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Abstract Non-equilibrium molecular dynamics simula-

tions, of crucial importance in sliding friction, are ham-

pered by arbitrariness and uncertainties in the removal of

the frictionally generated Joule heat. Building upon general

pre-existing formulation, we implement a fully micro-

scopic dissipation approach which, based on a parameter-

free, non-Markovian, stochastic dynamics, absorbs Joule

heat equivalently to a semi-infinite solid, and harmonic

substrate. As a test case, we investigate the stick–slip

friction of a slider over a two-dimensional Lennard-Jones

solid, comparing our virtually exact frictional results with

approximate ones from commonly adopted dissipation

schemes. Remarkably, the exact results can be closely

reproduced by a standard Langevin dissipation scheme,

once its parameters are determined according to a general

and self-standing variational procedure.

Keywords Nanotribology � Dynamic modelling �
Friction mechanisms � Stick–slip

1 Introduction

Ordinary, macroscopic sliding friction, a far reaching subject

of enormous physical, technological, and practical impor-

tance, is notoriously complex and hard to approach from a

microscopic viewpoint, both experimentally and theoreti-

cally. The two last decades have seen quiet but important

progress in that arena. Experimentally, the advent of nano-

size slider methodologies is offering much fresh data and

lively progress. On the theory side, advances in computing

hardware and codes now allows atomistic molecular

dynamics (MD) simulations to be extensively used to

describe sliding nanofriction: not simply as a mean of sup-

plementing experimental studies, but as a general framework

for gaining unique insight into the relevant tribological

processes sometimes overturning conventional wisdom

[1, 2]. In MD simulations, the classical dynamics of atoms is

described by solving numerically Newton’s equations of

motion in a controlled computational experiment, where the

interface geometry, sliding, boundary conditions, and inter-

particle interactions can be chosen and varied to explore

various effects on friction, adhesion, and wear. By following

the particle dynamics for a significant amount of time,

quantities of physical interest such as instantaneous and

average frictional force, mean velocities, heat flow, and

correlation functions are calculated to characterize the slid-

ing motion and the corresponding steady state values. Unlike

standard equilibrium MD simulations, friction modeling

inherently involves dynamics and properties quite far from

equilibrium. Moreover, as a rule, the dynamics is highly

nonlinear too, for example in stick–slip friction.
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Actually, while MD simulations are quite valuable in

qualitatively catching the physics of microscopic friction

between extended solids, a quantitative agreement with

experimental results is still beyond hopes [3]. Besides the

practical difficulty posed by the necessity to describe inter-

atomic interactions by either empirical force fields or with

costly first principles calculations, an additional weak point

of MD simulations lies in the impossibility to access the

experimental time scales [4]. When attempting to simulate,

e.g., a nanoscale Friction Force Microscopy experiment,

with the tip advancing at a far low average speed of

^1 lm/s, one can typically simulate a miserable ^1 pm

advancement in a standard run, far too short to observe

even a single atomic-scale event, let alone reaching a

steady state, or the development of any instability process,

and thus the quantitative evaluation of any useful frictional

property. Therefore, whenever long-distance correlations

and/or slow diffusive phenomena and/or long equilibration

times are to be expected, fully atomistic MD approaches

will only grab a qualitative scenario of the system tribo-

logical response. Nevertheless, there is so much direct

physical insight to be extracted from MD simulations that it

does make sense to run them even at larger speeds than in

Atomic Force Microscopy (AFM) or Surface Force

Apparatus experiments; and in fact, the sliding speed

adopted in most current atomistic MD frictional simula-

tions is much higher, in the 0.1–10 m/s range.

