Dimension reduction in heterogeneous parametric spaces: shape and drag optimization in naval engineering

M. Tezzele, F. Salmoiraghi, A. Mola and G. Rozza

SISSA mathLab, International School for Advanced Studies, Trieste, Italy

Introduction

Development of a new framework for parameters space reduction in naval engineering obtained by coupling

- Active Subspace Method to identify lower dimensional structure in the parameters space [1].
- Free Form Deformation to morph the geometry.
- Boundary Element Method as an high fidelity solver for the wave resistance [2].

Free Form Deformation: the PyGeM library

- PyGeM is a python library using Free Form Deformation and RBF interpolation to parametrize and morph complex geometries.
- It interacts with the major industrial file formats used for CAD management (.iges, .stl), mesh files (.unv and OpenFOAM), and output files (.vtk).

• Available at: github.com/mathLab/PyGeM & mathlab.sissa.it/cse-software

The DTMB 5415 hull and the parameters

The Active Subspace Method

Consider a function, its gradient vector and a sampling density

 $f = f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^m, \quad \nabla f(\mathbf{x}) \in \mathbb{R}^m, \quad \rho : \mathbb{R}^m \to \mathbb{R}_+$

Take the average outer product of the gradient and its eigendecomposition,

$$\mathbf{C} = \mathbb{E}\left[\nabla_{\mathbf{x}} f \nabla_{\mathbf{x}} f^{T}\right] = \int (\nabla_{\mathbf{x}} f) (\nabla_{\mathbf{x}} f)^{T} \rho \, d\mathbf{x} = \mathbf{W} \mathbf{\Lambda} \mathbf{W}^{T}$$

Partition the eigendecomposition,

$$\mathbf{\Lambda} = \begin{bmatrix} \mathbf{\Lambda}_1 & \\ & \mathbf{\Lambda}_2 \end{bmatrix}, \qquad \mathbf{W} = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 \end{bmatrix}, \qquad \mathbf{W}_1 \in \mathbb{R}^{m \times n}$$

Rotate and separate the coordinates,

 $\mathbf{x} = \mathbf{W}\mathbf{W}^T\mathbf{x} = \mathbf{W}_1\mathbf{W}_1^T\mathbf{x} + \mathbf{W}_2\mathbf{W}_2^T\mathbf{x} = \mathbf{W}_1\mathbf{y} + \mathbf{W}_2\mathbf{z}.$

 \mathbf{y} is the active variable and \mathbf{z} the inactive one:

$$\mathbf{y} = \mathbf{W}_1^T \mathbf{x} \in \mathbb{R}^n, \qquad \mathbf{z} = \mathbf{W}_2^T \mathbf{x} \in \mathbb{R}^{m-n}$$

• The DTMB 5415 is a hull conceived for preliminary design of a US Navy Combatant in 1980 and it is a very common benchmark for the validation of CFD models. The hull geometry includes both a sonar dome and transom stern.

- As geometrical parameters we select 6 components of 4 different control points of a FFD lattice over one side wall of the hull. Then we apply the same deformation to the other side.
- The structural parameter is the displacement of the hull and the physical one is the velocity.

Parameter	Nature	Lower bound	Upper bound	Credits: CMAME 283:1525-1544 2015
u_1	FFD Point 1 y	-0.2	0.3	
u_2	${\rm FFD} {\rm Point} 2 y$	-0.2	0.3	Knodes
u_3	FFD Point $3 y$	-0.2	0.3	Y Jnedex
u_4	FFD Point 4 y	-0.2	0.3	X Landas
u_5	FFD Point 3 z	-0.2	0.5	
u_6	FFD Point 4 z	-0.2	0.5	
u_7	weight (kg)	500	800	
u_8	velocity (m/s)	1.87	2.70	

Bivariate output f, rotation of the domain, and f along the active variable.

Eigenvalues analysis

- To calculate the gradients of the wave resistance with respect to the parameters we use a local linear model that approximates them with the best linear approximation using 13 nearest neighbours.
- Presence of a major gap between the first and the second eigenvalue and a minor one between the second and the third.

Sufficient summary plot and error analysis

• The sufficient summary plot confirms the presence of an active subspace of dimension 1 and 2.

• Using a response surface of order 1 ensures an error on the test dataset equal to 4.2%. Doing so we reduced the parameter space

from dimension 8 to 1.

• Good starting point to perform further optimization.

References

[1] P. G. Constantine. Active subspaces: Emerging ideas for dimension reduction in parameter studies, volume 2. SIAM, 2015.

A. Mola, L. Heltai, A. De Simone, et al. Ship sinkage and trim predictions based on a cad interfaced fully nonlinear potential model. In *The 26th International* Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2016.

Acknowledgements

This work was partially supported by the project OpenViewSHIP, "Sviluppo di un ecosistema computazionale per la progettazione idrodinamica del sistema elica-carena", supported by Regione FVG - PAR FSC 2007-2013, Fondo per lo Sviluppo e la Coesione, by the project "TRIM - Tecnologia e Ricerca Industriale per la Mobilità Marina", CTN01-00176-163601, supported by MIUR, and by the project AROMA-CFD (GA 681447 - "Advanced") Reduced Order Methods with Applications in Computational Fluid Dynamics") funded by the European Research Council.

