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A (Riemannian) symmetric space is a Riemannian manifold
(X, g) for which the isometry group contains all geodesic
symmetries.

A map f, : X — X is said to be a geodesic symmetry if it fixes p
and reverses all geodesics centered at p € X.

A space is called locally symmetric if the geodesic symmetries are
local isometries.

X is locally symmetric if and only if X = X /I for some discrete
group I and symmetric space X.

The rank of the symmetric space is the largest dimension of its flat
totally geodesic submanifolds.

For any symmetric space X the G = Iso(X)? acts transitively.

If x € X, K = Stab(x)° is compact subgroup in G, and

G/K ~ X.
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Types of symmetric spaces

» Euclidean type (zero curvature)

» Compact type (positive curvature)

» Non-compact type (negative curvature)
Examples: Hp, H, Hp
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Definitions...

A Lattice is a discrete subgroup ' C G for which '\ G has finite
volume (with respect to the Haar measure on G).

The geodesic compactification X of a symmetric space X of
noncompact type is the compactification obtained by adding a
sphere X := S"~! to X (n = dim(X)) as follows (blackboard!)
The action of G extends continuous to X. Much information
about the locally symmetric space '\ X can be recovered from the

dynamical system
(0X,T)
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Assuming X, X’ are symmetric space of noncompact type of rank
1, not isomorphic to HIZR. Let T C G, ' C G’ be two torsion free
co-compact lattices, then the following are equivalent

» [\ X is isometric to "\ X’

» The dynamical systems (0X’,I') and (0X, ") are topologically

equivalent.
» m1(M\X) = m1(I"\X’) as abstract groups
» [ =T as abstract groups
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Given a dynamical system (X, G), a covariant representation (7, u)
of (X, G) are two representations
m: Co(X) = B(H) u: G — U(B(H))
satisfying

m(gf) = u(g)*m(f)u(g)

The crossed product C*-algebra, denoted Co(X) x G is the
completion C.(G, Co(X)) with respect to the norm

IF]] = sup /G ~(f(8))u(g)

(m,u)

over all covariant representations (, u) of (X, G)
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Mostow rigidity and the boundary C*-algebra

Question 1: Assuming X and I are as in Mostows theorem, are
the boundary C*-algebras

C(OX) =T

a complete set of isometry invariants of the locally symmetric
spaces '\ X7
Noncommutative mostow rigidity theorem.
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Classification of algebras through K-theory

K-theory is a generalized homology theory for operator algebras.
For now assume X is a rank 1 symmetric space of noncompact
type. The crossed products C(0X) x I' are Kirchberg algebras and
lie in the bootstrap class - which means they are classified by
K-theoretic data. We can thus change Question 1 to the
equivalent question

Question 1': Does the K-theory of C(0X) x I' uniquely determine
the space '\ X up to isometry?
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Further simplifications

For I' G as above, with a mild condition on N'\G/K (which is,
having a spin©-structure) we have that

K (C(OX) xT) =K (C(T\G/M))

where M = PN K and K is the maximal compact subgroup of G.
We are thus lead to the following simplification of question 1
Question 1” Does the topological K-theory of '\G/M determine
the symmetric space '\ X up to isometry?
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Some results: Comparing with classifying spaces

Theorem
For X as above, and dim(X) odd, we have

K(N\G/M) = K.(I"\G/K) ® Z?

(Proof on the blackboard, if time...)
On the other hand, if X is odd dimensional we have the following

Theorem
If dim(X) is odd, then

KO(T\G/M) = K}(T\G/M)
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A note on torsion

Theorem

If X is a hyperbolic space with n = dim(X) and I torsion free and
cocompact lattice, then the (cohomological) betti numbers are

Bi(T\X) # 0 i = n/2

Hence if n is odd
K*(M\G/M)

is a torsion group.

Proof.

The Chern character is a rational isomorphism. If n is odd we get
K*(M\G/M)®@Q = K*(N\G/K)@Z*®Q = H*(N\G/K,Q) ® Z*.

O]
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Reducing to maximal tori

Theorem
K*(N\G/K)Wkl = K*(I'\G/M)Wul & K*(T'\G/T)

Proof.
We have Ty = T, @ T, where T = Ty /T, which yields

C(M\G)x Tk =C(T\G)x Ty ® C(N\G) x T

K7 (N\G) = K7,,(T'\G) & K1 (I'\G)

K(M\G/K)Wl = Ky (M\ G) W
= K1, (M\G)
= K1,,(T\G) & K7(I'\G)
= Ku(M\G)"M & Kr(N\G)