The fast frictional motion in MD simulations ends up of

course generating a vast amount of Joule heat. At the same

time, the simulated system where that Joule heat is dispersed

is generally of very limited size compared to the practically

infinite environment of real experiments. That raises the

problem, which is the focus of this paper, of how that Joule

energy can be continuously dissipated, ‘‘thermostated’’

away, in order for the simulated system to reach a realistic

steady state rather than building up. At equilibrium, it does

not matter how the thermostat scheme is built, because

equilibrium properties do not depend on it. On the contrary,

in dynamical non-equilibrium processes, such as those

occurring in tribology under the action of external drive, the

choice of a suitable physical thermostat is crucial, to dispose

of the external energy which is continuously pumped into the

system. In the framework of wearless friction, for instance,

sliding-induced creation of phonons is a crucial mechanism

of energy dissipation. An unsolved problem in realistic MD

is that the generated phonons cannot escape the small sim-

ulated contacting region between a slider and the underneath

substrate (see Fig. 1) unlike in the real system, where they

can properly disperse the Joule heat away from the interface.

The simulation-cell boundaries back-reflect the phonons

toward, e.g., the slider-substrate contact, as shown in panel

(b) of Fig. 2, affecting so the frictional response. As phonons

are continuously generated by sliding, the simulated portions

of the slider and substrate heat up, reaching quickly the

melting point. Thus, in order to attain a frictional steady state

in simulation, the Joule heat must be removed. Unfortu-

nately, a realistic energy dissipation is generally impossible

to mimic reliably, owing to size limitations of the simulation

cell. The empirical introduction in the equations of motion of

ad-hoc Langevin viscous damping terms�mc _qi (with m and

_qi the mass and the velocity of the ith substrate particle) and

of an associated random noise, corresponding to some

‘‘thermostat’’ temperature T [5], represents the handiest and

commonest solution, which most simulations adopt. How-

ever, both this procedure and the choice of thermostat and

damping parameters c are vastly arbitrary. The problem is

not just one of principle, for in many cases (including, just as

a significant example, multiple-slips in AFM [6]) the

resulting steady state and friction coefficient actually depend

upon the choice of these unphysical parameters. Here, after

demonstrating this unphysical dependence, we will pursue

and detail a viable solution, whose core was already outlined

in a recent paper [7].

2 Non-Markovian Langevin Approach for Realistic

Tribological Modeling

Basically, one wishes to modify the equations of motion inside

a relatively small simulation cell so that they reproduce the

frictional dynamics of a much larger system, once the

remaining variables are integrated out. Integrating out degrees

of freedom is a traditional problem, largely analyzed in the

literature [5, 8, 9]. In the context of MD simulation, Green’s

function methods were formulated for quasi-static mechanical

contacts [10]; approaches based on a discrete-continuum

semi-infiniteheat bath
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Fig. 1 Ideal block-scheme of a MD simulation of friction. To

account properly for heat dissipation, the infinitely thick substrate is

divided into three regions: i a ‘’live‘’ slab comprising layers whose

atomic motion is fully simulated by Newton’s equations; ii a

dissipative boundary zone, coincident with the deepmost simulated

layer, whose dynamics includes effective damping (e.g., non-

Markovian Langevin-type) terms, as in Eq. (8); iii the remaining

semi-infinite solid, acting as a heat-bath, whose degrees of freedom

are integrated out
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matching have also been discussed [11]. Among others, time-

honored dissipation methods have been considered which

replace the dynamics of the surrounding degrees of freedom

(the ‘‘heat-bath’’) by several terms in the equations of motion

for the system, describing effects [12–14] such as (1) the

renormalization of the forces acting on and between the rel-

evant coordinates; (2) the introduction of viscous drag

describing the energy dissipation from the system into the

heat-bath; (3) the introduction of random forces describing the

inverse effect of energy transfer from the bath into the system.

Recently [7] a direct implementation of a non-Markovian

dissipation scheme, based on early formulations by Maga-

linskii and Rubin [9, 15] and subsequent derivations by Li

et al. [16] and by Kantorovich [17, 18], has demonstrated the

correct disposal of friction-generated phonons in realistic MD

simulations of sliding tribological systems, as the one sket-

ched in Fig. 1. Once that was done, one could benchmark

some simpler empirical Langevin scheme optimizing the c
parameters so as to yield less arbitrary frictional properties.

