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Abstract We study the slippage of a tribological system of

particles confined between a horizontally driven top plate and

a vertically oscillating bottom plate. As shown in a recent

article (Capozza et al., Phys Rev Lett 103:085502, 2009), tiny

vibrations, when applied in a suitable range of frequencies,

may suppress the high dissipative stick–slip dynamics

reducing drastically the lateral friction force. Here, we gen-

eralize and prove the robustness of the results against the

effect of quenched disorder in the confining substrates and the

presence of adhesive and cohesive forces at the interface. The

observed phenomenology is shown to hold true by moving

from the previously considered two dimensional modeling to

a more realistic three dimensional geometry. A detailed

analysis is devoted to the case of short vibration pulses. These

findings are relevant for nanoscale mechanics and in the

context of earthquake or avalanches triggering.

Keywords Mechanical control of friction � Friction

mechanisms � Stick–slip � Numerical simulations

1 Introduction

Understanding the mechanisms that can reduce friction and

facilitate the slippage of two surfaces in contact is of

fundamental interest and practical importance for nano-

scale systems as well as for macroscale ones [1, 2]. The

energy accumulated during the stick phase, when the sur-

faces are interlocked together, is released at the interface

during the slip event as soon as the driving force over-

comes the static friction threshold. This sticking/slipping

alternation is responsible for serious limitations on the

performance and lifetime of technological micro devices

(due, e.g., to wear and debris) but also dictates, on much

larger macroscopic scales, the occurrence of catastrophic

events, like earthquakes between geological faults. The

strain energy release at the interface may follow different

dissipative paths, ranging from single sudden catastrophic

jumps to much slower tiny multiple slips. Many factors

may indeed influence the slip phase. The temperature can,

for example, decrease the slip length of a nanometric tip

resulting in a rich temperature dependence of friction

[3–6]. It has also been observed in different tribological

systems, both numerically [6–10] and experimentally [11–

14], that small mechanical vibrations, when applied at

suitable frequency and amplitude ranges may increase

surface mobility and diffusion or, as in sheared granular

R. Capozza (&)

School of Chemistry, Tel Aviv University, 69978 Tel Aviv,

Israel

e-mail: rosario.capozza@gmail.com

A. Vanossi

Consiglio Nazionale delle Ricerche CNR-IOM Democritos

and International School for Advanced Studies (SISSA),

Via Bonomea 265, I-34136 Trieste, Italy

e-mail: vanossi@sissa.it

A. Vezzani

Dipartimento di Fisica, Università degli Studi di Parma, Viale
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media experiments, perturb the intermittent dynamics by

triggering small amplitude stick–slip events [15]. Despite

these promising numerical and experimental contributions,

a detailed analysis accounting for the friction dependence

on vibrations is still partially lacking.

In this article, we briefly review and significantly gener-

alize and extend the recent theoretical and computational

results concerning the suppression of friction by tiny

mechanical oscillations in a bounded system under shear

[16]. As sketched in Fig. 1, the top plate, confining a certain

number of particle layers, is attached to a spring moving at

constant speed, while the bottom plate is vibrated vertically.

At low pulling velocities without any applied oscillation, the

top plate exhibits a characteristic stick–slip regime [17, 18].

In a well-defined frequency range, small normal vibrations

are shown to induce a drastic reduction of the friction coef-

ficient, with the consequent disappearance of the high dis-

sipative intermittent dynamics. We find that these results can

be generalized in the presence of quenched disorder in the

confining substrates and for different type of forces (repul-

sive, adhesive, and cohesive) characterizing the particle

interactions of the model. The observed phenomenology is

shown to hold true by moving from the previously consid-

ered two dimensional (2D) modeling to a more complex

three dimensional (3D) system. Besides, under a small

external stress (smaller than the static threshold), the vibra-

tion-induced suppression of friction turns out to be accom-

panied by a slippage whose length, unexpectedly, is not

increasing monotonically with the applied lateral force.

The paper is organized as follows. In Sect. 2, we

introduce the model used for our simulations, elucidating

some computational details; we review the tribological

phenomenology and the theoretical explanation of the

numerical results for the observed suppression of friction,

as previously reported in [16]. In Sect. 3, we prove the

robustness of our results against the effect of quenched

disorder in the confining substrates and the presence of

adhesive and cohesive forces at the interface. Sect. 4 shows

that an increase of the system diffusivity takes place at the

interface in the same range of oscillation frequencies where

the frictional drop manifests itself. In Sect. 5, we extend the

molecular dynamics (MD) simulations to a more realistic

3D geometry. Sect. 6 analyzes the case of vibration pulses

acting for a small amount of time as in the case of earth-

quakes or avalanches triggered by seismic waves. Con-

clusions are given in Sect. 7.

