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Form Factors and Correlation
Functions

Elementary, my dear Watson

Arthur Conan Doyle

One of the fundamental problems of statistical mechanics and its quantum field theory
formulation is the characterization of the order parameters and the computation of
their correlation functions. Besides the intrinsic interest of this problem, the correlation
functions are the key quantities in the determination of the universal ratios of the
renormalization group and therefore they can have direct experimental confirmation
(see Chapter 8). In general, the computation of correlation functions is a difficult task,
usually achieved with partial success through perturbative methods.

As we saw in the previous chapters devoted to conformal field theories, an exact de-
termination of the operator content and the correlation functions of a two-dimensional
theory can be obtained only when the model is at its critical point. In this case, in
fact, one has a classification of the order parameters in terms of the irreducible rep-
resentation of the Virasoro algebra and, moreover, one can get an exact expression of
the correlators by solving the linear differential equations that they satisfy.

Unfortunately, the simple theoretical scheme of the critical points cannot be gen-
eralized once we move away from criticality. In this case, the problem has to be faced
with different techniques. As shown in this chapter, significant progress can be made
when we deal with integrable theories, characterized by their elastic S-matrix and the
spectrum of the asymptotic states. The central quantities are in this case the matrix
elements of the various operators on the asymptotic states of the theory, called the
form factors. The precise definition of these quantities is given below. The general
properties related to the unitarity and crossing symmetry lead to a set of functional
equations for the form factors that can be explicitly solved in many interesting cases.
Once the matrix elements of the operators are known, their correlation functions can
be recovered in terms of spectral representation series. It is worth mentioning that
these series present remarkable convergence properties.

Hence, the success of the form factor method relies on two points: (a) the possibility
of determining exactly the matrix elements of the order parameters on the asymptotic
states of the theory, identified by scattering theory; (b) the fast convergence properties
of the spectral series. These two steps lead to the determination of the correlation
functions away from criticality with a precision that cannot be obtained by other
methods.
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20.1 General Properties of the Form Factors

An essential quantity for the computation of the matrix elements is the S-matrix of the
problem. As shown in the previous chapters, the S-matrix of many two-dimensional
systems is particularly simple and can be explicitly found. For an infinite number of
conservation laws, the scattering processes of integrable systems are purely elastic and
the n-particle S-matrix can be factorized in terms of the n(n−1)/2 two-body scattering
amplitudes. In the following, for simplicity, we mainly focus our attention on diagonal
scattering theories with a non-degenerate spectrum. To characterize the kinematic
state of the particles we use the rapidities θi that enter the dispersion relations

p0i = mi cosh θi, p1i = mi sinh θi. (20.1.1)

The two-body S-matrix amplitudes depend on the difference of the rapidities θij =
θi − θj and satisfy the unitary and crossing symmetry equations

Sij(θij) = Sji(θij) = S−1
ij (−θij), (20.1.2)

Si̄(θij) = Sij(iπ − θij).

Possible bound states correspond to simple poles (or higher order odd poles) of these
amplitudes, placed at imaginary values of θij in the physical strip 0 < Imθ < π.

Let’s see how the S-matrix allows us to compute the matrix elements of the (semi)-
local operators on the asymptotic states. To this end, it is useful to introduce an
algebraic formalism.

20.1.1 Faddeev–Zamolodchikov Algebra

A key assumption of the form factor theory is that there exist some operators, both
of creation and annihilation type, V †

αi
(θi), Vαi(θi), that implement a generalization of

the usual bosonic and fermionic algebraic relations. Let’s call them vertex operators.
Denoting by αi the quantum number that distinguishes the different types of parti-
cles of the theory, these operators satisfy the associative algebra in which enters the
S-matrix

Vαi
(θi)Vαj

(θj) = Sij(θij)Vαj
(θj)Vαi

(θi) (20.1.3)

V †
αi
(θi)V †

αj
(θj) = Sij(θij)V †

αj
(θj)V †

αi
(θi) (20.1.4)

Vαi(θi)V
†
αj
(θj) = Sij(θji)V †

αj
(θj)Vαi(θi) + 2πδαiαjδ(θij). (20.1.5)

Any commutation of these operators can be interpreted as a scattering process. The
Poincaré group, generated by the Lorentz transformations L(ε) and the translations
Ty, acts on the operators as

ULVα(θ)U−1
L = Vα(θ + ε) (20.1.6)

UTyVα(θ)U
−1
Ty

= eipµ(θ)yµ

Vα(θ). (20.1.7)

Obviously the explicit form of the creation and annihilation operators depends cru-
cially on the theory in question and their construction is an open problem for most
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models. This difficulty does not stop us, however, from deriving the fundamental equa-
tions for the matrix elements starting from the algebraic equations given above.

The vertex operators define the space of physical states. The vacuum |0〉 is the
state annihilated by Vα(θ),

Vα(θ)|0〉 = 0 = 〈0|V †
α (θ),

while the Hilbert space is constructed by applying the various vertex operators V †
α (θ)

on |0〉:
|Vα1(θ1) . . . Vαn(θn)〉 ≡ V †

α1
(θ1) . . . V †

αn
(θn)|0〉. (20.1.8)

From eqn. (20.1.5), the one-particle states have the normalization

〈Vαi
(θi)|Vαj (θj)〉 = 2π δαiαjδ(θij).

The algebra of the vertex operators implies that the vectors (20.1.8) are not all linearly
independent. To select a basis of linearly independent vectors we need an additional
requirement: for the initial states, the rapidites must be ordered in a decreasing way:

θ1 > θ2 > · · · > θn

while, for the final states in an increasing way:

θ1 < θ2 < · · · < θn.

These orderings select a set of linearly independent vectors that form a basis in the
Hilbert space.

20.1.2 Form Factors

In this section we describe the principles of the theory. Unless explicitly stated, in the
following we consider the matrix elements between the in and out states of the particle
with the lowest mass of local, scalar, and hermitian operators O(x)

out〈V (θm+1) . . . V (θn)|O(x)|V (θ1) . . . V (θm)〉in. (20.1.9)

We can always place the operator at the origin by using the translation operator,
UTy

O(x)U−1
Ty

= O(x+y), and using eqn. (20.1.7), the matrix elements above are given
by

exp

[
i

(
n∑

i=m+1

pµ(θi) −
m∑
i=1

pµ(θi)

)
xµ

]
(20.1.10)

× out〈V (θm+1) . . . V (θn)|O(0)|V (θ1) . . . V (θm)〉in.
It is convenient to define the functions

FO
n (θ1, θ2, . . . , θn) = 〈0 | O(0) | θ1, θ2, . . . , θn〉in (20.1.11)

called the Form Factors (FF), whose graphical representation is shown in Fig. 20.1:
they are the matrix elements of an operator placed at the origin between the n-particle
state and the vacuum.1

1From now on we use the simplified notation | . . . V (θn) . . . 〉 ≡ | . . . θn . . . 〉 to denote the physical
states of the particle with the lowest mass.
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Fig. 20.1 Form factor of the operator O.

For local and scalar operators, the relativistic invariance of the theory implies that
the FF are functions of the differences of the rapidities θij

FO
n (θ1, θ2, . . . , θn) = FO

n (θ12, θ13, . . . , θij , . . .), i < j. (20.1.12)

The invariance under crossing symmetry permits us to recover the most general matrix
elements by an analytic continuation of the functions (20.1.11)

FO
n+m(θ1, θ2, . . . , θm, θm+1 − iπ, . . . , θn − iπ) = FO

n+m(θij , iπ − θsr, θkl) (20.1.13)

where 1 ≤ i < j ≤ m, 1 ≤ r ≤ m < s ≤ n, and m < k < l ≤ n.
Apart from the poles corresponding to the bound states present in all possible

channels of this amplitude, the form factors FO
n are expected to be analytic functions

in the strips 0 < Imθij < 2π.

20.2 Watson’s Equations

The FF of a scalar and hermitian operator O satisfy a set of equations, known as
Watson’s equations, that assume a particularly simple form for the integrable systems

FO
n (θ1, . . . , θi, θi+1, . . . , θn) = FO

n (θ1, . . . , θi+1, θi, . . . , θn)S(θi − θi+1), (20.2.14)

FO
n (θ1 + 2πi, . . . , θn−1, θn) = e2πiγ FO

n (θ2, . . . , θn, θ1) =
n∏
i=2

S(θi − θ1)FO
n (θ1, . . . , θn),

where γ is the semilocal index of the operator O with respect to the operator that
creates the particles. The first equation is a simple consequence of eqn (20.1.3), because
a commutation of two operators is equivalent to a scattering process. Concerning the
second equation, it states the nature of the discontinuity of these functions at the cuts
θ1i = 2πi. The graphical representation of these equations is shown in Fig. 20.2. When
n = 2, eqns (20.2.14) reduce to

FO
2 (θ) = FO

2 (−θ)S2(θ),
FO
2 (iπ − θ) = FO

2 (iπ + θ). (20.2.15)
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Fig. 20.2 Graphical form of the Watson equations.

The most general solution of the Watson equations (20.2.14) is given by

FO
n (θ1, . . . , θn) = KO

n (θ1, . . . , θn)
∏
i<j

Fmin(θij). (20.2.16)

Let’s discuss the various terms entering this expression.

Minimal two-particle form factor. Fmin(θ) is an analytic function in the region
0 ≤ Im θ ≤ π, the solution of the two equations (20.2.15), with neither zeros nor
poles in the strip 0 < Imθ < π, and with the mildest behavior at |θ| → ∞. These
requirements determine uniquely this function, up to a normalization factor N . Its
explicit expression can be found by writing the S-matrix as

S(θ) = exp
[∫ ∞

0

dt

t
f(t) sinh

tθ

iπ

]
.