We describe here in detail how both goals are achieved,

picking for our demonstration, without loss of generality, a

specific two-dimensional (2D) realization.

We consider a simplified tribological system red where

the upper slider is represented by a one-dimensional (1D)

chain of atoms along the x-axis driven on top of a 2D semi-

infinite crystalline substrate lying in the (x, z) plane, where

atoms interact, for simplicity, via first-neighbor Lennard-

Jones (LJ) potential. The slider, pressed against the sub-

strate by a normal ‘‘load’’ F0, is driven along x (parallel to

the surface) through a spring k, whose end is pulled at

constant velocity v0. Following earlier formulations [17],

the ideal infinitely thick substrate is divided, as sketched in

in Fig. 1 in a 3D cartoon, into three regions: (i) an

explicitly simulated substrate portion of Nz atomic layers

with displacement vectors r(t), (ii) the dissipative boundary

layer, with displacement vectors q(t); and (iii) the

remaining semi-infinite solid acting as a phonon absorber,

heat-bath, with displacement vectors b(t). Under certain,

not too restrictive, assumptions described below, the heat-

bath degrees of freedom (iii) can be integrated out to let a

small simulation cell, namely (i) ? (ii), account exactly for

the energy dissipation as due to a semi-infinite substrate,

where the boundary layer (ii) is now ruled by effective non-

Markovian Langevin equations, as derived in the follow-

ing. The first needed assumption is to substitute the full LJ

potential within regions (ii) and (iii), i.e., far away from the

sliding interface, with its harmonic approximation. This

choice, necessary to derive an exact analytical form for the

effective forces acting on the boundary atoms, is all the

more accurate the weaker the intensity of the slider per-

turbation and the lower the temperature. Nevertheless, for

crystalline substrates well below the Debye temperature,

anharmonic perturbations reaching the heat-bath can

always be avoided by a sufficient thickness Nz of the

explicitly simulated substrate (i): these excitations, travel-

ing through the LJ substrate, will gradually lose their

energy turning into harmonic phonons prior approaching

the boundary harmonic absorber. In a compact matrix

notation, the hamiltonian of the system reads

H ¼ T þ Uðr; qÞ þ qy � ĥ � qþ qy � /̂ � bþ by � D̂ � b; ð1Þ

where T is the overall kinetic energy term, U is the LJ

interactions among atoms in region (i) and between regions

(i) and (ii), ĥ and /̂ are the LJ harmonic approximations for

the atomic interactions in region (ii) and between regions

(ii) and (iii) respectively, and D̂ is the dynamical tensor of

the heat-bath (iii). Matrices and vectors have the form

D̂ ¼ D̂xx D̂xz

D̂zx D̂zz

� �
; q ¼ qx

qz

� �
; ð2Þ

where each component is again a matrix or a vector of

components Dlm
ij or ql

i , with latin indexes running over the

atoms and greek indexes running over the two x and

z coordinates. From the Hamiltonian (1), we can derive the

following three sets of equations of motion:

(a)

(b)

Fig. 2 Propagation into the substrate of surface injected energy.

Tapping on the surface layer (Nz = 1) a burst of phonons has been

created, its time evolution is monitored plotting the average kinetic

energy of equi-spaced atomic layers versus time. a A complete

absorption of the phonon batch as it reaches the bottom of the

simulation cell (Nz = 50) where our dissipation scheme is applied.

b A total back-reflection of phonons when the correct dissipative

kernels are switched off
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m€rðtÞ ¼ � dUðr; qÞ
dr