2 Model, Phenomenology, and Friction Suppression

Let us first introduce the 2D tribological model [16] con-

sisting of two identical (and rigid) top and bottom substrates,

composed of nt = nb particles with coordinates ri
t and ri

b

respectively and constant lattice separation as=1. We confine

np particles with coordinates ri
p between the top and bottom

plates. Periodic boundary conditions are applied along the

x-shearing direction. All the particles in the system have the

same mass m and interact via the same Lennard–Jones (LJ)

pairwise potential UðrÞ ¼ U0
r0

r

� �12�2 r0

r

� �6
h i

for r \ rc and

U(r) = 0 otherwise. To simulate repulsive interactions, we

set rc = r0, effectively canceling the LJ attractive contribu-

tion. Particle cohesion and adhesion with the substrates are

switched on by setting the corresponding rc !1:
By imposing np ¼ Nl � nt ¼ Nl � nb with Nl an integer

number, the system forms Nl perfectly ordered confined

layers. However, we have also considered cases of a few

missing particles, finding similar results as long as the

system remains ordered. The top plate, subject to a normal

force FN, is pulled along x at constant velocity Vext through

a spring K (Fig. 1). Indicating with Rtop = (Xtop, Ztop) and

Rbot = (Xbot, Zbot) the center of mass coordinates of the top

and bottom plate, respectively, the confined particles sat-

isfy the equations of motion

m€rp
i þ

XN

i 6¼j

d

dri
Uðjrp

i � rjjÞ þ mgð_rp
i � _RtopÞ

þ mgð_rp
i � _RbotÞ þ f ran ¼ 0;

ð1Þ

while the top plate dynamics is described by

Mtop
€Xtop þ

Xnt

i¼1

Xnp

j¼1

d

dxt
i

Uðjrp
j � rt

ijÞ þ KðXtop � VexttÞ

þ
Xnp

i¼1

mgð _Xtop � _xp
i Þ þ f ran

x ¼ 0;

ð2Þ

Mtop
€Ztop þ

Xnt

i¼1

Xnp

j¼1

d

dzt
i

Uðjrp
j � rt

ijÞ þ FN

þ
Xnp

i¼1

mgð _Z top � _zp
i Þ þ f ran

z ¼ 0;

ð3Þ

where N = np ? nt ? nb, and g is the damping coeffi-

cient that accounts for a viscous dissipation [19, 20].

Fig. 1 (Color online) Sketch of the confined system geometry used in

MD simulations. The top plate, subject to a normal load FN, is driven

through a spring K ¼ 1:5� 10�2; moving at constant velocity

Vext = 0.01; the bottom plate vibrates vertically with frequency x0

and small amplitude A
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The temperature is controlled by a Langevin thermostat

according to the fluctuation/dissipation relation

hf iðtÞranf jðt0Þrani ¼ 4mgkBTdijdðt � t0Þ: Having in mind

here a very simplified description of a mesoscopic system

(such as, e.g., a granular medium), we just consider very

low temperature values (kBT = 10-2 U0).

To study the influence of mechanical oscillations, the

bottom plate coordinate Zbot is vibrated vertically with

amplitude A and frequency x0, while the horizontal com-

ponent Xbot is held fixed. We compute the instantaneous

friction coefficient by measuring the spring elongation l ¼
K ðXtopðtÞ � VexttÞ=FN; and its average hli; obtained by

integrating its value over a sufficiently long time interval in

the steady state.

Without any oscillations, a typical stick–slip behavior

appears, with loading phases where the system is at rest,

followed by rapid slip events in which the force accumu-

lated by the spring is relaxed. A systematic calculation of

the average friction coefficient hli versus the vibration

frequency x0 is reported in Fig. 2a. This panel shows

results obtained for various oscillation amplitudes

A, ranging from 3 to 9 % of the film thickness. Very

similar trends are obtained by varying x0 in correspon-

dence of different values of the damping coefficient g and

different numbers of confined layers. At low frequencies,

the top plate and the confined particles vibrate in phase

with the oscillations of the bottom plate. At x0 = 2,

instead, the top plate and the confined particles cannot

follow the bottom substrate dynamics. Here, the vertical

position of the top plate increases, presenting high ampli-

tude oscillations which diminish the contact time between

the confined particles and the bottom plate, reducing con-

siderably the friction resistance. In the context of reference

[8], this situation corresponds to an increase of the system

dilatacy leading to a decrease of frictional force. Further

increases of the frequency x0 induce a reduction of the

amplitude of the top plate oscillations around the equilib-

rium position; as a result, the friction force rises again to

higher values.

