrated in Fig. 2.7. (This process contributes to Ek, but does not occur for Ek−1.) It

has a contribution which follows immediately from (2k)th order perturbation theory as

∆Ek = − J2k

S(4D)2k−1
+O

( 1
D2k

)
(2.40)
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i  = k-2 k-1 k k+1 k+232

Figure 2.7: The process which gives the lowest order contribution to the energy difference ∆Ek ≡ Ek −Ek−1

between the interface at positions k and k − 1. + (–) denotes the creation (destruction) of a spin excitation by V6‖.
An arrow is used to denote a hop mediated by V‖. The process shown contributes to Ek but not to Ek−1 because
the i = 1 spin can not be flipped when H →∞.

where the terms in J and H in the denominator contribute only to higher order in 1/D. ∆Ek is

negative corresponding to a repulsive interaction between the interface and the surface and hence

as H → 0+ the interface unbinds through an infinite series of first order phase transitions with

boundaries between the phases at

Hk:k−1 =
J2k

S(4D)2k−1
. (2.41)

It is important to point out that these conclusions are based on a leading order calculation of ∆Ek

for very large k. However, as we argued at the end of section 2.5, given the absence of competing

interactions in the Hamiltonian (2.25), it seems unreasonable to expect that higher-order corrections

could change the sign of ∆Ek, thus truncating the layering series.

2.9 Conclusions

To summarise we have shown that the softening of spins with p-fold anisotropy, for p ≥ 3, can remove

the multidegeneracy in a spin model with short range interactions in the presence of a magnetic field.

We have given evidence for a sequence of first order layering transitions which is probably infinite.

The additional symmetry present in the model for p = 2 is responsible for the persistence of

degeneracy observed in the ground state for high values of the spin anisotropy. We have shown

that, for the quantum version of the two-fold anisotropic classical model, zero-temperature quantum

fluctuations are sufficient to break the degeneracy and stabilize a sequence of layering transitions.



Chapter 3

Quantum fluctuations in the

transverse Ising model

3.1 Introduction

The transverse Ising model [32] was first introduced by de Gennes [33] in connection with hydrogen-

bonded ferro-electrics. For this class of materials [34, 35, 36] the bonding proton can occupy one of

the two minima of a double well potential. Within the pseudo-spin description of the system, the

two equivalent positions of the proton are associated with spin up or spin down, while the transverse

magnetic field controls the tunnelling of the proton between the two wells.

Although the model can be used as a pseudo-spin description for several other materials [37, 38]

it also used in connection with genuine magnetic systems, like some compounds of Tb with group-V

elements, where the ground state, stabilized by the crystal field splitting, is a singlet [39, 40].

In this Chapter we will focus on the behaviour of a domain wall in a semi-infinite three-

dimensional version of the model. This study has been stimulated by the work of Henkel et al.

[41] who have discussed the effect of quantum fluctuations on a domain wall in the system. Their

work considers one dimension, where the interface is rough [4, 42]. Very different behaviour can be

expected for a smooth interface, as in the case presented here.

We find that, for zero transverse field, the short range nature of the spin interactions is responsible

for the appearance of a multidegeneracy with respect to the position of the flat domain wall. For a

non-zero transverse field, the multidegeneracy can be split by quantum fluctuations and an infinite

sequence of layering transitions is stabilized [43].

25
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3.2 The model

The Hamiltonian of the classical three-dimensional transverse Ising model we shall consider is

H = −J0

∑
i=1,L

∑
〈j,j′〉

Sz(i, j)Sz(i, j′)− J1

∑
i=0,L

∑
j

Sz(i, j)Sz(i + 1, j)

−
∑

i=1,L

∑
j

[
hSx(i, j) + HSz(i, j)

]
−K

∑
j

(
Sz(0, j)− Sz(L + 1, j)

)
, (3.1)

where i labels two-dimensional planes and 〈j, j′〉 pairs of nearest neighbours within a plane.

J0

.   .   .   .   .
J0

h

H

J1

Figure 3.1: Schematic representation of the model introduced in Eq. (3.1). The leftmost plane is labeled i = 0
and the rightmost i = L + 1. The surface field K is not shown.

The parameter K →∞ is used to impose appropriate boundary conditions, namely to fix the spins

at the surface (i = 0) to be up and those in the last layer (i = L + 1) to be down. These boundary

conditions will create a domain wall, or interface, in the system separating layers of up and down

spins (see Fig. 3.1).

As shown in Fig. 3.2a we will say that the interface is at position k if

Sz(i, j) = +1/2 for i ≤ k

Sz(i, j) = −1/2 for i > k

Although, strictly speaking, this definition applies only when h = 0, it can also be used for finite,

though small enough values of h, as long as a sharp interface can still be identified (despite the

presence of some disorder).

Our aim is to construct the phase diagram which gives the position, k, of the interface as a

function of the uniform field H and the transverse field h.

As for the interface unbinding problem addressed in Chapter 2 we consider the case T = 0, where

the interface is flat, and we shall work in the limit L →∞.
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Figure 3.2: a) Configuration of the spins when the interface is at position k. Layer 0 is constrained to be up
and the layer at infinity is constrained to be down. In panels (b) and (c) we have represented the configurations R
and L.

3.3 Qualitative remarks

As a first step in understanding the phase diagram we consider the situation for h = 0. In this case

it is clear that for positive H, k = ∞ while, for negative H, k = 0. We shall call these phases, which

are illustrated in Fig. 3.2, R and L respectively. For H=0 the energy is independent of k, so that

all interface positions are degenerate.

As we discussed in the previous Chapter, the perturbations introduced by thermal or quantum

fluctuations can produce an effective coupling between the interface and the wall which raises the

multidegeneracy (this phenomenon has been referred to as ground-state selection by Henley and

others [44, 45]). The qualitative aspect of the resulting phase diagram will differ according to whether

the wall-wall interaction is repulsive or has an attractive part. Since we are interested in studying

the phase diagram at zero temperature, here we will consider the effect of quantum fluctuations.

Our results show that the effective interaction between surface and interface introduced by quantum

fluctuations is repulsive and is responsible for the appearance of a sequence of layering transitions

which is probably infinite.

First of all we notice that, even when h is nonzero, the R phase is stable whenever H is positive.

As we will show, the stability of the L phase requires that H < −Ch2J1/J2
0 , where C is a constant.

To determine the interface position for intermediate values of H, we shall calculate the energy

of different interface states by applying quantum perturbation theory and assuming perfectly flat

interfaces. If we were dealing with a finite system, then perturbation theory would introduce coupling

in finite order between states when the interface is at different positions. However, this tunnelling

effect disappears in the thermodynamic limit (L →∞) and this justifies our use of non-degenerate

perturbation theory. Our perturbative calculations are valid for h � J0 and h � J1. We also
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impose the condition J1 � J0 although, as long as we remain in the regime where the interfaces are

flat, this restriction is probably inessential.

Since we will need to compare the energy of different interface states, it is convenient, at this

stage, to write the energy per layer spin e(k) of the state when the interface is at position k as

e(k) = e0 − kH + Ek , (3.2)

where e0 is the energy per layer spin for the k = 0 phase and Ek is the k-dependent energy correction

due to quantum fluctuations. Hence, the critical field, H∗
k separating the phase k from k +1 is given

by

−H∗
k = Ek − Ek+1 ≡ ∆Ek . (3.3)

In the next section we will use quantum perturbation theory to calculate ∆Ek to leading order in

1/J0. To this purpose it is helpful to notice that ∆Ek in (3.3) can be safely evaluated for H = 0.

In fact, Ek depends on H through the energy denominators that appear in perturbation theory,

which are typically of the form 2J0 + J1 + H. However, perturbative contributions to Ek, when

expanded in powers of H, lead to corrections which are of relative order H/J0 or smaller. But since

we will only be interested in H in the range −Ch2/J0 < H < 0, these corrections are smaller than

of relative order (h2/J2
0 ) � 1, which we may ignore. Therefore, in equation (3.3), we may evaluate

∆Ek at H = 0.

3.4 Calculation of ∆Ek

From equation (3.3) it is clear that we only need to keep track of terms in the ground-state energy

which depend on k. In other words we need to ascertain how the corrections to the ground–state

energy which are perturbative in h depend on the location of the interface. For convenience we now

transform to occupation number operators. For spins that are up (down) we write Sz(i, j) = 1/2−ni,j

[Sz(i, j) = −1/2+ni,j ]. Also Sx(i, j) = (a†i,j +ai,j)/2, where the operator a†i,j (ai,j) creates [destroys]

a Bose excitation at site i in the jth layer and ni,j = a†i,jai,j . To enforce the restriction that no more

than one excitation can exist on a single site, we include a term of the form Λ
∑

i,j a†i,ja
†
i,jai,jai,j ,

where Λ →∞. Although normally, it is difficult to take full account of such a hard-core interaction

we will be able to accommodate this constraint by never involving matrix elements connecting to

a state in which there is more than one excitation at any site. Therefore, when the interface is at

position k we are led to the following bosonic Hamiltonian,

HB = E0 +
∞∑

i=1

∑
j

(
2J0ni,j − (h/2)[a†i,j + ai,j ]

)
−

∞∑
i=1

∑
〈j,j′〉

J0ni,jni,j′

+Λ
∞∑

i=1

∑
j

a†i,ja
†
i,jai,jai,j − J1

∞∑
i=0

∑
j

[−(1/2)(ni,j + ni+1,j) + ni,jni+1,j ]
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+J1

∑
j

[−nk,j − nk+1,j + 2nk,jnk+1,j ] , (3.4)

where E0 is the unperturbed energy of the k = 0 phase and Λ →∞. In (3.4) we set H = 0 for the

reasons explained before and we also omitted the term proportional to K in (3.1) since, for K →∞,

n0,j must be set equal to zero. We write this Hamiltonian as

HB = E0 +H0 + V1 + V2 + V3 + V4 , (3.5)

where

H0 = ∆
∑

i

∑
j

ni,j , (3.6)

with ∆ = 2J0 + J1, and

V1 = −
∑

i

∑
j

Ji,i+1ni,jni+1,j − J0

∑
i

∑
〈j,j′〉

ni,jni,j′ (3.7)

V2 = −(h/2)
∑

i

∑
j

[a†i,j + ai,j ] , (3.8)

V3 = −J1

∑
j

(nk,j + nk+1,j) , (3.9)

where

Ji,i+1 =

 J1 for i 6= k

−J1 for i = k
(3.10)

and (with Λ →∞)

V4 = Λ
∑

i

∑
j

a†i,ja
†
i,jai,jai,j . (3.11)

We now consider how the perturbative contributions to the energy depend on the various coupling

constants. To carry out this discussion it is convenient to introduce a diagrammatic representation

of the contributions to the perturbation expansion. Each term of V1 proportional to Jrsnrns, where

r (and similarly s) denotes a position label of the form i, j, is represented by a line joining the two

interacting sites r and s and Jrs = J0 or Jrs = J1 depending on whether sites r and s are in the

same plane or are in adjacent planes. The perturbation in V2 proportional to ar (a†r) is represented

by a minus (plus) sign at the site r. However, for simplicity, since each site involved with any of the

other interactions must be excited (i. e. must have both a ”+” and a ”-” associated with it), we have

not explicitly shown ”+”’s and ”-”’s in Fig. 3.3. The term in the perturbation V3 proportional to

nk,j (nk+1,j) is represented by a circle attached to the site k, j (k + 1, j). Any term in perturbation

theory which does not involve V4 can be constructed from these elements. Some simple examples

are shown in Fig. 3.3.

At this stage it is convenient to introduce the definition of connected terms. Any term which

involves only a single site is connected. Terms which involve more than one site are connected only

if all such sites are connected with respect to lines representing terms of V1. If this is not the case,
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c

b

a

e

d

f

Figure 3.3: Representation of perturbative contributions to the ground-state energy. The dashed line corre-
spond to the location of the interface. Contributions which involve J1 and h for four sites (a) and (c) and for three
sites (b) with one of the J1’s taken to second order. (d-f) Terms which involve factors of V3. Diagram (f) represents a
term which involves the J0 interaction. Diagrams (a) and (d) are disconnnected and therefore give zero contribution
to the ground state energy, as discussed in the text.

the term will be called disconnected. Thus diagrams (a) and (d) of Fig. 3.3 are disconnected. It is

useful to distinguish between connected and disconnected diagrams since the latter do not contribute

to the energy. This can be established by considering a disconnected diagram Γ which consists of

two disjoint components, ΓA and ΓB . The contribution of this diagram is unchanged if we were to

treat perturbatively the system S(ΓA +ΓB) in which all coupling constants Jrs not in ΓA or ΓB are

set to zero. But because ΓA and ΓB are disjoint systems, we have E(ΓA + ΓB) = E(ΓA) + E(ΓB).

This result indicates that there are no disconnected terms in the ground state energy which involve

simultaneously an exchange constant from one component ΓA and an exchange constant from the

other component ΓB . Thus disconnected diagrams can be omitted from further consideration.

A0

k = 0

k = 1

A1

B1

Figure 3.4: Perturbative contributions to the ground-state energy used to evaluate ∆E0 = E0−E1. Panel A0
corresponds to the case when the interface is at k = 0; panels A1 and B1 to the case k = 1.

To evaluate ∆Ek it is apparent from the definition of equation (3.3) that we only need to keep
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connected contributions which appear when the interface is at position k + 1 but not when it is

at position k. To identify the contributions which are lowest order in (J1/∆) and in (h/∆), it is

convenient to refer to Figs. 3.4 and 3.5, where typical contributions to the ground state energy are

shown. In particular consider contributions to ∆E1, some of which are shown in Fig. 3.5. It is

important to notice that we did not include diagrams like those of Fig. 3.4 which involve no lines

representing V1 and one circle representing V3, because such diagrams occur equally for E1 and E2.

Similarly, one can see from the system of five layers shown in Fig. 3.5, that contributions which are

first order in V1 and zeroth order in V2 occur identically in E1 and E2. For both E1 and E2 there

is one way to take V1 spanning the wall, and three ways to take a V1 which does not span the wall.

Next in order of smallness, we consider contributions which involve one J1 line (i.e. one power of

V1) and one circle (i.e. one power of V3). In this case for E2 one has the extra term labeled E2 in

Fig. 3.5. The rule is thus: the leading contribution in (J1/∆) to ∆Ek arises from the contribution

to Ek+1 coming from a diagrams which involves k lines (each carrying a factor J1) which connect

the surface to the interface and one circle representing V3.

Furthermore, we now show that it is only minimal length chains which give the dominant con-

tribution to ∆Ek. As we shall see, taking addition factors of V1 involving J0 leads to contributions

which are higher order in (h/∆) than those from diagrams involving only J1.

A1

B1

C1

D1

A2

B2

C2

D2

E2
k = 1

k = 2

Figure 3.5: Perturbative contributions to the ground-state energy used to evaluate ∆E1 = E1−E2. Panels A1
– D1 are for the case when the interface is at k = 1. Panels A2 – E2 correspond to k = 2. The dashed line represents
the position of the interface. Contributions from diagrams A1, B1, C1, and D1 are equal to those from diagrams A2,
B2, C2, and D2, respectively. So ∆E1 is determined by E2.

To see this we give a more detailed analysis of the contribution of a diagram involving, say, p different

lines representing V1 and, as we explained, necessarily involving at least one interface potential term

V3. Note that both these perturbations, V1 and V3, involve occupation numbers nr, which vanish

when there is no excitation at site r. For every site r involved in a V1 or V3 interaction, it is necessary

to create an excitation so that nr can be evaluated in a virtual state in which nr = 1. Subsequently,
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in order to get back into the ground state, we must destroy the excitation on the site r. Thus in all

a diagram involving p different lines will involve p + 1 sites and therefore give rise to a perturbative

contribution to the energy which is of order δpE, where

δpE = h(2p+2)Jp1
1 Jp2

0 (J1/∆)/∆2p+1+p1+p2 , (3.12)

where of the p lines, p1 are associated with J1 and p2 with J0 [see Eq. (3.7)]. In writing this equation

we included the factor (J1/∆) to take account of the necessary factor of V3. At this point, it is clear

that to have a diagram which occurs for position k + 1 but not for k it is best to invoke a linear

diagram, and not one which reaches more than one row perpendicular to the interface. Unnecessary

factors of J0 in V1 will give rise to additional factor of J0h
2/∆3 � 1. So, we conclude that to leading

order

∆Ek = CkJ2
0 (J1h

2
0/J3

0 )k+1 , (3.13)

where Ck is a constant which must be determined by an explicit calculation and, to leading order,

we set ∆ = 2J0.

Now we carry out a detailed calculation of ∆Ek for small values of k. We first start with the simplest

case, namely k = 0. From Fig. 3.4 we obtain

∆E0 = −E(A1) , (3.14)

where E(A1) is the contribution to the energy in diagram A1 of Fig. 3.4. Thus [31]

∆E0 = −〈0|V2
1
E

V3
1
E

V2|0〉

= −〈0|(−h/2)a1
1
E

(−J1a
†
1a1)

1
E

(−h/2)a†1|0〉

= (h2/4)(J1/∆2) = J1h
2/(16J2

0 ) . (3.15)

Here and below the excitation energies E will be −r∆ = −2rJ0, where r is the number of excitations

in the virtual state.
Next we calculate ∆E1 = −E(E2) from diagram E2 of Fig. 3.5. Here we have to sum over the

different orderings of the perturbations,

∆E1 =

−〈0|
[
(−h/2)a1

1

E
(−h/2)a2 + (−h/2)a2

1

E
(−h/2)a1

]
1

E

[
(−J1n1n2)

1

E
(−J1n2) + (−J1n2)

1

E
(−J1n1n2)

]
×

1

E

[
(−h/2)a†1

1

E
(−h/2)a†2 + (−h/2)a†2

1

E
(−h/2)a†1

]
|0〉

−〈0|
[
(−h/2)a1

1

E
(−h/2)a2 + (−h/2)a2

1

E
(−h/2)a1

]
1

E
(−J1n1n2)

1

E
(−h/2)a†1

1

E
(−J1n2)

1

E
(−h/2)a†2|0〉

−〈0|(−h/2)a2
1

E
(−J1n2)

1

E
(−h/2)a1

1

E
(−J1n1n2)

1

E

[
(−h/2)a†1

1

E
(−h/2)a†2 + (−h/2)a†2

1

E
(−h/2)a†1

]
|0〉.

(3.16)

When simplified this yields

∆E1 = 2(h/2)4J2
1/∆5 = (1/256)J2

1h4/J5
0 . (3.17)
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This calculation is hard to extend to ∆Ek for larger k using the Schrödinger-Rayleigh perturba-

tion theory. In fact, as suggested by A.B. Harris [46], it is more convenient to adopt the Matsubara

formalism [47]. In the Matsubara perturbative scheme one has diagrams constructed from the fol-

lowing elements. The perturbations V1, V2, and V3 are represented by vertices as shown in Fig. 3.6.

Each such vertex carries the appropriate factor (−h/2), −J1δr,k, and −J1, respectively, where δr,k

m

m

j+1
j+1

j
j

r

r

Figure 3.6: Vertices for Matsubara diagrams: (a) transverse field vertex −(h/2)(a†m) (top) and −(h/2)am

(bottom); (b) −J1δr,ka†rar; (c) −J1njnj+1 = J1a†ja†j+1aj+1aj .

is the Kronecker delta. Since the leading order expressions for ∆Ek never involve Jk,k+1, we can set

Ji,i+1 = J1.

In the Matsubara diagrams each line represents a Green’s function (zν −∆)−1, and lines which

carry the same label are joined. The contribution to the energy is obtained by summing over all

topologically inequivalent connected diagrams. A sum is also taken over the Matsubara frequencies,

zν = 2νπi/(kBT ) (where ν runs over all integers positive and negative), that appear in the Green’s

functions. One also needs to enforce the conservation of zν , that is for each vertex the sum of all

incoming z’s minus the sum of all outgoing z’s must equal zero. For the present case, this conservation

law means that at any vertex which has only one line entering or leaving the corresponding z must

be zero. One can quickly see that the zν ’s for all lines have to be zero. So, in fact, there is no sum

over zν to be done.