; ð3Þ

m€qðtÞ ¼ � dUðr; qÞ
dq

� ĥ � qðtÞ � /̂ � bðtÞ; ð4Þ

m€bðtÞ ¼ �/̂ � qðtÞ � D̂ � bðtÞ: ð5Þ

Notice that the dynamics of atoms in region (i) is influenced

only by atoms of region (ii), while the dynamics of region (iii)

depends only upon the dynamics of region (ii), in other words,

thanks to the adopted cut-off LJ interaction, regions (i) and

(iii) are decoupled and they interact only indirectly via the

boundary layer (ii). The thickness size of the boundary layer

(ii) depends on the cut-off radius: by considering only nearest-

neighbors in the LJ interaction, we end up in our case with a

region (ii) made of a single atomic layer [18]. Thanks to the

assumed harmonicity of the heat-bath interactions, we can

decouple the equations for b(t), diagonalizing the dynamical

tensor D̂ and finding its eigenvalues xi and eigenvectorski. By

using the eigenvectors as a basis set bðtÞ ¼
P

i niðtÞki, we

substitute this projection into Eq. (5), obtaining a set of easily

solvable decoupled equations for the normal coordinates ni,

€niðtÞ þ x2
i niðtÞ ¼ �k

y
i � /̂ � qðtÞ; ð6Þ

where the rhs is a time-dependent scalar quantity. The final

expression for b(t) becomes

bðtÞ ¼
X

i

k
y
i �
 

bð0Þ cosðxitÞ þ _bð0ÞsinðxitÞ
xi

� /̂ � qðtÞ
x2

i

þ/̂ � qð0ÞcosðxitÞ
x2

i

þ /̂ �
Z t

0

_qðsÞcosðxiðt � sÞÞ
x2

i

ds

!
ki;

ð7Þ

which depends on the initial conditions of atoms in region

(iii) and on the actual position of atoms in region (ii). By

substituting this expression into Eq. (4), we get

mqðtÞ ¼ � dUðr; qÞ
dq

þ K̂ð0Þ � ĥ
� �

� qðtÞ

� m

Z t

0

K̂ðt � sÞ _qðsÞdsþ FðtÞ;
ð8Þ

where K̂ðtÞ and F(t) are defined as follows

K̂ðtÞ ¼
X

i

ðkyi � /̂Þð/̂ � kiÞ
x2

i

" #
cos ðxitÞ; ð9Þ

FðtÞ ¼ �
X

i

ð/̂ � kiÞkyi � bð0Þ cosðxitÞ þ _bð0ÞsinðxitÞ
xi

� �
:

ð10Þ

Equation (8) still depends on the initial conditions of the

heat-bath through F(t). Because this region is in principle

infinitely extended, we cannot specify the initial conditions

for the position and the velocity of all its atoms; however,

we are allowed to perform an equilibrium canonical

ensemble average introducing a temperature T. Using for

the partition function the bath hamiltonian only, it is easy

to prove that

hnið0Þnjð0Þi ¼ k
y
i � hbð0Þbð0Þi � kj ¼

KBT

mx2
i

dij; ð11Þ

h _nið0Þ _njð0Þi ¼ k
y
i � h _bð0Þ _bð0Þi � kj ¼

KBT

m
dij; ð12Þ

hnið0Þ _njð0Þi ¼ k
y
i � hbð0Þ _bð0Þi � kj ¼ 0; ð13Þ

being KB the Boltzmann’s constant. Another possibility,

adopted for example in Ref. [17, 18], is to include in the

partition function also the term ruling the interaction

between region (ii) and (iii). As a result the final effective

equation of motion (16) takes a slightly different form.

Using the previous conditions into Eq. (10), we end up with

the following statistical properties for the force F(t)

hFðtÞi ¼ 0; hFðtÞFðt0Þi ¼ mKBT K̂ðt � t0Þ; ð14Þ

or in component notation

hFi
lðtÞi ¼ 0; hFi

lðtÞF j
mðt0Þi ¼ mKBTKij

lmðt � t0Þ: ð15Þ

Thus Eq. (8) can be regarded as a non-Markovian Langevin

equation with a gaussian random noise correlated

according to the rules (15), and a dissipative term with a

memory kernel function specified by (9). Its expression in

single component notation is given by

m€qi
lðtÞ ¼ �

dUðr; qÞ
dqi

l
� m

X
j;m

Z t

0

ds Kij
lmðt � sÞ _q j

mðsÞ

þ Fi
lðtÞ þ

X
j;m

q j
mðtÞ Kij

lmð0Þ � hij
lm

� �
:

ð16Þ

The first term takes into account the interaction between

the boundary layer atoms and the rest of the simulated

substrate. The second one is non-Markovian and non-

conservative, introducing an effective damping propor-

tional to the velocity of all the boundary layer atoms, via a

time convolution with the memory kernel functions Klm
ij (t).

