Optimal Transport and Geometric Inequalities

Fabio Cavalletti

SISSA

Trieste
December 16, 2019
Aim
Present some applications of Optimal Transport to geometric inequalities for smooth/non-smooth manifolds.

Plan
▶ General overview on Optimal Transport
▶ Theory of Curvature-Dimension condition
▶ Functional Inequalities: Levy-Gromov isoperimetric inequality
Optimal Transport: Formulation

How to minimise total transport cost? (Monge 1781, Kantorovich 1942)

\[
\begin{align*}
\mathbb{R}^n \times \mathbb{R}^n & \quad y = T(x) \\
\int f_1(x) \, dx & = \int f_2(y) \, dy,
\end{align*}
\]

Given a cost function \(c(x, y) \), the total transport cost of \(T \) is

\[
C(T) = \int \mathbb{R}^n c(x, T(x)) f_1(x) \, dx.
\]
Optimal Transport: Formulation

How to minimise total transport cost? (Monge 1781, Kantorovich 1942)

If $\int f_1 = \int f_2$, T is a transport map from f_1 to f_2 iff for any $A \subset \mathbb{R}^n$

$$\int_A f_2(x) \, dx = \int_{T^{-1}(A)} f_1(x) \, dx, \quad i.e. \quad T_\#(f_1 \, dx) = f_2 \, dx,$$
How to minimise total transport cost? (Monge 1781, Kantorovich 1942)

If $\int f_1 = \int f_2$, T is a transport map from f_1 to f_2 iff for any $A \subset \mathbb{R}^n$

$$\int_A f_2(x) \, dx = \int_{T^{-1}(A)} f_1(x) \, dx,$$

i.e. $T^\#(f_1 \, dx) = f_2 \, dx$.

Given a cost function $c(x, y)$, the total transport cost of T is

$$C(T) = \int_{\mathbb{R}^n} c(x, T(x)) f_1(x) \, dx.$$
Monge Optimal transport problem minimize

\[T \rightarrow \int_{\mathbb{R}^n} c(x, T(x)) f_1(x) \, dx, \quad T \text{ transport map from } f_1 \text{ to } f_2. \]
Optimal Transport: Monge problem

Monge Optimal transport problem minimize

\[T \rightarrow \int_{\mathbb{R}^n} c(x, T(x))f_1(x)dx, \quad T \text{ transport map from } f_1 \text{ to } f_2. \]

Main issues with the minimization problem

- \(T \) is (smooth) transport map iff \(f_2(T(x))|\det DT(x)| = f_1(x) \). Highly non-linear constrain.
- The set of transport maps is not closed in any reasonable topology.
- Replace \(f_1, f_2 \) with any \(\mu_1, \mu_2 \in \mathcal{P}(\mathbb{R}^n) \) to obtain the general Monge problem: the set of transport maps can be empty.
Monge Optimal transport problem minimize

\[T \rightarrow \int_{\mathbb{R}^n} c(x, T(x)) f_1(x) dx, \quad T \text{ transport map from } f_1 \text{ to } f_2. \]

Main issues with the minimization problem

- \(T \) is (smooth) transport map iff \(f_2(T(x)) | \det DT(x) | = f_1(x) \). Highly non-linear constrain.

- The set of transport maps is not closed in any reasonable topology.

- Replace \(f_1, f_2 \) with any \(\mu_1, \mu_2 \in \mathcal{P}(\mathbb{R}^n) \) to obtain the general Monge problem: the set of transport maps can be empty.

\(\leadsto \) Kantorovich relaxation rewrite the total transportation cost

\[\int_{\mathbb{R}^n} c(x, T(x)) \mu_1(dx) = \int_{\mathbb{R}^n \times \mathbb{R}^n} c(x, y)((id, T) \# \mu_1)(dxdy) \]
A transport map T seen as a measure on its graph $(id, T)_{#}\mu_1$ becomes a transport plan

$$\Pi(\mu_1, \mu_2) = \{\pi \in \mathcal{P}(\mathbb{R}^n \times \mathbb{R}^n): (P_i)_{#}\pi = \mu_i, \ i = 1, 2\}.$$
Optimal Transport: Monge-Kantorovich problem

