Classification of locally symmetric spaces of rank 1 through K-theory

Torstein Ulsnaes

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

A (Riemannian) symmetric space is a Riemannian manifold (X,g) for which the isometry group contains all geodesic symmetries.

A (Riemannian) symmetric space is a Riemannian manifold (X,g) for which the isometry group contains all geodesic symmetries.

A map $f_p : X \to X$ is said to be a **geodesic symmetry** if it fixes p and reverses all geodesics centered at $p \in X$.

A (Riemannian) symmetric space is a Riemannian manifold (X,g) for which the isometry group contains all geodesic symmetries.

A map $f_p : X \to X$ is said to be a **geodesic symmetry** if it fixes p and reverses all geodesics centered at $p \in X$.

A space is called **locally symmetric** if the geodesic symmetries are local isometries.

A (Riemannian) symmetric space is a Riemannian manifold (X,g) for which the isometry group contains all geodesic symmetries.

A map $f_p : X \to X$ is said to be a **geodesic symmetry** if it fixes p and reverses all geodesics centered at $p \in X$.

A space is called **locally symmetric** if the geodesic symmetries are local isometries.

X is locally symmetric if and only if $X = \hat{X}/\Gamma$ for some discrete group Γ and symmetric space \hat{X} .

The **rank** of the symmetric space is the largest dimension of its flat totally geodesic submanifolds.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A (Riemannian) symmetric space is a Riemannian manifold (X, g) for which the isometry group contains all geodesic symmetries.

A map $f_p : X \to X$ is said to be a **geodesic symmetry** if it fixes p and reverses all geodesics centered at $p \in X$.

A space is called **locally symmetric** if the geodesic symmetries are local isometries.

X is locally symmetric if and only if $X = \hat{X}/\Gamma$ for some discrete group Γ and symmetric space \hat{X} .

The **rank** of the symmetric space is the largest dimension of its flat totally geodesic submanifolds.

For any symmetric space X the $G = Iso(X)^0$ acts **transitively**. If $x \in X$, $K = Stab(x)^0$ is compact subgroup in G, and

$$G/K \simeq X.$$

Types of symmetric spaces

Types of symmetric spaces

► Euclidean type (zero curvature)

Types of symmetric spaces

- Euclidean type (zero curvature)
- Compact type (positive curvature)

Types of symmetric spaces

- Euclidean type (zero curvature)
- Compact type (positive curvature)
- ► Non-compact type (negative curvature)

Types of symmetric spaces

- Euclidean type (zero curvature)
- Compact type (positive curvature)
- ► Non-compact type (negative curvature)

Examples: $\mathbb{H}^n_{\mathbb{R}}, \mathbb{H}^n_{\mathbb{C}}, \mathbb{H}^n_Q$

A **Lattice** is a discrete subgroup $\Gamma \subset G$ for which $\Gamma \setminus G$ has finite volume (with respect to the Haar measure on G).

A **Lattice** is a discrete subgroup $\Gamma \subset G$ for which $\Gamma \setminus G$ has finite volume (with respect to the Haar measure on G).

The **geodesic compactification** \overline{X} of a symmetric space X of noncompact type is the compactification obtained by adding a sphere $\partial X := S^{n-1}$ to X (n = dim(X)) as follows (blackboard!)

A **Lattice** is a discrete subgroup $\Gamma \subset G$ for which $\Gamma \setminus G$ has finite volume (with respect to the Haar measure on G).

The **geodesic compactification** \overline{X} of a symmetric space X of noncompact type is the compactification obtained by adding a sphere $\partial X := S^{n-1}$ to X (n = dim(X)) as follows (blackboard!) The action of G extends continuous to \overline{X} .

A **Lattice** is a discrete subgroup $\Gamma \subset G$ for which $\Gamma \setminus G$ has finite volume (with respect to the Haar measure on G).