The third term of Eq. (16) is the gaussian correlated noise

ruled by the same memory kernel functions involved in the

dissipation, in agreement with the fluctuation–dissipation

theorem. Notice that in a standard Langevin equation the

compliance with the fluctuation–dissipation theorem is

imposed a priori and the noise properties are derived from

this constraint.

In our formulation, which starts from a microscopic set

of Hamilton’s equations, the fluctuation–dissipation theo-

rem is automatically fulfilled just performing the canonical
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ensemble average. The last term in Eq. (16) finally repre-

sents the harmonic coupling between ith and jth atoms

within the boundary layer, where the coupling constant hlm
ij

is modified by Klm
ij (0). This renormalization of the elastic

coupling for the region (ii) atoms vanishes as we include

the interaction between the bath and the boundary layer

into the partion function for the ensemble average. It has

been demonstrated theoretically [17], and it can be easily

verified in simulations, that the application of Eq. (16) to

the boundary layer alone is sufficient to force the whole

system to follow a canonical ensemble distribution with

temperature T. The memory kernel matrix (9) in the single-

component notation reads

Kij
lmðtÞ ¼

X
k;l;m;a;b

ðkykÞ
l
a /il

la

� �
/jm

mb ðkkÞmb
� �

x2
k

2
4

3
5 cos ðxktÞ:

ð17Þ

Each component is built from the harmonic eigenvalues

and eigenvectors of the heat-bath dynamical matrix and from

the coupling vectors /il
la containing the harmonic coupling

constants of the i-th atom of region (ii) with the lth heat-bath

atom. As shown in Fig. 3, the kernels oscillate and decay

rapidly with time, with power law tails due to the bath

acoustical phonon branches. However, as long as the heat-bath

region remains finite the summations in (17) are limited and

the kernels are quasi-periodic functions [5]. Waiting for a

large time K, which depends on the heat-bath size, the kernel

functions rise and decay again repeatedly, this time periodicity

marks the energy back-reflections from one end of the finite

heat-bath to the opposite one. In the limit of infinitely

extended heat-bath K!1, no energy back-reflection

occurs. The numerical calculation of xk and kk can be

carried out only for a finite dynamical tensor, i.e., for a finite

bath, however, we can set Klm
ij (t) = 0 for all t [ s with s\K

preventing the first reflection. If the heat-bath is large enough

we verified that Klm
ij (t) for t \ s is well converged, its shape

being insensitive to the addition of more terms in the

summations of (17). By cutting kernels off after a time s one

can limit the time-integrals in Eq. (16), which need to be

evaluated at each time step, thus decreasing the heavy

computational cost. But s represents also the maximum time

for which the boundary layer retains memory and correlation,

therefore, via some convergence tests, we have to be sure that

the quantities of interest do not depend on the chosen s value.

Periodic boundary conditions along the x direction guarantee

translational invariance, so that Klm
ij (t) is a function of ji� jj

only. As kernels inherit their symmetry properties from those

of the heat-bath dynamical matrix, one can also show that

Klm
ij (t) = Kml

ij (t) and Klm
ij (t) = Kml

ji (t). When the separation

ji� jj grows, jKij
lmðtÞj decrease, but again not exponentially,

and correlations must be included up to large distance.

Implementing this set of equations, along with ordinary

Newton’s equations governing the remaining slider and

substrate atom motion was our first MD simulation step.