A transport map T seen as a measure on its graph $(id, T)_\#\mu_1$ becomes a transport plan

$$\Pi(\mu_1, \mu_2) = \{\pi \in \mathcal{P}(\mathbb{R}^n \times \mathbb{R}^n): (P_i)_\#\pi = \mu_i, \ i = 1, 2\}.$$

Set of transport plans is weakly closed and convex. Monge-Kantorovich problem minimize the linear functional

$$\Pi(\mu_1, \mu_2) \ni \pi \mapsto \int_{\mathbb{R}^n \times \mathbb{R}^n} c(x, y)\pi(dx\,dy).$$

If $c: \mathbb{R}^n \times \mathbb{R}^n \to [0, \infty)$ is l.s.c., existence of a solution.
Structure of optimal plans is obtained via classical duality theory.
Optimal Transport: Solutions for d^2 and d

Structure of optimal plans is obtained via classical duality theory.

- $X = M^n$ Riem. mfld $c = d_g^2$ (Brenier, McCann, Gangbo).

Given $\mu_1 = f_1 dvol_g$ and any μ_2, $\exists!$ optimal transport map

$$T(x) = \exp_x(-\nabla \psi(x)), \quad \psi : M^n \to \mathbb{R}, \quad d_g^2 - \text{concave},$$

$$\psi^{cc} = \psi \quad \text{where} \quad \psi^c(y) = \inf_{x \in M} \frac{d_g^2(x,y)}{2} - \psi(x).$$
Optimal Transport: Solutions for d^2 and d

Structure of optimal plans is obtained via classical duality theory.

- $X = M^n$ Riem. mfld $c = d^2_g$ (Brenier, McCann, Gangbo).

Given $\mu_1 = f_1 dvol_g$ and any μ_2, \exists! optimal transport map

$$T(x) = \exp_x(-\nabla \psi(x)), \quad \psi : M^n \to \mathbb{R}, \quad d^2_g - \text{concave},$$

$$\psi^{cc} = \psi \text{ where } \psi^c(y) = \inf_{x \in M} \frac{d^2_g(x,y)}{2} - \psi(x).$$

- $X = M^n$ Riem. mfld $c = d_g$ (Feldman, McCann).

Given μ_1, μ_2 there exists $u : X \to \mathbb{R}$ 1-Lipschitz function so that

$$\pi \text{ optimal } \iff \pi(\{(x,y) : u(x) - u(y) = d_g(x,y)\}) = 1.$$

Optimal path for $c = d_g$ are along steepest descent of u.

Flexible problem, has found applications in many fields (different choices of c).
Flexible problem, has found applications in many fields (different choices of c).

- **Analysis and PDEs**: Gradient flows, JKO scheme. Monge-Ampere equation ($c(x, y) = |x - y|^2$).

- **Physics**: Random matching problem (squared Euclidean dist.), Density Functional Theory (Coulomb cost), Einstein equation of general relativity (Lorentzian cost function).

- **Geometry of metric spaces**: new class of metric spaces by Lott-Sturm-Villani verifying $\text{Ric} \geq K$ and $\text{dim} \leq N$ in a synthetic sense, called $\text{CD}(K, N)$.

- **Data science and Economy**: Entropic regularisation (Sinkhorn, Schrodinger problem), mixed problems (Hellinger-Kantorovich).
Let \((M^n, g)\) be an \(n\)-dimensional Riemannian manifold. Denote \(\text{Sec}\) the sectional curvature and \(\text{Ric}\) the Ricci curvature.

- For \(K \in \mathbb{R}\) we write \(\text{Sec} \geq K\) (resp. \(\leq K\)) if for every \(p \in M\) and every 2-dim plane \(\Pi \subset T_pM\) it holds \(\text{Sec}_p(\Pi) \geq K\) (resp. \(\leq K\)).

- \(\text{Ric}_p : T_pM \times T_pM \rightarrow \mathbb{R}\) is a quadratic form. We write \(\text{Ric} \geq K\) (resp. \(\leq K\)) if the quadratic form \(\text{Ric}_p - Kg_p\) is non-negative (resp. non-positive) definite at every \(p \in M\).
Let (M^n, g) be an n-dimensional Riemannian manifold. Denote Sec the sectional curvature and Ric the Ricci curvature.