The only Matsubara diagram contributing to ∆E0 is shown in Fig. 3.7a, for which we have the

contribution

∆E0 = −(−h/2)(−J1)(−h/2)(−∆)−2 = h2J1/(4∆2) = h2J1/(16J2
0 ) , (3.18)

as before. To obtain this result, note that diagram (a) has two filled circle vertices (each carrying

a factor −h/2), one triangle (carrying a factor −J1), and two lines, each of which carries a factor

(z − Ei)−1 = −∆−1. Similarly we can calculate ∆E1 which is given by

∆E1 = −(Eb + Ec) = −2Eb . (3.19)

where Eb and Ec are the energies of diagrams b and c if Fig. 3.7 respectively (an analogous notation

for the energy of other diagrams will be used below.) Since diagram b has four h vertices, two J1
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Figure 3.7: Matsubara diagrams. The vertices are explained in the preceding figure. The lines are labeled by
an index i to represent the Green’s function (z−∆)−1. This calculation is for a linear system with sites labeled 1, 2,
.... These diagram give −∆Em following the reasoning of Figs. 4 and 5. Diagram (a) is for m = 0, diagrams (b) and
(c) are for m = 1 and diagrams (d)–(g) are for m = 2. No new topology is obtained by reversing the direction of the
line labeled ”1”. However, one may independently reverse the direction of all other lines giving rise to a degeneracy
2m.

vertices, and five lines, we have that

∆E1 = −2(−h/2)4(−J1)(−J1)(−∆)−5 = h4J2
1/(8∆5) = h4J2

1/(256J5
0 ) . (3.20)

Finally, from Fig. 3.7 we have

∆E2 = −(Ed + Ee + Ef + Eg) = −4Ed . (3.21)

Since diagram (d) has six h vertices, three J1 vertices, and eight lines

∆E2 = −4(−h/2)6(−J1)(−J1)2(−∆)−8 = h6J3
1/(16∆8) = h6J3

1/(4096J8
0 ) . (3.22)

An analysis of the structure of the diagrams contributing to ∆Ek for general k shows that the general

expression is

∆Ek = J0(J1h
2/16J3

0 )k+1 . (3.23)

3.5 The phase diagram

Since the sign of ∆Ek is positive, we can conclude that an infinite sequence of layering transitions

is observed as the field, H, is increased from zero. Equation (3.23) indicates that the boundary

between phases with k = p and k = p + 1 is given, to leading order by H∗
p = −J0(J1h

2/16J3
0 )p+1.

The resulting phase diagram is shown schematically in Fig. 3.8.
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. . .
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k= oo
k=0

k=2

k=1

h

Figure 3.8: Schematic representation of the phase diagram for interface unbinding transitions in the transverse
Ising model.

The analysis presented above was based on retaining only the leading-order (in h/J0 and J1/J0)

term in the surface–interface interaction. Although we cannot rule out the possibility that the

neglected higher-order interactions could become dominant for very large k (for fixed h and J0),

we do not expect to observe any qualitative corrections to the phase diagram in this limit. This is

because there are no competing interactions which would make correlation functions oscillatory at

large distance and therefore it seems implausible that the positive sign of ∆Ep can be changed by

the neglected higher-order terms [10].

3.6 The (3+1)-dimensional classical model

In this section we show how the correspondence between the (d + 1)-dimensional classical Ising

model and the d-dimensional quantum transverse Ising model [48, 49, 50, 51] can be used, at least in

principle, as an alternative route for obtaining the expressions for ∆Ek. To do this we shall follow

Kogut [48] and use the transfer matrix formalism to build a τ -continuum version of the classical

Hamiltonian and then identify the Hamiltonian for the associated quantum model.

Consider a four-dimensional square lattice with Ising spins on the sites. We will denote the

ferromagnetic spin coupling in the [1, 0, 0, 0] and [0, 1, 0, 0] directions as Jt and J respectively, while

with J0 we will refer to the interaction of spins in planes orthogonal to the Jt and J directions; all

couplings, J, Jt and J0 are assumed to be positive (i.e. ferromagnetic).

In view of the quantum mechanical correspondence it is useful to write the Hamiltonian for the

classical problem in operator form,

Ĥ = −J0

⊥∑
〈j,j′〉

Ŝz(i, j, t)Ŝz(i, j′, t)− J

‖∑
i

Ŝz(i, j, t)Ŝz(i + 1, j, t)− Jt

∑
t

Ŝz(i, j, t)Ŝz(i, j, t) (3.24)
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where i, t and j label respectively sites along the J direction, Jt direction and in J0 planes. The Ŝz

operators are the familiar 2x2 matrices

Ŝz =

 1/2 0

0 −1/2

 , (3.25)

and the vector states corresponding to spin up and down are, respectively,

up:

 1

0

 down :

 0

1

 . (3.26)

We can implicitly define the transfer operator in the Jt direction (which we will often refer to as the

“time direction”) T̂ so that the partition function

Z = Tr e−Ĥ (3.27)

can be written as

Z = Tr T̂N (3.28)

where N , the number of layers in the time direction (see Fig. 3.9), is very large, the Boltzmann

factor 1/kBT is equal to unity, and Tr denotes the trace taken over all possible spin states.

time direction

Jt

J

t=0

t=1

t=N

Figure 3.9: Section of the four-dimensional lattice along the J - Jt plane.

The diagonal elements of T̂ connect two identical “hyper-rows”; therefore they have the form

T̂diagonal = A exp
[
J0

⊥∑
Ŝz(i, j, t)Ŝz(i, j′, t) + J

‖∑
Ŝz(i, j, t)Ŝz(i + 1, j, t)

]
, (3.29)

where

A = exp
∑

t

Ŝz(i, j, t)Ŝz(i, j, t + 1) . (3.30)
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Now consider matrix elements that connect two rows that differ by one flipped spin, T̂1−flip. Making

use of the fact that the matrix 2Ŝx, where Ŝx is

Ŝx =

 0 1/2

1/2 0

 , (3.31)

acts as a spin flipping operator we have

T̂1−flip = A exp
[
−Jt/2 + J0

⊥∑
Ŝz(i, j, t)Ŝz(i, j′, t) + J

‖∑
Ŝz(i, j, t)Ŝz(i + 1, j, t)

]
2Ŝx (3.32)

More in general, matrix elements connecting states that differ by n flipped spins will be proportional

to exp(−nJt/2). Now we take the extreme anisotropic limit

Jt →∞ ,

lim
Jt→∞

J0e
Jt/2 = λ0 ,

lim
Jt→∞

JeJt/2 = λ , (3.33)

so that T can be expanded as follows (for convenience we drop the site labels of the Ŝz matrices)

T̂ = (1 + J0

⊥∑
ŜzŜz + J

‖∑
ŜzŜz + ...)(1 + e−Jt/2

∑
2Ŝx + ...)

≈ 1 + e−Jt/2
(
λ0

⊥∑
ŜzŜz + λ

‖∑
ŜzŜz +

∑
2Ŝx

)
≈ e−τH (3.34)

If we regard τ as an infinitesimal time-step, expression (3.34) defines the generator of time transla-

tion, i.e. the Hamiltonian for the 3-dimensional transverse Ising model

H = λ0

⊥∑
ŜzŜz + λ

‖∑
ŜzŜz +

∑
Ŝx . (3.35)

Setting the surface field term, K, to zero in Eq. (3.1) we can establish a correspondence between

(3.35) and (3.1) provided we make the substitution

λ0 → 2J0/h ,

λ → 2J1/h , (3.36)

and multiply (3.36) by h/2. In order to keep he derivation of the quantum Hamiltonian (3.35) as

simple as possible, we did not include the infinite surface field which will be accounted for by fixing

the spins at the boundary appropriately.

3.7 Calculation of ∆E0

In this section we will show how to make use of the mapping described above to rederive the

expression for ∆E0 which followed from standard quantum perturbation theory (see equation 3.15).
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In the classical picture we need to use an expansion in powers of e−2Jt to calculate the difference in

reduced free energy associated with different distances of the interface from the surface.

Since the reduced free energy, f , is defined as

f = − 1
N

lnZ ≈ τH (3.37)

it follows that the corresponding energy for the quantum case Eq can be obtained from f by taking

the limit

Eq = − lim
Jt→∞

eJt/2f . (3.38)

Now we consider the two spin configurations represented in Figs. 3.10a and 3.10b, where all the

spins with index i greater than 0 and 1, respectively, are pointing down, while the rest point up.

Using (3.38) we can express ∆E0 as

∆E0 = − lim
Jt→∞

eJt/2
[
fa − fb

]
(3.39)

where fa and fb are the classical free energies of the configurations a and b in Fig. 3.10, and the

limits (3.33) are understood.

J J

i=0 i=1 . . . i=0 i=1 i=2 . . .

b)a)
Figure 3.10: Two dimensional section of the classical 4-dimensional lattice when the interface is: a) at position

i = 1, b) at position i = 2. A filled (empty) circle indicates a spin pointing up (down).

Now we calculate fb and fa to lowest order in e−2Jt . To this purpose it is convenient to define the

quantities

x = e−J/2 , (3.40)

w = e−J0/2. (3.41)

Flipping one spin on the immediate left of the interface in configuration b, the contribution to

the free energy will be

e−Jtω4, (3.42)
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such a contribution does not exist for configuration a. However, this is not the only term of order

e−Jt that is present in b and absent in a. In fact, the increment in free energy associated with the

flipping of a string of neighbouring spins along the time direction, as shown in Fig. 3.11b, is still

proportional to e−Jt .

time direction

a) b)

Figure 3.11: Section of the lattice showing some of the diagrams contributing to the free energy to order e−Jt .
A box indicates a flipped spin.

Summing all the contributions proportional to e−Jt gives

e−Jt

(
ω4 + ω8 + ω10 + ...

)
=

−e−Jt
ω4

1− ω4
(3.43)

On the other hand, in configuration a there is one extra layer of spins which points down with

respect to configuration b. Hence, flipping any number of neighbouring spins in this extra layer will

give rise to a contribution of order e−Jt which is not present in fb, namely

e−Jt

(
ω4x2 + ω8x4 + ω10x6 + ...

)
=

−e−Jt
ω4x2

1− ω4x2
. (3.44)

Therefore

fa − fb =≈ e−Jt

(
ω4x2

1− ω4x2
− ω4

1− ω4

)
(3.45)

giving finally

∆E0 = = − lim
Jt→∞

eJt/2e−Jt

(
ω4x2

1− ω4x2
− ω4

1− ω4

)
≈ − lim

Jt→∞
e−Jt/2

(
1

J + 2J0
− 1

J/2 + 2J0
)

≈ −1
λ + 2λ0

− −1
2λ0

(3.46)

In the limit λ0 � λ the expression for ∆E0 simplifies further to
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∆E0 ≈
λ

4λ2
0

(3.47)

which is the same result as (3.15) as can be checked by making the substitutions (3.38) and multi-

plying the result by h/2.

Unfortunately, although this alternative derivation of ∆E0 is an interesting and instructive exer-

cise, the method used here is not easily generalised to calculate ∆Ek for large values of k. Therefore

the use of the Matsubara formalism still provides the most efficient route for calculating the leading

term in ∆Ek.

3.8 Conclusions

We considered the behaviour of an interface in a semi-infinite three-dimensional transverse Ising

model. For zero transverse field the ground state of the system is degenerate with respect to the

position of the interface. Using the Matsubara perturbative scheme we have shown that quantum

fluctuations can introduce an effective coupling between the interface and the surface that removes

the multidegeneracy. As a result a sequence of layering transitions which is probably infinite is

stabilized.

We have also shown how the results obtained using the Matsubara formalism can be obtained,

at least in principle, using an alternative route based on the correspondence between the three-

dimensional transverse Ising model and the four-dimensional classical Ising model with anisotropic

interactions.



Chapter 4

Layering transitions in an

anisotropic antiferromagnet

4.1 Introduction

Recent experimental results on Fe/Cr(211) superlattices [52, 53] (extensively studied in connection

with the giant magnetoresistence effect [54, 55]) have stimulated theoretical and numerical work

aimed at explaining the occurrence of series of phase transitions in samples with an even number of

Fe blocks [52, 53, 56].

If the thickness of the layers is chosen appropriately, the blocks of Fe can be coupled antiferro-

magnetically [57]. At sufficiently low temperatures the system can be described phenomenologically

by a chain of XY spins (each spin representing a Fe block) with antiferromagnetic interactions

and uniaxial anisotropy, D. It is known that, as the external magnetic field acting on an infinitely

extended antiferromagnet is increased, a first order transition occurs. The transition separates

the antiferromagnetic phase from the so-called bulk spin-flop state, where neighbouring spins are

symmetrically canted with respect to the field direction [58].

However, experimental investigations on finite samples of Fe/Cr have revealed that the phase

diagram is much richer than the one expected for an infinite system. This has been correctly

interpreted as due to surface effects [52]. In fact, following the seminal work of Mills, Keffer and

Chow [59, 60], several authors have shown that, as the field H is increased, the transition between

the antiferromagnetic and the bulk spin-flop phases occurs through a series of surface spin-flop

transitions [52, 53, 60]. They argue that the surface spin-flop state expands continuously to give

the bulk spin-flop state but give no explicit mechanism for this to occur. Recently Trallori et al.

[56] have identified the surface spin-flop transitions for moderate values of the anisotropy D ≈ 1 but

have shown that they do not exist for low D ≈ 1/100 [61].

41
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Unfortunately the methods used so far for investigating the problem (which either rely on molec-

ular field calculations [55] or on the study of chaotic iterative maps [62]) are not very efficient and,

therefore they cannot be used to study the ground state of the model for all values of the anisotropy.

In this Chapter we shall adopt a novel approach to the problem by using the inverse anisotropy

expansion technique (introduced in Chapter 2) together with a very efficient numerical strategy,

based on the Chou-Griffiths algorithm [63]. By using these techniques we shall study the phase

diagram of infinite, semi-infinite and finite antiferromagnetically coupled XY chains in a magnetic

field for all values of the uniaxial anisotropy D. For semi-infinite chains of even length we prove

analytically that there is a surface multiphase point from which the series of surface spin-flop (SSF)

transitions originate. This sequence of transitions is associated with the nucleation of a discom-

mensuration at the surface of the chain. For increasing values of the external magnetic field the

discommensuration is pushed further and further away from the surface. We also show that the SSF

transition lines terminate in critical points, thus explaining the disappearance of the surface phase

transitions for very low D [61].

Finally we clarify the mechanism by which the bulk spin-flop phase evolves from the surface spin-flop

state by proving the existence of a series of bulk transitions associated with a discontinuous increase

of the discommensuration width. When the discommensuration length diverges the bulk spin-flop

phase is accomplished [64].

4.2 Infinite Chain

We first consider an infinite chain of spins described by the Hamiltonian

H =
∞∑

i=−∞

{
cos(θi − θi+1)− h cos θi +

D

4
[1− cos(2θi)]

}
(4.1)

where θi is the angle between the ith spin and the direction of the field h and D is the spin anisotropy.

It is convenient to describe first the case D = ∞ where the spins are Ising-like with the θi’s being

restricted to the values {0, π}. For 0 < h < 2 the ground state is given by the antiferromagnetic

(AF ) configuration ...0, π, 0, π, ... while, for h > 2, all the spins are aligned along the field direction

in a ferromagnetic configuration (F ). For h = 2 there is an infinitely-degenerate multiphase point

where it is possible to flip any number of non-adjacent spins in the F phase with no increase in

energy; the phase diagram of Fig. 4.1 summarizes the situation.

In general, for finite values of the anisotropy, D, the spins may move from the Ising positions

and the ground state must be found by solving the equilibrium equations

∂H
∂θi

= 0. (4.2)

To solve equations (4.2) for the infinite chain it is helpful to note that the ground state will be at

most of period 2. Therefore any ground state can be completely described by giving the values of
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AF

. . .. . . . . . . . .

F hh=2

Figure 4.1: Schematic representation of the phase diagram for D = ∞. the F and AF labels denote the
ferromagnetic and antiferromagnetic phases respectively. The point (D = ∞, h = 2) is a multiphase point.

two consecutive spin angles: {θ1, θ2}. For D > 2 equations (4.2) can be satisfied only if

{θ1, θ2} = {0, π}, h < 2 , (4.3)

{0, 0}, h > 2 (4.4)

exactly as for D = ∞. In other words there is a finite region of the phase diagram where the spins

stay locked in their Ising positions. The occurrence of the spin locking is a common feature in models

with two-fold spin anisotropy [65, 20]; here it implies that the degeneracy for h = 2 persists for all

values of D ∈ [2,∞).

For D < 2 however, the softening of the spins stabilizes a third phase. Solving (4.2), we have

{θ1, θ2} = {0, π}, h <
√

D(4−D), (4.5)

{θ̄,−θ̄},
√

D(4−D) < h < 4−D, (4.6)

{0, 0}, h > 4−D, (4.7)

where cos θ̄ = h/(4 − D). The phase boundaries are represented in Fig. 4.2. Phase (4.6), where

consecutive spins are symmetrically canted with respect to the field direction, is called the bulk

spin-flop phase, SF .

4.2.1 Discommensuration phase diagram

To complete the study of the infinite chain we shall study the behaviour of a kink (or discommensu-

ration) in the chain. This is important because the minimal energy discommensurations can provide

information about the way a chain can distort under the effect of perturbations such as surface

effects, thermal fluctuations etc. . We can enforce the presence of a discommensuration by choosing

the following boundary conditions limn→−∞ θ2n+1 = θ1

limn→−∞ θ2n = θ2

 limn→+∞ θ2n+1 = θ2

limn→+∞ θ2n = θ1 .
(4.8)

As before it is useful to start the analysis of the discommensuration phase diagram by considering

the case D = ∞.

For 0 < h < 2 a discommensuration appears in the middle of the chain in the form of two

successive spins pointing along the field, h, (we label this phase as AF ′). Due to the absence of
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Figure 4.2: Phase diagram for an infinite chain. The AF , F and SF regions are occupied by the antiferro-
magnetic, ferromagnetic and spin-flop phases.

further-than-nearest-neighbours interactions, when h = 2 the ground state comprises configurations

where the discommensuration is not limited to a pair of spins but can involve an arbitrary even

number of them. On the other hand, for h > 2, the ground state corresponds to the ferromagnetic

phase, where no discommensurations are present. The resulting discommensuration phase diagram

for D = ∞ is summarised in Fig. 4.3.

. . .. . .

hh=2

. . . . . .

. . .

. . . . . .

. . .

Figure 4.3: Schematic representation of the minimal-energy discommensuration phase diagram of an infinite
chain for D = ∞.

Due to the lack of periodicity of a chain with a discommensuration, it is very difficult to find

analytical solutions to the equilibrium equations (4.2) and one has to rely on numerical methods.

The numerical procedure that we adopted is based on the Chou-Griffiths algorithm [63] which is

very efficient for obtaining the ground state of models with short range interactions and discretized

variables (we chose to discretize our spins with a step of 2π/1400). The Chou-Griffiths algorithm

is based on an energy minimization procedure which can always correctly identify the ground state



4.2. Infinite Chain 45

of the system except very close to phase boundaries, when it can yield metastable states which

are mixtures of the phases coexisting at the boundaries. To overcome this potential problem we

always used the Chou-Griffiths algorithm to identify the different phases sufficiently far away from

any phase boundaries. Then the resulting minimal energy configurations for the discretized problem

were used as starting points for the solution of the continuous recursion equations (4.2) and the phase

boundaries followed from a comparison of the energies of neighbouring phases. Using the procedure

outlined above we identified the minimal energy discommensurations by finding the ground state

of a ring of spins of odd length, L with suitable boundary conditions. For large enough L (we

used L ≤ 31) this is practically equivalent to studying the minimal energy discommensuration in an

infinite chain.

The numerical results, summarised in Fig. 4.4, reveal that in regions AF ′ and F , the spins stay

locked in their D = ∞ positions.

Figure 4.4: Discommensuration phase diagram for an infinite chain. The dashed phase boundaries corresponds
to phase transitions in the discommensuration-free chain.

However, when D is sufficiently low, the spins cant from their Ising positions, θ0
i . The canting angle

of the discommensuration spins from the field direction never exceeds π/2 and it oscillates with de-

creasing amplitude around zero when moving from the centre to the edge of the discommensuration.

