Contents

Part I Preliminary Notions

1 Introduction 3
 1.1 Phase Transitions 3
 1.2 The Ising Model 18
 1.3 Ernst Ising 20
 A Ensembles in Classical Statistical Mechanics 21
 B Ensembles in Quantum Statistical Mechanics 26
Problems 38

2 One-dimensional Systems 45
 2.1 Recursive Approach 45
 2.2 Transfer Matrix 51
 2.3 Series Expansions 59
 2.4 Critical Exponents and Scaling Laws 61
 2.5 The Potts Model 62
 2.6 Models with $O(n)$ Symmetry 67
 2.7 Models with Z_n Symmetry 74
 2.8 Feynman Gas 77
 A Special Functions 78
 B n-dimensional Solid Angle 85
 C The Four-color Problem 86
Problems 94

3 Approximate Solutions 97
 3.1 Mean Field Theory of the Ising Model 97
 3.2 Mean Field Theory of the Potts Model 102
 3.3 Bethe–Peierls Approximation 105
 3.4 The Gaussian Model 109
 3.5 The Spherical Model 118
 A The Saddle Point Method 125
 B Brownian Motion on a Lattice 128
Problems 140

Part II Bidimensional Lattice Models

4 Duality of the Two-dimensional Ising Model 147
 4.1 Peierls’s Argument 148
 4.2 Duality Relation in Square Lattices 149
Contents

4.3 Duality Relation between Hexagonal and Triangular Lattices 155
4.4 Star–Triangle Identity 157
4.5 Critical Temperature of Ising Model in Triangle and Hexagonal Lattices 159
4.6 Duality in Two Dimensions 161
A Numerical Series 167
B Poisson Resummation Formula 168
Problems 170

5 Combinatorial Solutions of the Ising Model 172
5.1 Combinatorial Approach 172
5.2 Dimer Method 182
Problems 191

6 Transfer Matrix of the Two-dimensional Ising Model 192
6.1 Baxter’s Approach 193
6.2 Eigenvalue Spectrum at the Critical Point 203
6.3 Away from the Critical Point 206
6.4 Yang–Baxter Equation and R-matrix 206
Problems 211

Part III Quantum Field Theory and Conformal Invariance

7 Quantum Field Theory 217
7.1 Motivations 217
7.2 Order Parameters and Lagrangian 219
7.3 Field Theory of the Ising Model 223
7.4 Correlation Functions and Propagator 225
7.5 Perturbation Theory and Feynman diagrams 228
7.6 Legendre Transformation and Vertex Functions 234
7.7 Spontaneous Symmetry Breaking and Multicriticality 237
7.8 Renormalization 241
7.9 Field Theory in Minkowski Space 245
7.10 Particles 249
7.11 Correlation Functions and Scattering Processes 252
A Feynman Path Integral Formulation 254
B Relativistic Invariance 256
C Noether’s Theorem 258
Problems 260

8 Renormalization Group 264
8.1 Introduction 264
8.2 Reducing the Degrees of Freedom 266
8.3 Transformation Laws and Effective Hamiltonians 267
8.4 Fixed Points 271
8.5 The Ising Model 273
8.6 The Gaussian Model 277
8.7 Operators and Quantum Field Theory 278
8.8 Functional Form of the Free Energy 280
8.9 Critical Exponents and Universal Ratios 282
8.10 β-functions 285
Problems 288

9 Fermionic Formulation of the Ising Model 290
 9.1 Introduction 290
 9.2 Transfer Matrix and Hamiltonian Limit 291
 9.3 Order and Disorder Operators 295
 9.4 Perturbation Theory 297
 9.5 Expectation Values of Order and Disorder Operators 299
 9.6 Diagonalization of the Hamiltonian 300
 9.7 Dirac Equation 305
Problems 308

10 Conformal Field Theory 310
 10.1 Introduction 310
 10.2 The Algebra of Local Fields 311
 10.3 Conformal Invariance 315
 10.4 Quasi–Primary Fields 318
 10.5 Two-dimensional Conformal Transformations 320
 10.6 Ward Identity and Primary Fields 325
 10.7 Central Charge and Virasoro Algebra 329
 10.8 Representation Theory 335
 10.9 Hamiltonian on a Cylinder Geometry and the Casimir Effect 344
A Moebius Transformations 347
Problems 354

11 Minimal Conformal Models 358
 11.1 Introduction 358
 11.2 Null Vectors and Kac Determinant 358
 11.3 Unitary Representations 362
 11.4 Minimal Models 363
 11.5 Coulomb Gas 370
 11.6 Landau–Ginzburg Formulation 382
 11.7 Modular Invariance 385
A Hypergeometric Functions 393
Problems 395

12 Conformal Field Theory of Free Bosonic and Fermionic Fields 397
 12.1 Introduction 397
 12.2 Conformal Field Theory of a Free Bosonic Field 397
 12.3 Conformal Field Theory of a Free Fermionic Field 408
 12.4 Bosonization 419
Problems 422
18 Exact S-Matrices

- **18.1 Yang–Lee and Bullough–Dodd Models**
- **18.2 \(\Phi_{1,3} \) Integrable Deformation of the Conformal Minimal Models \(M_{2,2n+3} \)
- **18.3 Multiple Poles**
- **18.4 S-Matrices of the Ising Model**
- **18.5 The Tricritical Ising Model at \(T \neq T_c \)**
- **18.6 Thermal Deformation of the Three-state Potts Model**
- **18.7 Models with Internal \(O(n) \) Invariance**
- **18.8 S-Matrix of the Sine–Gordon Model**
- **18.9 S-Matrices for \(\Phi_{1,3}, \Phi_{1,2}, \Phi_{2,1} \) Deformation of Minimal Models**

19 Thermodynamical Bethe Ansatz

- **19.1 Introduction**
- **19.2 Casimir Energy**
- **19.3 Bethe Relativistic Wave Function**
- **19.4 Derivation of Thermodynamics**
- **19.5 The Meaning of the Pseudo-energy**
- **19.6 Infrared and Ultraviolet Limits**
- **19.7 The Coefficient of the Bulk Energy**
- **19.8 The General Form of the TBA Equations**
- **19.9 The Exact Relation \(\lambda(m) \)**
- **19.10 Examples**
- **19.11 Thermodynamics of the Free Field Theories**
- **19.12 L-channel Quantization**

20 Form Factors and Correlation Functions

- **20.1 General Properties of the Form Factors**
- **20.2 Watson’s Equations**
- **20.3 Recursive Equations**
- **20.4 The Operator Space**
- **20.5 Correlation Functions**
- **20.6 Form Factors of the Stress–Energy Tensor**
- **20.7 Vacuum Expectation Values**
- **20.8 Ultraviolet Limit**
- **20.9 The Ising Model at \(T \neq T_c \)**
- **20.10 Form Factors of the Sine–Gordon Model**
- **20.11 The Ising Model in a Magnetic Field**

Problems
Contents

21 Non-Integrable Aspects
 21.1 Multiple Deformations of the Conformal Field Theories 728
 21.2 Form Factor Perturbation Theory 730
 21.3 First-order Perturbation Theory 734
 21.4 Non-locality and Confinement 738
 21.5 The Scaling Region of the Ising Model 739
 Problems 745

Index 747