- For $K \in \mathbb{R}$ we write $\text{Sec} \geq K$ (resp. $\leq K$) if for every $p \in M$ and every 2-dim plane $\Pi \subset T_pM$ it holds $\text{Sec}_p(\Pi) \geq K$ (resp. $\leq K$).
- $\text{Ric}_p : T_pM \times T_pM \rightarrow \mathbb{R}$ is a quadratic form. We write $\text{Ric} \geq K$ (resp. $\leq K$) if the quadratic form $\text{Ric}_p - Kg_p$ is non-negative (resp. non-positive) definite at every $p \in M$.

Examples

- n-dimensional euclidean space: $\text{Sec} \equiv 0$, $\text{Ric} \equiv 0$.
- n-dimensional round sphere of radius 1: $\text{Sec} \equiv 1$, $\text{Ric} \equiv n - 1$.
- n-dimensional hyperbolic space: $\text{Sec} \equiv -1$, $\text{Ric} \equiv -(n - 1)$.
Geometry of metric spaces: basics

Let \((M^n, g)\) be an \(n\)-dimensional Riemannian manifold. Denote \(\text{Sec}\) the sectional curvature and \(\text{Ric}\) the Ricci curvature.

- For \(K \in \mathbb{R}\) we write \(\text{Sec} \geq K\) (resp. \(\leq K\)) if for every \(p \in M\) and every 2-dim plane \(\Pi \subset T_pM\) it holds \(\text{Sec}_p(\Pi) \geq K\) (resp. \(\leq K\)).

- \(\text{Ric}_p : T_pM \times T_pM \to \mathbb{R}\) is a quadratic form. We write \(\text{Ric} \geq K\) (resp. \(\leq K\)) if the quadratic form \(\text{Ric}_p - Kg_p\) is non-negative (resp. non-positive) definite at every \(p \in M\).

Examples

- \(n\)-dimensional euclidean space: \(\text{Sec} \equiv 0, \text{Ric} \equiv 0\).
- \(n\)-dimensional round sphere of radius 1: \(\text{Sec} \equiv 1, \text{Ric} \equiv n - 1\).
- \(n\)-dimensional hyperbolic space: \(\text{Sec} \equiv -1, \text{Ric} \equiv -(n - 1)\).

Natural question \((M, g)\) smooth Riem. manifold. Assume some upper/lower bounds on \(\text{Sec}\) or on \(\text{Ric}\); what can we say on \((M, g)\)?
Basics on comparison geometry

- Upper/Lower bounds on the Sec are strong assumptions with strong implications (definition of Alexandrov spaces: non smooth spaces with upper/lower bounds on Sec).

- Upper bounds on the Ricci curvature are very (too) weak assumption for geometric conclusions. Lokhamp Theorem: any closed mfld of $\dim \geq 3$ carries a metric with negative Ric.

- Lower bounds on the Ric natural framework for comparison geom.

- Bishop-Gromov volume comparison: If $Ric \geq 0$ then for all $x \in M$ $R \rightarrow vol(B_R(x))/\omega_N R^N$ is monotone non-increasing

- Laplacian comparison,

- Cheeger-Gromoll splitting,

- Levy-Gromov isoperimetric inequality

- ...
Basics on comparison geometry

- Upper/Lower bounds on the Sec are strong assumptions with strong implications (definition of Alexandrov spaces: non smooth spaces with upper/lower bounds on Sec).

- Upper bounds on the Ricci curvature are very (too) weak assumption for geometric conclusions. Lokhamp Theorem: any closed mfld of $\text{dim} \geq 3$ carries a metric with negative Ric.

Lower bounds on the Ric natural framework for comparison geom.