The phases labelled 〈2m〉 in Fig. 4.4 correspond to configurations of softened spins with a dis-

commensuration of length 2m in the middle of the chain. For all phases the canting angle, defined
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as

θ̃i = θi − θ0
i , (4.9)

decreases continuously to zero as the AF ′ boundary is approached from below. For sufficiently low

D, for increasing values of the field, one observes a series of first order transitions 〈2m〉 → 〈2m + 2〉

. This sequence is probably infinite, although numerically we could only check that all phases 〈2m〉

with m up to 7 enter. The point Q in Fig. 4.4 shows the location of the extrapolated accumulation

point for the 〈2m〉 → 〈2m + 2〉 transition at the boundary with phase AF ′.

Some physical insight into the occurrence of this sequence of transitions can be gained by regard-

ing the discommensuration in the 〈2m〉 phases as resulting from inserting a segment of the spin-flop

phase in the middle of an antiferromagnetic chain, as shown in Fig. 4.5.

SF

AF AF

Figure 4.5: Schematic representation of phase 〈4〉. The phase can be regarded as resulting from merging a
portion of the spin-flop phase (SF ) with two semi-infinite antiferromagnetic chains (AF ). The spins nearest the
AF − SF and SF −AF interfaces are expected to relax from their ideal AF or SF angles.

Accordingly the discommensuration phase diagram of Fig. 4.4 can be conveniently explained by

assuming that the two interfaces, AF−SF and SF−AF created by the introduction of the insertion,

repel each other with a strength that decays rapidly with their separation. As the excess energy per

spin of the metastable spin-flop phase decreases (i.e., moving towards the SF phase boundary) the

ground state is attained for larger and larger interface separations. This is in agreement with the

fact that the 〈2m〉 : 〈2m + 2〉 boundary is consistent for m →∞, with the bulk AF −SF transition

line. Finally, we notice that the introduction of a discommensuration in the bulk spin-flop phase,

does not lead to the appearance of new phase transitions. We also note that limitations on numerical

accuracy prevented us from following the phase boundaries for very low values of D. However, since

the pinning energy of the discommensurations is not expected to vanish for D > 0, we believe that

the boundaries persist all the way down to D = 0.

4.2.2 Analytical results for the AF ′ − 〈2〉 boundary

It is possible to obtain an analytic expression for the second-order boundary AF ′−〈2〉 in Fig. 4.4 by

solving approximate equilibrium equations. In fact, close to the boundary the equilibrium equations

(4.2) may be linearized to give
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ci(θ̃i − θ̃i−1) + ci+1(θ̃i − θ̃i+1) = (hc0
i + D)θ̃i , (4.10)

where ci = cos(θ0
i − θ0

i−1) and c0
i = cos(θ0

i ).

.  .  ..  .  ..  .  . .  .  .

-1θ

1θ0θ

θ2

Figure 4.6: Schematic representation of the canted phase 〈2〉

Now consider phase 〈2〉 with the spin labelling as in Fig. 4.6. If we introduce the quantity

xi =
θ̃i

θ̃i−1

, (4.11)

the equilibrium equations (4.10) can be written as

1
x2j

+ x2j+1 = 2 + D + h; j ≤ −1 , (4.12)

1
x2j+1

+ x2j+2 = 2 + D − h; j ≤ −1 , (4.13)

1
x0

− x1 = D + h , (4.14)

− 1
x1

+ x2 = D + h , (4.15)

1
x2j

+ x2j+1 = 2 + D − h; j ≥ 1 , (4.16)

1
x2j+1

+ x2j+2 = 2 + D + h; j ≥ 1. (4.17)

Substituting (4.16) and (4.17) recursively into one another gives

1
x2j

= 2 + D − h− 1
2 + D + h− 1

2−D−h− 1
2+D+h−...

≡ 1
s2

; j ≥ 1 , (4.18)

1
x2j+1

= 2 + D + h− 1
2 + D − h− 1

2−D+h− 1
2+D−h−...

≡ 1
s1

; j ≥ 1 . (4.19)

where s2 and s1 satisfy  1
s1

+ s2 = 2 + D + h

1
s2

+ s1 = 2 + D − h.
(4.20)

Similarly, from equations (4.12) and (4.13),

x2j+2 =
1
s2

; j ≤ −1 , (4.21)

x2j+1 =
1
s1

; j ≤ −1 . (4.22)
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The quantities s1 and s2 which appear in (4.18)-(4.22) can be written explicitly in terms of D and

h as 
s1 = 2(2+D−h)

(2+D+h)(2+D−h)+
√

(2+D+h)2(2+D−h)2−4(2+D+h)(2+D−h)
,

s2 = (2+D+h)
2 +

√
(2+D+h)2(2+D−h)2−4(2+D+h)(2+D−h)

2(2+D−h) .
(4.23)

When equations (4.21) and (4.22) are substituted into (4.14) and (4.15) we obtain

s2 − x1 = D + h

− 1
x1

+ s2 = D + h (4.24)

Comparing (4.24) with (4.20) and invoking the requirement that the modulus of s1 and s2 cannot

exceed 1 (so that the spin deviations decay to zero infinitely far from the discommensuration) gives

1
D + h− 1

= 5/3 + D − h (4.25)

Equation (4.25) identifies the locus of points where the spin deviations for phase 〈2〉 are vanishingly

small, that is the second-order boundary AF ′ − 〈2〉. The strategy outlined above can, in principle,

be extended to calculating the general AF ′ − 〈2m〉 phase boundary. However, for m > 2, the

phase boundaries AF ′ − 〈2m〉 do not have a simple expression and therefore we will not pursue the

calculation any further.

4.3 Semi-infinite chains

Now we move on to study the case of semi-infinite chains. Consider a point (D,h) that does not lie

on a phase boundary of the Hamiltonian (4.1), so that the ground state of the infinite chain is unique.

Cutting the chain in two without allowing the spins to move will give two semi-infinite chains that

we shall term unreconstructed. If the spins of the unreconstructed chains are then allowed to relax,

a rearrangement of the spins near the surface may take place.

The phenomenon of surface reconstruction is rather common in nature, and can be observed in

a variety of contexts ranging from rearrangements of atoms near the surface of a crystal [66, 67, 68],

to the transitions of materials from solid to liquid [69, 70]. In this section we will show how the

occurrence of a surface reconstruction can remove the multidegeneracy present for large values of D

by stabilizing discommensurations at different distances from the surface.

First of all we notice that, since the surface reconstruction usually occurs only over a finite

portion of the chain the spins angles sufficiently far away from the surface will be, essentially, those

pertaining to the infinite chain.

We start by considering a point (D,h) that lies in the ferromagnetic phase of Fig. 4.2. In

this case one can check that the surface does not reconstruct, since the spins prefer to stay locked

along the field direction. However, if (D,h) lies in the antiferromagnetic region for the infinite
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chain the situation is more complicated. As before it is helpful to consider D = ∞ first. Since

the antiferromagnetic ground state of the infinite chain has period 2 there will be two different

classes of reconstructed ground states, A and B, whose underlying unreconstructed structures are,

respectively,

Au = {0, π, 0, π, 0, π, ...}, (4.26)

Bu = {π, 0, π, 0, π, 0, ...}. (4.27)

The ground state of class A remains unreconstructed throughout the region 0 < h < 2. However,

for class B a reconstruction occurs for 1 < h < 2, because it becomes energetically favourable to

introduce a discommensuration into the chain in the form of two successive spins pointing along the

field, h

Br = {0, 0, π, 0, π, 0, π, ...}. (4.28)

The discommensuration can be moved away from the surface by an even number of steps without

changing the energy. This leads to a multidegeneracy in the interval 1 < h < 2. At this stage

it is convenient to introduce a notation to distinguish between the degenerate configurations. We

shall use [2n〉 to denote the ground state belonging to class B with a discommensuration of length

2 whose first spin is at a distance 2n from the surface.

For (D > 2, h = 2), there is an additional increase in degeneracy since here class B also includes

ground states where the discommensuration is not limited to a pair of spins but can involve an

arbitrary even number of them (for example {0, 0, 0, 0, π, 0, π...} or {0, π, 0, π, 0, 0, 0, 0, 0, 0, π, 0, π...}).

To study the phase transition of the chain of class B for finite values of D we used the following

numerical procedure. We first started by considering the case of discretized spins (the step was

typically chosen to be 2π/1400). Since the θi’s are constrained to take on only discrete values, after

a finite distance, d, from the surface (which we will refer to as reconstruction penetration depth) the

spins will be exactly in the discretized positions for the unreconstructed chain. These were found by

using the Floria-Griffiths algorithm [71, 72] which, within the limits of the discretization, yields the

exact ground state for an infinite chain of spins.

For a fixed value of the penetration length, d, and for each class of ground states we used the Chou-

Griffiths algorithm [63, 72] to generate all the reconstructed surface configurations {θ0, θ1, ..., θd}

satisfying the recursion equations (4.2). In principle the ground state is chosen by comparing the

energies of the semi-infinite chains with all the generated reconstructed surfaces of any penetration

length, d. From a practical point of view we had to restrict d to be ≤ dmax = 50, so that this

numerical scheme will lead the correct ground state only if its penetration depth does not exceed

dmax.

Once the ground state structure was identified, the continuous recursion equations (4.2) were

solved for the corresponding phase to give the {θi}’s and the energy calculated from the Hamiltonian
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H =
∞∑

i=0

{
cos(θi − θi+1)− h cos θi +

D

4
[1− cos(2θi)]

}
(4.29)

Phase boundaries followed from a comparison of the energies of neighbouring states. The resulting

phase diagram is shown in Fig. 4.7.

Figure 4.7: Phase diagram for the semi-infinite chain.

In region AF1 in Fig. 4.7 the chain is unreconstructed, while region AF2 is occupied by the locked

[2m〉 phases. As a result of the spin locking the multidegeneracy encountered for D = ∞ persists

throughout the AF2 region. However, outside the AF1 and AF2 domains the spins of configuration

[2n〉 appear to soften with their canting angles from the Ising positions decreasing continuously to

zero as the point P of Fig. 4.8 is approached from below.

As a consequence of the softening the multidegeneracy of phase AF2 is removed and, as found

by Trallori et al. [56] the surface spin flop sequence of transitions [2m〉 → [2m + 2〉 is stabilized as h

is increased. The sequence is probably infinite, although this could not be confirmed by analytical

calculations. Numerically we have checked that all phases [2m〉 with m ≤ 7 enter. Moreover

numerical results show that the boundaries between the different interface phases end in critical

points which were identified as the point where both the energy and the energy derivative with

respect to h of two neighbouring phases vanishes, as shown in Fig. 4.9.

The sequence of surface phase transitions can be described in terms of an effective interaction

between the surface and the discommensuration of length 2. Upon increasing the field h the attractive

interaction energy between the discommensuration and the surface becomes weaker and phases [2n〉

with larger n are stabilized. In the region between the accumulation boundary of the surfaces spin-

flop transitions and the SF boundary, the penetration depth of the reconstructed surface diverges,
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Figure 4.8: Close up of the phase diagram of Fig. 4.7 near the multiphase point, P .

Figure 4.9: Plot of energy derivatives along the〈2, 0〉 − 〈2, 2〉 boundary.
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and it is not appropriate to speak of the existence of a surface of class B.

We conclude the description of the phase diagram by noting that both classes of chains undergo

a surface reconstruction when (D,h) is in the spin-flop region of the infinite chain. In fact, the

spins nearest the surface tend to deviate from the bulk spin-flop positions to align along the field.

However, as the parameters (D,h) are varied, the surface spins’ deviations change smoothly, and no

phase transition is observed. This explains why Trallori et al. did not observe the SSF transitions

for very low values of the spin anisotropy [61].

We can summarize schematically the results for the semi-infinite chain in the following way:

ground state of class A

• No surface reconstruction occurs in the AF and F regions of Fig. 4.2.

• Although a surface reconstruction occurs in the SF region this does not lead to any new phase

being stabilized.

• The phase boundaries are the same as for the infinite chain.

ground state of class B

• No surface reconstruction in F region of Fig. 4.2.

• The surface reconstruction in the SF region does not stabilize any new phase.

• In the AF region of Fig. 4.2 we can identify four regions where the chain has different behaviour

region 1 (labelled AF1 in Fig. 4.7) The surface is unreconstructed.

region 2 (labelled AF2 in Fig. 4.7) The surface reconstructs by introducing a discommensu-

ration of even length in the chain. The discommensurations can be placed at arbitrary

even distance from the surface and the spins are locked in the Ising positions.

region 3 is occupied by the sequence of softened [2m〉 phases. This corresponds to the surface

spin-flop (SSF) region.

region 4 is the region on the right of the accumulation boundary of the SSF sequence. Here

the surface reconstruction length is divergent.

In the following section we show analytically that the multiphase point exists and identify its

co-ordinates.
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4.4 Analytical results

4.4.1 The multiphase point

Using a self-consistent analytical calculation analogous to the one used in section 4.2.2 it is possible

to identify the co-ordinates of P . Guided by numerical calculations we assume the existence of a

point P such that as (D,h) → P the spin deviations, {θ̃i}, of all phases [2n〉 tend continuously to

zero. Sufficiently close to P the recursion equations (4.2) may be linearised to give

ci(θ̃i − θ̃i−1) + ci+1(θ̃i − θ̃i+1) = (hc0
i + D)θ̃i ; i > 0,

c1(θ̃0 − θ̃1) = (hc0
0 + D)θ̃0 , (4.30)

where ci = cos(θ0
i − θ0

i−1) and c0
i = cos(θ0

i ).
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Figure 4.10: Schematic representation of phases [0〉 and [2〉.

Now consider phase [0〉, as represented in Fig. 4.10a. Using the recursion equations (4.30) for

i = {0, 1} and adopting the notation introduced in section 4.2.2 one has

x1 = 1− h−D , (4.31)

− 1
x1

+ s2 = h + D . (4.32)

Solving (4.31) and (4.32) explicitly for s2 gives

s2 = h + D +
1

1− h−D
. (4.33)

The second equation in (4.23) also provides another relation for s2 which can be satisfied simulta-

neously with (4.33) only on the locus of points, Γ, defined by the equation

1
2 + D − h− 1/a

= 2 + D + h− a (4.34)

where a = h + D + 1/(1 − h −D). Γ corresponds to the locus where the spin deviations for phase

[0〉 are vanishingly small. In other words equation (4.34) defines the second order phase boundary

[0〉 −AF2.
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Now we carry on our analysis assuming that, in agreement with the initial assumption, for some

point(s) P on Γ the angular deviations θ̃i’s for phase [2〉 (see Fig. 4.10b) are vanishingly small so

that we may linearize the recursion equations (4.30). The explicit relations (4.30) for i = {0, 1, 2, 3}

are

− 1
x3

+ s2 = h + D, (4.35)

1
x2

− x3 = h + D, (4.36)

1
x1

+ x2 = 2 + D − h (4.37)

x1 = 1 + D + h (4.38)

Some algebra shows that equations (4.35)-(4.38) can be solved consistently with (4.33) only if

1 + D + h =
1

1 + D − h
. (4.39)

The only point where equations (4.39) and (4.34) hold simultaneously is P ≡ (h = 4/3, D = 2/3).

Moreover, near the point (h = 4/3, D = 2/3), the spin deviations for all the remaining phases, [2n〉,

n ≥ 2, are also vanishingly small. Therefore we can conclude this self-consistent analysis by saying

that P = (h = 4/3, D = 2/3) is a multiphase point. The result is in agreement with the numerical

co-ordinates for P, (D = 0.6666, h = 1.333).

4.4.2 Layering transitions

Unlike the case discussed in Chapter 2, the quadratic approximation of the Hamiltonian (4.29)

is not sufficient to yield the leading order expressions for the spin deviations (although it gives us

information about the ratio of successive spin deviations). Nevertheless, numerical results show that,

close to P , the spin deviations at the discommensurations are the same for all phases [2m〉. If we

assume that this numerical picture is correct, we can use a scheme analogous to the one adopted in

Chapter 2 to find the leading order energy difference of neighbouring phases, ∆En = E[2n〉−E[2n+2〉,

near the multiphase point. Within the quadratic approximation one obtains

∆En ≈
1
2
(θ̃1 − θ̃0)2 +

1
2
(θ̃2 − θ̃1)2 +

1
2
D(θ̃2

1 + θ̃2
0)−

1
2
h(θ̃2

1 − θ̃2
0) (4.40)

where the θ̃i’s are the spin deviations of phase [2n + 2〉. The expression for ∆En can be somewhat

simplified by using relations (4.10) for i = {0, 1} to express θ̃1 and θ̃2 in terms of θ̃0. By substituting

θ̃1 ≈ (1 + D + h)θ̃0 ,

θ̃2 ≈ (2 + D − h− 1
1 + D + h

)θ̃1 , (4.41)

into (4.40) one has
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∆En =
(

2D + 7D2 + 5D3 + D4 + 2Dh

2

+
D2h− h2 − 5Dh2 − 2D2h2 − h3 + h4

2

)
θ̃2
0 +O(θ̃3

0) (4.42)

It is important to stress that, for general n, expression (4.42) is valid only close to the multiphase

point. In fact, near P , the deviations of all the spins in the chain are vanishingly small. However, it

can be noticed that the surface-spin deviations of phases with very large surface-discommensuration

separation will be small throughout the surface-spin flop (SSF) region. In other words the energy

difference of phases [2n〉 and [2n + 2〉, in the limit n →∞, is given by (4.42) for all values of D and

h in the SSF region. This observation has an important consequence since the expression for ∆En

can be used to determine the accumulation boundary of the SSF series.

In fact, when crossing this boundary, the discommensuration, which is infinitely far away from the

surface, changes from being attracted to being repelled by the surface. The change of sign of the

surface-kink interaction is, in turn, related to the change of sign of ∆En. Despite the complicated

form of equation (4.42), the set of physically meaningful roots of the equation ∆En→∞ = 0 has a

simple expression,

D =
√

1 + h2 − 1 . (4.43)

Near the multiphase point, P , equation (4.43) can be linearised in εD ≡ D − 2/3 and εh ≡ h− 4/3

to give

εh = 5/4εD . (4.44)

This result is in agreement with the equation for the accumulation boundary extrapolated from our

numerical calculations. On the other hand, near the point (D = 0, h = 0), the asymptotic equation

for the boundary becomes

D =
h2

2
, (4.45)

which, in turn, is in agreement with the numerical results obtained by Trallori et al. for D ≈ 1/100

[61].

4.5 Finite chain

For a finite chain of length L, the surface reconstruction can occur at both ends. If L is sufficiently

large that we can neglect the interaction between the two ends of the chain the total energy of the

chain can be written as

E = Lε + EL
s + ER

s + Ed (4.46)
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where ε is the bulk energy per spin, EL
s and ER

s are the energies of the left and right surfaces

respectively, and Ed is the energy of a discommensuration in the chain (if present). If L is sufficiently

large, the energy minimization problem consists finding the spin configuration that minimizes EL
s +

ER
s + Ed.

Except for very large D, when spin locking occurs, the minimization of (4.46) cannot be done

analytically and, therefore, we relied on the Chou-Griffiths algorithm to find the minimal energy

configurations of the chain (we used L up to 31).

Since the detailed behaviour of the ground state depends explicitly on the length of the chain,

L, we cannot present the phase diagram for a chain of arbitrary finite length. Nevertheless, it is

possible to identify regions of the (h, D) plane where the qualitative behaviour of finite chains is the

same. A description of the behaviour of the system in the different regions is summarised below.

In the spin-flop and ferromagnetic regions the minimization is obtained with two surfaces of type

A (no discommensuration). In the AF region the situation is more complex and we need to treat

separately the cases of a chain of even and odd length.

Chain of odd length

• The ground state has two surfaces of type A, no phase transition is observed as D and h are

varied.

Chain of even length The behaviour of the chain differs according to which of the regions intro-

duced on page 52 we consider.

• region 1 One surface is of type A, the other of type B. The spins are locked in the Ising

positions.

• region 2 Due to the spin locking, all states with a discommensuration of even length are

degenerate.