In fact, it is easy to see that Fmin(θ) is given by

Fmin(θ) = N exp

[∫ ∞

0

dt

t

f(t)
sinh t

sin2
(

tπθ̂

2π

)]
, θ̂ = iπ − θ. (20.2.17)

Note that for interacting theories, S(0) = −1, and therefore the first equation in
(20.2.15) forces Fmin(θ) to have a zero at the two-particle threshold

F (θ) 
 θ, θ → 0. (20.2.18)

KO
n factors. The remaining factors KO

n in (20.2.16) satisfy the Watson equation
but with S2 = 1: this implies that they are completely symmetric functions in the
variables θij , periodic with period 2πi. Therefore they can be considered as functions
of the variables cosh θij . Let’s investigate other properties of the functions KO

n . They
must have all physical poles expected for the form factors. We recall that, in general,
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Fig. 20.3 Kinematic configuration of a k-particle responsable for a pole in the form factors.

there is a simple pole in the form factors when a cluster made of k particles can
reach a kinematical configuration that is equivalent to that of a single particle, as
shown in Fig. 20.3, with the pole given just by the propagator of the latter particle. If
this is the general situation, for the integrable theories there is however an important
simplification. In fact, by the factorization property of the S-matrix, it is sufficient to
consider only the cases in which the clusters are made of k = 2 or k = 3: the poles
coming from the two-particle clusters are dictated uniquely by the bound states of the
S-matrix, while those coming from the three-particle clusters are determined by the
crossing processes, although they are also related to the S-matrix (see the discussion
in the next section). In conclusion, all the poles of the form factors are determined by
the underlying scattering theory and they do not depend on the operator! In the light
of this analysis, the functions KO

n can be parameterized as follows

KO
n (θ1, . . . , θn) =

QO
n (θ1, . . . , θn)

Dn(θ1, . . . , θn)
, (20.2.19)

where the denominator Dn is a polynomial in cosh θij that is fixed only by the pole
structure of the S-matrix while the information on the operator O is enclosed in the
polynomial QO

n of the variables cosh θij placed at the numerator. We will come back
to this important point in later sections.

Symmetric polynomials. As shown above, the functions KO
n are symmetric under

the permutation of the rapidities of the various particles. In many case it is convenient
to change variables, introducing the parameters xi ≡ eθi , so that both numerator
and denominator become symmetric polynomials in the xi variables. A basis in the
functional space of the symmetric polynomials in n variables is given by the elementary
symmetric polynomials σ

(n)
k (x1, . . . , xn), whose generating function is

n∏
i=1

(x+ xi) =
n∑
k=0

xn−k σ
(n)
k (x1, x2, . . . , xn). (20.2.20)
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Conventionally all σ
(n)
k with k > n and with n < 0 are zero. The explicit expressions

for the other cases are

σ0 = 1,
σ1 = x1 + x2 + . . .+ xn,
σ2 = x1x2 + x1x3 + . . . xn−1xn,
...

...
σn = x1x2 . . . xn.

(20.2.21)

The σ
(n)
k are homogeneous polynomials in xi, of total degree k but linear in each

variable.
Total and partial degrees of the polynomials. The polynomials QO

n (x1, . . . , xn) in
the numerator of the factor KO

n satisfy additional conditions coming from the asymp-
totic behavior of the form factors. The first condition simply comes from relativistic
invariance: in fact, for a simultaneous translation of all the rapidities, the form factors
of a scalar operator2 satisfy

FO
n (θ1 + Λ, θ2 + Λ, . . . , θn + Λ) = FO

n (θ1, θ2, . . . , θn). (20.2.22)

This implies the equality of the total degrees of the polynomials QO
n (x1, . . . , xn) and

Dn(x1, . . . , xn). Concerning the partial degree with respect to each variable, it is worth
anticipating a result discussed in Section 20.8: in order to have a power law behavior of
the two-point correlation function of the operator O(x), its form factors must behave
for θi → ∞ at most as exp(kθi), where k is a constant (independent of i), related to
the conformal weight of the operator O.

20.3 Recursive Equations
The poles in the FF induce a set of recursive equations that are crucial for the explicit
determination of these functions. As a function of the difference of the rapidities θij ,
the FF have two kinds of simple pole.3

Kinematical poles. The first kind of singularity does not depend on whether the
model has bound states. It is in fact associated to the kinematical poles at θij = iπ that
come from the one-particle state realized by the three-particle clusters. In turn, these
processes correspond to the crossing channels of the S-matrix, as shown in Fig. 20.4.
The residues at these poles give rise to a recursive equation that links the n-particle
and the (n − 2)-particle form factors

−i lim
θ̃→θ

(θ̃−θ)FO
n+2(θ̃+iπ, θ, θ1, θ2, . . . , θn) =

(
1 − e2πiγ

n∏
i=1

S(θ − θi)

)
FO
n (θ1, . . . , θn).

(20.3.23)

2For the form factors of an operator O(x) of spin s, the equation generalizes to F O
n (θ1 + Λ, θ2 +

Λ, . . . , θn + Λ) = esΛ F O
n (θ1, θ2, . . . , θn).

3There could also be higher order poles, corresponding to the higher order poles of the S-matrix.
Their discussion is however beyond the scope of this book.
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Fig. 20.5 Recursive equation of the bound state poles.

Let’s denote concisely by C the map between FO
n+2 and FO

n established by the recursive
equation

FO
n+2 = C FO

n . (20.3.24)

Bound state poles. There is another family of poles in Fn if the S-matrix has simple
poles related to the bound states. These poles are at the values of θij corresponding
to the resonance angles. Let θij = iukij be one of these poles, associated to the bound
state Ak present in the channel Ai × Aj . For the S-matrix we have

−i lim
θ→iuk

ij

(θ − iukij)Sij(θ) =
(
Γkij
)2

(20.3.25)

where Γkij is the on-shell three-particle vertex and for the residue of the form factor
Fn+1 involving the particles Ai and Aj we have

−i lim
ε→0

ε FO
n+1(θ + iujik − ε, θ − iuijk + ε, θ1, . . . , θn−1) = Γkij FO

n (θ, θ1, . . . , θn−1),

(20.3.26)
where ucab ≡ (π−ucab). This equation sets up a recursive structure between the (n+1)-
and the n-particle form factors, as shown in Fig. 20.5. Let’s denote by B the map
between F ′

n+1 and FO
n set by this recursive equation

FO
n+1 = B FO

n . (20.3.27)

When the theory presents bound states, it is possible to show that the two kinds of
recursive equation are compatible, so that it is possible to reach the (n+2)-particle FF
by the n-particle FF either using directly the recursive equation (20.4) or applying the
recursive equation (20.5) twice. In terms of the mappings B and C we have C = B2.
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20.4 The Operator Space

At the critical point, one can identify the operator space of a quantum field theory in
terms of the irreducible representations of the Virasoro algebra. An extremely inter-
esting point is the characterization of the operator content also away from criticality.
As argued below, this can be achieved by means of the form factor theory: although
this identification is based on different principles than conformal theories, nevertheless
it allows us to shed light on the classification problem of the operators.

Let’s start our discussion with some general considerations. In the form factor ap-
proach, an operator O is defined once all its matrix elements FO

n are known. Notice
the particular nature of all the functional equations – the recursive and Watson’s equa-
tions – satisfied by the form factors: (i) they are all linear; (ii) they do not refer to any
particular operator! This implies that, given a fixed number n of asymptotic particles,
the solutions of the form factor equations form a linear space. The classification of
the operator content is then obtained by putting the vectors of this linear space in
correspondence with the operators.

Kernel solutions. Among the functions of these linear spaces, there are those be-
longing to the kernel of the operators B and C: these are the functions F̂

(i)
n and F̂

(j)
n

that satisfy
B F̂

(i)
n = 0

C F̂
(j)
n = 0.

(20.4.28)

Their general expression is given in eqn (20.2.16) but, in this case, the function Kn

does not contain poles that give rise to the recursive equations. Hence each of the
functions F̂

(i)
n and F̂

(j)
n is simply a symmetric polynomial in the xi variables. The

vector space of the form factors that belong to the kernels can be further specified by
assigning the total and partial degrees of these polynomials.

A non-vanishing kernel of the operators B and C has the important consequence
that at each level n, if F̃n is a reference solution of the recursive equation and F̂n a
function of any of the two kernels, the most general form factor can be written as

Fn = F̃n +
∑
i

αi F̂n. (20.4.29)

Therefore the identification of each operator is obtained by specifying at each level n
the constants αi. If we graphically represent by dots the linearly independent solutions
at the level n of the form factor equations, we have the situation of Fig. 20.6. In this
graphical representation, each operator is associated to a well-defined path on this
lattice, with each step (n+1) → n (or (n+2) → n) ruled by the operator B (or C). We
will see explicit examples of this operator structure when we discuss the form factors
of the Ising and the Sinh–Gordon models.

20.5 Correlation Functions

Once we have determined the form factors of a given operator, its correlation functions
can be written in terms of the spectral representation series using the completeness
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Fig. 20.6 Vector spaces of the solutions of the form factor equations (the number of dots
at each level is purely indicative). An operator is associated to the sequence of its matrix
elements Fn.

relation of the multiparticle states

1 =
∞∑
n=0

∫
dθ1 . . . dθn
n!(2π)n

|θ1, . . . , θn〉 〈θ1, . . . , θn|. (20.5.30)

For instance, for the two-point correlation function of the operator O(x) in euclidean
space, we have

〈O(x)O(0)〉 =
∞∑
n=0

∫
dθ1 . . . dθn
n!(2π)n

〈0|O(x)|θ1, . . . , θn〉inin〈θ1, . . . , θn|O(0)|0〉

=
∞∑
n=0

∫
dθ1 . . . dθn
n!(2π)n

| Fn(θ1 . . . θn) |2 exp
(

−mr

n∑
i=1

cosh θi

)
(20.5.31)

where r is the radial distance r =
√

x20 + x21 (Fig. 20.7). Similar expressions, although
more complicated, hold for the n-point correlation functions. It is worth making some
comments to clarify the nature of these expressions and their advantage.