- Bishop-Gromov volume comparison: If $\text{Ric} \geq 0$ then for all $x \in M R \rightarrow \text{vol}_g(B_R(x))/\omega_N R^N$ is monotone non-increasing

- Laplacian comparison,

- Cheeger-Gromoll splitting,

- Levy-Gromov isoperimetric inequality

- ...
Gromov in the '80ies:

- notion of convergence for Riemannian manifolds: Gromov-Hausdorff convergence (for non-compact manifolds, more convenient a pointed version, called pointed Gromov-Hausdorff convergence \(\sim \) GH-convergence of metric balls of every fixed radius).
Gromov in the '80ies:

- notion of convergence for Riemannian manifolds: Gromov-Hausdorff convergence (for non-compact manifolds, more convenient a pointed version, called pointed Gromov-Hausdorff convergence \sim GH-convergence of metric balls of every fixed radius).

- A sequence of Riemannian n-dimensional manifolds satisfying a uniform Ricci curvature lower bound is pre-compact, i.e. it converges up to subsequences to a possibly non-smooth limit space (called, from now on, Ricci limit space).
Gromov in the '80ies:

- notion of convergence for Riemannian manifolds: Gromov-Hausdorff convergence (for non-compact manifolds, more convenient a pointed version, called pointed Gromov-Hausdorff convergence \sim GH-convergence of metric balls of every fixed radius).

- A sequence of Riemannian n-dimensional manifolds satisfying a uniform Ricci curvature lower bound is pre-compact, i.e. it converges up to subsequences to a possibly non-smooth limit space (called, from now on, Ricci limit space)

Big Question what about the compactification of the space of Riem. mfld with Ricci curvature bounded below (by, say, -1)?

Hope useful also to establish properties for smooth manifolds.

Non-intrinsic point of view consider the non-smooth space arising as limits of smooth objects. Dichotomy collapsing (loss of dim in the limit)-non collapsing. Very powerful for local struct. properties.

Analogy Define $W^{1,2}$ as completion of C^∞ endwed with $W^{1,2}$-dist.

Non-intrinsic point of view consider the non-smooth space arising as limits of smooth objects. Dichotomy collapsing (loss of dim in the limit)-non collapsing. Very powerful for local struct. properties.

Analogy Define $W^{1,2}$ as completion of C^∞ endwed with $W^{1,2}$-dist. $W^{1,2}$ can be defined also in completely **intrinsic way** without passing via approximations (very convenient for doing calculus of variations).

Role of OT define in an intrisic-axiomatic way a non-smooth space with Ricci curvature bounded below by K and dimension bounded above by N (containing ricci limits no matter if collapsed or not).

\implies Weak version of a Riemannian manifold with $\text{Ric} \geq K$.

Optimal Transport: Cornerstone

Interplay of Optimal Transport, entropy and curvature

Ricci curvature in terms of geodesic convexity of entropy along L_2

Optimal Transport, $c(x,y) = d^2_{g}(x,y)$ (Lott-Villani, Sturm '06)

$\rho_0 \rho_1 / 2 \rho_1 t$

$\operatorname{Ent}(\rho) = \int \rho(x) \log \rho(x) \, dx$

Giving:

$\operatorname{Ric} \geq K$ if and only if $\operatorname{Hess} \operatorname{Ent} \geq K$.

LSV theory: new approach to non-smooth metric spaces

Examples: manifolds with $\operatorname{Ric} \geq K$, Alexandrov spaces, normed and Finsler spaces, limits of those spaces
Ricci curvature in terms of geodesic convexity of entropy along L^2 Optimal Transport, $c(x, y) = d_g^2(x, y)$ (Lott-Villani, Sturm '06)

$$Ent(\rho) = \int \rho(x) \log \rho(x) dx$$

Giving: $Ric \geq K$ if and only if $\text{Hess Ent} \geq K$.
Optimal Transport: Cornerstone

Interplay of Optimal Transport, entropy and curvature

- **Ricci curvature** in terms of geodesic convexity of entropy along L^2 Optimal Transport, $c(x, y) = d_g^2(x, y)$ (Lott-Villani, Sturm '06)

 \[\text{Ent}(\rho) = \int \rho(x) \log \rho(x) dx \]

 Giving: $Ric \geq K$ if and only if $\text{Hess Ent} \geq K$.

- **LSV theory**: new approach to non-smooth metric spaces

 Examples: manifolds with $Ric \geq K$, Alexandrov spaces, normed and Finsler spaces, limits of those spaces