This phenomenology shares similarities with the physics

of the bouncing-ball problem [21–23] and in particular

with its 2D version referred to as the bouncing-ball billiard

[24, 25]. In fact, in analogy with the bouncing-ball prob-

lem, there is a range of low frequencies for which the ball

does not bounce but remains stuck to the bottom plate. For

higher frequencies, it starts to hop with the period of the

driving. With a further increase of x0 there is period

doubling, and eventually a transition to chaos that has been

related, in the bouncing-ball billiard to diffusion. We also

observe in our system a diffusive behavior (Sect. 4).

The results suggest an argument to derive analytically

the values x1 and x2, defining the frequency window of

suppression of friction. The frictional behavior is deter-

mined by the competition between the inertial forces

induced in by the oscillations and the load.

The reduction of friction occurs when the particles are

able to detach from the bottom plate due to the action of the

vertical inertial force Fin ¼ M €Zbot ’ MAx2
0 induced by the
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Fig. 2 a Time-averaged value

of l as a function of x0 for four

values of the oscillation

amplitude A (ranging from 3 to

9 % of the Nl = 3 lubricant

thickness). Comparison between

the numerical results (symbols)

and the theory (solid line): b ~x1

as a function of the

dimensionless variables ~f and

~m; c ~x2 as a function of ~f : The

behaviors corresponding to

different symbols are obtained

keeping three parameters fixed

and varying the fourth. The

symbols (?) and (x) refer to the

cohesive case
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external vibrations, where M = Mp ? Mtop. The frequency

x1 corresponds to the condition for which this inertial force

overcomes the combined action of the normal load FN and

the damping force Fdamp ¼ Mpg _Zbot ’ MpgAx0; i.e.,

Finðx1Þ ’ FN þ Fdampðx1Þ: ð4Þ

Introducing the rescaled dimensionless variables

~f � FN

MAg2
; ~m � Mp

M
; ~x � x

g
; ð5Þ

we obtain for the starting frequency of friction suppression

~x1 ¼
1

2
~mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2 þ 4~f

q� �
: ð6Þ

The recovery frequency x2 is determined by an external

mechanical actuation fast enough to reduce the amplitude

of the top plate oscillations, because of the presence of low

frequency vibrations suppressing the relevant resonant

peaks [16]. Comparing the vibration-induced characteristic

detachment time of the confined layers from the bottom

plate,

Dt ’ _ZbotM=FN ’ Ax0M=FN; ð7Þ

to the external oscillation period 2p/x0, we end up (using

5), with

~x2 ¼
ffiffiffiffiffiffiffiffi
2p~f

q
: ð8Þ

The theoretical predictions for x1 and x2 are in

excellent agreement with the numerical simulations as

shown in Fig. 2b, c. The numerical values are obtained

varying the number of layers Nl, the vibration amplitude

A, the damping coefficient g and the normal load FN.

Based on the relations (6) and (8), a phase diagram

indicating the region of suppressed friction in the space

ð~f ; ~xÞ can be easily obtained [16].

A frequency range where friction suppression is

observed can be estimated considering the experiment [26],

where a granular medium was confined between two plates

sheared at constant velocity. We obtain x1^ 44 Hz

and x2^ 111 Hz for the parameter values Mtop =

0.75, Mp = 0.5 kg, g = 0.0076 s-1 and an amplitude of

vibration A = 0.005 m.

3 Surface Interactions and Disorder

We have verified the validity of our results for different

surface interactions and spatial configurations: attractive

forces among the confined particles (cohesion), among

particles and substrates (adhesion), and substrate quenched

disorder. The effect of the various kinds of interaction on

the friction coefficient l is reported in Fig. 3, showing the

behavior of hli versus x0 renormalized to the corre-

sponding average friction coefficient l0 in the absence of

vibrations. In all these cases, we find again that friction is

suppressed in a well-defined frequency range.