The **geodesic compactification** \overline{X} of a symmetric space X of noncompact type is the compactification obtained by adding a sphere $\partial X := S^{n-1}$ to X (n = dim(X)) as follows (blackboard!) The action of G extends continuous to \overline{X} . Much information about the locally symmetric space $\Gamma \setminus X$ can be recovered from the dynamical system

 $(\partial X, \Gamma)$

Assuming X, X' are symmetric space of noncompact type of rank 1, not isomorphic to $\mathbb{H}^2_{\mathbb{R}}$. Let $\Gamma \subset G$, $\Gamma' \subset G'$ be two torsion free co-compact lattices, then the following are equivalent

Assuming X, X' are symmetric space of noncompact type of rank 1, not isomorphic to $\mathbb{H}^2_{\mathbb{R}}$. Let $\Gamma \subset G$, $\Gamma' \subset G'$ be two torsion free co-compact lattices, then the following are equivalent

 $\blacktriangleright \ \Gamma \backslash X \text{ is isometric to } \Gamma' \backslash X'$

Assuming X, X' are symmetric space of noncompact type of rank 1, not isomorphic to $\mathbb{H}^2_{\mathbb{R}}$. Let $\Gamma \subset G$, $\Gamma' \subset G'$ be two torsion free co-compact lattices, then the following are equivalent

•
$$\Gamma \setminus X$$
 is isometric to $\Gamma' \setminus X'$

► The dynamical systems (∂X', Γ) and (∂X, Γ') are topologically equivalent.

Assuming X, X' are symmetric space of noncompact type of rank 1, not isomorphic to $\mathbb{H}^2_{\mathbb{R}}$. Let $\Gamma \subset G$, $\Gamma' \subset G'$ be two torsion free co-compact lattices, then the following are equivalent

•
$$\Gamma \setminus X$$
 is isometric to $\Gamma' \setminus X'$

► The dynamical systems (∂X', Γ) and (∂X, Γ') are topologically equivalent.

•
$$\pi_1(\Gamma \setminus X) = \pi_1(\Gamma' \setminus X')$$
 as abstract groups

Assuming X, X' are symmetric space of noncompact type of rank 1, not isomorphic to $\mathbb{H}^2_{\mathbb{R}}$. Let $\Gamma \subset G$, $\Gamma' \subset G'$ be two torsion free co-compact lattices, then the following are equivalent

•
$$\Gamma \setminus X$$
 is isometric to $\Gamma' \setminus X'$

► The dynamical systems (∂X', Γ) and (∂X, Γ') are topologically equivalent.

•
$$\pi_1(\Gamma \backslash X) = \pi_1(\Gamma' \backslash X')$$
 as abstract groups

•
$$\Gamma = \Gamma'$$
 as abstract groups

Crossed product C*-algebra

Given a dynamical system (X, G), a covariant representation (π, u) of (X, G) are two representations

$$\pi: C_0(X) \to B(H) \qquad u: G \to U(B(H))$$

satisfying

$$\pi(gf) = u(g)^{\star}\pi(f)u(g)$$

Crossed product C*-algebra

Given a dynamical system (X, G), a covariant representation (π, u) of (X, G) are two representations

$$\pi: C_0(X) \to B(H)$$
 $u: G \to U(B(H))$

satisfying

$$\pi(gf) = u(g)^*\pi(f)u(g)$$

The **crossed product C*-algebra**, denoted $C_0(X) \rtimes G$ is the completion $C_c(G, C_0(X))$ with respect to the norm

$$||f|| = \sup_{(\pi,u)} \int_G \pi(f(g))u(g)$$

over all covariant representations (π, u) of (X, G)

Mostow rigidity and the boundary C*-algebra

Question 1: Assuming X and Γ are as in Mostows theorem, are the boundary C*-algebras

$C(\partial X)\rtimes \Gamma$

a complete set of isometry invariants of the locally symmetric spaces $\Gamma \backslash X?$

Mostow rigidity and the boundary C*-algebra

Question 1: Assuming X and Γ are as in Mostows theorem, are the boundary C*-algebras

$C(\partial X)\rtimes \Gamma$

a complete set of isometry invariants of the locally symmetric spaces $\Gamma \setminus X$? Noncommutative mostow rigidity theorem. Classification of algebras through K-theory

Classification of algebras through K-theory

K-theory is a generalized homology theory for operator algebras.