Figure 2a illustrates how a relatively thin (i.e., Nz = 30

layers) substrate (i ? ii) is able to mimic the full ideal semi-

infinite system (i ? ii ? iii). Layer-resolved kinetic energies

inside the simulated substrate show a group of phonons

initially created at the upper interface and propagating away

from it. Upon reaching the boundary layer the phonons are

perfectly absorbed as they propagate into the (integrated out)

semi-infinite crystal (iii). For comparison, Fig. 2b shows the

same phonons massively back reflected once the memory

kernels are removed from the boundary layer.

3 Simulating Atomic Stick–Slip

We next proceed to simulate sliding friction by driving the

slider (consisting, in the adopted 2D modeling, of a LJ chain

of N0x = 9 atoms) over the live substrate, consisting of

Nz = 30 close packed layers and Nx = 10 atoms per layer.

Simulations were performed at temperature KBT = 0.035,

roughly corresponding to T/Tmelting = 0.06 (LJ units used

throughout). To favor sliding, the strength of the slider-

substrate LJ interaction is reduced from 1 to 0.6. The equa-

tions of motion are integrated by a modified velocity-Ver-

let algorithm with a time step of Dt ¼ 5� 10�3, and the

memory kernel functions are cutoff at s ¼ 5� 103 time-

steps.1 Both the vertical load F0 and the lateral driving are

Fig. 3 Plot of some selected memory kernel functions versus time

(LJ units)

1 The correlated random noise sequence, to be applied to the

boundary layer atoms, has been generated at the beginning of the

simulation using the rules (15). If we have to correlate in time a single

random number sequence, we can generate a set of uncorrelated

numbers in Fourier space, multiply them by the Fourier transform of

the correlation matrix and make the inverse transform to get back to

the real space [19].
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applied to the slider center of mass, the equation of motion

for the slider degrees of freedom si is

m €six ¼ �
dUðr; sÞ

dsix
� dUðsÞ

dsix
� kðsxCM � v0tÞ ð18Þ

m €siz ¼ �
vdUðr; sÞ

dsiz
� dUðsÞ

dsiz
� F0 ð19Þ

where Uðr; sÞ is the LJ interaction with the substrate atoms

(i) and UðsÞ is the LJ interaction among the slider atoms,

sxCM is the slider center of mass position along x. As usual

the friction force is measured by the spring elongation

k(sxCM - v0 t) representing the slider resistance to the lateral

driving. The applied load is F0 = 10, the average sliding

velocity v0 = 0.01, and the spring constant k = 5. The result

is the sawtooth force profile in Fig. 4a typical of intermittent

stick–slip friction. The friction coefficient, obtained by

averaging over several stick–slip events, is hFi=F0 ¼
0:116� 0:002: The slider is slightly incommensurate with

the substrate, so that the sawtooth pattern is quite irregular

with a periodicity not exactly matching one lattice spacing.

An anti-kink (physically corresponding to a tiny localized

expansion in the particle array density of the slider due to the

interface mismatch) appears at the interface, moving in the

opposite direction with respect to the slider: the height of the

sawtooth spikes is proportional to the jump length of the

anti-kink. Higher spikes occur for simultaneous forward

jumps of many atoms, smaller ones correspond to jumps of

2–3 atoms at once. A measure of the distribution of the spike

heights is the variance of F(t), i.e.,

r ¼ 1

ss

Zss

0

½FðtÞ � hFi�2dt; ð20Þ

where ss is the total simulation time. Numerical simula-

tions carried out with the full Eq. (16), and the corre-

sponding frictional results are essentially exact for the

system considered. That completes our first important goal

of implementing the correct Joule heat removal, thus also

establishing a benchmark reference. Not surprisingly, this

numerical implementation is time consuming. In particular

the computational effort required to integrate the non-

Markovian term, where boundary atoms are strongly cor-

related, scales as Nx
2. Carrying out future fully realistic

frictional simulations for large-size 3D sliding systems

within this scheme is in our view entirely possible, but may

pose some practical challenge of parallel computing.