The presence of particle cohesion does increase only the

frequency x2 as shown in Fig. 3 (circle black curve) and in

Fig. 2c, where the values of ~x2 for the cohesive case (‘‘?’’

and ‘‘x’’ symbols) are shifted up respect to the theoretical

solid line. A larger value of x2 can be here explained

qualitatively in terms of the larger efficiency in transferring

the impulse I to the sliding system by the bottom substrate

oscillations. In fact, above x1 and in the absence of

attractive forces

I ¼
R tþDtp

t Findt if €Zbot [ 0;

0 if €Zbot� 0

(

where Fin ¼ Meff
€Zbot represents the inertial force acting on

the top plate and confined particles and Meff is the mass of

the system interacting effectively with the bottom surface

during the interval of time Dtp characterized by the positive

substrate acceleration €Zbot [ 0: In general Meff \ M(= Mp

? Mtop), however, thanks to the cohesive interaction, the

system exhibits a more compact structure during the

upward thrust and Meff turns to be of the order of the whole

mass Mp ? Mtop. In the repulsive case, on the contrary, the

confined particles tend to dilate after each interactive lift

with the bottom plate and become again compact in a

typical time sr. In such a situation, if Dtp\sr; the confined

particles do not have enough time to re-aggregate and only

a fraction of them will readily respond to the next upward

substrate boost, implying Meff \ Mtop ? Mp, and hence

Irep \ Icohes, i.e., the impulse transferred is here smaller

than in the cohesive case.
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disordered substrate,  μ0 = 0.36
repulsive particles,  μ0 = 0.425

Fig. 3 Simulations with attractive interparticle forces (cohesive),

adhesive forces with the substrates (cohesive ? adhesive), and

disordered substrates. The blue curve shows the case of repulsive

particles. l0 is the average friction coefficient for x0 = 0.hli /l0 as a

function of x0. Here, Mtop = 60, Mp = 177, FN = 60, A = 0.3
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The dilation of confined particles DZ; can be charac-

terized quantitatively by the mean square displacement of

their vertical coordinate zi respect to the center of mass

coordinate Zcm, i.e., DZ ¼ 1=np

Pnp

i¼1ðZcm � ziÞ2: DZ rep-

resents the spreading of zi coordinates around Zcm. Figure 4

shows the behavior of DZ as a function of time for the

repulsive and cohesive case at x0 = 2, in the interval of

friction suppression. The negative peaks of DZ below the

equilibrium value (shown by the dash dotted horizontal

line) indicates compression of particles due to the inter-

active lift. In the repulsive case, the downward peak is

followed by a sudden increase, signaling a significant

dilation of the confined layer, that recovers a compact

structure after a time sr. In the cohesive case, the interac-

tion with the bottom is followed by oscillations of DZ;

indicating that particles do not spread and keep their

compact structure, being ready, straightaway, to receive

another effective kick from the subsequent bottom plate

oscillation. On the other hand, an attractive LJ interaction

between cohesive particles and substrates (adhesion) leads

to a net increase of the friction coefficient in the absence of

external actuation (l0 being about five times larger in

comparison to that evaluated in the presence of the other

kinds of interaction). By switching the vibrations on, we

find here (see Fig. 3, square red curve) that friction is

suppressed at a frequency x1 higher than the one corre-

sponding to the case of purely repulsive forces. This effect

is explained reasonably by our theory by adding the

‘‘loading’’ contribution of the adhesive force between

substrates and particles. By doing so, the relation 4

becomes:

Finðx1Þ ’ FNðx1Þ þ Fdampðx1Þ þ Fad: ð9Þ

The value of Fad can be calculated by considering the force

needed to detach vertically a single particle from a layer of

immobile LJ particles. Our estimation provides us with

Fad = 288, that can be considered as a further contribution

to the normal load. With this value of Fad, we obtain an

estimation of x1^2.6 that is consistent with the results

obtained in our simulations. We speculate that the recovery

of friction occurring at large values of x2 is here deter-

mined by the particular compact (adhesive) structure of the

confined film and the top plate, making the mechanism of

the system upward thrust (due to substrate oscillation)

more effective.