• region 3 The ground state exhibits a softened discommensuration of length 2 that nucleates

from the surface and, for increasing values of the field, migrates to the middle of the chain

with discontinuous jumps. This is the finite-size analogue of the layering transition observed

in the semi-infinite chain.

• region 4 The discommensuration, lying in the middle of the chain, increases its size discontin-

uously. This second sequence of first order transitions, which can be regarded as a truncated

version of the 〈2m〉 → 〈2m + 2〉 transitions of Fig. 4.4, has not been identified before.

The very rich behaviour of a chain of spins of even length is clearly illustrated by the plot of Fig. 4.11

which portrays the behaviour of the magnetic susceptibility χ = dm/dh for a chain of 22 spins when

D = 1/2. The spikes appearing in Fig. 4.11 should be Dirac delta functions. Here they appear to

have a finite height because of the finite incremental step δh chosen for the numerical calculation.
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Figure 4.11: Plot of the susceptibility (in arbitrary units) for a chain of 22 spins for D = 0.5.

The first spike in Fig. 4.11 (for h ≈ 0.9) signals the transition from the locked AF1 phase (where

χ is exactly equal to zero) into the surface spin-flop region, more precisely into phase [0〉. The first

series of spikes, encountered in the interval h ∈ (0.9, 1.13) is associated with the truncated surface

spin-flop transitions while the second one, for h ∈ (1.13, 1.32), reflects the discontinuous increase of

the discommensuration width.

For sufficiently low values of D one expects to observe fewer phases, because of the presence of

the critical points. This is precisely what happens as shown in the plot of χ for D=0.3 in Fig. 4.12.

4.6 Conclusions

To summarize, we have presented numerical and analytical evidence that, for the semi-infinite,

antiferromagnetic, classical XY chain, the surface spin-flop transition comprises a sequence of phases

springing from a single multiphase point with associated phase boundaries that end in critical points.

We have also clarified the mechanism of the crossover between the surface spin-flop and the bulk

spin-flop states by identifying a new sequence of first-order transitions associated with discontinuous

rearrangements of the spins in the middle of the chain.

It would be very interesting to try to detect the new sequence of transitions in Fe/Cr(211) superlat-

tices. However, the susceptibility measurements performed nowadays with Kerr techniques (usually

adopted in these circumstances [52, 53]) are plagued by a relatively high noise to signal ratio and,

therefore the achievable resolution might not be sufficient to study the second type of transitions. In

addition, since Kerr-based investigation methods are especially sensitive to surface magnetization,
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Figure 4.12: Plot of the susceptibility (in arbitrary units) for a chain of 22 spins for D = 0.3.

they may not be optimal to reveal the discontinuous increase in size of the discommensuration in

the middle of the chain.



Chapter 5

Quantum fluctuations in the

ANNNI model

5.1 Introduction

There are many naturally occurring examples of uniaxially modulated structures. For instance, the

spatial modulation observed in polytypic materials is associated with the stacking of one or more

structural units. In the case of SiC, the closed packed layers of the material can be stacked in three

different ways to give rise to a multitude of different structures with period up to 100 layers [73].

Other examples include samples of binary alloys [74, 75] like TiAl3 where experiments have revealed

the presence of periodically spaced two-dimensional flat antiphase boundaries. As the temperature

is varied in the range 600− 1200 K, the periodic arrangement of the antiphase boundaries changes

discontinuously and up to 15 modulated phases have been identified [76].

The variety of modulated structures observed in polytypes, binary alloys, magnetic systems etc.

can all be successfully explained in terms of arrays of interacting domain walls or, depending on

context, antiphase boundaries, defects, solitons etc. [5, 77, 78]. When the domain-wall energy is

small, wall–wall interactions become important in determining the spacing of the walls and small

changes in the external parameters can stabilise many different modulated phases.

A model which has proved very useful for understanding this process is the axial next-nearest

neighbour Ising or ANNNI model which is an Ising system with first- and second-neighbour compet-

ing interactions along one lattice direction [3, 79, 80, 81]. At zero temperature the ANNNI model

has a multiphase point where an infinite number of phases are degenerate, corresponding to zero

domain wall energy. At low temperature entropic fluctuations cause domain wall interactions which

stabilize a sequence of modulated structures [7, 9]. A slightly modified version of the model, which

was originally introduced by R. Elliott in connection with rare-earth magnetism [3, 21], has been

59



5.2. The model 60

used by Uimin and Pokrovsky [82, 83, 84] to explain the periodic magnetic structures observed in

cerium monopnictides like CeSb and CeBi [1, 2, 85, 86].

However, one of the reasons for the popularity of the ANNNI model lies in the fact that is can

be mapped onto a one-dimensional system of interacting domain walls. This allows the use of the

model to describe, in terms of pseudospins, the uniaxially modulated structures observed in a variety

of materials like TiAl3, Cu3Pd, SiC and spinelloids [87, 79, 88, 89, 90].

In this Chapter we will use a formalism similar to the one adopted in Chapter 3 to approach

a more complicated problem: the effect of quantum fluctuations in a generalised ANNNI model,

where the multiphase point is a point of infinite degeneracy for bulk rather than interface phases.

We show that quantum fluctuations, like thermal ones, do indeed remove the infinite degeneracy

near the multiphase point of the classical model. A sequence of first order transitions is stabilized

in a way qualitatively similar to the finite temperature behaviour but involving a different sequence

of phases. However, we will show that, for long-period phases, entropic and quantum fluctuations

behave in a subtly different way.

5.2 The model

The Hamiltonian we consider is

H = − J0

S2

∑
i〈jj′〉

Si,j · Si,j′ −
J1

S2

∑
i,j

Si,j · Si+1,j +
J2

S2

∑
i,j

Si,j · Si+2,j −
D

S2

∑
i,j

([Sz
i,j ]

2 − S2), (5.1)

where i labels the planes of a cubic lattice perpendicular to the z-direction and j the position within

the plane. Also 〈jj′〉 indicates a sum over pairs of nearest neighbours in the same plane and Si,j

is a quantum spin of magnitude S at site (i, j). All the spin interactions, Ji in (5.1) are assumed

positive, so that the inter-plane coupling for nearest and second-nearest neighbours is ferromagnetic

and antiferromagnetic respectively, while the in-plane coupling is ferromagnetic (see Fig. 5.1). The

parameter, D, in (5.1) controls the strength of the two-fold anisotropy of the spins.

For D = ∞, only the states Sz
i = σiS, where σi = ±1 are allowed and H reduces to the standard

ANNNI model [3, 79].

HA = −J0

∑
i〈jj′〉

σi,jσi,j′ − J1

∑
i,j

σi,jσi+1,j + J2

∑
i,j

σi,jσi+2,j . (5.2)

The ground state of the ANNNI model is ferromagnetic for κ ≡ J2/J1 < 1/2 while, for κ >

1/2, the ground state displays an antiphase structure with layers ordering in the sequence {σi} =

{. . . 1, 1,−1,−1, 1, 1,−1,−1 . . .}. κ = 1/2 is a multiphase point [6, 7, 91]. In fact, it turns out that

all phases consisting of a sequence of domains of 2 or more parallel spins with alternate orientation

are degenerate at the point κ = 1/2.

At this stage it is useful to introduce a notation to distinguish between the degenerate phases.

We will use the notation 〈n1, n2, . . . nm〉 to denote a state consisting of domains of parallel spins
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Figure 5.1: Schematic representation of the model (5.1).

Figure 5.2: Schematic representation of the phase diagram of the model (5.1) for D = ∞. The region
J2/J1 < 1/2 is occupied by the homogeneous phases: all spins up or all spins down. For J2/J1 > 1/2 the ground
state has period 4. At the point J2/J1 = 1/2 an infinite degeneracy is encountered.

with alternate orientation whose widths repeat periodically the sequence {n1, n2, . . . nm} so that,

for κ > 1/2 the ground state is 〈2〉, while the labelling 〈∞〉 is consistently used to denote the

homogeneous ground state (all spins up or all down) for κ < 1/2. Although this definition applies

to the D = ∞ case, it can be used also for lower values of D, provided the spins deviations from

the Ising positions are sufficiently small. The phase diagram, for D = ∞ is sketched in Fig. 5.2.

In 1980 Fisher and Selke [6, 91] showed that thermal fluctuations can raise the degeneracy at the

multiphase point. However, it was not until the introduction of the wall-wall interaction formalism

by Fisher and Szpilka (in this context a wall separates two opposite domains of parallel spins) that

the qualitative features of the phase diagram were fully understood. Fisher and Szpilka showed that,

for a given (low) temperature, only a finite sequence of phases is stabilized by thermal fluctuations.

For lower values of temperature, more phases are observed, as shown in Fig. 5.3.

For classical spins, S = ∞, at zero temperature one expects that spin softening controlled by an

anisotropy parameter, D, can remove the multidegeneracy in a way similar to thermal fluctuations.

However, for other models with two-fold spin anisotropy (see Chapters 2, 4), for large enough values

of D the spins remain locked in their Ising positions, which implies a persistence of multidegeneracy

as D is reduced from ∞. As shown in the numerical phase diagram of Fig. 5.4 the multidegeneracy

is removed only for D lower than 0.36. The interesting question is then whether for quantum spins

(finite S) the persistence of multidegeneracy is not observed. Indeed we will show that quantum

fluctuations remove the multidegeneracy as soon as D is reduced from infinity.
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Figure 5.3: In the classical ANNNI model the multidegeneracy at the point κ = 1/2 is lifted by thermal
fluctuations (after A. M. Szpilka [5]).

Figure 5.4: Phase diagram from the classical version of Hamiltonian (5.1) at zero temperature the multide-
generacy for J2/J1 = 1/2 is lifted only for D<∼0.36 (after F. Hadrović [92]).
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5.3 Perturbation expansion

To study the effect of quantum fluctuations near the multiphase point (D = ∞, κ = 1/2) we use

the Dyson-Maleev [26, 27] transformation (introduced in Chapter 2) to recast the Hamiltonian (5.1)

into bosonic form (working to lowest order in 1/S) with the result

H({σi}) = E0 +H0 + V|| + V 6‖ , (5.3)

where E0 ≡ HA,

H0 =
∑
i,j

[
2D̃ + J1σi,j(σi−1,j + σi+1,j)− J2σi,j(σi−2,j + σi+2,j)

]
S−1a+

i,jai,j

≡
∑
i,j

Ei,jS
−1a+

i,jai,j , (5.4)

with D̃ = D + 2J0 and V|| (V 6‖) is the interactions between spins which are parallel (antiparallel)

V|| =
1
S

∑
i,j

[
−J1X(i, i + 1; j)(a+

i,jai+1,j + a+
i+1,jai,j) + J2X(i, i + 2; j)(a+

i,jai+2,j + a+
i+2,jai,j)

]
(5.5)

V 6‖ =
1
S

∑
i,j

[
−J1Y (i, i+1; j)(a+

i,ja
+
i+1,j +ai+1,jai,j)+J2Y (i, i+2; j)(a+

i,ja
+
i+2,j +ai+2,jai,j)

]
, (5.6)

where X(i, i′; j) [Y (i, i′; j)] is unity if spins (i, j) and (i′, j) are parallel [antiparallel] and is zero

otherwise. In other words V 6‖ creates/destroys a pair of excitations on either sides of a wall, while V‖

hops the excitation within a domain of parallel spins. The impossibility of creating two excitations

in the same domain or hopping an excitation past a domain wall is a consequence of the conservation

of the total magnetization.

We do not consider quantum fluctuations within a plane, since the phase diagram is determined

by the interplanar quantum couplings. Moreover we shall work to leading order in 1/S , in which

case four-operator terms can be neglected. As for the models considered in Chapters 2 and 3 we

shall use non-degenerate perturbation theory, since the perturbative term (V|| + V 6‖) cannot connect

states in which the wall is at different locations, since such states have different values of
∑

i Sz
i .

5.4 The wall-wall interaction formalism

Using the wall-wall interaction formalism we will construct the phase diagram by considering in turn

Ew, the energy of an isolated domain wall, V2(n), the interaction energy of two walls separated by n

sites, and generally Vk(n1, n2, . . . nk−1), the interaction energy of k walls with successive separations

n1, n2, ... nk−1. In terms of these quantities one may write the total energy of the system, when

there are Nw walls with separation {n1, n2, ..., nNw−1}, as [77, 78]

E = E0 + NwEw +
∑

i

V2(ni) +
∑

i

V3(ni, ni+1)
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+
∑

i

V4(ni, ni+1, ni+2) + . . . , (5.7)

where E0 is the energy with no walls present.

5.4.1 Two-wall interactions

Typically, for models with short range interactions, the wall-wall interactions decay very rapidly

(usually exponentially) as a function of the separation of the walls [5, 10]. For this reason one

usually starts the analysis of the phase diagram neglecting interactions that involve more than two

walls. Higher order interactions can be included later on to resolve the finer details of the phase

diagram. In the two domain-wall interaction approximation, equation (5.7) simplifies to

E = E0 + NwEw +
∑

i

V2(ni) . (5.8)

Because we are considering only V2(x), the walls must be equispaced in the ground state [12]. For

a given wall equispacing, n, the energy per spin is

en = e0 +
Ew + V2(n)

n
(5.9)

where e0 is the energy per spin with no walls in the system. To identify which wall equispacing is

observed in the ground state for given values of J2, J1 and D̃ we need to find the wall separation,

n∗, which minimizes en. n∗ can be conveniently found using the simple geometrical construction

described below [5, 10].

Given the value of Ew (determined by the value of J2, J1 and D̃), consider the line of minimal

slope that passes through the point (0,−Ew) and touches the (discrete) curve V2(x). The abscissa

of the intersection point, P , between V2 and the line gives the value n∗, as sketched in Fig. 5.5a.

V  (x)2
2

(b)(a)

P

P

V  (x)

xx
(

E-, w)

0

n*

E-, w)

0(

Figure 5.5: Examples of the use of the lowest tangent construction to find the wall equispacing in the case
where a) V2(x) is always positive, b) V2(x) has a negative minimum.

Naturally, a variation of Ew (i.e. a variation of the parameters of the model) can cause a

discontinuous change in the value of n∗. The precise sequence of phases observed as a function
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of Ew will depend on the form of V2(n). First of all we notice that, in the absence of long-range

interactions (as in our case) the wall-wall interactions, Vk, must go to zero as the spacing of the

walls goes to infinity. When D = ∞, it is not difficult to check that the Vk’s are identically zero for

all values of the wall separations. In particular

V2(n) = 0 ∀n . (5.10)

In this case, when Ew = 0 (which occurs for J2/J1 = 1/2) all values of n minimize (5.9), in agreement

with the fact that (D = ∞, J2/J1 = 1/2) is a multiphase point.

When D is relaxed from infinity we expect that V2(n) acquires a dependence on n since quantum

fluctuations are likely to introduce a weak coupling between walls. The effective coupling can be

either repulsive for all n (so that V2(n) is positive definite, as in Fig. 5.5a) or have one or more

attractive parts, as in Fig. 5.5b. It is important to distinguish between the sign of V2(n) as this

dramatically affects the sequence of phases observed as Ew is varied.

In fact, if V2(x) is always positive (see Fig. 5.5a), one realizes that, as Ew is increased from

negative to positive, one passes through an infinite sequence of states

〈n1〉 → 〈n2〉 → 〈n3〉 → ...〈∞〉 (5.11)

where the ni’s increase monotonically. In principle, one cannot expect the wall spacing to increase

by one lattice unit at a time in the sequence (5.11). This will occur only if V2(x) is convex. On

the other hand, if the two-wall potential is not convex, some of the points of V2(x) will never be

touched by the geometrical construction, as is the case for some of the points lying on the ”bump”

of V2(x) in Fig. 5.5a. Consequently the wall spacing associated with the points ”in shade” will never

be observed in the ground state.

The situation is very different if V2(x) becomes negative for some values of x, as in Fig. 5.5b.

In this case all the points of V2(x) that lie on the right of the negative minimum, V2(n∗), cannot be

reached by the construction of the lower tangent. Hence, as Ew is varied, the infinite sequence of

phases in (5.11) is replaced by a finite one that ends with a first order transition from 〈n∗〉 to the

homogeneous phase 〈∞〉.

It is important to mention that, for models with short range interactions, as in this case, the rapid

decay (usually exponential) of V2(x) as a function of x, ensures that phases with larger domain-wall

spacing will occupy smaller regions of the phase diagram. In fact, using equation (5.9) it is possible

to calculate the width of the region of stability of phase 〈n〉 in terms of variation of the wall energy

∆Ew = n

[
V2(n− 1)− 2V2(n)− V2(n + 1)

]
. (5.12)
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5.4.2 Three-wall interactions

We have shown that if for finite D the wall-wall interaction V2(n) is not identically zero for all values

of n, then some of the phases that were degenerate at the multiphase point will occupy a finite region

of the phase diagram. However, the original multidegeneracy present at the multiphase point is not

entirely lifted by V2(n). To see this consider two neighbouring phases A = 〈n1〉 and B = 〈n2〉. Using

(5.8) it is easy to check that, on the phase boundary A|B, all mixed phases (i.e. phases where the

walls can be separated by distances n1 or n2) are degenerate. This is illustrated in Fig. 5.6a for the

case of the mixed phase AB = 〈n1, n2〉. If we switch on the three-wall interaction V3, the excess

energy per spin phase 〈n1, n2〉 on the A|B boundary is given by

∆e =
V3(n1, n2) + V3(n2, n1)− V3(n1, n1)− V3(n2, n2)

n1 + n2
(5.13)

Depending on the form of V3, the expression (5.13) can be positive or negative. In the first

case the energy curve of the mixed phase, EAB is shifted to higher energies with respect to EA and

EB , as in Fig. 5.6b, so that a first-order line separates A from B. The inclusion of higher-order

interactions, Vn, provided they decay sufficiently rapidly as a function of n, cannot possibly modify

the first-order nature of the transition. Therefore the residual multidegeneracy is completely lifted

and the analysis can stop.

ΕA

ΕB

ΕAB
E

σ

ΕA

ΕB

ΕAB
E

σ

ΕA

ΕB

ΕAB

(a) (b) (c)

E

σ

Figure 5.6: (a) In the two wall-interaction approximation, the A|B boundary is multidegenerate (Ex denotes
the energy of phase x). The introduction of three walls interaction can remove partially the degeneracy shifting the
energy curve of the mixed phase AB (b) above or (c) below the energy curves for the A and B phases.

On the other hand, if EAB is shifted to lower energies, as in Fig. 5.6c then the mixed phase will

occupy a finite portion of the phase diagram

〈n1〉 | 〈n1, n2〉 | 〈n2〉 . (5.14)

In this case, a residual multidegeneracy is still present on the two new boundaries 〈n1〉|〈n1, n2〉 and

〈n1, n2〉|〈n2〉. The stability of the new boundaries with respect to the mixed phases on must be

studied by including V4 and so forth.
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5.4.3 The reconnection formulae

The applicability of the analysis of the phase diagram based on the domain wall interactions is

ultimately limited by the feasibility of the calculation of the general k-wall interaction term, Vk. Such

a calculation can be performed, at least in principle, using the powerful and elegant reconnection

formulae, introduced by Bassler et al. [12]. Now we illustrate the application of this method in the

context of the spin model we are studying.

n

mn

σ σ η η

−η −ησσ

. . . . . . . . .

. . . . . .. . .. . .

Figure 5.7: Configurations needed to calculate the interaction energy for two walls at separation n (top) and
three walls at separation n and m (bottom). When σ + 1 (η = +1) the left-most (right-most) wall is positioned as
shown. When σ = −1 (η = −1) the left-most (right-most) wall does not exist.

