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Definitions...

A (Riemannian) symmetric space is a Riemannian manifold
(X , g) for which the isometry group contains all geodesic
symmetries.
A map fp : X → X is said to be a geodesic symmetry if it fixes p
and reverses all geodesics centered at p ∈ X .
A space is called locally symmetric if the geodesic symmetries are
local isometries.
X is locally symmetric if and only if X = X̂/Γ for some discrete
(torsion free) group Γ and symmetric space X̂ .
The rank of the symmetric space is the largest dimension of its flat
totally geodesic submanifolds.
For any symmetric space X the G = Iso(X )0 acts transitively.
If x ∈ X , K = Stab(x)0 is compact subgroup in G , and

G/K ' X .



Definitions...

A (Riemannian) symmetric space is a Riemannian manifold
(X , g) for which the isometry group contains all geodesic
symmetries.

A map fp : X → X is said to be a geodesic symmetry if it fixes p
and reverses all geodesics centered at p ∈ X .
A space is called locally symmetric if the geodesic symmetries are
local isometries.
X is locally symmetric if and only if X = X̂/Γ for some discrete
(torsion free) group Γ and symmetric space X̂ .
The rank of the symmetric space is the largest dimension of its flat
totally geodesic submanifolds.
For any symmetric space X the G = Iso(X )0 acts transitively.
If x ∈ X , K = Stab(x)0 is compact subgroup in G , and

G/K ' X .



Definitions...

A (Riemannian) symmetric space is a Riemannian manifold
(X , g) for which the isometry group contains all geodesic
symmetries.
A map fp : X → X is said to be a geodesic symmetry if it fixes p
and reverses all geodesics centered at p ∈ X .

A space is called locally symmetric if the geodesic symmetries are
local isometries.
X is locally symmetric if and only if X = X̂/Γ for some discrete
(torsion free) group Γ and symmetric space X̂ .
The rank of the symmetric space is the largest dimension of its flat
totally geodesic submanifolds.
For any symmetric space X the G = Iso(X )0 acts transitively.
If x ∈ X , K = Stab(x)0 is compact subgroup in G , and

G/K ' X .



Definitions...

A (Riemannian) symmetric space is a Riemannian manifold
(X , g) for which the isometry group contains all geodesic
symmetries.
A map fp : X → X is said to be a geodesic symmetry if it fixes p
and reverses all geodesics centered at p ∈ X .
A space is called locally symmetric if the geodesic symmetries are
local isometries.

X is locally symmetric if and only if X = X̂/Γ for some discrete
(torsion free) group Γ and symmetric space X̂ .
The rank of the symmetric space is the largest dimension of its flat
totally geodesic submanifolds.
For any symmetric space X the G = Iso(X )0 acts transitively.
If x ∈ X , K = Stab(x)0 is compact subgroup in G , and

G/K ' X .



Definitions...

A (Riemannian) symmetric space is a Riemannian manifold
(X , g) for which the isometry group contains all geodesic
symmetries.
A map fp : X → X is said to be a geodesic symmetry if it fixes p
and reverses all geodesics centered at p ∈ X .
A space is called locally symmetric if the geodesic symmetries are
local isometries.
X is locally symmetric if and only if X = X̂/Γ for some discrete
(torsion free) group Γ and symmetric space X̂ .
The rank of the symmetric space is the largest dimension of its flat
totally geodesic submanifolds.

For any symmetric space X the G = Iso(X )0 acts transitively.
If x ∈ X , K = Stab(x)0 is compact subgroup in G , and

G/K ' X .



Definitions...

A (Riemannian) symmetric space is a Riemannian manifold
(X , g) for which the isometry group contains all geodesic
symmetries.
A map fp : X → X is said to be a geodesic symmetry if it fixes p
and reverses all geodesics centered at p ∈ X .
A space is called locally symmetric if the geodesic symmetries are
local isometries.
X is locally symmetric if and only if X = X̂/Γ for some discrete
(torsion free) group Γ and symmetric space X̂ .
The rank of the symmetric space is the largest dimension of its flat
totally geodesic submanifolds.
For any symmetric space X the G = Iso(X )0 acts transitively.
If x ∈ X , K = Stab(x)0 is compact subgroup in G , and

G/K ' X .



Definitions...

Types of symmetric spaces

I Euclidean type (zero curvature)

I Compact type (positive curvature)

I Non-compact type (negative curvature)
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Why study locally symmetric spaces... Number and
representation theory

Let G ⊂ GLn(R) be a subgroup of finte index in the group of real
points of a connected semi-simple linear algebraic group G over R.
Γ ⊂ G a (torsion free) lattice and X = G/K the associated
symmetric space.