We have checked the robustness of our results also in

the presence of disordered confining substrates, by ran-

domly displacing the particle positions in the substrates (up

to 10 % of lattice equilibrium spacing), along the hori-

zontal and vertical directions. In this case, we have

obtained results consistent with those of crystalline sub-

strate case. The frequency interval of friction suppression

shrinks in the presence of disorder, but it remains centered

in the interval x1 and x2 calculated in the absence of

disorder (see Fig. 3, triangle green curve). A further

increase of disorder leads to a gradual shrinking of the

window up to a complete disappearance. Above a certain

disorder threshold in the substrate lattice spacing, the

compact crystalline structure of the confined film is basi-

cally ruined and the oscillation effectiveness lost. In

addition, as previously mentioned, the results hold true in

the presence of defects (i.e., vacancies) in the confined

film, as long as its structure remains sufficiently ordered.

4 Diffusion Induced by Vibrations

Manipulations by mechanical excitations, when applied at

suitable frequency and amplitude ranges, may help in

driving an interface contacting system out of its potential

energy minima, thus increasing considerably surface

mobility and reducing friction. We have verified by sim-

ulations that the diffusivity of the top plate exhibits a strong

enhancement in the frequency range where the suppression

of lateral friction takes place. The diffusivity has been

evaluated without any applied external driving and in the

presence of just the bottom substrate oscillations. The mean

square displacement Dr2 of the top plate at x0 has been

calculated by averaging the displacement of Xtop at each

time on many different realizations. These simulations

correspond to the case of three confined layers of repulsive

particles and an amplitude of oscillations A = 0.3. The

diffusion coefficient D as a function of x0 is reported in

Fig. 5. In the range of friction suppression D is three orders

of magnitude larger (compare Fig. 5 with the diamond blue

curve in Fig. 3).

0.45

0.5

0.55

0.6

Δ  
Z

cohesive
repulsive

485 490 495 500
time

-0.2
0

0.2

Z
bo

t

τ
r

Fig. 4 Dilation DZ of the confined particles as a function of time in

the cohesive (black) and repulsive (red) case at x0 = 2. The

horizontal dashed dotted line indicates the equilibrium value of DZ
for the repulsive case
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5 3D Simulations

The generality of our findings suggests that the results are

not an artifact of the assumed 2D simple geometry and

could hold true for other, more realistic, situations. Thus,

we have performed additional numerical simulations for a

3D confined configuration.

To the equations of motion (1–3), that read formally the

same also for the 3D case geometry, we should add the one

for the y-component of the top plate:

Mtop
€Ytop þ

Xnt

i¼1

Xnp

j¼1

d

dyt
i

Uðjrp
j � rt

ijÞ þ
Xnp

i¼1

mgð _Y top � _yp
i Þ

þ f ran
y ¼ 0: ð10Þ

The top plate, of mass Mtop ¼ m � nt and subject to a

normal load FN, is pulled through a spring K moving only

along x at velocity Vext. Periodic boundary conditions are

applied along the x and y directions.

Specifically, we have studied the case of three layers

(np = 432) of repulsive particles confined in between two

rigid planar substrates composed of nt = nb = 144 parti-

cles arranged in a triangular lattice. Here again, when the

spring is dragged at a sufficiently low constant velocity

Vext, the top plate exhibits a typical stick–slip dynamics.

The potential generated by the rigid substrates is charac-

terized by maxima, minima and saddle points. Contrary to

the 2D case, where no option exists, the top plate proceeds

here, during the slip phase, moving around the maxima and

passing through the smaller barrier of the saddle points.

This results in a ‘‘zig–zag’’ motion of Ytop around the

y coordinate (Fig. 6). This behavior is certainly influenced

by the rigidity of the confined film layers. The dependence

of the friction coefficient on the vibration frequency is

reported in Fig. 7. The frequency values of suppression

and recovery of friction x1 and x2 can be calculated

considering the new values of the M, g, A and FN. The

theoretical estimations are again in agreement with the

computational results.

6 Slippage Triggered by Impulsive Vibrations

In many cases, the external vibration acts only for a short

time interval, such as at the macroscopic scales, in the case

of earthquakes or avalanches triggered by seismic waves.

To address this issue, we analyze the slip jump Dslip for a

small vertical vibration of finite duration Tv and frequency

x0, with Tv � 1/x0. In order to limit extended time-con-

suming numerical simulations, and having previously
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Fig. 5 Dependence of the diffusion coefficient on the vibration

frequency x0. Here, Mtop = 60, Mp = 177, Fload = 60, A = 0.3
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verified the occurrence of an almost identical tribological

phenomenology related to the vibration-induced friction

suppression in 3D, the analysis has been carried out here in

the framework of the simpler 2D geometry. To avoid dis-

continuities, we switch on smoothly the perturbation

on the bottom plate: Zbot ¼ Z0 þ f ðt; TvÞA sinðx0tÞ; where

f ðt; TvÞ ¼ ðtanhðt=sÞ � tanhððt � TvÞ=sÞÞ=2; with s � Tv.