Classification of algebras through K-theory

K-theory is a generalized homology theory for operator algebras. For now assume X is a rank 1 symmetric space of noncompact type.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

K-theory is a generalized homology theory for operator algebras. For now assume X is a rank 1 symmetric space of noncompact type. The crossed products $C(\partial X) \rtimes \Gamma$ are *Kirchberg algebras* and lie in the bootstrap class - which means they are classified by K-theoretic data. K-theory is a generalized homology theory for operator algebras. For now assume X is a rank 1 symmetric space of noncompact type. The crossed products $C(\partial X) \rtimes \Gamma$ are *Kirchberg algebras* and lie in the bootstrap class - which means they are classified by K-theoretic data. We can thus change Question 1 to the equivalent question K-theory is a generalized homology theory for operator algebras. For now assume X is a rank 1 symmetric space of noncompact type. The crossed products $C(\partial X) \rtimes \Gamma$ are *Kirchberg algebras* and lie in the bootstrap class - which means they are classified by K-theoretic data. We can thus change Question 1 to the equivalent question **Question 1':** Does the K-theory of $C(\partial X) \rtimes \Gamma$ uniquely determine the space $\Gamma \backslash X$ up to isometry? For Γ G as above, with a mild condition on $\Gamma \setminus G/K$ (which is, having a spin^c-structure) we have that

$$K_{\star}(C(\partial X) \rtimes \Gamma) = K_{\star}(C(\Gamma \setminus G/M))$$

where $M = P \cap K$ and K is the maximal compact subgroup of G.

For Γ G as above, with a mild condition on $\Gamma \setminus G/K$ (which is, having a spin^c-structure) we have that

$$K_{\star}(C(\partial X) \rtimes \Gamma) = K_{\star}(C(\Gamma \setminus G/M))$$

where $M = P \cap K$ and K is the maximal compact subgroup of G. We are thus lead to the following simplification of question 1 **Question 1**" Does the topological K-theory of $\Gamma \setminus G/M$ determine the symmetric space $\Gamma \setminus X$ up to isometry?

Some results: Comparing with classifying spaces

Theorem

For X as above, and dim(X) odd, we have

$$K(\Gamma \backslash G/M) = K_{\star}(\Gamma \backslash G/K) \otimes \mathbb{Z}^2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(Proof on the blackboard, if time...)

Some results: Comparing with classifying spaces

Theorem

For X as above, and dim(X) odd, we have

$$K(\Gamma \setminus G/M) = K_{\star}(\Gamma \setminus G/K) \otimes \mathbb{Z}^2$$

(Proof on the blackboard, if time...) On the other hand, if X is odd dimensional we have the following

Theorem

If dim(X) is odd, then

$$\mathcal{K}^{0}(\Gamma \backslash G/M) = \mathcal{K}^{1}(\Gamma \backslash G/M)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A note on torsion

Theorem

If X is a hyperbolic space with n = dim(X) and Γ torsion free and cocompact lattice, then the (cohomological) betti numbers are

 $\beta_i(\Gamma \setminus X) \neq 0 \Leftrightarrow i = n/2$

A note on torsion

Theorem

If X is a hyperbolic space with n = dim(X) and Γ torsion free and cocompact lattice, then the (cohomological) betti numbers are

$$\beta_i(\Gamma \setminus X) \neq 0 \Leftrightarrow i = n/2$$

Hence if n is odd

 $K^{\star}(\Gamma \setminus G/M)$

is a torsion group.

A note on torsion

Theorem

If X is a hyperbolic space with n = dim(X) and Γ torsion free and cocompact lattice, then the (cohomological) betti numbers are

$$\beta_i(\Gamma \setminus X) \neq 0 \Leftrightarrow i = n/2$$

Hence if n is odd

 $K^{\star}(\Gamma \setminus G/M)$

is a torsion group.

Proof.