• The integrals that enter the spectral series are all convergent. This is in sharp con-
trast with the formalism based on the Feynman diagrams, in which one
encounters the divergences of the various perturbative terms. In a nutshell, the
deep reason of this difference between the two formalisms can be expressed as
follows. The Feynman formalism is based on the quantization of a free theory and
on the bare unphysical parameters of the lagrangian. What the renormalization
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Fig. 20.7 Spectral representation of the two-point correlation functions.

procedure does is to implement the change from the bare to the physical parame-
ters (such as the physical value of the mass of the particle). But the form factors
employ ab initio all the physical parameters of the theory and for this reason the
divergences of the perturbative series are absent.

• If the S-matrix depends on a coupling constant, as it happens in the Sinh–Gordon
model or in other Toda field theories, each matrix element provides the exact
resummation of all terms of perturbation theory.

• If the correlation functions do not have particularly violent ultraviolet singularities
(this is the case, for instance, of the correlation functions of the relevant fields),
the corresponding spectral series has an extremely fast convergent behavior for all
values of mr. In the infrared region, that is for large values of mr, this is pretty
evident from the nature of the series, because its natural parameter of expansion
is e−mr. The reason of the fast convergent behavior also in the ultraviolet region
mr → 0 is twofold: the peculiar behavior of the n-particle phase space in two-
dimensional theories (see Appendix C of Chapter 17) and a further enhancement
of the convergence provided by the form factors. To better understand this aspect,
consider the Fourier transform of the correlator

G(x) = 〈O(x)O(0)〉 =
∫

d2p

(2π)2
eip·x Ĝ(p). (20.5.32)

The function Ĝ(p) can be written as

Ĝ(p) =
∫ ∞

0
dµ2 ρ(µ2)

1
p2 + µ2

, (20.5.33)

where ρ(k2) is a relativistically invariant function called the spectral density

ρ(k2) = 2π
∞∑
n=0

∫
dΩ1 . . . dΩn δ2(k − Pn) |〈0 |O(0) |θ1, . . . , θn〉|2

dΩ =
dp

2πE
=

dθ

2π
, P (0)

n =
n∑
k=0

cosh θk, P (1)
n =

n∑
k=0

sinh θk.

Since 1/(p2+µ2) is the two-point correlation function of the euclidean free theory
with mass µ, i.e. the propagator, eqn. (20.5.33) shows that the two-point corre-
lation function can be regarded as a linear superposition of the free propagators
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weighted with the spectral density ρ(µ2). Notice that the contribution given by
the single-particle state of mass m in the spectral density is given by

ρ1part(k2) =
1
2π

δ(k2 − m2). (20.5.34)

To analyze the behavior of ρ(k2) by varying k2, let’s make the initial approxi-
mation to take equal to 1 all the matrix elements. In this way, each term of the
spectral series coincides with the n-particle phase space

Φn(k2) ≡
∫ n∏

k=1

dΩk δ2(k − Pn). (20.5.35)

As shown in Appendix C of Chapter 17, in two dimensions the space goes to zero
when k2 → ∞ as

Φn(k2) 
 1
(2π)n−2

1
(n − 2)!

1
k2

(
log

k2

m2

)n−2

, (20.5.36)

whereas for d > 2 it diverges as

Φn(k2) ∼ k
n(d−2)−d

2 . (20.5.37)

On the other hand, Φn(k2) = 0 if k2 < (nm)2 and near the threshold values we
have

Φ(k2) 
 An

(√
k2 − nm

)n−3
2

. (20.5.38)

Hence, we see that for pure reasons related to the phase space we have two dif-
ferent scenarios for the quantum field theories in two dimensions and in higher
dimensions: while in d > 2 surpassing the various thresholds the spectral density
receives contributions that are more divergent, in d = 2 they are all of the same
order and all go to zero at large values of the energy. Hence, for d > 2 it is prac-
tically impossible to approximate the spectral density for large values of k2 by
using the first terms of the series, relative to the states with few particles, whereas
in d = 2 this is perfectly plausible. If we now include in the discussion also the
form factors, one realizes that the situation is even better in d = 2! In fact, from
the general expression (20.2.16) and for the vanishing of Fmin(θij) at the origin
(eqn 20.2.18), the form factors vanish at the n-particle thresholds as

|〈0 |O(0) |θ1, . . . , θn〉|2 

(√

k2 − nm
)n(n−1)

, θ1 
 . . . 
 θn 
 0 (20.5.39)

while, for large values of their rapidities, they typically tend to a constant.4 This
scenario implies that the spectral density of the correlation functions of the two-
dimensional integrable models usually flatten more at the thresholds and therefore
becomes a very smooth function varying as k2 (See Fig. 20.8). For all these reasons,
the spectral density can be approximated with great accuracy just by taking the
first terms of the series, even for large values of k2, therefore leading to fast
convergent behavior also in the ultraviolet region.

4This is what usually happens for the form factors of the strongly relevant operators.
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Fig. 20.8 Plot of the spectral series in a model in d = 4 (a) and in d = 2 (b). The contribution
of the two-particle state is given by the dashed line. In d = 4 this does not provide a good
approximation of ρ(k2) for large values of k2 while in d = 2 it very often gives an excellent
approximation of this quantity.

20.6 Form Factors of the Stress–Energy Tensor

The stress–energy tensor is an operator that plays an important role in quantum
field theory and its form factors have special properties. From its conservation law
∂µT

µν(x) = 0, this operator can be written in terms of an auxiliary scalar field
A(x) as

Tµν(x) = (∂µ∂ν − gµν✷) A(x). (20.6.40)

In light-cone coordinates, x± = x0 ± x1, its components are

T++ = ∂2+ A, T−− = ∂2− A,

Θ = Tµµ = −✷A = − 4 ∂+∂− A.

Introducing the variables xj = eθj and the elementary symmetric polynomials σ
(n)
i ,

it is easy to see that

FT++
n (θ1, . . . , θn) = − 1

4
m2

(
σ
(n)
n−1

σ
(n)
n

)2

FA
n (θ1, . . . , θn),

FT−−
n (θ1, . . . , θn) = − 1

4
m2

(
σ
(n)
1

)2
FA
n (θ1, . . . , θn), (20.6.41)

FΘ
n (θ1, . . . , θn) = m2 σ

(n)
1 σ

(n)
n−1

σk
FA
n (θ1, . . . , θn).
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Solving for FA
n , we have

FT++
n (θ1, . . . , θn) = − 1

4
σ
(n)
n−1

σ
(n)
1 σ

(n)
n

FΘ
n (θ1, . . . , θn),

FT−−
n (θ1, . . . , θn) = − 1

4
σ
(n)
1 σ

(n)
n

σ
(n)
n−1

FΘ
n (θ1, . . . , θn). (20.6.42)

Hence, the whole set of form factors of Tµν can be recovered by the form factors of
the trace Θ. This is a scalar operator and therefore its form factors depend on the
differences of the rapidities θij = θi − θj . Moreover, since the form factors of T−−
and T++ must have the same singularities as those of Θ, FΘ

n (θ1, . . . , θn) (for n > 2)
has to be proportional to the combination σ

(n)
1 σ

(n)
n−1 of the elementary symmetric

polynomials. This combination corresponds to the relativistic invariant given by the
total energy and momentum of the system.

For the normalization of these matrix elements, the recursive structure reduces
the problem of finding the normalization of the form factors of Θ(x) on the one and
two-particle states, i.e. FΘ

1 (θ) and FΘ
2 (θ12). The normalization of FΘ

2 (θ12) can be
determined by using the total energy of the system

E =
1
2π

∫ +∞

−∞
dx1 T 00(x). (20.6.43)

Computing the matrix element of both terms of this equation on the asymptotic states
〈θ′| and |θ〉, for the left-hand side we have

〈θ′|E |θ〉 = 2π m cosh θ δ(θ′ − θ).

On the other hand, taking into account that T 00 = ∂21A and using the relation

〈θ′| O(x)|θ〉 = ei(p
µ(θ′)− pµ(θ)) xµ FO

2 (θ, θ′ − iπ)

which holds for any hermitian operator O, we obtain

F
∂2
1A

2 (θ1, θ2) = −m2 (sinh θ1 + sinh θ2)2 FA
2 (θ12).

From eqns (20.6.41) and (20.6.43) it follows that the normalization of FΘ
2 is given by

FΘ
2 (iπ) = 2π m2. (20.6.44)

However, there is no particular constraint on the one-particle form factor of Θ(x)
coming from general considerations

FΘ
1 = 〈0 | Θ(0) | θ〉. (20.6.45)

This is a free parameter of the theory, related to the intrinsic ambiguity of Tµν(x),
since this tensor can always be modified by adding a total divergence (see Problem 1).
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20.7 Vacuum Expectation Values

The recursive equations enable us to determine the form factors FO
n in terms of the

previous FO
n−1 or FO

n−2. At the bottom of this iterative structure there are, as its initial
seeds, the lowest quantities FO

0 , i.e. the vacuum expectation value of the operator O
and F1, i.e. its matrix elements on one-particle states. Presently it is not known how
to determine in general all the one-particle matrix elements. However, the situation
is much better for the vacuum expectation values: they can be computed exactly
for several operators both of the Sine–Gordon and Bullogh–Dodd models, as well
as of RSOS restrictions thereof. The theoretical steps that lead to these results are
quite technical but well described in the series of papers quoted at the end of the
chapter and will not be reviewed here. In this section we will simply present the most
relevant formulas, in particular, the exact vacuum expectation values of primary fields
in integrable perturbed conformal field theories, with respect to the deformations Φ1,3,
Φ1,2, and Φ2,1. In the following to denote such theories we use the notation

S(k,l)±
m = S(CFT )

m ± λ

∫
d2xΦk,l(x), (20.7.46)

where Sm is the action of the m-th conformal minimal model, Φr,s is the relevant
primary field that leads to an integrable model, and λ > 0 is its dimensional coupling
constant setting the scale of the quantum field theory (the sign of the coupling only
makes sense after fixing the normalization of the fields Φr,s). Hereafter

x ≡ (m+ 1)k − ml.

