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A (Riemannian) symmetric space is a Riemannian manifold
(X, g) for which the isometry group contains all geodesic
symmetries.

A map f, : X — X is said to be a geodesic symmetry if it fixes p
and reverses all geodesics centered at p € X.

A space is called locally symmetric if the geodesic symmetries are
local isometries.

X is locally symmetric if and only if X = X /I for some discrete
(torsion free) group ' and symmetric space X.

The rank of the symmetric space is the largest dimension of its flat
totally geodesic submanifolds.

For any symmetric space X the G = Iso(X)? acts transitively.

If x € X, K = Stab(x)° is compact subgroup in G, and

G/K ~ X.
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Let G C GL,(R) be a subgroup of finte index in the group of real
points of a connected semi-simple linear algebraic group G over R.
I C G a (torsion free) lattice and X = G/K the associated
symmetric space. A Maass form f € C°°(X) is a special type of
automorphic form on G with respect to [ satisfying the following

> f(vg) =f(g)forallge GandyeTl

» f(g) < Cllg||™ for some m € N and C € RT where
|llg||? = tr(gtg)(moderate growth).

» Df = xA(D)f forall D e D(X)and A€ a®C
D(X) - The algebra of G-invariant differential operators on X

D(X) = S(a®C)"

D(X) always contains the Laplacian.
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A parabolic subgroup P = MAN C G, is called a -cuspidal ([1])
if for every other parabolic subgroup P’ C P we have

» NP cMN
» (F'NN)\N' is compact
» (N M'N)\M’'N" has finite volume.

A Maass from f is called a cusp form if for any proper -cuspidal
parabolic subgroup P = MAN C G

/ f(nx)dn = 0.
(TNN)\N

For cusp forms we have f € L2(I'\X) and are joint eigenfunction of
the algebra D(X) of G-invariant differential operators on X.



Why study locally symmetric spaces... Number and
representation theory



Why study locally symmetric spaces... Number and
representation theory

» Questions about forms translate to questions about spectral
decomposition of L2(I'\ X).



Why study locally symmetric spaces... Number and
representation theory

» Questions about forms translate to questions about spectral
decomposition of L2(I'\ X).

» The point spectrum of the Laplacian corresponds to the cusp
forms.



Why study locally symmetric spaces... Number and
representation theory

» Questions about forms translate to questions about spectral
decomposition of L2(I'\ X).

» The point spectrum of the Laplacian corresponds to the cusp
forms.

» Each joint eigenspaces of D(X) gives us a G-representation
on V C L?(I'\X).
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Why study compactifications

It is shown in [2] that the -equivariant short exact sequence
0 — Co(X) — C(X) — C(0X) =0
induces (when T is exact) a six-term exact sequence

Ko(Co(X/T)) — Ko(C(X) x T) — Ko(C(9X) xT)

)| I

Ki(C(0X) xT) «— Ki(C(X) xT) «— Ki(Co(X/T))

» SL,(R)/SOL(R) is a symmetric space of noncompact type.
For the lattice SL,(Z) C SLn(R) the Baum-Connes conjecture
is still open for n > 3.
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Definitions...
A G-compactification of a symmetric space X of non-compact
type Is
» A compact space X with a continuous G-action.
» A dense G-equivariant imbedding ¢ : X — X
The five main compactifications
» Geodesic or Gromov compactifications x°
» Martin compactification xM
» Satake compactification x>
» Furstenberg compactification x"

: e oK
» Karpelevic compactification X
There is a partial order on the set of all compactifications given by

<A < Xt o xXB_ X
The Karpelevic compactification is the largest -

X XY, uels,Mm,F,q].
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A universal metric G-compactification can be constructed as
follows

» For every chain X1 < X5 < ..., let X = lim X be the
projective limit.

> X = {(Xl,Xg, ) | f(X,'_H) = X,'}
» weak topology induced by the projections

p;:Y%Y; (Xl,...)l—>X,'

> F: G x X — X is continuous iff
priocF:GxX—=X; (g,(x1,...)) — gx

is continuous for all /.

» Use Ellis theorem and Zorn's lemma.
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A universal metric G-compactification

Properties preserved by projective limits
» being compact Hausdorff
» being non-empty compact Hausdorff
» being connected compact Hausdorff
» being compact Hausdorff of covering dimension < n
» being topological complete metrizable.
Results so far -

» There exists a maximal compact metric G-compactification
B X of covering dimension < n = dim(X).

» In the case of rank(X) =1 we have BgX ~ X"~ X
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