The system is first thermalized before being dragged by the

spring at constant velocity. The effect of periodic pulses of

frequency x0 = 2.4 (in the interval of friction suppression)

and duration Tv = 500 (grey stripes) is shown in Fig. 8.

Two consecutive pulses are separated by a time interval of

1,000 time units.

In the absence of oscillations, the top plate is obviously

at rest below the static friction threshold (estimated to

be ls^ 0.42). On the contrary, the vibration pulse can

trigger, at the right frequency, long slip events at values of

the lateral force well below ls. But surprisingly there are

cases where it has almost no effect on the system (as

indicated by the red circle in Fig. 8), corresponding to a

value of l ^ 0.3.

We have thus performed simulations by adiabatically

applying to the top plate, after thermalization, an external

force up to a certain value Fv (i.e., lv = Fv/FN), below the

static threshold ls, and then keeping it constant. By sub-

sequently applying a vibrating impulse x0, we measure the

dependence of the plate jump lengths Dslip; in particular, on

the applied stress lv. Figure 9a displays the details of the

Xtop dynamics of the top plate for an external for-

ce lv = 0.24 during a short vibration pulse (Tv = 300)

characterized by the distinct values of x0 reported in the

inset: inside the frequency range of friction suppression

Xtop usually undertakes long jumps. The lower panel

(Fig. 9b) shows the statistical average of the jump, hDslipi;

as a function of x0 for different values of lv. Contrary to

expectations, a larger value of lv can result in smaller slip

jumps Dslip: An illustrative dependence of the average slip

lengths hDslipi on the applied driving lv is reported in

Fig. 10 for an oscillation pulse of duration Tv = 300 and

frequency x0 = 2.4. A peak at lv ^ 0.24 followed by a

deep minimum at lv ^ 0.34, highlight an intriguing non-

monotonic behavior of hDslipi as a function of lv.

The corrugated substrate potential generated by the rigid

bottom plate can be considered in first approximation

sinusoidal. In the window of friction suppression the sys-

tem (top and confined particles) hops on the bottom plate.

Depending on the effective tilting of the corrugated

potential (arising from the constant lateral force applied to
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the top plate), the oscillating bottom may give a positive (in

the direction of the driving) or a negative thrust to the

system. Without driving, the top plate simply diffuses, as

shown in Sect. 4. Under a small constant force, the top,

even if drifting on average in the direction of the applied

driving, may get both positive and negative kicks due to the

oscillating bottom. But at lv & 0.34, the positive impulse

given by the constant force almost equals the one from the

negative thrust. In this situation, the system dwells for a

long time in an equilibrium position (moving back and

forth) before jumping to a new position. If this dwell time

is larger than Tv, the oscillation has almost no effect.

For lv [ 0.34, the system experiences a monotonically

decreasing effective potential and it slides smoothly. This

aspect surely deserves further investigations.

7 Conclusions

The difficulties of the task in controlling and manipulating

friction are related to the complexity of dealing with sys-

tems with many degrees of freedom under a strict size

confinement, that leaves very limited access to interfere

with the sliding interface itself.

In this study, we have analyzed thoroughly and clarified

the role of tiny vibrations in the tribological response of a

confined system under shear. The general mechanism for

friction suppression that we have uncovered is based on the

reduction of the effective interface contacts produced by

the mechanical actuation. Since the idea is not to change

the physical properties of the mating interface, flexibility

and accessibility are the main relevant features of this

approach: here, frictional properties can be tuned contin-

uously by the frequency and the amplitude of the applied

vibrations. The robust results have shown to depend only

on the relation between inertial and dissipative forces, and

we expect the predicted effects to be valid for a wide class

of sliding systems, including granular media and nanoscale

interfaces. We have also observed how, in the presence of

vibrations, slippage can be favored by small, rather than

high, values of the applied shear stress. Further work in this

direction could be useful to optimize friction control in

technological devices and to design better strategies to

forecast the triggering of instabilities in materials and

geosystems.
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