Let all spins to the left of the first wall have σi = σ and those to the right of the last wall have

σi = η for k even and σi = −η for k odd, as in the example of Fig. 5.7. We denote the energy of

such a configuration as Ek(σ, η). Noting that, if σ = −1 (η = −1) the left (right) wall is absent, we

can write Ek(σ, η) explicitly in terms of the V ’s as follows

Ek(1, 1) = E0 + kEw +
k−1∑
i=1

V2(ni) +
k−2∑
i=1

V3(ni, ni+1) + ... + Vk(n1, ..., nk−1)

Ek(1,−1) = E0 + (k − 1)Ew +
k−2∑
i=1

V2(ni) +
k−3∑
i=1

V3(ni, ni+1) + ... + Vk−1(n1, ..., nk−2)

Ek(−1, 1) = E0 + (k − 1)Ew +
k−1∑
i=2

V2(ni) +
k−2∑
i=2

V3(ni, ni+1) + ... + Vk−1(n2, ..., nk−1)

Ek(−1,−1) = E0 + (k − 2)Ew +
k−2∑
i=2

V2(ni) +
k−3∑
i=2

V3(ni, ni+1) + ... + Vk−2(n2, ..., nk−2)

(5.15)

Thus the energy ascribed to the interaction of k walls is given by the reconnection formula

Vk(n1, n2, . . . nk−1) = Ek(1, 1)− Ek(1,−1)− Ek(−1, 1) + Ek(−1,−1) =
∑

σ,η=±1

σηEk(σ, η) . (5.16)

We note that terms in Ek which are independent of σ or η do not influence Vk. In our perturbative

scheme we will calculate Ek(σ, η) by developing the energy in powers of the perturbations V 6‖ which
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allows creation (and annihilation) of a pair of excitations straddling a wall and V|| which allows

the excitations to hop within domains. In the following we shall consider contributions to the wall

energy and to two- and three-wall interactions in turn.

5.5 Wall energy

Contributions to the wall energy to second order in perturbation theory arise from excitations which

are created at a wall and then immediately destroyed as shown in Fig. 5.8. These effectively count

the number of walls and therefore lead to a renormalization of the wall energy of

Ew = 2J1 − 4J2 −
J2

1 − 2J2
2

4D̃S
+O

(
J3

D̃2S

)
. (5.17)

Expression (5.17) shows that when J2
<∼ J1/2− J1/(32D̃S), Ew is positive and therefore the stable

phases is the homogeneous one, 〈∞〉. Outside the region J2
<∼ J1/2 − J1/(32D̃S) it is convenient

to introduce domain walls in the system, and long-period modulated phases will be stabilized by

wall-wall interactions, as we will see in the next sections. The width of the regions, in the phase

diagram, where the modulated structures are stable will be estimated using expression (5.17).

.  .  . .  .  .

+ +

Figure 5.8: The contribution from second order perturbation theory which renormalizes the wall energy. +
(–) denotes the creation (destruction) of a spin excitation by V6‖.

5.6 Two-wall interactions

The lowest order contributions to V2(n) are obtained by creating an excitation at, say, the left wall

using V 6‖ and then using V|| for it to hop to the right wall and back. Because we assume the existence

of the left wall, this contribution implicitly includes a factor δσ,1 (see Fig. 5.7). Now we look for the

lowest-order (in J/D) terms which also have a dependence on η (otherwise, according to equation

(5.16), we will have a zero contribution to V2). In analogy with the unbinding problem of Chapter

2, we might consider processes in which the excitation hops beyond the position of the wall. Since

such a term can not occur when the wall is actually present, it will carry a factor δη,−1. For n odd,

we illustrate this process in Fig. 5.9, and see that it gives a contribution to V2(n) of order Jn+1
2 /Dn.
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η

++

--

ησσ

Figure 5.9: Contribution to the two-wall interaction V2(n) for n = 5 in analogy with the unbinding problem
of Chapter 2. This process exists only when η = −1 and contributes to V2(5) at order J6

2/D5.

As we shall see, there is actually a slightly different process which comes in at one order lower in

J/D. To sense the presence of the right-hand wall, note that Ei,j in equation (5.4) will depend on

η if the i is within two sites of the wall. Therefore it is only necessary to hop to within two sites of

the right wall, as shown in Fig. 5.10, for an energy denominator (H0 − E0) in the series expansion

(2.37) to depend on η. This process is of lower order in J/D because it takes two interactions to

~

- 2J
21

2J

0

1
2J

η ηE-2D

Figure 5.10: The energy, E, of an excitation as a function of position near a wall. We list E − 2D̃ when
the excitation is created at the circled site. Thus, when the excitation is further-than-next-nearest-neighbouring to
the domain wall, its energy is E = 2D̃ + 2J1 − J2. If it lies on a site second-neighbouring to the wall one has
E = 2D̃ + 2J1 − J2(1− η) and, when nearest neighbouring, E = 2D̃ + (J1 − J2)(1− η).

hop back and forth but only one to sense the potential via an energy denominator. Accordingly, in

contrast to the interface unbinding considered in Chapter 2, it is necessary to retain the terms in

the J ’s in the energy denominators to obtain the leading order contribution to V2(n). We consider

separately n odd and n even.

n odd

To lowest order the processes which contribute are those shown in Fig. 5.11a. For a domain of n
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a)

(iii)

(iv)

(vi)

b) (i)

(ii)

(v)
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Figure 5.11: Excitations which contribute to the 2-wall interaction V2(n) for (a) n odd and (b) n even. + (–)
denotes the creation (destruction) of a spin excitation by V6‖. An arrow denotes a hop mediated by V‖.



5.6. Two-wall interactions 71

spins with σi = −1, (n− 1)th order perturbation theory gives

E2(σ, η) = 2δσ,1J
n−1
2 S−1(−1)n−2{4D̃ + 2J1}−2{4D̃ + 2J1 − 2J2}−(n−5)

×{4D̃ + 2J1 − J2(1− η)}−1 . (5.18)

In writing this result we dropped all lower-order terms because they do not depend on both σ and η.

Here and below, the dependence on σ is contained in the factor δσ,1 because we assume the existence

of the left-hand wall. The energy denominators are constructed as follows. The left-hand excitation

has energy 2D̃ since it is next to a wall. The right-hand excitation has an energy which depends on

its position as illustrated in Fig. 5.10. The prefactor of 2 arises because the initial excitation can

be near either wall and the overall factor (−1)n−2 arises from the (−1) associated with each energy

denominator. Adding the contributions from (5.18) appropriately weighted as in (5.16) gives

V2(n) =
2Jn−1

2 S−1(−1)n−2

{4D̃ + 2J1}2{4D̃ + 2J1 − 2J2}n−5

{
1

4D̃ + 2J1

− 1
4D̃ + 2J1 − 2J2

}
(5.19)

= 4Jn
2 S−1/(4D̃)n−1 +O(1/D̃n), n odd. (5.20)

Note that there is no term O(1/D̃n−2). This is because to this order the energy denominators are in-

dependent of the J ’s. Hence to this order Ek(σ, η) is independent of η and the sum in equation (5.16)

is zero. Similarly terms from nth order perturbation theory (in which one J2 hop is replaced by two

J1 hops) do not contribute O(1/D̃n−1).

n even

For even n several diagrams contribute to leading order, i. e., at nth order perturbation theory.

These are shown in Fig. 5.11b. As an example we give the contributions to the energy from the

diagram (b)(iii). Again we drop all terms which do not depend on both σ and η. Thus

E
(iii)
2 (σ, η) = 2(−1)n−1δσ,1

(
n− 2

2

)
J2

1Jn−2
2 S−1(4D̃)−1(4D̃ + 2J1)−1

(4D̃ + 2J1 − 2J2)−(n−4)[4D̃ + 2J1 − J2(1− η)]−1 , (5.21)

where the superscript (iii) indicates a contribution from diagram (iii) of Fig. 5.11, the prefactor 2

comes from including the contribution of the mirror image diagram, the prefactor (−1)n−1 is the

sign of nth order perturbation theory, the factor (n − 2)/2 is the number of places the single (J1)

hop can be put, and δσ,1 indicates that this contribution assumes the existence of the left-hand wall.

To leading order in D̃, the η-dependence is contained in

E
(iii)
2 (ση) = (−1)n−1(n− 2)δσ,1J

2
1Jn−2

2 S−1(4D̃)−(n−2)(4D̃ + ηJ2)−1

≈ (−1)n(n− 2)ηδσ,1J
2
1Jn−2

2 S−1(4D̃)−nJ2 . (5.22)

Using equation (5.16) we get

V
(iii)
2 = 2(n− 2)J2

1Jn−1
2 S−1(4D̃)−n . (5.23)
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We treat the other diagrams of Fig. 5.11 similarly. Dropping terms which do not depend on both σ

and η and working to lowest order in (D̃)−1, gives

E2(σ, η) = ηδσ,1J
n−2
2 S−1(4D̃)−n

[
2J2

1J2 +
1
2
J2

1 (n− 2)2J2

+(n− 2)J2
1J2 + (n− 2)J2

1J2 + 2J2
2 (J2 − J1) + 2J2

2J2

]
, (5.24)

where the contributions are from each diagram of Fig. 5.11, written in the order in which they

appear in the figure. Thus for n even gives

V2(n) = S−1(4D̃)−nJn−2
2

[
4J2

1J2 + J2
1J2(n− 2)2 + 4(n− 2)J2

1J2 + 4J2
2 (J2 − J1) + 4J3

2

]

=
Jn−1

2

(4D̃)nS
(n2J2

1 − 4J1J2 + 8J2
2 ), n even. (5.25)

As explained in section 5.2 it is possible to determine graphically the sequence of phases entering

the phase diagram by constructing the lower convex envelope of V2(n) versus n [77, 78]. The points

(n, V2(n)) which lie on the envelope correspond to stable phases. The pair interactions defined by

the expressions (5.20) and (5.25) correspond to a convex function for n � (D̃/J)1/2. Hence, in this

regime, we expect, within the two-wall approximation, a sequence of phases 〈2〉, 〈3〉, 〈4〉, . . . as shown

schematically in Fig. 5.12.

oo<    >

. . . .

/ J2

<3><4>

J 1

<2>

1/2

1/D
Figure 5.12: Schematic phase diagram of the generalised quantum ANNNI model (5.1) in the limit of strong

uniaxial spin anisotropy D.

The widths of the phases 〈n〉 can be estimated using the fact that each phase is stable over an interval

∆Ew = n[V2(n − 1) − 2V2(n) − V2(n + 1)] [77, 78]. Therefore, using (5.17) we find that the width

∆(J2/J1) occupied by the phase 〈n〉 in Fig. 5.12 is O((J2/D)n−1) for n odd and O((J2/D)n−2) for

n even.

This sequence of layering through unitary steps 〈n〉 → 〈n + 1〉 will not be obeyed for large n, i.

e., for n ∼ (D̃/J)1/2, because then V2(n) will suffer from strong even-odd oscillations that will alter
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its convexity. Moreover, for large n, the entropy of more complicated perturbations may dominate

the physics. The large n limit behaviour of V2(n) can be found using Green’s function techniques

[93]. Within this framework one is able to account for the entropic contributions of terms where the

right-most excitation (see Fig. 5.11) is allowed to wander between domain walls, and the left-most

one is held fixed (non-propagation limit). The detailed analysis, carried out by A. B. Harris, is too

long to be reproduced here and can be found in ref. [20]. The resulting expression for V2(n) is

V2(n) =
16D′

Sλn

(
sin2[nδ + 4δ3]− (3/8)(J2/D′)3

)
, n even ;

=
16D′

Sλn

(
cos2[nδ + 4δ3]− (3/8)(J2/D′)3

)
, n odd ; (5.26)

where, to leading order in J2/(4D′), λ−1 = δ2 = J2/(4D′). For small n these expressions reduce to

our previous results (5.20) and (5.25) at leading order in J2/D′. Equations (5.26) are, unfortunately,

insufficient to ascertain whether V2(n) is positive definite or whether it has a negative minimum. In

the latter case there will be a first-order transition from n0 to n = ∞ where n0 is the value of n for

which V2(n) attains its most negative value. On the other hand, if V2(n) is positive for all n, then

one has an infinite devil’s staircase, with no bound on the allowed values of n.

Equation (5.26) suggests that V2(n) can become negative when (nδ+4δ3)/(2π) is sufficiently close

to an integer. However, when one considers the leading order corrections to the non-propagation

approximations (i.e., one allows the left excitation to move too) one can establish that the sign of

V2(n) is always positive [20]. The result is unchanged if one allows both excitations to move also in

the J0 direction i.e., parallel to the domain walls [20]. Therefore we can establish that the sign of

V2(n) is always positive. Hence an infinite sequence of phases is stabilized by quantum fluctuations

in the large D limit.

In the next section we consider the effect of 3-wall interactions which can split the phase bound-

aries 〈n〉 : 〈n + 1〉 where there is still a multiphase degeneracy of all states comprising domains of

length n and n + 1.

5.7 Three-wall interactions

Three-wall interactions are needed to analyze the stability of the 〈n〉 : 〈n + 1〉 phase boundary to

mixed phases of 〈n〉 and 〈n + 1〉. As discussed in section 5.2 the condition that the boundary be

stable is

F (n, n + 1) ≡ V3(n, n)− 2V3(n, n + 1) + V3(n + 1, n + 1) < 0. (5.27)

Consider first the calculation of F (2n − 1, 2n). The diagrams which contribute in leading order to

V3(2n − 1, 2n − 1) and V3(2n, 2n − 1) are shown in Figs. 5.13a and 5.13b, respectively. To leading

order in 1/D̃, V3(n + 1, n + 1) does not contribute to F (n, n + 1).
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Figure 5.13: The diagrams needed to calculate F (2n − 1, 2n) to leading order: contributions to (a) V3(2n −
1, 2n− 1) (b) V3(2n, 2n + 1).
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Figure 5.13 aims to emphasize the positions of the initial excitation and the closest approaches to

the neighbouring domain walls. One must also consider the position of the first neighbour hops in

B and C and the sequence of the hops when calculating the contribution of the diagrams.

An explicit calculation of the contributions of the relevant diagrams would be tedious but, as we

will show it is not required for estimating the sign of F (2n − 1, 2n). If Ni is the contribution to F

of diagrams of type i in Fig. 5.13 ,

F (2n− 1, 2n) = 2NA + 2NB + 2NC − 2ND, (5.28)

where the factors of 2 multiplying NA, NB and NC account for the mirror image diagrams and that

multiplying ND occurs because of the 2 in equation (5.27).

We shall now show that F (2n − 1, 2n) < 0. Consider a diagram in which the hops occur in

the same order in A, B, C and D and the J1 hops in B and C are, say, nearest the outer walls.

The matrix elements mi of all types of diagram carry a negative common factor (the sign arising

because we are considering even-order perturbation theory) and their ratios are mA/mD = 1 and

mA/mB = mA/mC = J2
2/J2

1 .

We must also expand the difference in the energy denominators in a way analogous to the step

between equation (5.19) and (5.20), but here to second order in J/D̃ (since the σ dependence of the

perturbative terms is in the energy denominators). Using (5.16), the contribution of each diagram

to the appropriate Ni may be written∑
σ,η

ση

[
mi

(4D̃)4n−5S

(
f1 +

f2 + f3σ + f4η

(4D̃)

+
f5 + f6σ + f7η + f8σ

2 + f9η
2 + f10ση

(4D̃)2
+ . . .

)]
=

4mif10

(4D̃)4n−3S
+O(

1
(4D̃)4n−2

) (5.29)

where the coefficients f depend only on J1 and J2. When the sum is taken only the term f10

multiplying ση survives. For diagrams of type A, f10 is J2(J2 − J1), while for B, C and D it is J2
2 .

Therefore these diagrams give a contribution to F proportional to

−J2
2J1(2J1 − J2) < 0 . (5.30)

The contributions to F of the other diagrams in B and C (which correspond to a different position

of the first neighbour hop) is proportional to −J2
1J2

2 . Hence F (2n − 1, 2n) < 0 and, consequently,

the 〈2n− 1〉 : 〈2n〉 boundaries are stable.

A similar argument holds for F (2n, 2n+1) for n > 1. The relevant diagrams are shown in Fig. 5.14.

They contribute

F (2n, 2n + 1) = 2NA + 2NB + 2NC + 2ND + 2NE − 2NF. (5.31)

Using the same argument as above

NA + NB −NF ∝ −J2
2J1(J1 − J2) < 0. (5.32)
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Figure 5.14: The diagrams needed to calculate F (2n, 2n + 1) to leading order: contributions to (a) V3(2n, 2n)
(b) V3(2n, 2n + 1).

NC, ND, NE, and the other orderings of NB are negative and hence F (2n, 2n + 1) < 0. Thus the

phase boundaries 〈2n〉 : 〈2n + 1〉 are first order for n > 1.

For the 〈2〉 : 〈3〉 boundary different diagrams contribute to F (2, 3). Indeed the second order

expansion of the energy denominators [as in equation (5.29)] gives a zero contribution. Accordingly,

the calculation of F (2, 3) requires going to higher order in (J2/D̃). This calculation is carried out

in detail in Appendix A.1 and shows that the 〈2〉 : 〈3〉 boundary is also stable.

5.8 Conclusions

We have described the behaviour of the Heisenberg model with first- and second-neighbour competing

interactions and uniaxial anisotropy D near the ANNNI model limit, D = ∞. It was shown that,

near the multiphase point, the classical multidegeneracy is removed by quantum effects. In fact, a

perturbative calculation showed that quantum fluctuations stabilise a sequence of phases where the

domain-wall equispacing increases by one lattice unit,

〈2〉, 〈3〉, 〈4〉, ... 〈n〉 ... . (5.33)

By using an energy expansion in 1/D it could be established that, for n not too large, a first-order

line separates neighbouring phases of the sequence (5.33).
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The series of transitions (5.33) is very different from the one that results from the thermal

excitation of domain walls (see Fig. 5.3). In fact, the largest portion of the low-temperature phase

diagram of the ANNNI model is occupied by the sequence

〈3〉, 〈23〉, 〈223〉, ... , 〈2k3〉 ... . (5.34)

In addition, contrary to what happens in the quantum case, higher order corrections show that the

boundary between neighbouring phases, 〈2k3〉 : 〈2k+13〉, is unstable with respect to the formation

of mixed phases 〈2k32k+13〉 [77, 78].

Another important qualitative difference between the quantum and thermal series of transitions

is revealed only when long-period phases are considered. At a given low temperature, the thermal

sequence (5.34) appears to be truncated, in the sense that a first-order transition separates phase

〈2kmax3〉 from 〈2〉. On the other hand, for the quantum series, (5.33), no cutoff is observed for large

n.

The reason for this difference is an inherently quantum one. In the thermal case, for two domains

to interact, an excitation has to propagate from one wall to the other while, in the quantum case,

the excitation also has to go back to the wall where it started from. Therefore, in the quantum case,

the domain-wall interaction is always positive (i.e. repulsive) since it is proportional to the square

of an oscillatory Green’s function. On the other hand, in the thermal ANNNI case, the analogous

function appears linearly and so the wall-wall potential has a negative (attractive) part which is

responsible for the differences in the phase diagrams.



Chapter 6

Complete devil’s staircase in the

Falicov-Kimball model

6.1 Introduction

In this Chapter we study the ground-state phase diagram of the one-dimensional Falicov-Kimball

model. This model was proposed to describe metal-insulator transitions [94] and has since been

investigated in connection with a variety of problems such as binary alloys [95], ordering in mixed-

valence systems[96] , and the formation of ionic crystals [97]. It is the latter language we shall use

here, considering a system of static positive ions and mobile spinless electrons.

The model comprises no electron-electron or ion-ion interactions (apart from the Pauli exclusion

principle for electrons and a hard-core repulsion for ions) but takes into account an on-site electron-

ion attraction, −U . The interesting question in the context of crystal formation is whether or not

the interactions of the ions with the electrons is sufficient to yield a ground state where the ions

are arranged periodically. Unfortunately, despite the simplicity of the Falicov-Kimball model the

determination of the ground state is far from trivial, and most of the known properties of the model

have been established through extensive numerical simulations.

In particular Gruber et al. [98] have shown that, for the neutral system, for small U the delocal-

isation of electrons favours the formation of segregated phases, where the ions cluster together on

one side of the lattice. For large U , however, there are a large number of modulated ground states

where the periodic arrangement of the ions obey the so-called most-homogeneity requirement [99].

In an interesting paper Gruber et al. [97] were able to prove rigorously the appearance of ground

states with equispaced ions for large values of U . To do this they calculated the ion-ion interaction

to leading order in 1/U .

In this Chapter we show that a full determination of the ground state requires a calculation

78
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of the general m-ion interactions, which we obtain to leading order in 1/U using Green’s function

techniques. Hence, using arguments first introduced by Fisher and Szpilka [100], we are able to prove

the existence of a complete devil’s staircase in the neutral Falicov-Kimball model [101], confirming

a conjecture by Barma and Subrahmanyam [11].