Integrable theory S(1,3)−
m . For λ > 0, Φ1,3 induces a massless flow between the

minimal models Mm → Mm−1 (see Section 15.6). For λ < 0, Φ1,3 drives instead the
conformal model into a massive phase where there are kinks interpolating the (m− 1)
RSOS degenerate vacua labeled as

a = 0,
1
2
, . . . ,

(m − 2)
2

.

For the vacuum expectation values of the primary fields on the various vacua we have

〈a|Φk,l|a〉(1,3)− =
sin
(
π(2a+1)

m ((m+ 1)k − ml)
)

sin π(2a+1)
m

Fm
k,l(x) (20.7.47)

where

Fm
k,l(x) =

(
M

√
πΓ
(
m+3
2

)
2Γ
(
m
2

)
)2∆k,l

Q1,3(x)

and

Q1,3(η) = exp
{∫ ∞

0

dt

t

[
cosh(2t) sinh((η − 1)t) sinh((η + 1)t)
2 cosh(t) sinh(mt) sinh((1 +m)t)

− η2 − 1
2m(m+ 1)

e−4t
]}

.
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In the formula above

M =
2Γ
(
m
2

)
√

πΓ
(
m+1
2

)

πλ(1 − m)(2m − 1)

(1 +m)2

√√√√√Γ
(

1
m+1

)
Γ
(
1−2m
m+1

)
Γ
(

m
m+1

)
Γ
(

3m
m+1

)



1+m
4

is the common mass of the kinks expressed in term of the coupling constant λ.

Integrable theory S(1,2)
m . For the integrable model S(1,2)

m , the vacuum structure of
the theory depends on whether m is odd or even.

• m even. When m is even, the field Φ1,2 is even under the Z2 spin symmetry and
the two theories S(1,2)±

m are different although related by duality. The number of
RSOS vacua of S(1,2)+

m is equal to (m−2)/2, while the number of vacua of S(1,2)−
m

is equal to m/2. Their label is

a =
1
2
,
3
2
, . . . ,

m − 3
2

, λ > 0

a = 0, 1, . . . ,
m − 2
2

, λ < 0.

• m odd. In this case the field Φ1,2 is odd under the Z2 symmetry and the two
theories S(1,2)±

m are equal. There are (m− 1)/2 degenerate vacua in both theories
that we label as

a =
1
2
,
3
2
, . . . ,

m − 2
2

, λ > 0

a = 0, 1, . . . ,
m − 3
2

, λ < 0.

The vacuum expectation values of the primary fields on the various vacua are:

〈a|Φk,l|a〉(1,2) =
sin
(
π(2a+1)

m ((m+ 1)k − ml)
)

sin π(2a+1)
m

Gm
k,l(x) (20.7.48)

where

Gm
k,l(x) =


M

π(m+ 1)Γ
(
2m+2
3m+6

)
2

2
3
√
3Γ
( 1
3

)
Γ
(

m
3m+6

)


2∆k,l

Q1,2(x)

and

Q1,2(η) = exp

{∫ ∞

0

dt

t

[ sinh((m+ 2)t) sinh((η − 1)t) sinh((η + 1)t)
sinh(3(m+ 2)t) sinh(2(m+ 1)t) sinh(mt)

× (cosh(3(m+ 2)t) + cosh((m+ 4)t) − cosh((3m+ 4)t) + cosh(mt) + 1)

− η2 − 1
2m(m+ 1)

e−4t
]}

.
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In the formula above

M =
2

m+5
3m+6

√
3Γ
( 1
3

)
Γ
(

m
3m+6

)
πΓ
(
2m+2
3m+6

)

π2λ2Γ

(
3m+4
4m+4

)
Γ
(
1
2 +

1
m+1

)
Γ
(

m
4m+4

)
Γ
(
1
2 − 1

m+1

)



m+1
3m+6

is the mass of the kinks expressed in terms of the coupling constant λ.

Integrable theory S(2,1)
m . For this theory the situation is reversed with respect to the

previous one: Φ2,1 is odd under the Z2 symmetry when m is even (and the theory is
independent of the sign of its coupling), while it is a Z2 even field when m is odd (and
the theories with λ > 0 and λ < 0 are related by duality). For the RSOS degenerate
vacua, in this case we have the following labels:

• when m is even, both for λ > 0 and λ < 0, their number is m/2 and

a =
1
2
,
3
2
, . . . ,

m − 1
2

, λ > 0

a = 0, 1, . . . ,
m − 2
2

, λ < 0;

• when m is odd, their number is (m − 1)/2 for λ > 0, and (m + 1)/2 for λ < 0,
with

a =
1
2
,
3
2
, . . . ,

m − 2
2

, λ > 0

a = 0, 1, . . . ,
m − 1
2

, λ < 0.

The vacuum expectation values of the primary fields on the various vacua are the
expectation values

〈a|Φk,l|a〉(2,1) =
sin
(
π(2a+1)
m+1 ((m+ 1)k − ml)

)
sin π(2a+1)

m+1

Hm
k,l(x) (20.7.49)

where

Hm
k,l(x) =


M

πmΓ
(

2m
3m−3

)
2

2
3
√
3Γ
( 1
3

)
Γ
(
m+1
3m−3

)


2∆k,l

Q2,1(x)

and

Q2,1(η) = exp

{∫ ∞

0

dt

t

[ sinh((m − 1)t) sinh((η − 1)t) sinh((η + 1)t)
sinh(3(m − 1)t) sinh(2mt) sinh((m+ 1)t)

× (cosh(3(m − 1)t) + cosh((m − 3)t) − cosh((3m − 1)t)

+ cosh((m+ 1)t) + 1) − η2 − 1
2m(m+ 1)

e−4t
]}

. (20.7.50)
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The mass of the kinks, as a function of the coupling constant λ, is expressed by

M =
2

m−4
3m−3

√
3Γ
( 1
3

)
Γ
(
m+1
3m−3

)
πΓ
(

2m
3m−3

)
[
π2λ2Γ

( 3m−1
4m

)
Γ
( 1
2 − 1

m

)
Γ
(
m+1
4m

)
Γ
( 1
2 +

1
m

)
] m

3m−3

.

20.8 Ultraviolet Limit

In the ultraviolet limit, the correlation functions of the scaling operators has a power
law behavior, dictated by the conformal weight of the operator

G(r) = 〈O(r)O(0)〉 
 1
r4∆

, r → 0. (20.8.51)

One may wonder how the spectral series (20.5.31), which is based on the exponential
terms e−kmr, is able to reproduce a power law in the limit r → 0. The answer to this
question comes from an interesting analogy.
Feynman gas. Note that the formula (20.5.31) is formally similar to the expression
of the grand-canonical partition function of a fictitious one-dimensional gas

Z(mr) =
∞∑
n=0

zn Zn. (20.8.52)

To set up the vocabulary of this analogy, let’s identify the coordinates of the gas
particles with the rapidities θi, with the Boltzmann weight relative to the interactive
potential of the gas with the modulus squared of the form factors

e−V (θ1,...,θn) ≡ |〈0 |O(0)|θ1, . . . , θn〉|2. (20.8.53)

Finally, let’s identify the fugacity of the gas with

z(θ) =
1
2π

e−mr cosh θ. (20.8.54)

We have defined in this way the Feynman gas that was analyzed at the end of
Chapter 2. The only difference with respect to the standard case is the coordinate
dependence of the fugacity of this gas. Although the coordinates of the particles of
this gas span the infinite real axis, the effective volume of the system is however deter-
mined by the region in which the fugacity (20.8.54) is significantly different from zero,
as shown in Fig. 20.9. Note that z(θ) is a function that rapidly goes to zero outside a
finite interval and, in the limit mr → 0, presents a plateau of height zc = 1/(2π) and
width

L 
 2 log
1

mr
.
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2 log 1 / m r

(b)(a)

Fig. 20.9 Plot of the fugacity as a function of θ: (a) for finite values of (mr); (b) in the
limit (mr) → 0.

The equation of state of a one-dimensional gas is given by

Z = ep(z)L,

where p(z) is the pressure as a function of the fugacity. Following this analogy, for the
two-point correlation function in the limit (mr) → 0, we have

G(r) = Z = ep(zc)L 
 e2p(zc) log 1/(mr) =
(

1
mr

)2p(zc)

, (20.8.55)

i.e. a power law behavior! Moreover, comparing with the short-distance behavior of the
correlator given in eqn (20.8.51), there is an interesting result: the conformal weight can
be expressed in terms of the pressure of this fictitious one-dimensional gas, evaluated
at the plateau value of the fugacity

2∆ = p(1/2π). (20.8.56)

Besides the thermodynamics of the Feynman gas, the conformal weight of the oper-
ators can also be extracted by applying the sum rule given by the ∆-theorem (see
Chapter 15)

∆ = − 1
2〈O〉

∫ ∞

0
dr r 〈Θ(r)O(0)〉. (20.8.57)

To compute this quantity, it is necessary to know the form factors of the operator
O(x) and the trace of the stress–energy tensor Θ(x).
c-theorem sum rule. Additional control of the ultraviolet limit of the theory is
provided by the sum-rule of the c-theorem: it gives the central charge of conformal field
theory associated to the ultraviolet limit of the massive theory through the integral

c =
3
2

∫ ∞

0
dr r3 〈Θ(r)Θ(0) 〉c.
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Using the spectral representation of this correlator we have

c =
∞∑
n=1

cn, (20.8.58)

where the n-particle contribution is

cn =
12
n!

∫ ∞

0

dµ

µ3

∫ ∞

−∞

dθ1
2π

. . .
dθn
2π

(20.8.59)

×δ

(
n∑
i=1

sinh θi

)
δ

(
n∑
i=1

cosh θi − µ

)
|〈0|Θ(0)|θ1, . . . , θn〉|2.

