
Classification of locally symmetric spaces of rank
1 through K-theory

Torstein Ulsnaes



Definitions...

A (Riemannian) symmetric space is a Riemannian manifold
(X , g) for which the isometry group contains all geodesic
symmetries.
A map fp : X → X is said to be a geodesic symmetry if it fixes p
and reverses all geodesics centered at p ∈ X .
A space is called locally symmetric if the geodesic symmetries are
local isometries.
X is locally symmetric if and only if X = X̂/Γ for some discrete
group Γ and symmetric space X̂ .
The rank of the symmetric space is the largest dimension of its flat
totally geodesic submanifolds.
For any symmetric space X the G = Iso(X )0 acts transitively.
If x ∈ X , K = Stab(x)0 is compact subgroup in G , and

G/K ≃ X .
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Definitions...

Types of symmetric spaces

▶ Euclidean type (zero curvature)

▶ Compact type (positive curvature)

▶ Non-compact type (negative curvature)

Examples: Hn
R,Hn

C,Hn
Q
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Definitions...

A Lattice is a discrete subgroup Γ ⊂ G for which Γ\G has finite
volume (with respect to the Haar measure on G ).

The geodesic compactification X of a symmetric space X of
noncompact type is the compactification obtained by adding a
sphere ∂X := Sn−1 to X (n = dim(X )) as follows (blackboard!)
The action of G extends continuous to X . Much information
about the locally symmetric space Γ\X can be recovered from the
dynamical system

(∂X , Γ)
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Mostow rigidity theorem

Assuming X ,X ′ are symmetric space of noncompact type of rank
1, not isomorphic to H2

R. Let Γ ⊂ G , Γ′ ⊂ G ′ be two torsion free
co-compact lattices, then the following are equivalent

▶ Γ\X is isometric to Γ′\X ′

▶ The dynamical systems (∂X ′, Γ) and (∂X , Γ′) are topologically
equivalent.

▶ π1(Γ\X ) = π1(Γ
′\X ′) as abstract groups

▶ Γ = Γ′ as abstract groups
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Crossed product C*-algebra

Given a dynamical system (X ,G ), a covariant representation (π, u)
of (X ,G ) are two representations

π : C0(X ) → B(H) u : G → U(B(H))

satisfying
π(gf ) = u(g)⋆π(f )u(g)

The crossed product C*-algebra, denoted C0(X )⋊ G is the
completion Cc(G ,C0(X )) with respect to the norm

||f || = sup
(π,u)

∫
G
π(f (g))u(g)

over all covariant representations (π, u) of (X ,G )
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Mostow rigidity and the boundary C*-algebra

Question 1: Assuming X and Γ are as in Mostows theorem, are
the boundary C*-algebras

C (∂X )⋊ Γ

a complete set of isometry invariants of the locally symmetric
spaces Γ\X?

Noncommutative mostow rigidity theorem.
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Classification of algebras through K-theory

K-theory is a generalized homology theory for operator algebras.
For now assume X is a rank 1 symmetric space of noncompact
type. The crossed products C (∂X )⋊ Γ are Kirchberg algebras and
lie in the bootstrap class - which means they are classified by
K-theoretic data. We can thus change Question 1 to the
equivalent question
Question 1’: Does the K-theory of C (∂X )⋊ Γ uniquely determine
the space Γ\X up to isometry?
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Further simplifications

For Γ G as above, with a mild condition on Γ\G/K (which is,
having a spinc -structure) we have that

K⋆(C (∂X )⋊ Γ) = K⋆(C (Γ\G/M))

where M = P ∩ K and K is the maximal compact subgroup of G .

We are thus lead to the following simplification of question 1
Question 1” Does the topological K-theory of Γ\G/M determine
the symmetric space Γ\X up to isometry?
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Some results: Comparing with classifying spaces

Theorem

For X as above, and dim(X ) odd, we have

K (Γ\G/M) = K⋆(Γ\G/K )⊗ Z2

(Proof on the blackboard, if time...)

On the other hand, if X is odd dimensional we have the following

Theorem

If dim(X ) is odd, then

K 0(Γ\G/M) = K 1(Γ\G/M)
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A note on torsion

Theorem

If X is a hyperbolic space with n = dim(X ) and Γ torsion free and
cocompact lattice, then the (cohomological) betti numbers are

βi (Γ\X ) ̸= 0 ⇔ i = n/2

Hence if n is odd
K ⋆(Γ\G/M)

is a torsion group.

Proof.

The Chern character is a rational isomorphism. If n is odd we get

K ⋆(Γ\G/M)⊗Q = K ⋆(Γ\G/K )⊗Z2 ⊗Q = H⋆(Γ\G/K ,Q)⊗Z2.
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Reducing to maximal tori

It K is a compact group Lie group with maximal torus TK then it
is well known that

K ⋆
K (X )|WK | = K ⋆

TK
(X )

where
WK = NK (TK )/TK

is called the Weyl group of K (this group is always finite!).

This gives us
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Reducing to maximal tori

Theorem

K ⋆(Γ\G/K )|WK | = K ⋆(Γ\G/M)|WM | ⊕ K ⋆(Γ\G/T )

Proof.

We have TK = Tm ⊕ T , where T = Tk/Tm which yields

C (Γ\G )⋊ TK = C (Γ\G )⋊ TM ⊕ C (Γ\G )⋊ T

KTK
(Γ\G ) = KTM

(Γ\G )⊕ KT (Γ\G )

K (Γ\G/K )|WK | = KK (Γ\G )|WK |

= KTK
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