6.2 The model

We write the Falicov-Kimball model in the form

H = t
∑

j

(a†jaj+1 + a†j+1aj)− 2U
∑

i

(sja
†
jaj − 1/2)

+(U − µi)
∑

j

(sj − 1/2) + (U − µe)
∑

j

(a†jaj − 1/2) (6.1)

where a†i (ai) denotes the creation (destruction) operator for a spinless electron, si is equal to 1 (0)

if site i is (un)occupied by an ion, t is the hopping integral for electrons, µi and µe are the chemical

potentials for ions and electrons respectively and U is a positive constant corresponding to the ion–

electron attractive energy. The choice of a positive U is not restrictive since the transformations

{U → −U ;µi → −µi; si → 1 − si} maps the Hamiltonian (6.1) onto the same system with U

negative.

The ground state of the system is chosen by minimizing the total energy per site of the system over

all ionic configurations. In other words, for each possible ionic configuration, the energy eigenvalues

of the Hamiltonian (6.1) are calculated and the total energy of the system is computed by filling the

electron levels up to the Fermi energy. The ionic arrangement corresponding to the ground state is

then chosen by energy comparison.

As already pointed out by Falicov and Kimball, the structure of the ground states differs signif-

icantly depending on whether U is large or small compared to t. In the first case the electrons are

essentially localized near the ions and the latter tend to be as far apart as possible. On the other

hand, for large t/U , the delocalisation of electrons favours the gathering of ions in clusters [99]. In

this Chapter we consider the case where U is very large compared to other parameters in (6.1), and

we shall treat t/U as a perturbative parameter.

6.3 The phase diagram for t = 0

We first consider the case when the hopping integral for the electrons, t, is zero so that each electron

will occupy the same site at all times. In this case the Hamiltonian (6.1) simplifies to

H = −2U
∑

i

(sjnj − 1/2) + (U − µi)
∑

j

(sj − 1/2) + (U − µe)
∑

j

(nj − 1/2) (6.2)
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where we have set ni = a†iai. Since ions (and electrons) at different sites do not interact with each

other, it is relatively easy to find the ground state configurations of the system. The resulting phase

diagram is summarized in Fig. 6.1.

n  = 0, s =1i i

µe

µi

-U

-U

U

U
n  = s  =1

i i

i i

n  = s  =0

i in  = 1, s =0

Figure 6.1: The phase diagram of the Falicov-Kimball model for t = 0.

All the phase boundaries in the figure are multidegenerate in that any phase obtained by mixing

two neighbouring phases has the same energy on the boundary. Our aim is to study systematically

how this multidegeneracy is lifted as t/U increases from zero.

Before doing this we discuss what constraints are imposed on the ground state by the assumption

that U is very large. To do this it is convenient to introduce the quantities

h ≡ (µi + µe)/2 , (6.3)

∆ ≡ (µi − µe)/2 . (6.4)

The physical interpretation of the auxiliary variables h and ∆ is straightforward: h controls the

total number of ions and electrons in the system, while ∆ controls the excess number of ions with

respect to electrons.

It can be argued that, since ∆/U � 1 (we assume that U is much larger than any physical

parameters in equation (6.1) ), the total number of electrons and ions is the same. To see this

consider the case when, for small t/U , the excess number of ions, p ≡
∑

j(sj − nj), is a large

negative integer. If we add an electron to the system (i.e. increase p by one unit), the energy will be

incremented by a quantity ∆Ep ≈ −U . Since t/U is assumed small, ∆Ep will remain approximately

equal to −U for all negative values of p. Conversely, when p ≥ 0, ∆Ep will remain almost constant

at +U , as shown in Fig. 6.2.

Now, for a given value of ∆, the excess number of ions observed in the ground state, p∆, is given

by the largest integer p for which

∆Ep+1 ≤ ∆ . (6.5)
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U

-U

Ep∆

p

Figure 6.2: Schematic plot of ∆Ep when t/U � 1. Although, for simplicity, we have drawn ∆Ep as a
continuous curve, it is actually defined only for integer values of p.

Since ∆Ep displays a gap roughly equal to 2U for p = 0 (see Fig. 6.2) we can conclude that, when

|∆| � U , p∆ will be equal to zero. For this reason throughout the rest of the Chapter, we will

implicitly consider a neutral system, i.e.
∑

i ni =
∑

i si.

6.4 The defect-defect interaction expansion

Since changing ∆ in an interval of order 1/U will not modify the number of electrons and ions in

the system, from now on we will set ∆ = 0. This amounts to exploring the phase diagram along

the line µe = µi. Our aim is to discuss how the properties of the ground state change when moving

along this line by varying h.

For negative values of h, the ground state corresponds to an empty lattice (ni = si = 0). On the

other hand, for h positive ni = si = 1. The point h = 0 lies on the multi-degenerate phase boundary

where all phases associated with an arbitrary spacing of the ions are degenerate. To distinguish

between the different degenerate states it is convenient to introduce the labelling 〈n1, n2, ..nm〉 to

denote a phase consisting of ions whose separations (measured in lattice spacings) repeat periodically

the sequence n1, n2, .., nm. (Hence the phases ni = si = 1 and ni = si = 0 can be described as 〈1〉

and 〈∞〉 respectively.)

The multidegeneracy encountered on the phase boundaries of Fig. 6.1 is due to the absence of

interaction between the confined electrons. It is natural to expect that, for t/U 6= 0, the hopping

of electrons will introduce an effective coupling between the ions, thus providing a mechanism for

the removal of the degeneracy. By analogy with the approach in the previous Chapter, we will try

to build systematically the phase diagram by using the defect-defect interaction formalism of Fisher

and Szpilka [100] (in the present context, a defect corresponds to an ion). Following [100] we write

the energy per lattice site of phase 〈n1, n2, ..., nm〉 as

E〈{ni}〉 =
mσ +

∑m
i=1 V2(ni) +

∑m
i=1 V3(ni, ni+1) + ...∑

i ni
(6.6)

where σ is the creation energy of an isolated ion, V2(x) denotes the effective interaction between two

ions at a distance x, V3(x, y) the interaction of three ions with spacings x, y, and so on. Although,
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for simplicity, we refer to the ion creation energy and ion–ion interactions, it must be borne in mind

that each ion is associated with an electron.

In the rest of this section we will calculate the ion creation energy, σ, and the two-ion interaction

potential, V2(n) and we will discuss how the multidegeneracy is raised in the two-ion interaction

approximation.

6.4.1 The ion creation energy

We first consider the unperturbed case, t = 0, where the electrons are confined to the ions. In this

case σ can be obtained by calculating the energy of the system when only one ion (and one electron)

is present. One obtains σ = −2h. Switching on the perturbation term, t/U we expect each electron

will be localized in a small region around the associated ion. The leading order correction in t/U

to σ can be obtained by using standard perturbation theory (cf. section 5.3). In Fig. 6.3 we have

represented the two diagrams that give the leading order contribution to σ; each arrow represents

an electron hopping. The total energy associated with the two diagrams is

Et = −〈ni = 1, si = 1| ta†iai+1
1
E

ta†i+1ai |ni = 1, si = 1〉

−〈ni = 1, si = 1| ta†iai−1
1
E

ta†i−1ai |ni = 1, si = 1〉 (6.7)

Since the energy denominators, E are equal to U

Et = −2t2/U (6.8)

so that

σ = −2h− 2t2/U +O(t3/U2) . (6.9)

.  .  .

.  .  . .  .  .

.  .  .
i i+1

ii-1

. . .. . .

. . . . . .

Figure 6.3: Lowest-order diagrams contributing to σ. A full circle represents an ion and an arrow denotes the
hopping of an electron.

6.4.2 The two-ion interaction

The general ion–ion interaction term, Vm(n1, n2, ..., nm−1), can be obtained, at least in principle,

through the reconnection formula [12]

Vm(n1, n2, ..., nm−1) = EA − EB − EC + ED (6.10)
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where EX is the energy of configuration X, as in Fig. 6.4.

n m-12nn 1 .  .  ..  .  . .  .  .

.  .  ..  .  . .  .  .

.  .  ..  .  . .  .  .

.  .  ..  .  . .  .  .

A)

B)

C)

D)

Figure 6.4: Ionic configurations needed to calculate the m-ion interaction Vm(n1, n2, ...nm−1). In A there are
m ions at sites 0, n1, n2, ..., nm−1. In B the left-most ion is removed; in C the right-most ion is removed; and in D
the left-most and right-most ions are missing.

In the absence of electron hopping, equation (6.10) gives Vm = 0 for all values of m. Our aim is

to calculate Vm to leading order in t/U . As usual we will start our analysis of the phase diagram

by neglecting interactions that involve more than two ions. Higher-order interactions will then be

included successively to resolve the finer details of the phase structure.

There is a very simple way to obtain the leading-order contribution to the interaction between

two ions occupying sites 0 and n. First note that diagrams involving fewer than 2n electron hops will

not contribute to V2(n) because, as illustrated in Fig. 6.5a, the contribution of every such diagram

in configuration A will be cancelled by a counter-diagram in configuration B (or C).

.  .  .

.  .  .

.  .  .

A

A

B

.  .  .B

a)

b)

Figure 6.5: Examples of diagrams that, when the reconnection formula (6.10) is used, give a (a) zero (b)
leading-order contribution to the two-ion interaction V2(3). A full circle represents an ion and an arrow denotes the
hopping of an electron.

It is then apparent that the leading-order contribution to V2(n) is due to diagrams where the

sites 0 and n are just connected by 2n hoppings, as in Fig. 6.5b, so that V2(n) will be proportional

to t2n/U2n−1. The total contribution of all possible diagrams to V2(n) can be calculated inductively

for increasing n, giving

V2(n) = 2n
t2n

U2n−1
+O(

t2n+2

U2n+1
) . (6.11)

Since V2(n) is always positive and convex, as h is varied from positive to negative, the ion-ion

spacing in the ground state, n̄, increases monotonically in steps of one lattice spacing, giving rise to
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the infinite sequence of phases

〈1〉 → 〈2〉 → ... → 〈∞〉 . (6.12)

The phase 〈n〉 is stable over a region of width ∆hn given by (cf. equation 5.12)

∆hn ≈
n + 1

2
V2(n− 1) ≈ (n2 − 1)

t2n−2

U2n−3
+O(

t2n−1

U2n−2
) . (6.13)

As pointed out in section 5.4, the original multidegeneracy is not completely lifted by V2(n)

because, on the boundary between two phases, 〈n〉 and 〈n + 1〉, all mixed phases where the ions can

be separated by distances n or n + 1 are still degenerate. To determine the finer structure of the

phase diagram it is necessary to consider the effect of higher-order ion interactions. Unfortunately

these are not easily obtained using the simple method outlined above but can still be calculated

to leading order using Green’s function techniques. In the next section we shall illustrate how this

method can be used to reproduce the result for V2(n).

6.5 Calculation of V2(n) using Green’s function methods

To calculate EA in equation (6.10) we consider a system of n+1 sites with ions at sites 0 and n. The

single-particle energies are determined by the eigenvalues of the the (n + 1)-dimensional tridiagonal

matrix, M, where

Mii = −U(δi,0 + δi,n) , (6.14)

Mi,i+1 = Mi+1,i = t (6.15)

and the other matrix elements are zero. Two of these energies occur near −U , and these are the ones

we want to sum over to get EA. Introducing the resolvent operator for the matrix M , (zI −M)−1,

where I is the identity matrix, we can write EA as

EA =
1

2πi

∫
Γ

Tr

[(
zI −M

)−1]
z dz (6.16)

The contour Γ in (6.16) encloses the region near z = −U . To evaluate the trace we need to expand

the matrix inverse in equation (6.16) in powers of the t’s. To do this we define the perturbation

matrix

Vij =

 t if j = i± 1,

0 otherwise ,
(6.17)

and expand the resolvent operator in powers of V ,(
zI −M

)−1

ii

= Gii + GiiVijGjjVjiGii +

GiiVijGjjVjkGkkVklGllVliGii + . . . (6.18)

where Gii = [z −Mii]−1. It is important to notice that, in the expansion (6.18), terms of odd order

cannot contribute to the trace. Since we are interested in finding the leading order expression of
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V2(n) we will focus only on the terms in (6.18) which give a contribution to the resolvent operator

for configuration A of order t2n. (We have already argued that terms of lower order will not survive

the summation in the reconnection formula (6.10). )

.  .  . .  .  .i
b)

.  .  . .  .  .i
c)

0 n

0 n

n0

.  .  . .  .  .i
a)

Figure 6.6: Examples of leading order diagrams contributing to EA. Each arrow represents a matrix element,
Vij . The on-site interactions, gjj are not shown.

In the expansion (6.18) one sees that, if i is not an end site, in order to involve 2n factors of t,

the matrix elements must start at i, say, then increase to the highest number site (n), then decrease

to the lowest number site (0) and finally increase back to the original value i, as shown in Fig. 6.6a.

Alternatively, the matrix elements could initially decrease. However, if i = {0, n}, we note that the

index can only initially increase or decrease respectively (see Fig. 6.6b and 6.6c). We can summarize

the contribution of all the diagrams proportional to t2n in the following compact form(
zI −M

)−1

ii

≈ CiG00GiiGn,n

n−1∏
i=1

G2
ii

n−1∏
i=0

V 2
i,i+1 , (6.19)

where Ci = 1 if i = 0 or i = n and Ci = 2 otherwise. The product over the G’s does not include the

end sites, because these, in general, only appear once. The starting site appears an extra time and

gives rise to the prefactor Gii. Therefore the trace is

Tr (zI −M)−1 ≈ t2n

[
2

(z + U)3z2n−2
+

2n− 2
(z + U)2z2n−1

]
. (6.20)

Here the first term includes C1 and Cn+1, both of which are unity. The factor 2n − 2 comes from∑n
i=2 Ci. Substituting (6.20) in (6.16) and calculating the integral using residues gives

EA ≈ 1
2πi

∫
Γ

t2n

[
2

(z + U)3z2n−3
+

2n− 2
(z + U)2z2n−2

]
dz

= (2n− 2)
t2n

U2n−1
+O(

t2n+2

U2n+1
) . (6.21)

In order to use the reconnection formula (6.10), we need to repeat the same calculation when one

of the end ions is removed (corresponding to configurations B and C in Fig. 6.4). In this case we

obtain
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Tr(I −M)−1 = t2n

[
1

(z + U)2z2n−1
+

2n− 1
(z + U)z2n

]
+O(

t2n+2

U2n+1
) . (6.22)

Thus the perturbative contributions to V2, denoted EB and EC are

EB = EC = − t2n

U2n−1
+O(

t2n+2

U2n+1
) . (6.23)

Finally we note than when both ions are removed there are no longer any levels near −U so that

ED = 0. The use of the reconnection formula (6.10) gives

V2(n) = 2n
t2n

U2n−1
, (6.24)

in agreement with the expression (6.11).

6.6 Calculation of the general Vm term

The Green’s function method introduced in the previous section can be extended to calculate the

m-ion interaction Vm for m > 2. As we shall explain below the general m-ion interaction term,

Vm(n1, n2, ..., nm−1), depends, to leading order, only on the separation of the two outermost ions

in configuration A, n =
∑m−1

i=1 ni. We will show that the general leading order term for Vm is

Vm(n) =
(2n)!t2n

(2m− 3)!(2n− 2m + 3)!U2n−1
+O(

t2n+2

U2n+1
) . (6.25)

To obtain this result notice first that it is still possible to use equation (6.19) (originally introduced

for calculating V2(n)) to get the leading order expression for Vm(n).

We first consider the case where the initial i corresponds to an ion, so that Gii = 1/(z + U).

There will be (2m-2) other factors of 1/(z + U) in the contribution to the diagonal elements of the

resolvent operator for configuration A, two of them coming from G00 and Gnn and two for each of

the (m − 2) interior ions (touched twice by leading order diagrams). Therefore, each leading order

diagram for which the initial site is occupied by an ion, will give a contribution to [zI −M ]−1
ii equal

to

Ci
t2n

(z + U)2m−1z2n−2m+2
. (6.26)

As before, the multiplicity factor, Ci is equal to 2 for interior ions and 1 for the outermost ones.

Therefore the total contribution of diagrams where the initial site corresponds to an ion is

Tr

[
(zI −M)−1

]
= t2n (2m− 2)

(z + U)2m−1z2n−2m+2
. (6.27)

On the other hand, if i is not an ion site, then G00 will be simply equal to 1/z and the contribution

from each of the diagrams is

Ci
t2n

(z + U)2m−2z2n−2m+3
, (6.28)
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where the Ci’s are equal to 2 for all diagrams. Since there are n−m + 1 possible starting sites not

occupied by ions, the total contribution of this type of diagrams is

2n− 2m + 2
(z + U)2m−2z2n−2m+3

. (6.29)

Thus, in all,

EA =
(2n− 2)!

(2m− 3)!(2n− 2m + 1)!
t2n

U2n−1
+O(

t2n+2

U2n+1
) . (6.30)

Similarly one obtains

EB = EC = − (2n− 2)!
(2m− 4)!(2n− 2m + 2)!

t2n

U2n−1
+O(

t2n+2

U2n+1
) , (6.31)

ED =
(2n− 2)!

(2m− 5)!(2n− 2m + 3)!
t2n

U2n−1
+O(

t2n+2

U2n+1
) . (6.32)

Finally the use of the reconnection formula (6.10) gives the result (6.25).

6.7 Hyperfine structure of the phase diagram

We now discuss how higher-order ion interactions modify the phase diagram obtained in the two-

ion interaction approximation. Consider first V3. This has the effect of partially removing the

multidegeneracy on the 〈n〉|〈n + 1〉 boundaries by stabilizing the mixed phases 〈n, n + 1〉. This

follows from noting that the energy difference

(2n + 1)E〈n,n+1〉 − nE〈n〉 − (n + 1)E〈n+1〉 =

V3(n, n + 1) + V3(n + 1, n)− V3(n, n)− V3(n + 1, n + 1) (6.33)

is negative.

The stability of the two new boundaries appearing at this stage of approximation, namely

〈n〉|〈n, n + 1〉 and 〈n, n + 1〉|〈n + 1〉 can be determined similarly by considering four-ion interaction

terms. Again they are unstable to the appearance of the mixed phases 〈n, n, n+1〉 and 〈n, n+1, n+1〉

respectively. Indeed, since all interaction potentials are positive, convex and exponentially decaying

with the separation of the outmost ions, we can conclude that, at every stage of the construction

of the phase diagram, the introduction of neglected higher-order interactions will lead to the stabi-

lization of mixed phases of increasingly long period which occupy smaller and smaller regions of the

phase diagram [12]. Therefore the ion density has the behaviour characteristic of a devil’s staircase.

6.8 Conclusions

To summarize we have constructed iteratively the phase diagram of the Falicov-Kimball model in the

limit of large electron-ion coupling, U . The general ion-ion interaction term, Vm, was calculated, to

leading order, using Green’s function techniques. The determination of the sign, convexity and decay
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properties of the Vm’s allowed us to conclude that an infinite sequence of phases appears in the phase

diagram. As the ion and electron chemical potential are suitably varied, the ion density displays

the behaviour characteristic of a devil’s staircase, as conjectured by Barma and Subrahmanyam

[11]. It is important to point out that these conclusions are based on a leading-order expansion

of energy differences in powers of 1/U . We cannot rule out the possibility that neglected higher-

order corrections could dominate the interaction energies of very widely-spaced ions thus introducing

modifications into the phase diagram.



Chapter 7

An upsilon point in a spin model

7.1 Introduction

In the previous Chapters we have shown that the onset of the appearances of modulated structures

occurs when the energy creation of a domain wall or an interface, in a homogeneous, interface-free

phase goes to zero. When this happens, the resulting ground states with complicated modulations

can be conveniently analyzed in terms of interacting domain walls.