Usually this series presents very fast behavior. This permits us to obtain rather accu-
rate estimations of the central charge c, with an explicit check of the entire formalism
of the S-matrix and form factors. It is easy to understand the reason for this fast
convergence by studying the integrand, shown in Fig. 20.10: the term r3 kills the sin-
gularity of the correlator at short distance (therefore the integrand vanishes at the
origin), while it weights the correlator more at large distances. But this is just the
region where a few terms of the spectral series are very efficient in approximating the
correlation function with high accuracy.
Asymptotic behavior. Finally, let’s discuss the upper bound on the asymptotic
behavior of the form factors dictated by the ultraviolet behavior of the correlator
(20.8.51). To establish this bound, let’s start by noting that in a massive theory we
have

Mp ≡
∫

d2x |x|p 〈 O(x)O(0) 〉c < +∞ if p > 4∆O − 2. (20.8.60)

Employing now the spectral representation of the correlator (20.5.32) and integrating
over p, µ, and x, we get

Mp ∼
∞∑
n=1

∫
θ1>...>θn

dθ1 . . . dθn
|FO
n (θ1, . . . , θn)|2

(
∑n

k=1 mk cosh θk)
p+1 δ

(
n∑
k=1

mk sinh θk

)
.

(20.8.61)

m r

Fig. 20.10 Plot of the integrand r3〈Θ(r)Θ(0)〉 in the C-theorem sum rule.
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Equation (20.8.60) can now be used to find an upper limit on the real quantity yΦ,
defined by

lim
|θi|→∞

FO
n (θ1, . . . , θn) ∼ eyΦ|θi|. (20.8.62)

In fact, taking the limit θi → +∞ in the integrand of (20.8.61), the delta-function
forces some other rapidities to move at −∞ as −θi. Because the matrix element
FO
n (θ1, . . . , θn) depends on the differences of the rapidities, it contributes to the inte-

grand with the factor e2yΦ|θi| in the limit |θi| → ∞. Hence, eqn (20.8.60) leads to the
condition

yO ≤ ∆O. (20.8.63)

This equation provides information on the partial degree of the polynomial QO
n . Note,

however, that this conclusion may not apply for non-unitary theories because not all
terms of the expansion on the intermediate states are necessarily positive in this case.

20.9 The Ising Model at T �= Tc

In this section we present the form factors and the correlation functions of the relevant
operators ε(x), σ(x), and µ(x) of the two-dimensional Ising model when the temper-
ature T is away from its critical value. From the duality of the model, we can discuss
equivalently the case T > Tc or T < Tc. Suppose the system is in the high-temperature
phase where the scattering theory of the off-critical model involves only one particle
with an S-matrix S = −1. There are no bound states. The particle A can be consid-
ered as being created by the magnetization operator σ(x), so that it is odd under the
Z2 symmetry of the Ising model, with its mass given by m = |T − Tc|.

Let’s now employ the form factor equations to find the matrix elements of the
various operators on the multiparticle states. The first step is the determination of the
function Fmin(θ) which satisfies

Fmin(θ) = −Fmin(−θ)
Fmin(iπ − θ) = Fmin(iπ + θ). (20.9.64)

The minimal solution is
Fmin(θ) = sinh

θ

2
. (20.9.65)

20.9.1 The Energy Operator

Let’s initially discuss the form factors of the energy operator ε(x) or, equivalently,
those of the trace of the stress–energy tensor, since the two operators are related by

Θ(x) = 2πmε(x). (20.9.66)

This is an even operator under the Z2 symmetry and therefore it has matrix elements
only on states with an even number of particles, FΘ

2n. The recursive equations of the
kinematical poles are particularly simple

−i lim
θ̃→θ

(θ̃ − θ)FΘ
2n+2(θ̃ + iπ, θ, θ1, θ2, . . . , θ2n) =

(
1 − (−1)2n

)
FΘ
2n(θ1, . . . , θ2n) = 0.

(20.9.67)
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Taking into account the normalization of the trace operator FΘ
2 (iπ) = 2πm2, the

simplest solution of all these equations is

FΘ
2n(θ1, . . . , θ2n) =

{−2πim2 sinh θ1−θ2
2 , n = 2

0 , otherwise.
(20.9.68)

In the light of the discussion in Section 20.4, note that the identification of the operator
Θ with this specific sequence of form factors is equivalent to putting equal to zero all
coefficients of the kernel solutions F

(i)
2n at all the higher levels.

We have an explicit check that (20.9.68) is the correct sequence of the form factors
of the trace operator which comes from its two-point correlation function and from
the c-theorem. For the correlator we get

GΘ(r) = 〈Θ(r)Θ(0)〉 = 1
2

∫
dθ1
2π

dθ2
2π

|FΘ
2 (θ12)|2 e−mr(cosh θ1+cosh θ1)

=
m4

2

∫
dθ1 dθ2 sinh2

θ1 − θ2
2

e−mr(cosh θ1+cosh θ2)

=
m4

4

∫
dθ1 dθ2 [cosh(θ1 − θ2) − 1] e−mr(cosh θ1−cosh θ2) (20.9.69)

= m4

([∫
dθ cosh θ e−mr cosh θ

]2
−
[∫

dθ e−mr cosh θ
]2)

= m4 (K2
1 (mr) − K2

0 (mr)
)

where, in the last line, we used the integral representation of the modified Bessel
functions

Kν(z) =
∫ ∞

0
dt cosh νt e−z cosh t.

Hence, we have

GΘ(r) = 〈Θ(r)Θ(0)〉 = m4 [K2
1 (mr) − K2

0 (mr)
]
. (20.9.70)

whose plot is in Fig. 20.11. This function has the correct ultraviolet behavior associated
to the energy operator

GΘ(r) → m2

|x|2 , |x| → 0. (20.9.71)

Substituting the expression above in the c-theorem, we get the correct value of the
central charge of the Ising model

c =
3
2

∫ ∞

0
dr r3〈Θ(r)Θ(0)〉 =

1
2
. (20.9.72)

20.9.2 Magnetization Operators

In the high-temperature phase, the order parameter σ(x) is odd under the Z2 symmetry
while the disorder operator µ(x) is even. Hence, σ(x) has matrix elements on states
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m r

G
Θ
/m

4

Fig. 20.11 Plot of the two-point correlation function of the trace of the stress–energy tensor
for the thermal Ising model.

with an odd number of particles, F σ
2n+1, whereas µ(x) is on an even number, Fµ

2n. In
writing down the residue equations relative to the kinematical poles, we have to take
into account that the operator µ has a semilocal index equal to 1/2 with respect to
the operator σ(x) that creates the asymptotic states. Denoting by Fn the form factors
of these operators (for n even they refer to µ(x) while for n odd to σ(x)), we have the
recursive equation

−i lim
θ̃→θ

(θ̃ − θ)Fn+2(θ̃ + iπ, θ, θ1, θ2, . . . , θ2n) = 2Fn(θ1, . . . , θ2n). (20.9.73)

As for any form factor equation, these equations admit an infinite number of solutions
that can be obtained by adding all possible kernel solutions at each level. The mini-
mal solution is the one chosen to identify the form factors of the order and disorder
operators

Fn(θ1, . . . , θn) = Hn

n∏
i<j

tanh
θi − θj

2
. (20.9.74)

The normalization coefficients satisfy the recursive equation

Hn+2 = iHn.

The solutions with n even are therefore fixed by choosing F0 = H0, namely with a
non-zero value of the vacuum expectation of the disorder operator

F0 = 〈0|µ(0)|0〉 = 〈µ〉, (20.9.75)

while those with n odd are determined by the real constant F1 relative to the one-
particle matrix element of σ(x)

F1 = 〈0|σ(0)|A〉. (20.9.76)

Adopting the conformal normalization of both operators

〈σ(x)σ(0)〉 = 〈µ(x)µ(0)〉 
 1
|x|1/4 , |x| → 0 (20.9.77)
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it is possible to show that F0 = F1 and the vacuum expectation value F0 can be
computed using eqn (20.7.47)

F0 = F1 = 21/3 e−1/4 A3 m1/4, (20.9.78)

where A = 1.282427.. is called the Glasher constant. Vice versa, if we choose F0 =
F1 = 1 (as we do hereafter), for the ultraviolet behavior of the correlation functions
we have

〈σ(x)σ(0)〉 = 〈µ(x)µ(0)〉 
 2−1/3e1/4 A−3

|x|1/4 =
0.5423804 . . .

|x|1/4 , |x| → 0. (20.9.79)

There are several ways to check the correct identification of the form factors of the
order/disorder operators. A direct way is to employ the ∆-theorem. In fact, using the
matrix elements of µ(x) and Θ(x), we can compute their correlator, following the same
procedure as in eqn (20.9.69)

〈Θ(r)µ(0)〉 = 1
2

∫
dθ1
2π

dθ2
2π

FΘ(θ12) F̄µ(θ12) e−mr(cosh θ1+cosh θ2)

= −m2 〈µ〉
[
e−2mr

2mr
+ Ei(−2mr)

]
(20.9.80)

where
Ei(−x) = −

∫ ∞

x

dt

t
e−t.

Substituting this correlator in the formula of the ∆-theorem, one obtains the correct
value of the conformal weight of the disorder operator

∆ = − 1
2〈µ〉

∫ ∞

0
dr r〈Θ(r)µ(0)〉 =

1
4π

∫ ∞

0
dθ

sinh2 θ

cosh3 θ
=

1
16

. (20.9.81)

Another way to determine the conformal weight of the magnetization operators con-
sists of solving the thermodynamics of the Feynman gas associated to the form factors.
Using the nearest-neighbor approximation discussed in Chapter 2, the pressure of this
gas satisfies the integral equation (Problem 2)

z−1
c = 2π =

∫ ∞

0
dx tanh2

x

2
e−px, (20.9.82)

whose numerical solution is
p 
 0.12529 . . . (20.9.83)

Comparing with the exact value

p = 2∆ =
1
8

= 0.125, (20.9.84)

we see that the relative precision is less than one part in a thousand! This result
confirms the validity of the form factor solution for the magnetization operators and,
furthemore, it explicitly shows the convergence property of the spectral series.
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20.9.3 The Painlevé Equation

The two-point correlation functions of the magnetization operators are given by

〈µ(r)µ(0)〉 =
∑∞

n=0 g2n(r)
〈σ(r)σ(0)〉 =

∑∞
n=0 g2n+1(r)

where

gn(r) =
1
n!

