INTRO

FUNDAMENTAL PHYSICAL TESTS "BEFORE" GALAXIES ARE FORMED IN THE POST-REIONIZATION UNIVERSE

INTENSITY MAPPING
IGM

GALAXY CLUSTERING: DYNAMICAL AND GEOMETRICAL PROBE

WEAK LENSING

GALAXY CLUSTERS

PLAN

CONNECTIONS

FABIO FINELLI: CMB x LSS

KFIR BLUM: SMALLER SCALES PROPERTIES OF GALAXIES

LUCA AMENDOLA: MODIFICATION OF GRAVITY/DARK ENERGY

OLGA MENA: NEUTRINOS

TRACY SLATYER: DARK MATTER
WEAK (and partly STRONG) LENSING

Hoekstra & Jain 2008
Wong et al. 2019 - HoliCow time delays results
Birrer+22 Time delays
Treu+21 2210.10833 mini review
Martin Crocce [talk]
Martin White lectures
Hoekstra [talk]
Heymans+21 [Kids-1000] LCDM
Troster+21 [Kids-1000] beyond LCDM
Mantz+21 cosmology with gas fraction in Galaxy Clusters
Esposito+22 Galaxy Clusters and IGM
Costanzi+18 DES Galaxy Cluster number counts
DES 3yr results papers https://www.darkenergysurvey.org/des-year-3-cosmology-results-papers/
First lensed Quasar Q0957+561A - Welsh (1979)
Rauch, Becker, MV +05
SMACS 0723, known as Webb's First Deep Field
11/07/22
Assumptions:
1) Gravitational field is weak
2) Deflection angles are small
3) Deflection happens at scales << scale of the Universe

Optics in the context of geometrically thin lenses

Use GR with line element and Phi Newtonian potential

\[d\tau^2 = (c^2 + 2\Phi)dt^2 - \frac{(1 - 2\Phi / c^2)}{c^2 + 2\Phi}ds^2 \]

Use Fermat principle \(d\tau = 0 \)

\[dt = \sqrt{\frac{1 - 2\Phi / c^2}{c^2 + 2\Phi}} ds = \frac{1}{c} \left(1 - \frac{2\Phi}{c^2} \right) ds = \frac{n}{c} ds \]

\(n > 1 \) is an index of refraction produced by the Newtoniana potential
Weak Lensing Basics - II

Photons will follow a path for which the light travel time is stationary to small changes in the path.

\[t = \frac{1}{c} \int n \cdot ds \]

\[\mathbf{\alpha} = \int_s^0 ds \nabla_{\perp} n = -\frac{2}{c^2} \int_s^0 ds \nabla_{\perp} \Phi \]

\[\Phi(\mathbf{x}) = -G \int d^3 x' \frac{\rho(x')}{|\mathbf{x} - \mathbf{x}'|} \]

\[\alpha(\mathbf{x}) = -\frac{4G}{c^2} \nabla \int d^2 x' \Sigma(x') \ln |\mathbf{x} - \mathbf{x}'| \]
The lens equation

\[\eta = \frac{D_s}{D_d} \xi - D_{ds} \hat{\alpha}(\xi) \]

\[\eta = D_s \beta \quad \text{and} \quad \xi = D_d \theta \]

\[\beta = \theta - \frac{D_{ds}}{D_s} \hat{\alpha}(D_d \theta) \equiv \theta - \alpha(\theta) \]

The mapping from image to source plane is relatively easy. This is not the case for the mapping from source to image plane:

A source with true position will be observed at all positions that satisfy the lens equation. Multiple solutions are possible: a single source can be observed at several positions on the sky ... and this is used to measure H0 from time delays! :-)}
Weak Lensing Basics - IV

convergence (dimensionless)

\[\kappa(\theta) = \frac{\Sigma}{\Sigma_{\text{crit}}}, \quad \Sigma_{\text{crit}} = \frac{c^2}{4\pi G} \frac{D_s}{D_{ls} D_l} \]

Redshift of sources has to be known: spectroscopy too expensive
photometry is good

\[\alpha(\theta) = \frac{1}{\pi} \int d^2 \vartheta \cdot \kappa(\vartheta) \frac{\theta - \vartheta}{|\theta - \vartheta|^2} = \nabla \Psi(\theta) \]

deflection angle

\[\Psi(\theta) = \frac{1}{\pi} \int d^2 \vartheta \cdot \kappa(\vartheta) \ln |\theta - \vartheta| \]
gravitational lens potential

\[\nabla^2 \Psi(\theta) = 2\kappa(\theta) \]

which satisfies Poisson-like equation

Observable effects:
- Delays
- Deflection
- Distortion
Fermat’s principle
rays of light traverse the path of stationary optical length with respect to variations of the path

- Generically, taking into account GR and 3-dim

\[
t(\Theta) = \frac{D_{\Delta l}}{c} \cdot \Phi(\Theta, \vec{\beta})
\]

where \(\Phi = \frac{1}{2}(\Theta - \vec{\beta})^2 - \psi(\Theta) \) and \(D_{\Delta l} \equiv (1 + z_d) \frac{D_d D_s}{D_{ds}} \)

Units: (angle)^2/H0
The time delay between two paths is then
\[\Delta t_{AB} = \frac{D_{\Delta t}}{c} \cdot \Delta \Phi_{AB} \]