The domain-wall interaction formalism has been recently generalized by Bassler et al. [12] to

study the phase diagram near a point where the surface tension between two phases that coexist at

a first-order transition, 〈α〉 and 〈β〉 goes to zero [12, 102, 103]. As shown schematically in Fig. 7.1

the resulting phase diagram can have a very complicated fan-like structure. Because the sides of the

fan join at P in a cusp which is tangential to the 〈α〉|〈β〉 boundary, thus resembling the greek letter

Υ, the multicritical point P has been termed upsilon-point (Υ-point). In many ways the Υ-point

can be thought of as a two-dimensional generalisation of the behaviour customary near a multiphase

point. While the behaviour near a single multiphase point can be analysed in terms of a unique

type of interacting interfaces, there are three (or more, in case of degeneracy) different phases stable

near an Υ-point, and hence several types types of interface-interactions terms must be identified in

the analysis.

The occurrence of an Υ-point in a spin model was recently suggested by the numeric work

of Sasaki [25]. In an attempt to describe qualitatively the magnetism observed in samples of Ho

[21, 104], Sasaki studied an XY model with first- and second-neighbour interactions and six-fold

anisotropy in a magnetic field. In this model the Υ-points seemed to occur for large values of the

spin anisotropy due to the removal of the degeneracy of two multiphase lines meeting at a first order

boundary. Later Seno et al. [105, 106] devised an expansion in inverse spin anisotropy that allowed

the systematic study of the phase diagram of the same model in zero magnetic field. However, due

to the complication arising from the presence of second-neighbours interactions, the occurrence of

89
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Υ-points in the model could not be confirmed analytically.

In this Chapter we consider the chiral XY model with six-fold spin anisotropy in a magnetic field

[107]. Thanks to the absence of further-than-nearest-neighbour interactions we are able to prove

that, as the spin anisotropy is reduced from infinity, the softening of the spins allows the formation

of an Υ-point structure. This provides the first analytic evidence for the existence of an Υ-point in

a spin model.

Ι    β Ι
αβ βα

Ι    α Ι
βα αβ

βα
I     I 
αβ

<α>

<β>

αβ
Ι    β β Ι

βα

βα
Ι    αα Ι

αβ

αβ βα
Ι    β Ι    α

P

Figure 7.1: Schematic representation of an Υ-point. Finer details are not shown.

7.2 The model

We consider the classical chiral XY model with six-fold spin anisotropy, D, in the presence of an

external magnetic field h. The Hamiltonian of the system is

H =
∑

i

{
− cos(θi−1 − θi + π∆/3) + h[1− cos(θi)] + D[1− cos(6θi)]/36

}
(7.1)

where θi is the angle between the ith spin and the magnetic field orientation. The Hamiltonian (7.1)

is a generalization of the six-state chiral XY model introduced by Yokoi et al. [108] in connection

with ferro-electric chiral smectic liquid crystals [109, 110] and materials like Cr1/3NbS2 [111] which

exhibit antisymmetric exchange interactions.

We shall concentrate on the behaviour of the model near the limit D = ∞, where ni, defined as

3θi/π, can take only the integer values {0,1...,5}. Although we restrict ourselves to one dimension

the results apply equally to models with ferromagnetically coupled layers and an uniaxial modulation

driven by the interactions (7.1) perpendicular to the layers.

The ground-state configurations of the Hamiltonian (7.1) satisfy
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∂H
∂θi

= 0 ∀i. (7.2)

For a given i, equation (7.2) enables us to express θi+1 as a function of θi and θi−1. This fact, together

with the observation that ni can only take a finite number of values, namely {0, 1..., 5}, is sufficient

to conclude that, for D = ∞, there will always exist periodic minimal energy configurations. It will

be convenient to label a periodic configuration {..., θN , θ1, θ2, ...θN , θ1, ...} as 〈n1, n2, ...nN 〉.

We can now discuss the phase diagram for D = ∞, obtained using the Floria-Griffiths algorithm

[71], and presented in Fig. 7.2. We have restricted the labelling of the phases to the first quadrant

(0 ≤ ∆ ≤ 3;h ≥ 0); the remaining phases can be constructed through appropriate symmetry

operations on the ni sequences. The transition lines between regions A and J and regions J and

F are first order. The remaining boundaries are multiphase lines, that is loci where all phases

(including non-periodic ones) built from arbitrary combinations of the two neighbouring phases are

degenerate [100].

P

Figure 7.2: Ground state of the Hamiltonian (2.1) for D = ∞. A = 〈0〉; B = 〈012345〉; C = {〈024〉 , 〈153〉}; D
= 〈01245〉; E = 〈0135〉; F = {〈03〉 , 〈14〉 , 〈25〉}; G = 〈02514〉; H = {〈025〉, 〈014〉}; I = 〈015〉; J = 〈15〉. The J-A and
J-F boundaries (and the symmetric ones under h reversal) are first order.

If the spin anisotropy is reduced from ∞ it seems natural to expect the degeneracy along the

multiphase lines to be lifted as the spins soften from the clock positions. Although ni is no longer

constrained to assume integer values, nevertheless, for high values of D, the angles θi will be close

enough to the clock positions to allow us to continue to use the same labelling scheme introduced

before.

We are particularly interested in the possible appearance of Υ-points for finite D. An Υ-point

can occur when a first-order transition line separating, say, phases 〈α〉 and 〈β〉 (that, for simplicity,

we now assume to be non-degenerate) approaches a commensurate-incommensurate transition [72,
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12, 112]. When this happens, an infinite number of phases spring out from the multicritical point

at the end of the first-order line (as represented in Fig. 7.1). The phases appearing are made of

sequences of 〈α〉 and 〈β〉. As α 6= β the interfaces separating them, which we shall call Iαβ and

Iβα are also generally distinct. In the example of Fig. 7.1 the general form for a phase in the fan is

〈αnIαββmIβα〉 (with αn we denote the repetition of the α sequence n times, i.e. 〈α3I〉 ≡ 〈αααI〉) ,

where the integers n, m increase approaching the 〈α〉 and 〈β〉 boundaries respectively.

The multiphase point P highlighted in Fig. 7.2 seems to be a good candidate for becoming an

Υ-point when D is relaxed from ∞. In fact, P lies at the end of a first-order transition line and it

seems reasonable to consider the two multiphase lines J-G and G-F as special cases of accumulation

lines. Therefore we might expect to observe a structure similar to Fig. 7.1 for small values of 1/D.

7.3 The interface-interface interaction formalism

When moving from a point inside the Υ structure of Fig. 7.1 towards the α or β phases, one crosses an

infinite sequence of phases. Accordingly, the first step in proving the existence of the Υ-point in our

model will be to verify that, for small values of 1/D, each of the J-G and G-F boundaries in Fig. 7.2

splits giving rise to an infinite series of transitions. This can be done using the interface-interface

interaction formalism outlined in the previous Chapters.

If we define 〈α〉 ≡ J = 〈51〉 and 〈I〉 ≡ 〈402〉 so that 〈Iα〉 = G = 〈51402〉, the degenerate phases

on the JG boundary will have the form [12]

〈αn1Iαn2Iαn3Iαn4I...〉 . (7.3)

It is physically appealing to regard the I block of spins as an interface separating pure α sequences.

Following [10] one can conveniently write the energy per spin of phase (7.3) as

E =
∑

i

[
e0
αnilα + e0

I lI + σ + Vα(nilα) + Vαα(nilα, ni+1lα) + ...

]
/
∑

i

(nilα + lI) (7.4)

where lα (lI) is the number of spins in phase α (I), e0
α (e0

I) is the energy per spin of 〈α〉 (〈I〉), σ is

the creation energy of 〈I〉, Vα(x) is the interaction energy of two interfaces I separated by a distance

x, Vαα(x, y) is the interaction energy of three interfaces and so forth. By definition, σ is the energy

paid for the creation of an interface, I, in a pure α phase; for this reason σ is often referred to as

the “interface tension”.

We start by assuming that the V ’s decay sufficiently rapidly with the interface separation to

allow us to start our analysis by retaining only Vα. Corrections due to higher-order interactions will

be included systematically later on. Although we have introduced the interface-interface interaction

approach in connection with the stability of the J−G boundary (that we shall also call 〈α〉 boundary),

the same scheme can be applied to the G-F boundary (〈β〉 boundary). In the next section we will
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consider in turn the stability of both boundaries within the two-interface interaction approximation

(the validity of this assumption will be confirmed a posteriori).

7.4 The 〈α〉 boundary

As we explained in the previous section, on the J −G boundary, all phases built with α sequences

(〈α〉 = 〈51〉) separated by a |402| ≡ I block (i.e. 〈αnIαm...〉) are degenerate. Our aim is to study how

this degeneracy is lifted when D assumes finite values. When D = ∞, all the interface interaction

terms are exactly zero. When 1/D is small, Vα(2n) dominates the energy contribution from the

interface interaction terms. It can be obtained using the reconnection formula [12]

Vα(2n) = E1 + E2 − E3 − E4 (7.5)

where Ei is the energy of configuration i as sketched in Fig. 7.3.

α3) Iα

α4) I α

αIα I α

α1)

2)

2n
+

+

+

2σ + Vα (2n)

σ

σ

E1 = Eα

E2 = Eα

E3 = Eα

E4 = Eα

Figure 7.3: Configurations needed to calculate the two-interface interaction.

Equation (7.5) is exact, but is not convenient for our purposes, as we want only the leading term

of Vα(2n). In fact, we can exploit the rapid decay of the Vα with n to substitute all infinite segments

in Fig. 7.3 with finite (though sufficiently long) ones. Thus equation (7.5) can be approximated by

Vα(2n) ≈ EA + EB − EC (7.6)

where A, B, and C, are the periodic configurations sketched in Fig. 7.4. n0+2n and N−2n−2nI−n0

are assumed to be both a large multiple of 2n and much greater than nI .

We label the spins of configurations A, B and C as {a1, a2, ..., an0 ≡ a0}, {bn0+1, ..., bN ≡ bn0}

and {c1, c2, ..., cN ≡ c0}, respectively. For D large the spins will deviate from their clock positions

{a0
i }, {b0

i } and {c0
i } by an angle analytic in D−1 [105, 106, 113] and we write

ai = a0
i + ãi, bi = b0

i + b̃i, ci = c0
i + c̃i. (7.7)

We can choose to label the spins such that

a0
i = c0

i 1 ≤ i ≤ n0, b0
i = c0

i n0 + 1 ≤ i ≤ N. (7.8)
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Figure 7.4: Periodic configurations appearing in the approximate reconnection formula (7.6).

In analogy to the inverse anisotropy expansion technique used in Chapter 2, if 1/D is sufficiently

small we can expand the Hamiltonian (7.1) to second order in the spin deviations {ãi}, {b̃i}, {c̃i}.

Using a superscript tilde to indicate we are using the quadratic expansion for the Hamiltonian, the

two-interface interaction can be written

Ṽα(2n) = H̃(ãn0 , ã1) +
n0∑
i=2

H̃(ãi−1, ãi) + H̃(b̃N , b̃n0+1) +
N∑

i=n0+2

H̃(b̃i−1, b̃i)

−H̃(c̃N , c̃1) +
N∑

i=2

H̃(c̃i−1, c̃i) (7.9)

where

H̃(ãi−1, ãi) = Ja
i−1,i{ãi−1 − ãi + ∆a

i−1,i}2 + ha
i (ãi + εa

i )2 + Dã2
i /2 (7.10)

with

Ja
i−1,i = cos(a0

i−1 − a0
i + π∆/3)/2, (7.11)

ha
i = h cos(a0

i )/2, (7.12)

∆a
i−1,i = tan(a0

i−1 − a0
i + π∆/3), (7.13)

εa
i = tan(a0

i ) . (7.14)

It follows from (7.8) that

εa
i = εb

i , ha
i = hb

i (7.15)

for all i and that

Ja
i−1,i = Jc

i−1,i, ∆a
i−1,i = ∆c

i−1,i, 2 ≤ i ≤ n0 (7.16)

Jb
i−1,i = Jc

i−1,i, ∆b
i−1,i = ∆c

i−1,i, n0 + 2 ≤ i ≤ N. (7.17)

For the cases considered here it will be possible to label the phases so that (7.16) is also true for

i = 1 and (7.17) for i = n0 + 1. Under these circumstances we may drop the a, b and c superscripts
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on the quantities defined in (7.11)-(7.14). Using the technique described in Chapter 2 it is then

possible to simplify (7.9) using the recursion equations (7.2). After some algebra one obtains

Ṽα(2n) = −J0,1

{
(ãn0 − b̃N )(c̃1 − c̃n0+1)− (ã1 − b̃n0+1)(c̃N − c̃n0)

}
. (7.18)

The angular deviations appearing in (7.18) can be obtained to leading order in 1/D by iteratively

using the recursion equations (7.2), as shown in Chapter 2 (an example where Ṽα(2n) is calculated

in detail is given in Appendix B.1). The result for general n is

Ṽα(2n) = cn
2 cn−1

4

{
s4 − s3

}2
/D2n +O(1/D(2n+1)) (7.19)

where

si ≡ sin[π(∆− i)/3] , (7.20)

ci ≡ cos[π(∆− i)/3]. (7.21)

Terms of higher order than quadratic in the Hamiltonian (7.1) will not contribute to the leading

term of the interface–interface interaction and hence to leading order Vα(2n) and Ṽα(2n) will be

equal. Therefore we shall not distinguish between them below.

A knowledge of the leading term in the interface-interface interaction, equation (7.19), allows us

to take the first step in determining the ground-state configurations. Because we are considering

only two-interface interactions the interfaces must be equispaced in the ground state. Inspection of

equation (7.19) shows that Vα(2n) is always positive and convex near P. Therefore we can conclude

that, for D large, all transitions 〈αnI〉 → 〈αn+1I〉 occur as σ is lowered [10].

The resulting phase diagram is drawn schematically in Fig. 7.5.

Iα

Iα2

Iα3

F= <51402>><

><
= <51>α ><

J
><

G

Figure 7.5: Schematic sketch of the splitting of the J-G boundary in the two interface interaction approximation.
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To this order of approximation the 〈αnI〉 : 〈αn+1I〉 phase boundaries remain degenerate and higher-

order interface interactions can introduce qualitative changes in the phase diagram.

7.5 The 〈β〉 boundary

We now focus our attention on what happens along the G-F boundary (that we will also call 〈β〉

boundary) in the two-interface interaction approximation. In the F region of the phase diagram

(Figs. 7.2 and 7.5) three phases coexist when D = ∞, namely β1 = 〈14〉, β2 = 〈25〉 and β3 = 〈03〉.

However, when D is relaxed, only phases β1 and β2 stay degenerate, while phase β3 has a higher

energy.

Consider the boundary between one of the phases 〈αnI〉 and region F in Fig. 7.5. Along this

boundary, in the absence of interactions between the interfaces I1 ≡ (51)n4, I2 ≡ 0 and I3 ≡ 2, all

phases

〈(51)n4(14)m10(30)l12(52)p1(51)n4(14)m20(30)l22(52)p2 ....〉 (7.22)

are degenerate.

Now we turn on the two-interface interactions. In this approximation, the possible ground states

are periodic and have the form 〈(51)n4(14)m0(30)l2(52)p〉, where m, l and p depend on σ. In the

following analysis we shall hold n fixed and assume that σ can be varied to trace out the phase

sequences. Looking at Fig. 7.5 this corresponds to moving within the 〈Iαn〉 stripe towards region

F.

The energy per spin can be written

E =
{

(1 + 2n)EI1 + Eβ12m + EI2 + Eβ22p + EI3 + Eβ32l + σ

+Vβ1(2m) + Vβ3(2l) + Vβ2(2p)
}

/L (7.23)

where L = (2m + 2p + 2l + 3 + 2n) and σ includes the interface tension of the three interfaces I1, I2

and I3.

Simple calculations show that

Eβ1 = Eβ2 , Eβ3 = Eβ2 + 3h2/(8D) +O(1/D2). (7.24)

Using the analytical techniques summarised in the previous section one can find, to leading order,

the two-wall interactions between interfaces bounding phases 〈β1〉, 〈β2〉, and 〈β3〉,

Vβ1(2m) = Vβ2(2p) = D−(2m+2)
{
s2 − s3

}2c2m+1
3 ,

Vβ3(2l) = DVβ1(2l)/c3. (7.25)

We now want to find the values m̄, p̄ and l̄ which minimise (7.23) for a given n and σ. By

symmetry arguments one has m̄ = p̄. It follows from (7.24) that l̄ must be bounded from above.
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Indeed an explicit calculation of the energy O(1/D) shows immediately that l̄ = 0 or 1 and that

the sequence of phases as σ is lowered is, [n̄, 0, 0, 0] → [n̄, 0, 1, 0] → F, where we used the notation

[n, m, l, p] to denote phase 〈(51)n4(14)m0(30)l2(52)p〉.

The boundary between [n̄, 0, 0, 0] and [n̄, 0, 1, 0] is non-degenerate and therefore cannot be split

by terms of higher order in D−1. The boundary between [n̄, 0, 1, 0] and F remains degenerate to

all phases of the form [n̄, m, 1,m]. The effect of higher order terms can be deduced by noting that

Vβ1(2m) and Vβ2(2p) are positive and convex. This implies that all the transitions [n̄, m, 1,m] →

[n̄, m + 1, 1,m + 1] are stable [10]. Fig. 7.6 summarises the results of the two-interface interaction

analysis.

J

. . .

. . .

. . .

. . .

. . .

. . .

G

[1,0,0,0]

[1,0,1,0]

[1,1,1,1]

[1,2,1,2]

[2,2,1,2]

[2,0,0,0]

[2,0,1,0]

[2,1,1,1]

F

Figure 7.6: Schematic phase diagram near the Υ-point in the two-interface interaction approximation. The
notation [n, m, l, p] is used to indicate the phase 〈(51)n4(14)m0(30)l2(52)p〉. The bold solid lines are accumulation
lines. The dashed line is a first order boundary.

7.6 Hyperfine structure

We now restrict our analysis to the richest region of the phase diagram, i.e. where l = 1. We already

know that, in the two-interface approximation, the possible ground states can be written in the form

〈αnI1β
m
1 I2β

m
2 I3〉 ≡ [n, m,m], where I1 ≡ 4, I2 ≡ 030, and I3 ≡ 2. Bassler, Sasaki and Griffiths

[12] have shown that, for exponentially decaying interface interactions, such as is the case here, the

general form of the interaction energy of an arbitrary number of interfaces can be constructed as

Vαβ1β2...β2(2n, 2m, 2p, 2q, . . . , 2s) =

Vα(2n)tαβ1Vβ1(2m)tβ1β2Vβ2(2p)tβ2αVα(2q) · · · tβ1β2Vβ2(2s) (7.26)

where the V ’s are defined in (7.19) and (7.25) and, to leading order, we find

tβ1β2 = D−3
{
s2 − s3

}−2
c2
2c

2
3,

tαβ1 = D
{
(s3 − s2)(s4 − s3)

}−1
,

tβ2α = tαβ1 . (7.27)
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The formulæ (7.27) follow from calculations similar to that described in Appendix B.1. For

example taking the phases A = [n, m,m], B = [n, m + 1,m + 1], and C = [n, m,m, n,m + 1,m + 1]

the right-hand side of equation (7.18) is equal in leading order to Vβ1(2m)tβ1β2Vβ2(2m + 2). The

quantity tβ1β2 can then immediately be extracted by using the expression (7.25) for Vβ1 and Vβ2 .

[n+1,m,m]

[n+1,m+1,m]

[n+1,m,m+1]

[n+1,m+1,m+1]

[n,m+1,m]

[n,m,m+1]

[n,m+1,m+1]

[n,m,m]

[n,m,m]

[n,m+1,m+1]

[n+1,m,m]

[n+1,m+1,m+1]

[n+1,m,m]

[n+1,m+1,m]

[n+1,m,m+1]

[n,m+1,m]

[n,m,m+1]

[n,m+1,m+1] [n+1,m+1,m+1]

[n,m,m]

a) b) c)

Figure 7.7: Detail of the phase diagram in (a) the two-interface approximation; (b) the three-interface approx-
imation; (c) the four-interface approximation. First order lines are dashed.

With the aid of (7.26) it is possible to examine the effects of three-interface interactions on

the superdegenerate boundaries in Fig. 7.6. Consider the general case represented in Fig. 7.7a.