This brings us to our second point. As was mentioned,

much simpler and faster approximate frictional simulations

are realized once the non-Markovian memory kernels of

Eq. (16) are empirically replaced with a more ordinary

Markovian Langevin viscous damping �mc _qi
lðtÞ, along

with the appropriate gaussian stochastic force Ri(t) with

hRi
lðtÞi ¼ 0 and hRi

lðtÞR j
mðt0Þi ¼ 2mKBTcdl;mdi;jdðt � t0Þ,

so that the equation of motion of the ith thermostated atom

in the system reads

m€qi
lðtÞ ¼ �

dU
dqi

l

� mc _qi
lðtÞ þ Ri

lðtÞ ; ð21Þ

where U is the LJ inter-atomic interaction. Performing a

series of simulations with the same system parameters, the

previous exact implementation now offers the possibility to

benchmark the empirical damping c. In principle, this

standard Langevin scheme can be differently exploited,

applying it to: I. (Fig. 4b, curves 1 and 2) the slider atoms

only, while freezing the substrate degrees of freedom, as

1

5

2

34

(a) (b)

(c) (d)

Fig. 4 a Calculated friction

force profile F(t) for the full

non-Markovian dissipation

scheme of Eq. (16), and for

different empirical viscous

damping schemes

(b–d) described in text, and

identified by numbers 1–5 in

Fig.5. Dashed lines
mean value hFi
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typically done in the simplified framework of Prandtl–

Tomlinson and Frenkel–Kontorova modeling [20]; II.

(Fig. 4c, curves 3 and 4) to each substrate atom, possibly

by making it site-dependent [21]; III. (Fig. 4d, curve 5) just

to the bottom simulation-cell layer, as considered for the

parameter-free, non-Markovian, stochastic dynamics. In all

these cases, we find a strong dependence of the system

frictional response on the choice of the damping c, in general

deviating always systematically from the correct benchmark.

Figure 5a, b shows the behavior of the friction coefficient

and its variance, respectively, as a function of c. The gray

stripes indicates the benchmark values of hFi=F0 and hri
obtained with our parameter-free dissipation scheme,

mimicking a semi-infinite substrate. The dashed line

represents the results for standard Langevin equations

applied, only, to the slider atoms (case I.): this turns out to

be the most unrealistic and c-sensitive situation. A too large c
introduces a strong viscous character, and leads to

overestimating the friction force, while a too small c
results in a chaotic behavior, with the slider dynamics

being unable to dissipate enough energy. This scenario is

outlined in Fig. 4b where the F(t) stick–slip profile is plotted

for c = 0.01 (blue solid line) and for c = 1.0 (black dotted

line). At c = 0.035 in Fig. 5a, this average friction force

curve crosses the ‘‘exact-method’’ (gray) stripe with a value

hFi=F0 ¼ 0:117� 0:001, but with a too large variance hr ¼
0:28i (Fig. 5b), and a consequent very inaccurate

reproduction of the stick–slip pattern (not shown). The

dotted line in Fig. 5 represents the Markovian Langevin

thermostat applied, more realistically, to all substrate atoms

(case II.): the slider exchanges energy with the substrate by

exciting phonons at the interface; these phonons are then

damped within the substrate independently of the slider

velocity. However, a too large c will lead to a very viscous

surface preventing the correct energy exchange between the

slider and the substrate, and hFi=F0 increases too much, as in

the previous case. A too small c, on the contrary, makes the

substrate unable to dissipate the phonons, which are then

reflected back, reaching again the surface and heating it to

unphysically large temperatures, thus spuriously decreasing

the friction force. Figure 4c, corresponding to such case II.,

shows F(t) for a low c value of 0.01 (blue solid line): the

effect of the reflected phonons is to reduce the static friction

force, decreasing the swing of the saw-tooth profile. F(t) is

also displayed for c = 0.1 (black dotted line): the average

friction force here approaches our semi-infinite substrate

result, mimicking well also the stick–slip profile, as

highlighted by the simultaneous good values of the friction

coefficient and the standard deviation in Fig. 5a, b. However,

there is here (case II.) no a priori possibility to choose the

optimal value of the damping parameter without having

previously performed an exact non-Markovian benchmark

calculation. Besides, in order not to directly interfere with the

detailed dynamics and the slider-substrate energy exchange,

the Langevin viscous damping term should be switched on

far from the surface as, e.g., in the bottom dissipation layer

(case III.), shown by the continuous line in Fig. 5. We find

that there exists an optimal damping copt (here copt * 10) for

which both the friction coefficient and its variance agree well

with the exact values (see Fig. 5a, b). Moreover, also the

stick–slip profile in Fig. 4 for c = copt (panel d) compares

excellently with the exact one (panel a). Remarkably the c
value for which the friction profile better resemble the exact