∫ [ n∏
k=1

dθk
2π

e−mr cosh θk

] ∏
i<j

tanh2
θij
2

.

These expressions can be further elaborated: imposing ui = eθi and using

tanh2
θi − θj

2
=
(

ui − uj
ui + uj

)2
,

we get ∏
i<j

tanh2
θij
2

=
∏
i<j

(
ui − uj
ui + uj

)2
= detW, (20.9.85)

where the matrix elements of the operator W are

Wij =
2√

ui uj

ui + uj
.

Combining the two correlators

G(±)(r) = 〈µ(r)µ(0)〉 ± 〈σ(r)σ(0)〉 =
∞∑
n=0

λn gn(r) (20.9.86)

(with λ = ±1) and using (20.9.85) we obtain

G(±)(r) =
∞∑
n=0

λn

n!

∫ [ n∏
k=1

dθk
2π

e−mr cosh θk

]
detW. (20.9.87)

The last expression is nothing else but the Fredholm determinant of an integral oper-
ator V , whose kernel is

V (θi, θj , r) =
E(θi, r)E(θj , r)

ui + uj

E(θi, r) = (2ui e−mr cosh θi)1/2.

Hence
G(±)(r) = Det (1 + λV ). (20.9.88)

The remarkable circumstance that the correlation functions are expressed in terms of
the Fredholm determinant of an integral operator is crucial for studying their prop-
erties. The detailed discussion is beyond the scope of this book and here we simply
present the main conclusions.
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First of all, the expression given in eqn (20.9.88) permits us to solve exactly the
thermodynamics of the Feynman gas associated to the form factors of the correlation
function G(+)(r). The exact expression of the pressure of the Feynman gas is given by

p(z) =
1
4

∫
dp

2π
log

[
1 +

(
2πz

sinhπp

)2]

=
1
4π

arcsin(2πz) − 1
4π2

arcsin2(2πz).

Substituting in this formula the plateau value of the fugacity, z = zc = 1/(2π), one
obtains the exact value of the conformal weight of the magnetization operators, p =
2∆ = 1/8.

Secondly, using the Fredholm determinant (20.9.88), it is possible to show that the
correlators can be concisely written as

( 〈µ(r)µ(0)〉
〈σ(r)σ(0)〉

)
=

(
cosh Ψ(s)

2
sinh Ψ(s)

2

)
exp

[
−1
4

∫ ∞

s

dt t

[(
dΨ
dt

)2
− sinh2Ψ

]]
(20.9.89)

(s = mr), where Ψ(s) is a function solution of the differential equation

d2Ψ
ds2

+
1
s

dΨ
ds

= 2 sinh(2Ψ), (20.9.90)

with boundary conditions

Ψ(s) 
 − log s+ costant, s → 0
Ψ(2) 
 2/π K0(2s), s → ∞.

(20.9.91)

With the substitution η = e−Ψ, the differential equation becomes the celebrated
Painlevé differential equation of the third kind

η
′′

η
=

(
η

′

η

)2

− 1
s

(
η

′

η

)
+ η2 − 1

η2
. (20.9.92)

This equation was originally obtained by T.T. Wu, B. McCoy, C. Tracy and E. Barouch
by studying the scaling limit of the lattice Ising model. It has also been derived by M.
Jimbo, T. Miwa, and K. Ueno by using the monodromy theory of differential equations.

20.10 Form Factors of the Sinh–Gordon Model

In this section we study the form factors of an integrable lagrangian theory, the one
defined by the Sinh–Gordon model. The action is

S =
∫

d2x

[
1
2
(∂µφ)2 − m2

g2
cosh gφ(x)

]
, (20.10.93)
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and it possesses the Z2 symmetry φ → −φ. The exact S-matrix relative to the particle
created by the field φ(x) is given by

S(θ,B) =
tanh 1

2 (θ − iπB2 )
tanh 1

2 (θ + iπB2 )
, (20.10.94)

where B is a function of the coupling constant g:

B(g) =
2g2

8π + g2
. (20.10.95)

The theory does not have bound states, therefore the form factors satisfy the recursive
equations coming from the kinematic poles only. As we already discussed in Chapter
18, the S-matrix is invariant under the transformation

B → 2 − B (20.10.96)

namely, under the weak–strong duality

g → 8π
g

. (20.10.97)

The Z2 symmetry implies that the even (odd) operators have form factors different
from zero only on asymptotic states with an even (odd) number of particles. The
simplest odd field is just φ(x), with the normalization given by

Fφ
1 (θ) = 〈0 | φ(0) | θ〉in =

1√
2
. (20.10.98)

One of the most important fields is the stress–energy tensor

Tµν(x) = 2π (: ∂µφ∂νφ − gµνL(x) :) (20.10.99)

where : : denotes the normal order of the composite operators. Its trace T µ
µ (x) = Θ(x)

is normalized as

FΘ
2 (θ12 = iπ) = out〈θ1 | Θ(0) | θ2〉in = 2πm2, (20.10.100)

while FΘ
1 is a free parameter. In the following we will only discuss the case FΘ

1 = 0: this
is equivalent to regarding the Sinh–Gordon model as a deformation of the conformal
field theory with central charge c = 1 (see Chapter 16 and Problem 1 at the end of
the chapter).

20.10.1 Minimal Form Factor

The first step to the solution of the form factor equation consists of finding the minimal
two-particle form factor. Expressing the S-matrix as

S(θ) = exp
[
8
∫ ∞

0

dx

x
sinh

(
xB

4

)
sinh

(
x

2
(1 − B

2
)
)

sinh
x

2
sinh

(
xθ

iπ

)]
.
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we have

Fmin(θ,B) = N exp

[
8
∫ ∞

0

dx

x

sinh
(
xB
4

)
sinh

(
x
2 (1 − B

2 )
)
sinh x

2

sinhx
sin2

(
xθ̂

2π

)]

(20.10.101)
(θ̂ ≡ iπ − θ), with the normalization given by

N = exp

[
−4
∫ ∞

0

dx

x

sinh
(
xB
4

)
sinh

(
x
2 (1 − B

2 )
)
sinh x

2

sinh2 x

]
.

The analytic structure of this function can be studied using its representation in terms
of an infinite product of Γ functions (see Problem 3)

Fmin(θ,B) =
∞∏
k=0

∣∣∣∣∣∣
Γ
(
k + 3

2 +
iθ̂
2π

)
Γ
(
k + 1

2 +
B
4 + iθ̂

2π

)
Γ
(
k + 1 − B

4 + iθ̂
2π

)
Γ
(
k + 1

2 +
iθ̂
2π

)
Γ
(
k + 3

2 − B
4 + iθ̂

2π

)
Γ
(
k + 1 + B

4 + iθ̂
2π

)
∣∣∣∣∣∣
2

.

(20.10.102)
Fmin(θ,B) has a simple zero at θ = 0 since S(0) = −1 and its asymptotic behavior is

lim
θ→∞

Fmin(θ,B) = 1.

It satisfies the functional equation

Fmin(iπ + θ,B)Fmin(θ,B) =
sinh θ

sinh θ + sinh iπB
2

(20.10.103)

which can be proved by employing its representation (20.10.102). For the numerical
evalutation of this function it is useful to use the mixed representation given by

Fmin(θ,B) = N
N−1∏
k=0



(
1 +

(
θ̂/2π
k+ 1

2

)2)(
1 +

(
θ̂/2π

k+ 3
2 − B

4

)2)(
1 +

(
θ̂/2π

k+1+B
4

)2)
(
1 +

(
θ̂/2π
k+ 3

2

)2)(
1 +

(
θ̂/2π

k+ 1
2+

B
4

)2)(
1 +

(
θ̂/2π

k+1− B
4

)2)


k+1

× exp

[
8
∫ ∞

0

dx

x

sinh
(
xB
4

)
sinh

(
x
2 (1 − B

2 )
)
sinh x

2

sinh2 x
(N + 1 − N e−2x) e−2Nx sin2

(
xθ̂

2π

)]
.

The convergence of the integral in this formula can be improved by increasing the
value of N .

20.10.2 Recursive Equations

The Sinh–Gordon model does not have bound states. Hence the only recursive equa-
tions come from the kinematical poles relative to the three-particle clusters. Using the
identity

(p1 + p2 + p3)2 − m2 = 8m2 cosh
1
2
θ12 cosh

1
2
θ13 cosh

1
2
θ23,
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all possible poles in these channels are taken into account using the parameterization

Fn(θ1, . . . , θn) = HnQn(x1, . . . , xn)
∏
i<j

Fmin(θij)
xi + xj

(20.10.104)

where xi = eθi and Hn are normalization factors. The expression above has sim-
ple poles each time the difference of two rapidities θij is equal to iπ. The functions
Qn(x1, . . . , xn) are symmetric polynomials in xi. For the form factors of the scalar
operators, the total degree of these polynomials must be equal to that of the denomi-
nator, given by n(n−1)/2. The partial degree of Qn depends instead on the asymptotic
behavior of the operator O. With the parameterization above, the recursive equations
can be expressed as recursive equations for the polynomials Qn

(−)nQn+2(−x, x, x1, . . . , xn) = xCn(x, x1, x2, . . . , xn)Qn(x1, x2, . . . , xn)
(20.10.105)

where we have introduced the function

Cn =
−i

4 sin(πB/2)

(
n∏
i=1

[
(x+ ωxi)(x − ω−1xi)

]−
n∏
i=1

[
(x − ωxi)(x+ ω−1xi)

])

with ω = exp(iπB/2). The normalization constants Hn in (20.10.104) satisfy the
recursive equations

H2n+1 = H1µ
2n, H2n = H2µ

2n−2,

with

µ ≡
(
4 sin(πB/2)
Fmin(iπ,B)

) 1
2

where H1 and H2 are the initial conditions, fixed by the operator. Using the generating
function of the elementary symmetric polynomials, the function Cn can be written as

Cn(x, x1, . . . , xn) =
n∑
k=1

k∑
m=1,odd

[m]x2(n−k)+mσ
(n)
k σ

(n)
k−m(−1)k+1. (20.10.106)

where we have introduced the symbol [n] defined by

[n] ≡ sin(nB2 )
sin B

2

.