All four boundaries are multiphase lines where any sequence of the two neighbouring phases are

degenerate within the two-interface interaction approximation. For the [n, m,m] : [n + 1,m, m] and

[n, m + 1,m + 1] : [n + 1,m + 1,m + 1] boundaries this exhausts the possibilities and the three-

interface interactions are not of sufficiently long range to split the degeneracy. For the [n, m,m] :

[n, m+1,m+1] ([n+1,m, m] : [n+1,m+1,m+1]) boundary, however, the phases [n, m+1,m] and

[n, m,m + 1] ([n + 1,m + 1,m] and [n + 1,m, m + 1]) are also degenerate and there is the possibility

that these may be stabilised with respect to [n, m,m] and [n, m + 1,m + 1] ( [n + 1,m, m] and

[n + 1,m + 1,m + 1]) by the three-interface interaction.

To check this we need the energy differences [10, 12]

2E[n,m+1,m] − E[n,m,m] − E[n,m+1,m+1] = 2E[n,m,m+1] − E[n,m,m] − E[n,m+1,m+1]

∼ Vβ1β2(m,m + 1) + Vβ1β2(m + 1,m)− Vβ1β2(m + 1,m + 1)− Vβ1β2(m,m)

(7.28)

which are dominated by Vβ1β2(m,m) and which are therefore negative. Similarly the [n + 1,m, m] :

[n + 1,m + 1,m + 1] boundary is unstable with respect to the formation of {[n + 1,m + 1,m], [n +

1,m, m + 1]}. The resulting modification to the phase diagram is sketched in Fig. 7.7b.

The V4 terms do not cause further splitting of the multidegenerate lines of Fig. 7.7b but they

qualitatively change the phase diagram near the two points where four lines meet. In the proximity of

the upper one the structure of the phase diagram is determined by the signs of the energy differences
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[12]

∆V1 = Vαβ1β2(n, m,m) + Vαβ1β2(n + 1,m + 1,m)

−Vαβ1β2(n + 1,m, m)− Vαβ1β2(n, m + 1,m)

∆V2 = Vβ1β2α(m,m, n) + Vβ1β2α(m + 1,m, n + 1)

−Vβ1β2α(m + 1,m, n)− Vβ1β2α(m,m, n + 1)

(7.29)

With the aid of the factorization formulæ (7.26) it is possible to check that the two energy

differences (7.29) are positive. This means that phases [n+1,m, m] and {[n, m,m+1], [n, m+1,m]}

are separated by a short first-order line; similarly one can show that {[n+1,m, m+1], [n+1,m+1,m]}

and [n, m + 1,m + 1] also coexist at a first-order transition. In this approximation the structure of

Fig. 7.7b must be modified as in Fig. 7.7c.

The factorization formulæ (7.26) allow us to go further and study the the effect on the phase

diagram of interface–interface interactions of all orders. Bassler, Sasaki and Griffiths [12] showed

that the form of the phase diagram depends upon the sign of the two-interface interactions (7.19)

and (7.25) and the t’s, equation (7.27). Here these are all positive corresponding to a case where

the superdegenerate boundaries at the end of the first-order lines in Fig. 7.7c split under the effect

of higher-order interface–interface interactions, giving rise to a structure analogous to that in Fig.

7.6 (but where the phases have longer periodicity). Furthermore one can carry the analysis further

by studying again the splitting near the points where four lines meet and so on, finding a structure

similar to the one in Fig. 6(c). The analysis can then be repeated ad infinitum, showing that the

Υ-point has, indeed, a self-similar, fractal structure.

Fig. 7.8 summarises the results of a numerical simulation of our model. We have discretized the

[0, 2π] domain for the angles θi in 1200 parts and then used the Floria-Griffiths [71] algorithm to

find the exact ground state of the discretized model. Some of the short first order transition lines,

as in Fig. 7.7c, are visible.

7.7 Conclusions

We have considered a model of XY spins with 6-fold anisotropy and chiral spin interactions. Using

an expansion in 1/D, the inverse spin anisotropy, we have given analytic evidence for the existence

of an Υ-point (an accumulation point for two interpenetrating sequences of first-order transitions)

in the model.

The phase diagram near the Υ-point has been constructed inductively by calculating the interface–

interface interactions to leading order in 1/D. Following arguments due to Bassler, Sasaki and

Griffiths [12] we have argued that the Υ-point has a self-similar, fractal structure.
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Figure 7.8: Phase diagram obtained through numerical simulation. The [0, 2π] interval for the angles has been
discretized in 1200 parts. The ground states for each h and ∆ was found using the Floria-Griffiths algorithm.

Although the results presented here are rigorous within the leading order analysis of the interface-

interface interactions, we cannot rule out the possibility that the neglected higher-order contribu-

tions could affect the phase diagram by truncating the sequence of phases springing out from the

multiphase lines.



Appendix A

A.1 Stability of the 〈2〉 − 〈3〉 boundary

The leading-order analysis of section 5.6 showed that, in the two-wall interaction approximation, a

sequence of phases,

〈2〉, 〈3〉, 〈4〉, ... , 〈n〉, ... (A.1)

appears in the phase diagram of the quantum ANNNI model. The question is whether three- or

higher-order interactions can introduce longer-period mixed ground-states between two neighbouring

phases of the sequence (A.1).

As discussed in section 5.7, to ascertain whether the 〈n〉|〈n + 1〉 boundary is stable it is necessary

to determine the sign of the structure coefficient

F (n, n + 1) ≡ V3(n, n)− 2V3(n, n + 1) + V3(n + 1, n + 1). (A.2)

In general, the leading order term of F (n, n+1), which is O(1/D̃4n−1), can be calculated through

a second-order expansion of the energy denominators of the V3’s (see section 5.7). However, for n = 1

the term O(1/D̃3) is accidentally zero and terms O(1/D̃4) must be retained. This leads to a lengthy

calculation. We now calculate F (2, 3) explicitly, considering each order of perturbation theory in

turn.

Second-order perturbation theory

Contributions arise from diagrams spanning a wall which are created and then immediately

destroyed (as in the example of Fig. 5.8). The contribution to V3(2, 2) comes from both first and

second neighbour excitations. That to V3(2, 3) is just from second neighbours because the energy

denominator of the first neighbour excitation does not depend on both σ and η. For the same reason

there is no contribution at all to V3(3, 3).

Using a subscript 2 to indicate that we are considering only the terms arising from second order

perturbation theory one obtains O(1/D̃4)

V2(2, 2) =
8J2

2

(4D̃)3S
[−J2

1 + 2J2(J1 − J2)] +
48J3

2

(4D̃)4S
[−J1J2 + 2J2

2 ], (A.3)
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V2(2, 3) = − 8J4
2

(4D̃)3S
+

48J4
2 (J2 + J1)
(4D̃)4S

, (A.4)

V2(3, 3) = 0. (A.5)

Third-order perturbation theory

Contributions to V3(2, 2) in third order perturbation theory arise from diagrams like that shown

in Fig. A.1.

+ +
_ _

.  .  . .  .  .

−σ −σ −σ η η

Figure A.1: Example of a term contributing to V3(2, 2) in third order perturbation theory.

Recalling that the spins on either side of the wall can hop, and that the initial excitation can be

between second neighbours, with a subsequent hop to first neighbours gives

V3(2, 2) =
48J2

1J2
2 (2J2 − J1)

(4D̃)4S
. (A.6)

Similar diagrams contribute to V3(2, 3). The hop must lie within the domain of 3 spins

V3(2, 3) =
24J2

1J3
2

(4D̃)4S
. (A.7)

There is no contribution V3(3, 3).
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Fourth-order perturbation theory

We first consider processes which are proportional to V 2
|| V

2
6‖ . As we discussed in the text, to lowest

order in J2/D we do not need to consider processes which hop beyond the wall. However, since the

calculation of F (2, 3) requires a calculation of V3(2, 2) and V3(2, 3) including the first higher-order

corrections, we need to keep such processes.

+

σ

+

+

++

++

+

+

+

-

-

- -

- -

-

-

+

-

+

-

+

-

+

-

+

-

- η - ησ

Figure A.2: Processes which can not occur when the wall is as shown and which therefore carry a factor δη,−1

(when the wall is absent η = −1 and these processes are allowed). The first six diagrams contribute to V3(2, 2) and
the last one to V3(2, 3). In the last diagram the right-hand block contains three down spins.

We now evaluate contributions from such processes, which we show in Fig. A.2. First of all, since

these processes only exist in the absence of the right-hand wall, they all carry a factor δη,−1. Sec-

ondly their overall sign is negative for even-order (fourth-order) perturbation theory. Also, the

contributions to V3(2, 2) carries a factor of 2 to account for the mirror image diagrams.
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Thus from the first diagram of Fig. A.2, we get Ek(σ, η) of equation (5.16) as

E3(σ, η) = −2δη,−1J
2
1J2

2 (E1E2E3)−1 , (A.8)

where Ei is an energy denominator. We have that Ei ∼ 4D̃ +O(J). In particular, we need to include

the dependence of Ei on σ, which we deduce from Fig. 5.10.

For the present purposes it suffices to set Ei = 4D̃ and dEi/dσ = J2 for all diagrams of Fig. A.2,

except the last one, for which dEi/dσ = (J2 − J1). Thus for the first diagram of Fig. A.2 we have∑
ση

σηE3(σ, η) = −12J2
1J2

2 (4D̃)−4(dE/dσ) . (A.9)

Indicating with δV4(2, 2) and δV4(2, 3) the total contribution to V4(2, 2) and V4(2, 3) from the

diagrams of Fig. A.2 one has

δV4(2, 2) = −(J3
2/D̃4)

(
48J2

1 + 24J2
2 − 12J1J2

)
, (A.10)

δV4(2, 3) = −(6J5
2/D̃4) . (A.11)

However, one also needs to consider terms proportional to V 4
6‖ where two pairs of excitations are

created and destroyed which do indeed turn out to be important. Consider first a set of four spins

ni at sites i and the following processes

(i) n1, n2 excited, n1, n2 destroyed, n3, n4 excited, n3, n4 destroyed

(ii) n1, n2 excited, n3, n4 excited, n3, n4 destroyed, n1, n2 destroyed

(iii) n1, n2 excited, n3, n4 excited, n1, n2 destroyed, n3, n4 destroyed

(iv) n3, n4 excited, n3, n4 destroyed, n1, n2 excited, n1, n2 destroyed

(v) n3, n4 excited, n1, n2 excited, n1, n2 destroyed, n3, n4 destroyed

(vi) n3, n4 excited, n1, n2 excited, n3, n4 destroyed, n1, n2 destroyed

We will be interested in the cases shown in Fig. A.3 where n1 and n2 must be first or second

neighbours straddling one wall and similarly for n3 and n4 with respect to the other wall. Except

for the possibility that n2 = n3, all the n’s are distinct. Because we are working to linear order in

1/S (that is ignoring terms higher than quadratic in the boson Hamiltonian) the energy denominator

depends on position on the lattice but not on the position of the other excitations. Hence the energy

denominators are simply the sum of the energies of the excited spins relative to the ground state

energy. We denote them by Eijk... when spins i, j, k . . . are excited. Noting that the matrix elements,

say M , are common to all processes (i)–(vi) we are now in a position to write down the contribution

from these diagrams to fourth order in perturbation theory
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1 2

3 4

1 2

3 4

1 2

3 4

12

34

1 2

3 4

(iii)

1 2

3 4

134 2

(iv)

(b) (i)

(a) (i)

(ii)

σ σ −η −η −η

(c) (i)

(ii)

σ σ σ −η −η −η

Figure A.3: Terms which contribute to (a) V
(1)
4 (2, 2), (b) V

(2)
4 (2, 2), (c) V

(3)
4 (2, 2). The figures indicate which

spins are excited. The way in which all possible orderings of the excitations are accounted for is described in the text
(see equations (A8) and (A9) for diagrams (a) and (c) and equation (A10) for diagram (b)). In cases (a) and (b) the
diagrams which are mirror images in the center wall must also be accounted for by including a factor of 2.
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V4 =
M

S

(
1

E2
12E34

+
1

E12E2
34

− ξ

E12E1234E12
− 2ξ

E12E1234E34
− ξ

E34E1234E34

)
(A.12)

where ξ = 2 if two excitations are present at the same site (Bose statistics) and ξ = 1 for all spins

distinct.

Using E1234 = E12 + E34

V4 =
M

S
(1− ξ)

E12 + E34

E2
12E

2
34

. (A.13)

Putting ξ = 1 it is immediately apparent that there is no contribution from diagrams for which

all ni are different. There are however terms O(1/D̃4) when ξ = 2. Diagrams of this type which

contribute to V3(2, 2) are shown in Fig. A.3a. Only terms with η = 1 give a contribution different

from E0. Therefore when the sum over σ is taken the term proportional to σ is the lowest order

which survives. Including a factor 2 for diagrams symmetric with respect to reflection in the center

wall of Fig. A.3a one obtains

V
(a)
4 (2, 2) =

12
(4D̃)4S

(
2J5

2 − J1J
4
2 + 2J2

1J3
2

)
, (A.14)

where the superscript indicates a contribution of type a in Fig. A.3.

Similarly the contributions of this type to V3(2, 3) is shown in Fig. A.3c. They give

V
(c)
4 (2, 3) =

12J5
2

(4D̃)4S
. (A.15)

There is one further contribution to V4(2, 2). Consider the following order of excitation of four

spins

(i) n1, n2 excited, n3, n4 excited, n2, n4 destroyed, n1, n3 destroyed

(ii) n1, n2 excited, n3, n4 excited, n1, n3 destroyed, n2, n4 destroyed

(iii) n3, n4 excited, n1, n2 excited, n1, n3 destroyed, n2, n4 destroyed

(iv) n3, n4 excited, n1, n2 excited, n2, n4 destroyed, n1, n3 destroyed

The pairs (n1, n2), (n3, n4), (n1, n3), (n2, n4), must all be first or second neighbours spanning a

wall. This means that the only contribution of this type is to V4(2, 2) and is shown in Fig. A.3b.

Proceeding as before the sum of all orderings gives

V
(b)
4 = −2M

S

E1234

E13E24E12E34
(A.16)

where we have included a factor 2 for the reverse order of the perturbations. Evaluating this for the

relevant diagram

V
(b)
4 (2, 2) =

24J2
1J3

2

(4D̃)4S
(A.17)

where a factor 2 for the mirror image process has been included.
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Finally obtaining V3(2, 2) from equations (A.10), (A.3), (A.6), (A.14),and (A.17) and V3(2, 3)

from equations (A.11), (A.4), (A.7),and (A.15) we are in a position to calculate the sum of the

contributions to F (2, 3) from all the diagrams of Fig. A.3. We obtain

δF (2, 3) = − 492J5
2

(4D̃)4S
(A.18)

where we have used J2 = J1/2 +O(1/D̃S). Combining this with Eqns. (A.10) and (A.11) we get

F (2, 3) = − 392J5
2

(4D̃)4S
. (A.19)

This is negative showing that the 〈2〉 : 〈3〉 phase boundary is indeed stable.



Appendix B

B.1 Calculation of the two-interface interaction.

As an example of how to obtain the two-interface interaction for the model considered in Chapter 7

we discuss in detail the calculation of Ṽα(6). Following Fig. 7.4 we need to consider the periodic

phases listed below where n0 = 4, N = 24 and n = nI = 3. A choice of labelling that satisfies (7.16)

for 1 ≤ i ≤ n0 and (7.17) for n0 + 1 ≤ i ≤ N is as shown.

i = n0; 1, 2 ...

↓ ↓

A: 3a0
i

/π 5 1 5 1

i = ... N; n0 + 1 ...

↓ ↓

B: 3b0
i

/π 5 1 5 1 5 1 4 0 2 5 1 5 1 5 1 5 1 4 0 2

i = N; 1 ... n0, n0 + 1 ...

↓ ↓ ↓ ↓

C: 3c0
i

/π 5 1 5 1 5 1 5 1 5 1 4 0 2 5 1 5 1 5 1 5 1 4 0 2

(B.1)

We can now use (7.18) to calculate Ṽα(6) to leading order. The quantities (ãn0 − b̃N ), (ã1 − b̃n0+1),

(c̃1 − c̃n0+1) and (c̃N − c̃n0) can be obtained correct to leading order from the linear approximation

to the recursion equation (7.2),

θ̃i =
{
−2hθ

i (ε
θ
i + θ̃i) + 2Jθ

i−1,i(θ̃i−1 − θ̃i + ∆θ
i−1,i)− 2Jθ

i,i+1(θ̃i − θ̃i+1 + ∆θ
i,i+1)

}
/D (B.2)

where we have used the definitions (7.11)–(7.14).

Let

θ̃i =
θ1

i

D
+

θ2
i

D2
+ ... . (B.3)

Substituting into (B.2) and equating like powers of D−1 gives

θ1
i = 2Jθ

i−1,i∆
θ
i−1,i − 2Jθ

i,i+1∆
θ
i,i+1 − 2hθ

i ε
θ
i , (B.4)

θn
i = −2hθ

i θ
n−1
i − 2Jθ

i−1,i(θ
n−1
i−1 − θn−1

i )− 2Jθ
i,i+1(θ

n−1
i − θn−1

i+1 ), n > 1. (B.5)

To calculate (ã1 − b̃n0+1) it is helpful to display explicitly a0
i and b0

n0+i as a function of i.
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i ... -3 -2 -1 0 1 2 3 4 ...

* *

3a0
i /π ... 5 1 5 1 5 : 1 5 1 5 1 5 1 ...

3b0
n0+i/π ... 0 2 5 1 5 : 1 5 1 4 0 2 5 ...

* *

(B.6)

The ∗’s mark where a0
i first differs from b0

i+n0
when moving away from the dotted interface in either

direction.

It follows immediately from (B.4) that

(ã3 − b̃n0+3) =
1
D

{
sin[

π

3
∆− 3]− sin[

π

3
∆− 4]

}
(B.7)

Two further iterations of (B.5) give

(ã1 − b̃n0+1) =
1

D2
cos[

π

3
∆ + a0

1 − a0
2] cos[

π

3
∆ + a0

2 − a0
3](ã3 − b̃n0+3)

=
1

D3
cos[

π

3
(∆− 4)] cos[

π

3
(∆− 2)]

{
sin[

π

3
∆− 3]− sin[

π

3
∆− 4]

}
.

(B.8)

(ãn0 − b̃N ) may be calculated in an analogous way

(ãn0 − b̃N ) = −(ã1 − b̃n0+1). (B.9)

Similarly

(c̃1 − c̃n0+1) = (c̃N − c̃n0) = (ã1 − b̃n0+1). (B.10)

Using J0,1 = cos[π
3 (∆ − 2)]/2, from the definition (7.11) and substituting (B.8)–(B.10) into (7.18)

gives

Ṽα(6) = − 1
D6

{
sin[

π

3
∆− 4]− sin[

π

3
∆− 3]

}2

cos[
π

3
(∆− 4)]2 cos[

π

3
(∆− 2)]3.

(B.11)

It is important to point out that the labelling used in equation (B.1) is not unique. Any labelling

which satisfies (7.16) for 1 ≤ i ≤ n0 and (7.17) for 1 ≤ n0 + 1 ≤ N will give the correct results for

Ṽα(6). However in general (ã1− ãn0+1) etc. will contain lower powers of 1/D which cancel when the

difference in (7.18) is taken. The choice given above, which maximises the distance of the position

(*) where a0
i first differs from b0

n0+1 avoids such cancellation and leads to the easiest calculation.

It is important to mention that because the interface-interface interactions decay very rapidly

(exponentially) with increasing interface–interface distance the values of n0+2n and N−2n−2nI−n0

need not in fact be much larger that 2n and nI . That sufficiently large values have been chosen

can be checked a posteriori by verifying that increasing the values of n0 and N does not change the

result (B.11).
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Finally we give an explicit expression for the interface energy σ defined in (7.4). A leading order

calculation gives

σ = c2 + c4 − 2c3 +
1
D

{
s22 − 2s23 − 2s2s4 + 4s3s4 − s24 + h

√
3(s2 − 2s3 + s4)

}
+O(D−2) (B.12)

where

si ≡ sin[π(∆− i)/3] , (B.13)

ci ≡ cos[π(∆− i)/3]. (B.14)
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