one corresponds to the one which maximizes the average

friction force. To understand this relation, we look at the

energy dissipated by the boundary layer:

W ¼ �m
X

i

Z
c _qi � dqi ¼ �m

X
i

Z
c j _qij2dt; ð22Þ

finding a maximum at the same c values as illustrated in

Fig. 5c. This maximum occurs because back-reflection of

phonons is large both when the boundary layer damping c is

too small and too large. The efficiency in the energy removal

I. Slider
II. Substrate
III. Bottom

(a)

(b)

(c)

Fig. 5 a, b illustrate the friction coefficient hFi=F0 and variance hri
behaviors as a function of the damping coefficient c for different

empirical Langevin dissipation schemes, in comparison with the exact

values from the full non-Markovian simulation (gray stripes). c The

boundary layer absorbed energy W of the Langevin thermostat (21).

Note the good coincidence of exact and empirical frictional behavior

for the optimal c that maximizes W
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goes as �mc _qi, so that at low c values the boundary layer

atoms cannot dissipate significantly even if vibrating very

fast; in the opposite limit of large c, the boundary layer

dynamics becomes so viscous (low atomic velocities) that an

effective dissipation is again hampered. At c = copt, we

reach a good compromise between the strength of the

damping and the atom velocities and most of the impinging

energy is disposed of. The agreement between the exact

frictional results, where no phonons are back reflected, and

the approximate ones is therefore best when energy back-

reflection is minimal and this can occur for a single c value

only. The minimal phonon back-reflection condition also

establishes the smallest temperature at the sliding interface.

While this makes good physical sense, we still contemplate

the possibility that the numerical result might be just some

kind of coincidence in a single simulation. We therefore

proceed to change system parameters, including sliding

velocity, and load. In all cases we find an optimal c value,

where both the friction force and the energy dissipated by the

boundary layer are maximized and where both average

friction and variance coincide with the exact value separately

calculated by a full non-Markovian simulation. For example

the variable load results of Fig. 6 show that the coincidence

of optimal and exact friction is systematic as well as the

presence of the force maximum that can be thus exploited as

a tool to calibrate the viscous coefficient c for any general

system even without the exact non-Markovian benchmark.

4 Conclusions

We have shown here that sliding friction obtained by

molecular dynamics simulations may depend heavily on

the scheme adopted for the elimination of Joule heat. None

of the empirical but commonly used dissipation schemes

seems satisfactory. One might for example apply a

Langevin viscous damping c to the slider atoms alone [20],

or, uniformly to all substrate atoms [22]. Shown as dashed

and dotted lines respectively in Fig. 3, the friction coeffi-

cients produced by these approximations, although cross-

ing the correct values as a function of c, generally yield a

much lower quality description as seen by the stick–slip

profiles in Fig. 2. More importantly, these schemes gen-

erally offer no clue on how to optimize the empirical

parameter c in the absence of the exact simulation.

We then showed how the real dissipation of phonons

into a harmonic semi-infinite solid substrate can be simu-

lated by implementing well-established non-Markovian

schemes. Once the exact non-Markovian dissipation is

replaced by an approximate and empirical Langevin

damping c applied to the bottom layer of the simulated

substrate slab, an optimal value for c is easily and varia-

tionally found by maximizing dissipation—a condition

which can be established without resort to any exact ref-

erence calculation. This is a result which in all likelihood

appears more general than the simple model used to

demonstrate it, and should thus be quite valuable for gen-

eral applications.
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