Note that the elementary symmetric polynomials satsify the recursive equation

σ
(n+2)
k (−x, x, x1, . . . , xn) = σ

(n)
k (x1, x2, . . . , xn) − x2σ

(n)
k−2(x1, x2, . . . , xn).

(20.10.107)
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20.10.3 General Properties of the Qn Solutions

The form factors of the derivative operators present a factorized form: for instance,
for the operator ∂∂̄φ we have Qn = σn−1σ1Q̃n. For this reason, it is convenient to
focus attention on the so-called irreducible operators, whose form factors cannot be
factorized, and use them as building blocks for the form factors of all other operators.
The polynomials Qn of the irreducible operators satisfy a series of interesting results
coming from the recursive equations (20.10.105). Let’s initially show that the partial
degree of Qn satisfies the inequality

deg (Qn) ≤ n − 1. (20.10.108)

It is easy to see that this result holds for Q1 and Q2. To show that it also holds for
the higher polynomials, let us consider the two cases (a) Qn �= 0 and (b) Qn = 0
separately.

• In case (a) the proof is by induction. Assume deg (Qn) ≤ n − 1. Since Cn is
bilinear in σ(n) (see eqn 20.10.106), the partial degree of Qn+2(−x, x, x1, . . . xn)
in the variables x1, . . . xn is less than or equal to n + 1. But the partial degree
of Qn+2(x1, x2, . . . xn+2) is equal to the partial degree of Qn+2(−x, x, x1 . . . , xn),
hence the partial degree of Qn+2 must be less than or equal to n + 1.

• In case (b), the space of the solutions is given by the kernel of the operator C,
namely

Qn+2(−x, x, . . . , xn+2) = 0.

In the space of the polynomials P of total degree (n + 2)(n + 1)/2, there is only
one solution of this equation, given by

Qn+2 =
n+2∏
i<j

(xi + xj). (20.10.109)

This polynomial has partial degree n + 1 and coincides with the polynomial of
the denominator of eqn. (20.10.104).

We have thus shown that the partial degree of Qn must be less than or equal to
(n − 1) for any irreducible scalar operator. The first consequence is that the form
factors of these operators cannot diverge when θi → ∞. The second consequence is
the presence of an additional parameter at each step of the iterative procedure. This
comes from a simple argument: the dimension of the space of the polynomials Qn

is given by the dimension of the space of the polynomials Qn−2 plus the dimension
of the kernel. Since the kernel is one dimensional, the dimension of the space of the
solutions increases exactly by one at each iterative step. With the initial conditions
dim (Q1) = dim (Q2) = 1, we finally get

dim (Q2n−1) = dim (Q2n) = n. (20.10.110)
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Hence the most general form factor of an irreducible scalar operator belongs to a linear
space that can be spanned by a basis Qk

n:

Q2n(A
(2n)
1 , . . . , A(2n)

n ) =
n∑
p=1

A(2n)
p Qp

2n (20.10.111)

Q2n−1(A
(2n−1)
1 , . . . , A(2n−1)

n ) =
n∑
p=1

A(2n−1)
p Qp

2n−1.

Each polynomial above defines a matrix element of an operator of the Sinh–Gordon
model. Note that the dimension of this linear space grows exactly as the number of
powers φk (k < n) of the elementary field. This means that the matrix elements of the
composite operators φk can be obtained as linear combinations of the above functions.

20.10.4 The Elementary Solutions

A remarkable class of solutions of the recursive equations (20.10.105) is given by5

Qn(k) = ||Mij(k)||, (20.10.112)

where Mij(k) is the (n − 1) × (n − 1) matrix

Mij(k) = σ2i−j [i − j + k]. (20.10.113)

and ||M || denotes the determinant of the matrix M . These polynomials are called
elementary solutions: they depend on an arbitrary integer k and satisfy

Qn(k) = (−1)n+1Qn(−k). (20.10.114)

Although all Qn(k) are solutions of (20.10.105), not all of them are linearly indepen-
dent. The simplest reason is that the dimension of the space of the solutions at the
level N = 2n (or N = 2n − 1) is at most n. Among the first representatives we have

Q3(k) =
∣∣∣∣
∣∣∣∣ [k]σ1 [k + 1]σ3
[k-1] [k]σ2

∣∣∣∣
∣∣∣∣ .

Using the trigonometric identity [n]2 − [n − 1][n + 1] = 1, it is easy to see that this
expression satisfies eqn. (20.10.105) (with A1

0 = 1) for any integer k. These solutions
allow us to express at once all the form factors of the elementary field φ(x) and the
trace Θ(x) of the stress–energy tensor. In fact, it is possible to prove that the matrix
elements of φ(x) are given by Qn(0). Note that the form factors relative to an even
number of particles are automatically zero, in agreement with the Z2 symmetry of
the model. Those with an odd number of asymptotic particles vanish when θi → ∞,
in agreement with the perturbative evaluation of these matrix elements given by the
Feynman diagrams. The form factors of Θ(x) are instead given by the even polynomials
Q2n(1), which go to a finite limit when θi → ∞, once again in agreement with their

5For simplicity we have suppressed the dependence of Qn(k) on the variables xi.
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Table 20.1: Approximate values of the central charge of the Sinh–Gordon model obtained
by using only the two-particle form factor of Θ(x) in the c-theorem.

B g2

4π ∆ c(2)

1
10

2
19 0.9989538

3
10

6
17 0.9931954

2
5

1
2 0.9897087

1
2

2
3 0.9863354

2
3 1 0.9815944
7
10

14
13 0.9808312

4
5

4
3 0.9789824

1 2 0.9774634

perturbative computation. A further confirmation of the validity of this identification
can be obtained by using the c-theorem. Employing just the two-particle form factor,
we have the following approximated value of the ultraviolet central charge

c(2) =
3

2F 2
min(iπ)

∫ ∞

0

dθ

cosh4 θ
|Fmin(2θ)|2. (20.10.115)

The numerical values for different values of the coupling constant g2/4π are collected
in Table 20.1. From this table one can see that the sum rule is saturared by the two-
particle form factor even for large values of the coupling constant: this proves once
again the fast convergent behavior of the spectral series.

It is interesting to understand which are the operators Ψk(x) associated to the
elementary solutions Qn(k) (k �= 0). For the sequence of form factors related to Qn(k),
let’s choose the normalization as follows

Hk
1 = µ[k], Hk

2 = µ2 [k]. (20.10.116)

The present conjecture is that the operators Ψk correspond to the vertex operators
ekgφ. A non-trivial check of this conjecture is provided by the computation of the
conformal weights ∆k(g) that emerge in their ultraviolet limits. These quantities can
be computed by analyzing the limit x → 0 of the correlation function

Gk,m(x) = 〈Ψk(x)Ψm(0)〉

=
∞∑
n=0

∫
dβ1 . . . dβn
n!(2π)n

FΨk
n (β1 . . . βn)FΨm

n (βn . . . β1) exp

(
−mr

n∑
i=1

coshβi

)
.

At first order in g, we have ∆k(g) = −k2g2/8π which coincides with the conformal
weight of the vertex operators ek g φ(x), computed using the gaussian conformal theory.

20.11 The Ising Model in a Magnetic Field
The Ising model in a magnetic field has quite a rich S-matrix: it has eight massive
exitations and 36 elastic scattering amplitudes, some of them with higher order poles.
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In addition to the functional and recursive equations, the form factors of this theory
also satisfy other recursive equations related to the higher poles of the S-matrix. The
relative formulas can be found in the papers by G. Delfino, G. Mussardo, and P.
Simonetti quoted at the end of the chapter. Here we only report the main results
about the form factors of the energy operator ε(x) and of the magnetization operator
σ(x). In this theory, the latter operator is proportional to the trace

Θ(x) = 2πh(2 − 2∆σ)σ(x). (20.11.117)

Relying on the fast convergence of the spectral series, for the correlation functions of
these operators we can focus our attention on the one and two-particle form factors.
To begin with, let’s fix some notation. For the S-matrix of the particles Aa and Ab we
have

Sab(θ) =
∏

α∈Aab

(fα(θ))
pα (20.11.118)

where

fα(θ) ≡ tanh 1
2 (θ + iπα)

tanh 1
2 (θ − iπα)

. (20.11.119)

The set of the numbers Aab and their multiplicity pα can be found in Table 18.3
of Chapter 18. It is convenient to parameterize the two-particle form factors of this
theory as

FO
ab(θ) =

QΦ
ab(θ)

Dab(θ)
Fmin
ab (θ), (20.11.120)

where Dab(θ) and QO
ab(θ) are polynomials in cosh θ: the latter is fixed by the singu-

larities of the S-matrix, the former depends on the operator O(x). The minimal form
factors can be written as

Fmin
ab (θ) =

(
−i sinh

θ

2

)δab ∏
α∈Aab

(Gα(θ))
pα , (20.11.121)

where

Gα(θ) = exp

{
2
∫ ∞

0

dt

t

cosh
(
α − 1

2

)
t

cosh t
2 sinh t

sin2
(iπ − θ)t

2π

}
. (20.11.122)

For large values of the rapidity, we have

Gα(θ) ∼ exp(|θ|/2), |θ| → ∞, (20.11.123)

independently of the index α.
From the analysis of the singularities of the form factors, one can arrive at the

following expression for the denominator

Dab(θ) =
∏

α∈Aab

(Pα(θ))iα (P1−α(θ))
jα , (20.11.124)
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where
iα = n + 1, jα = n, se pα = 2n + 1;
iα = n, jα = n, se pα = 2n,

(20.11.125)

having introduced the notation

Pα(θ) ≡ cosπα − cosh θ

2 cos2 πα2
. (20.11.126)

Both quantities Fmin
ab (θ) and Dab(θ) are normalized to be equal to 1 when θ = iπ.