A Maass form f ∈ C∞(X ) is a special type of
automorphic form on G with respect to Γ satisfying the following

I f (γg) = f (g) for all g ∈ G and γ ∈ Γ

I f (g) ≤ C ||g ||m for some m ∈ N and C ∈ R+ where
||g ||2 = tr(g tg)(moderate growth).

I Df = χλ(D)f for all D ∈ D(X ) and λ ∈ a⊗ C
D(X ) - The algebra of G -invariant differential operators on X

D(X ) ' S(a⊗ C)W

D(X ) always contains the Laplacian.
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Why study locally symmetric spaces... Number and
representation theory

A parabolic subgroup P = MAN ⊂ G , is called a Γ-cuspidal ([1])
if for every other parabolic subgroup P ′ ⊂ P we have

I Γ ∩ P ′ ⊂ M ′N ′

I (Γ ∩ N ′)\N ′ is compact

I (Γ ∩M ′N ′)\M ′N ′ has finite volume.

A Maass from f is called a cusp form if for any proper Γ-cuspidal
parabolic subgroup P = MAN ⊂ G∫

(Γ∩N)\N
f (nx)dn = 0.

For cusp forms we have f ∈ L2(Γ\X ) and are joint eigenfunction of
the algebra D(X ) of G -invariant differential operators on X .
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representation theory

I Questions about forms translate to questions about spectral
decomposition of L2(Γ\X ).

I The point spectrum of the Laplacian corresponds to the cusp
forms.

I Each joint eigenspaces of D(X ) gives us a G -representation
on V ⊂ L2(Γ\X ).
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Why study compactifications

It is shown in [2] that the Γ-equivariant short exact sequence

0→ C0(X )→ C (X )→ C (∂X )→ 0

induces (when Γ is exact) a six-term exact sequence

K0(C0(X/Γ)) K0(C (X ) o Γ) K0(C (∂X ) o Γ)

K1(C (∂X ) o Γ) K1(C (X ) o Γ) K1(C0(X/Γ))

∂∂

I Statements about the group cohomology of Γ, could be
inferred by this sequence.

I In some cases the C*-algebra C (∂X ) o Γ is simple nuclear and
purely infinite, possibly classifiable by Elliott invariants.

I Open question: does the Baum-Connes conjecture holds for
Γ = SLn(Z) ⊂ SLn(R) when n ≥ 3.
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I SLn(R)/SOn(R) is a symmetric space of noncompact type.
For the lattice SLn(Z) ⊂ SLn(R) the Baum-Connes conjecture
is still open for n ≥ 3.



Definitions...
A G-compactification of a symmetric space X of non-compact
type is

I A compact space X with a continuous G -action.
I A dense G -equivariant imbedding ι : X → X

The five main compactifications

I Geodesic or Gromov compactifications X
G

I Martin compactification X
M

I Satake compactification X
S

I Furstenberg compactification X
F

I Karpelevic compactification X
K

There is a partial order on the set of all compactifications given by

X
A ≤ X

B ⇔ X
B
� X

A

The Karpelevic compactification is the largest -

X
K
� X

U
, U ∈ [S ,M,F ,G ].



Definitions...
A G-compactification of a symmetric space X of non-compact
type is

I A compact space X with a continuous G -action.

I A dense G -equivariant imbedding ι : X → X

The five main compactifications

I Geodesic or Gromov compactifications X
G

I Martin compactification X
M

I Satake compactification X
S

I Furstenberg compactification X
F

I Karpelevic compactification X
K

There is a partial order on the set of all compactifications given by

X
A ≤ X

B ⇔ X
B
� X

A

The Karpelevic compactification is the largest -

X
K
� X

U
, U ∈ [S ,M,F ,G ].



Definitions...
A G-compactification of a symmetric space X of non-compact
type is

I A compact space X with a continuous G -action.
I A dense G -equivariant imbedding ι : X → X

The five main compactifications

I Geodesic or Gromov compactifications X
G

I Martin compactification X
M

I Satake compactification X
S

I Furstenberg compactification X
F

I Karpelevic compactification X
K

There is a partial order on the set of all compactifications given by

X
A ≤ X

B ⇔ X
B
� X

A

The Karpelevic compactification is the largest -

X
K
� X

U
, U ∈ [S ,M,F ,G ].



Definitions...
A G-compactification of a symmetric space X of non-compact
type is

I A compact space X with a continuous G -action.
I A dense G -equivariant imbedding ι : X → X

The five main compactifications

I Geodesic or Gromov compactifications X
G

I Martin compactification X
M

I Satake compactification X
S

I Furstenberg compactification X
F

I Karpelevic compactification X
K

There is a partial order on the set of all compactifications given by

X
A ≤ X

B ⇔ X
B
� X

A

The Karpelevic compactification is the largest -

X
K
� X

U
, U ∈ [S ,M,F ,G ].



