1 The conformal group in $d \geq 3$

Given a manifold with metric g, a diffeomorphism ϕ of M is said to be a \textit{conformal isometry} if

$$\phi^* g = \Omega^2 g$$

for some function Ω. Clearly every isometry is a conformal isometry with $\Omega = 1$, but there may be conformal isometries that are not isometries. An infinitesimal conformal isometry is a vector field v such that

$$\mathcal{L}_v g = 2\omega(v)g.$$

This is called the conformal Killing equation (if $\omega = 0$ it is the “normal” Killing equation \footnote{educational reading: https://en.wikipedia.org/wiki/Wilhelm_Killing}). In components

$$(\mathcal{L}_v g)_{\mu\nu} = v^\rho \partial_\rho g_{\mu\nu} + g_{\mu\rho} \partial_\nu v^\rho + g_{\nu\rho} \partial_\mu v^\rho$$

can also be written in the form

$$(\mathcal{L}_v g)_{\mu\nu} = \nabla_\mu v_\nu + \nabla_\nu v_\mu,$$

where ∇ is the covariant derivative constructed with the metric g. Taking the trace of (2) we find that $\omega(v) = (1/d)\nabla_\mu v^\mu$. Then we can write the conformal Killing equation as

$$\nabla_\mu v_\nu + \nabla_\nu v_\mu = \frac{2}{d} \nabla_\rho v^\rho g_{\mu\nu}.$$

A solutions of this equation is called a \textit{conformal Killing vector}.

We want to determine all the conformal Killing vectors of d-dimensional Minkowski space (metric η with signature $- + \ldots +$). Equation (5) then simplifies to

$$\partial_\mu v_\nu + \partial_\nu v_\mu = \frac{2}{d} \partial_\rho v^\rho \eta_{\mu\nu}.$$

A flat space can be identified both with its tangent and cotangent space, so a point with coordinates x^μ can also be seen as a vector and we denote $x_\mu = \eta_{\mu\nu} x^\nu$ the corresponding one-form. Deriving twice the conformal Killing equation and tracing, deduce that

$$\Box (\partial_\mu v^\mu) = 0$$
Thus we can write
\[v_\mu = a_\mu + b_{\mu\rho} x^\rho + c_{\mu\rho\sigma} x^\rho x^\sigma, \]
where \(a, b, c \) are constant. Reinserting in (6) find that \(a \) and the antisymmetric part of \(b \) are the generators of the Poincaré group. On the other hand the symmetric part of \(b \) must be proportional to the metric. Deduce that the corresponding solution for \(v \) is the generator of dilatations: \(D = x^\mu \partial_\mu \).

For the terms proportional to \(c \), it is convenient to first manipulate the conformal Killing equation by taking a derivative, say \(\partial_\rho \), of both sides and then cyclically permute \(\mu, \nu, \rho \). Subtract the first equation from the other two and get the relation
\[2 \partial_\mu \partial_\nu v_\rho = 2 d (\eta_{\rho\mu} \partial_\nu + \eta_{\rho\nu} \partial_\mu - \eta_{\mu\nu} \partial_\rho) \partial_\lambda v_\lambda. \]

Now inserting the \(c \)-term in this equation find that
\[c_{\rho\mu\nu} = \eta_{\rho\mu} b_\nu + \eta_{\rho\nu} b_\mu - \eta_{\mu\nu} b_\rho, \]
where \(b_\mu = -\frac{1}{d} c_{\lambda\mu} \). The corresponding generators \(K_\mu \), parametrized by \(b_\mu \), are called special conformal transformations.

So we have the following list of conformal Killing vectors
\[P_\mu = \partial_\mu, \] (7)
\[L_{\mu\nu} = x_\mu \partial_\nu - x_\nu \partial_\mu \] (8)
\[D = x^\mu \partial_\mu, \text{ with } \omega(D) = 1 \] (9)
\[K_\mu = 2 x_\mu x^\nu \partial_\nu - x^2 \partial_\mu, \text{ with } \omega(K_\mu) = 2 x_\mu \] (10)
of which \(P_\mu \) and \(L_{\mu\nu} \) are genuine Killing vectors (\(\omega = 0 \)). Show that these vectorfields form a closed algebra.

Consider \(\mathbb{R}^{d+2} \) with coordinates \(z^a \) and a flat metric \(\eta_{ab} \) of signature \(-+\ldots+-\). The invariance group of this metric is \(SO(2, d) \) and has generators \(M_{ab} = z_a \partial_b - z_b \partial_a \). (As before, \(z_a = \eta_{ab} z^b \)). The algebra of these generators is
\[[M_{ab}, M_{cd}] = -\eta_{ac} M_{bd} + \eta_{ad} M_{bc} + \eta_{be} M_{ad} - \eta_{bd} M_{ac}. \] (11)

Map the conformal Killing vectors to the generators \(M_{ab} \) to show that the algebras are isomorphic.