The polynomials of the numerator can be expressed as

QO
ab(θ) =

NO
ab∑

k=0

c
(k)
ab,O coshk θ. (20.11.127)

The condition
[
FO
ab(θ)

]∗ = FO
ab(−θ) follows from the monodromy condition satisfied

by the form factors and from the property S∗
ab(θ) = Sab(−θ). This means that the

coefficients c
(k)
ab,O are real numbers and their values identify the different operators.

The degrees of the polynomials are fixed by the conformal weight of the operators
and, for both σ(x) and ε(x), we have in particular NΦ

11 ≤ 1. Therefore the initial
conditions of the recursive equation for the form factors of the two relevant operators
consists of two free parameters, i.e. the coefficients c

(0)
11,O and c

(1)
11,O. Furthemore, it

can be checked that the number of free parameters does not increase implementation
the bootstrap equations. Consider, for instance the condition NO

12 ≤ 2, which seems
to imply three new coefficients c

(k)
12,O (k = 1, 2, 3) for FO

12(θ). However, the amplitudes
S11(θ) and S12(θ) have three common bound states. This circumstance gives rise to
three equations

1
Γc11

Resθ=iuc
11

FΦ
11(θ) =

1
Γc12

Resθ=iuc
12

FΦ
12(θ), c = 1, 2, 3

that permit us to fix the three coefficients c
(k)
12,O in terms of the two coefficients c

(k)
11,O.

Table 20.2: Central charge given by the partial sum of the form factors entering the
c-theorem. cab.. denotes the contribution of the state AaAb.. . The exact result is c = 1/2.

c1 0.472038282
c2 0.019231268
c3 0.002557246
c11 0.003919717
c4 0.000700348
c12 0.000974265
c5 0.000054754
c13 0.000154186
cpartial 0.499630066
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Table 20.3: Conformal weights ∆O given by the partial sum of the form factors of the
correlation functions entering the ∆-theorem. ∆ab.. denotes the contribution of the state
AaAb.. . The exact values are ∆σ = 1/16 = 0.0625 and ∆ε = 1/2.

σ ε

∆1 0.0507107 0.2932796
∆2 0.0054088 0.0546562
∆3 0.0010868 0.0138858
∆11 0.0025274 0.0425125
∆4 0.0004351 0.0069134
∆12 0.0010446 0.0245129
∆5 0.0000514 0.0010340
∆13 0.0002283 0.0065067

∆partial 0.0614934 0.4433015
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Fig. 20.12 Plot of the correlation function 〈σ(r)σ(0)〉 for the Ising model in a magnetic field.
The continuous line is the determination obtained with the first eight form factors, while the
dots are the numerical determination of the correlators obtained by a Monte Carlo simulation.

There is additional information about the numerator Qab of the operator Θ(x). In
fact, from the conservation law ∂µT

µν = 0 it follows that the polynomials QΘ
ab contain

the factor (
cosh θ +

m2
a +m2

b

2mamb

)1−δab

. (20.11.128)

The determination of the coefficients c
(k)
ab and the one-particle form factors of the two

operators σ ∼ Θ and ε has been done in the papers cited at the end of the chapter
and their values can be found there.
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Employing these lowest form factors one can compute the correlation functions
and perform some non-trivial checks by applying the sum rules of the c-theorem and
∆-theorem. The relative results are given in Tables 20.2 and 20.3. A successful check
of the correlation function 〈σ(r)σ(0)〉 has also been done versus the numerical deter-
mination of this function, as shown in Fig. 20.12.
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B. McCoy, C. Tracy, T.T. Wu, Painlevé functions of the third kind, J. Math. Phys. 18
(1977), 1058.

M. Jimbo, T. Miwa, K. Ueno, Monodromy preserving deformation of linear ordinary
differential equations with rational coefficients: I. General theory and τ -function, Phys-
ica D2, (1981), 306.

The classification of the operators obtained in terms of the different solutions of the
form factor equations has been proposed in the paper

J. Cardy, G. Mussardo Form-factors of descendent operators in perturbed conformal
field theories Nucl. Phys. B 340 (1990), 387.

The form factors of the Sinh–Gordon model have been determined in the papers

A. Fring, G. Mussardo, P. Simonetti, Form-factors for integrable Lagrangian field the-
ories, the sinh–Gordon theory, Nucl. Phys. B 393 (1993), 413.

A. Koubek, G. Mussardo, On the operator content of the Sinh–Gordon model, Phys.
Lett. B 311 (1993), 193.



Problems 725

The matrix elements of the Ising model in a magnetic field have been computed in

G. Delfino, G. Mussardo, The spin spin correlation function in the two-dimensional
Ising model in a magnetic field at T = Tc, Nucl. Phys. B 455 (1995), 724.

G. Delfino, P. Simonetti, Correlation functions in the two-dimensional Ising model in
a magnetic field at T = Tc, Phys. Lett. B 383 (1996), 450.

G. Delfino, Integrable field theory and critical phenomena. The Ising model in a mag-
netic field, J. Phys. A 37 (2004), R45.

The convergence property of the spectral series has been analyzed by several authors.
It is useful to consult the papers

J. Cardy, G. Mussardo,Universal properties of self-avoiding walks from two-dimensional
field theory, Nucl. Phys. B 410 (1993), 451.

Al.B. Zamolodchikov, Two point correlation function in scaling Lee–Yang model, Nucl.
Phys. B 348 (1991), 619.

The vacuum expectation values of several operators of integrable field theories have
been determined in a remarkable series of papers.

S. Lukyanov, A.B. Zamolodchikov, Exact expectation values of local field in quantum
sine–Gordon model, Nucl. Phys. B 493 (1997), 571.

V. Fateev, S. Lukyanov, A.B. Zamolodchikov, Al.B. Zamolodchikov, Expectation values
of local fields in Bullogh–Dodd model and integrable perturbed conformal theories, Nucl.
Phys. B 516 (1998), 652.

V. Fateev, S. Lukyanov, A.B. Zamolodchikov, Al.B. Zamolodchikov, Expectation values
of descendent fields in the Sine–Gordon model, Nucl. Phys. B 540 (1999), 587.

Form factors have found interesting applications in problems of condensed matter
physics, see

F. Essler, R. Konik, , Applications of massive integrable quantum field theories to
problems in condensed matter physics, in “From Fields to Strings: Circumnavigating
Theoretical Physics”, World Scientific, Singapore, 2005.

Problems

1. Form factors of a free theory
Consider the theory of a free bosonic field φ(x) associated to a particle A of mass m.

a Compute the form factors of φ(x) and prove that 〈0|φ(0)|A〉 = 1/
√
2. Show that the

euclidean correlation function is given by

〈φ(x)φ(0)〉 =
1
π

K0(mr).
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b Show that the arbitrariness of the one-particle form factor of the trace of the stress–
energy tensor

FΘ
1 = 〈0|Θ(0)|A〉 ≡ −

√
2π m2 Q

corresponds to the possibility of redefining the stress–energy tensor by adding a
total divergence

Θ(x) = 2π
(

m2φ2 +
Q√
π

✷φ

)
.

c Use the c-theorem and the form factors of Θ(x) to show that the central charge in
the ultraviolet region is given by

c = 1 + 12Q2.

2. Feynman gas
a Derive the equation of state of the Feynman gas associated to the form factors of

the magnetization operators in the nearest neighbor approximation. Prove that
the pressure p(z) satisfies the integral equation (20.9.82).

b Justify the accuracy of the approximation of the conformal weights computing the
average number of particles per unit length by means of the formula

〈N〉
L

= z
∂p

∂z

and checking the very dilute nature of the gas.

3. Infinite products
Using the integral ∫

dt

t
e−βt sin2

αt

2
=

1
4
log

α2 + β2

β2
,

and the identity satisfied by the Γ functions

Γ(α)Γ(β)
Γ(α + γ)Γ(β − γ)

=
∞∏
k=0

[(
1 +

γ

α + k

) (
1 − γ

β + k

)]
,

to derive the expression for Fmin(θ) of the Sinh–Gordon model.

4. Cluster properties
Consider the form factors of a scattering theory based on the functions

fx(θ) =
tanh 1

2 (θ + iπx)
tanh 1

2 (θ − iπx)

that have the property limθ→∞ fx(θ) = 1.
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a Using the Watson equation satisfied by the form factors FOa
n (θ1, . . . , θn) of an

operator Oa, prove that taking the limit

lim
Λ→∞

FOa
n (β1+∆, . . . , βm+∆, βm+1, . . . , βn) = FOb

m (β1, . . . , βm)FOc
n−m(βm+1, . . . , βn)

the form factor factorizes in terms of two functions both satisfying the Watson
equations. Hence they can be considered the form factors of the operators Ob and
Oc. This expresses the cluster property of the form factors.

b Prove that the form factors of the elementary solutions of the Sinh–Gordon model
are self-clustering quantities.

5. Correlation functions of the Ising model
Use the fermionic representation of the energy operator of the Ising model, ε = iψ̄ ψ,
and the mode expansion of the fermionic field in terms of the creation and annihila-
tion operators, to compute the matrix elements of ε(x) and its two-point correlation
function.

6. Form factors of the Yang–Lee model
Using the form factors of the Sinh–Gordon model, obtain the form factors of the
Yang–Lee model by using the analytic continuation B → − 2

3 .