The Chern character is a rational isomorphism. If n is odd we get

$$\mathcal{K}^{\star}(\Gamma \setminus G/M) \otimes \mathbb{Q} = \mathcal{K}^{\star}(\Gamma \setminus G/K) \otimes \mathbb{Z}^2 \otimes \mathbb{Q} = H^{\star}(\Gamma \setminus G/K, \mathbb{Q}) \otimes \mathbb{Z}^2.$$

< 口 > < 同 > < 三 > < 三 > <

= 900

It K is a compact group Lie group with maximal torus T_K then it is well known that

$$\mathcal{K}^{\star}_{\mathcal{K}}(X)^{|W_{\mathcal{K}}|}=\mathcal{K}^{\star}_{\mathcal{T}_{\mathcal{K}}}(X)$$

where

$$N_K = N_K(T_K)/T_K$$

is called the Weyl group of K (this group is always finite!).

It K is a compact group Lie group with maximal torus T_K then it is well known that

$$\mathcal{K}^{\star}_{\mathcal{K}}(X)^{|W_{\mathcal{K}}|}=\mathcal{K}^{\star}_{\mathcal{T}_{\mathcal{K}}}(X)$$

where

$$N_K = N_K(T_K)/T_K$$

is called the Weyl group of K (this group is always finite!). This gives us

Theorem

$$\mathcal{K}^{\star}(\Gamma \setminus G/\mathcal{K})^{|W_{\mathcal{K}}|} = \mathcal{K}^{\star}(\Gamma \setminus G/\mathcal{M})^{|W_{\mathcal{M}}|} \oplus \mathcal{K}^{\star}(\Gamma \setminus G/\mathcal{T})$$

Proof.

We have $T_K = T_m \oplus T$, where $T = T_k/T_m$ which yields

$$C(\Gamma \setminus G) \rtimes T_{K} = C(\Gamma \setminus G) \rtimes T_{M} \oplus C(\Gamma \setminus G) \rtimes T$$

Theorem

$$\mathcal{K}^{\star}(\Gamma \setminus G/\mathcal{K})^{|W_{\mathcal{K}}|} = \mathcal{K}^{\star}(\Gamma \setminus G/\mathcal{M})^{|W_{\mathcal{M}}|} \oplus \mathcal{K}^{\star}(\Gamma \setminus G/\mathcal{T})$$

Proof.

We have $T_K = T_m \oplus T$, where $T = T_k/T_m$ which yields

$$C(\Gamma \setminus G) \rtimes T_{K} = C(\Gamma \setminus G) \rtimes T_{M} \oplus C(\Gamma \setminus G) \rtimes T$$

$$K_{\mathcal{T}_{\mathcal{K}}}(\Gamma ackslash G) = K_{\mathcal{T}_{\mathcal{M}}}(\Gamma ackslash G) \oplus K_{\mathcal{T}}(\Gamma ackslash G)$$

Theorem

$$\mathcal{K}^{\star}(\Gamma \setminus G/\mathcal{K})^{|W_{\mathcal{K}}|} = \mathcal{K}^{\star}(\Gamma \setminus G/M)^{|W_{\mathcal{M}}|} \oplus \mathcal{K}^{\star}(\Gamma \setminus G/T)$$

Proof.

We have $T_K = T_m \oplus T$, where $T = T_k/T_m$ which yields

$$C(\Gamma \setminus G) \rtimes T_{K} = C(\Gamma \setminus G) \rtimes T_{M} \oplus C(\Gamma \setminus G) \rtimes T$$

$$K_{\mathcal{T}_{\mathcal{K}}}(\Gamma ackslash G) = K_{\mathcal{T}_{\mathcal{M}}}(\Gamma ackslash G) \oplus K_{\mathcal{T}}(\Gamma ackslash G)$$

$$\begin{split} \mathcal{K}(\Gamma \backslash G / \mathcal{K})^{|W_{\mathcal{K}}|} &= \mathcal{K}_{\mathcal{K}}(\Gamma \backslash G)^{|W_{\mathcal{K}}|} \\ &= \mathcal{K}_{\mathcal{T}_{\mathcal{K}}}(\Gamma \backslash G) \\ &= \mathcal{K}_{\mathcal{T}_{\mathcal{M}}}(\Gamma \backslash G) \oplus \mathcal{K}_{\mathcal{T}}(\Gamma \backslash G) \\ &= \mathcal{K}_{\mathcal{M}}(\Gamma \backslash G)^{|W_{\mathcal{M}}|} \oplus \mathcal{K}_{\mathcal{T}}(\Gamma \backslash G) \end{split}$$