Definitions...
A G-compactification of a symmetric space X of non-compact
type is

I A compact space X with a continuous G -action.
I A dense G -equivariant imbedding ι : X → X

The five main compactifications

I Geodesic or Gromov compactifications X
G

I Martin compactification X
M

I Satake compactification X
S

I Furstenberg compactification X
F

I Karpelevic compactification X
K

There is a partial order on the set of all compactifications given by

X
A ≤ X

B ⇔ X
B
� X

A

The Karpelevic compactification is the largest -

X
K
� X

U
, U ∈ [S ,M,F ,G ].



Definitions...
A G-compactification of a symmetric space X of non-compact
type is

I A compact space X with a continuous G -action.
I A dense G -equivariant imbedding ι : X → X

The five main compactifications

I Geodesic or Gromov compactifications X
G

I Martin compactification X
M

I Satake compactification X
S

I Furstenberg compactification X
F

I Karpelevic compactification X
K

There is a partial order on the set of all compactifications given by

X
A ≤ X

B ⇔ X
B
� X

A

The Karpelevic compactification is the largest -

X
K
� X

U
, U ∈ [S ,M,F ,G ].



Definitions...
A G-compactification of a symmetric space X of non-compact
type is

I A compact space X with a continuous G -action.
I A dense G -equivariant imbedding ι : X → X

The five main compactifications

I Geodesic or Gromov compactifications X
G

I Martin compactification X
M

I Satake compactification X
S

I Furstenberg compactification X
F

I Karpelevic compactification X
K

There is a partial order on the set of all compactifications given by

X
A ≤ X

B ⇔ X
B
� X

A

The Karpelevic compactification is the largest -

X
K
� X

U
, U ∈ [S ,M,F ,G ].



Definitions...
A G-compactification of a symmetric space X of non-compact
type is

I A compact space X with a continuous G -action.
I A dense G -equivariant imbedding ι : X → X

The five main compactifications

I Geodesic or Gromov compactifications X
G

I Martin compactification X
M

I Satake compactification X
S

I Furstenberg compactification X
F

I Karpelevic compactification X
K

There is a partial order on the set of all compactifications given by

X
A ≤ X

B ⇔ X
B
� X

A

The Karpelevic compactification is the largest -

X
K
� X

U
, U ∈ [S ,M,F ,G ].



Definitions...
A G-compactification of a symmetric space X of non-compact
type is

I A compact space X with a continuous G -action.
I A dense G -equivariant imbedding ι : X → X

The five main compactifications

I Geodesic or Gromov compactifications X
G

I Martin compactification X
M

I Satake compactification X
S

I Furstenberg compactification X
F

I Karpelevic compactification X
K

There is a partial order on the set of all compactifications given by

X
A ≤ X

B ⇔ X
B
� X

A

The Karpelevic compactification is the largest -

X
K
� X

U
, U ∈ [S ,M,F ,G ].



Definitions...
A G-compactification of a symmetric space X of non-compact
type is

I A compact space X with a continuous G -action.
I A dense G -equivariant imbedding ι : X → X

The five main compactifications

I Geodesic or Gromov compactifications X
G

I Martin compactification X
M

I Satake compactification X
S

I Furstenberg compactification X
F

I Karpelevic compactification X
K

There is a partial order on the set of all compactifications given by

X
A ≤ X

B ⇔ X
B
� X

A

The Karpelevic compactification is the largest -

X
K
� X

U
, U ∈ [S ,M,F ,G ].



Definitions...
A G-compactification of a symmetric space X of non-compact
type is

I A compact space X with a continuous G -action.
I A dense G -equivariant imbedding ι : X → X

The five main compactifications

I Geodesic or Gromov compactifications X
G

I Martin compactification X
M

I Satake compactification X
S

I Furstenberg compactification X
F

I Karpelevic compactification X
K

There is a partial order on the set of all compactifications given by

X
A ≤ X

B ⇔ X
B
� X

A

The Karpelevic compactification is the largest -

X
K
� X

U
, U ∈ [S ,M,F ,G ].



A universal metric G-compactification

A universal metric G -compactification can be constructed as
follows

I For every chain X 1 ≤ X 2 ≤ ..., let X = limX i be the
projective limit.

I X = {(x1, x2, ...) | f (xi+1) = xi}
I weak topology induced by the projections

pi : X → X i (x1, ...) 7→ xi

I F : G × X → X is continuous iff

pri ◦ F : G × X → X i (g , (x1, ...)) 7→ gxi
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A universal metric G-compactification

Properties preserved by projective limits

I being compact Hausdorff

I being non-empty compact Hausdorff

I being connected compact Hausdorff

I being compact Hausdorff of covering dimension ≤ n

I being topological complete metrizable.

Results so far -

I There exists a maximal compact metric G -compactification
βGX of covering dimension ≤ n = dim(X ).

I In the case of rank(X ) = 1 we have βGX ' X
K ' X

G
.
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