- \(D_{\Delta t} = (1 + z_d) \frac{D_d D_s}{D_{ds}} \). \(D \)'s are angular-diameter distances
 \[\Rightarrow D_{\Delta t} \propto H_0^{-1} \]

Knowledge of \(z_d \) and \(z_s \)

(Assuming \(\Omega \))

Compute \(D_d, D_s, D_{ds} \) as func of \(H_0 \)

Measure \(\Delta t \)

Use \(D_{\Delta t} = \frac{c \Delta t_{AB}}{\Delta \Phi_{AB}} \) to infer \(H_0 \)

Inference goes this way:

Lens model, knowledge of the mass profile

Compute \(\Delta \Phi \)

\[\Sigma(\Theta) \approx \int_{\text{I.o.S.}} dz \rho(x, y, z) \]
2.4% error bar on H_0
5.3 sigma away from Planck value

NOTE:
Modelling of the gravitational potential

With a more flexible parametrization, H_0 is only constrained if the measured time delays and imaging data are supplemented by stellar kinematics. Applying this extremely conservative choice to the TDCOSMO sample of 7 lenses increases the uncertainty on H_0 from 2% to 8% --> 74 pm 6 km/s/Mpc
Deflection - I

First Derivative = 0

\[\vec{\nabla}_T = 0 \]

\[\vec{\theta} - \vec{\beta} - \vec{\nabla}_2D = 0 \]

Units=angles

Notable example CMB lensing - from Blake Sherwin

\[|d(\hat{n})|_{\text{filt}} \]

remaps the CMB temperature:

\[T(\hat{n})_{\text{lensed}} = T(\hat{n} + d(\hat{n}))_{\text{unlensed}} \]

small \(\sim 3 \) arcminute deflections, coherent on degree scales

\[\nabla \cdot d(\hat{n}) = \int_0^{r_{\text{CMB}}} \int_{\text{density}} \nabla^\text{geometry} dr W(r) \delta(\hat{n}, r) \]

Lens “pushes” sources away

radial squeezing:
The effect of lensing is to remap the images of extended sources, while conserving surface brightness.

\[
I(\theta) = I^{(s)}[\beta(\theta)]
\]

\[
I(\theta) = I^{(s)}[\beta_0 + \mathcal{A}(\theta_0) \cdot (\theta - \theta_0)]
\]

\[
\mathcal{A}(\theta) = (1 - \kappa) \begin{pmatrix} 1 - g_1 & -g_2 \\ -g_2 & 1 + g_1 \end{pmatrix}, \text{ where } g(\theta) = \frac{\gamma(\theta)}{[1 - \kappa(\theta)]}
\]

Lensed image of a small circular source is an ellipse

Shearing and magnification

Reduced shear: \(g_i = \frac{\gamma_i}{(1 - \kappa)} \)

Magnification:

\[
\mu = \frac{1}{\det \mathcal{A}} = \frac{1}{(1 - \kappa)^2 - |\gamma|^2} = \frac{1}{(1 - \kappa)^2 (1 - |g|^2)}
\]

Axis ratio of ellipse:

\[
\frac{b}{a} = \frac{R}{(1 - \kappa)(1 + |g|)} / \frac{R}{(1 - \kappa)(1 - |g|)} = \frac{1 - |g|}{1 + |g|}
\]
Magnification has two effects:

- true survey area is $1/\mu$ times larger
- objects are μ times larger/brighter

$$n(S, z) = \frac{1}{\mu(\theta, z)} n_0 \left(\frac{S}{\mu(\theta, z)} \right)$$
Distortion - III

GOAL: get surface density from shear (or convergence)

Note that shear and convergence are related

\[
\Psi(\theta) = \frac{1}{\pi} \int d^2 \theta \cdot \kappa(\theta) \ln |\theta - \theta'|
\]

\[
\vec{\alpha}(\theta) = \nabla \Psi(\theta)
\]

\[
\nabla^2 \Psi(\theta) = 2\kappa(\theta)
\]

\[
\gamma_1 = \frac{1}{2} \left(\frac{\partial^2 \Psi}{\partial^2 x_1} - \frac{\partial^2 \Psi}{\partial^2 x_2} \right)
\]

\[
\gamma_2 = \frac{\partial^2 \Psi}{\partial x_1 \partial x_2}
\]

Real Space

\[
\gamma(\theta) = \frac{1}{\pi} \int_{\mathbb{R}^2} d^2 \theta' D(\theta - \theta') \kappa(\theta') , \quad \text{with kernel}
\]

\[
D(\theta) \equiv \frac{\theta_2^2 - \theta_1^2 - 2i\theta_1 \theta_2}{|\theta|^4} = -\frac{1}{(\theta_1 - i\theta_2)^2}.
\]

Fourier Space

\[
\tilde{\gamma}(\ell) = \pi^{-1} \hat{D}(\ell) \hat{\kappa}(\ell) \quad \text{for} \quad \ell \neq 0
\]

With inversion:

\[
\hat{\kappa}(\ell) = \pi^{-1} \tilde{\gamma}(\ell) \hat{D}^*(\ell) \quad \text{for} \quad \ell \neq 0
\]

Where

\[
\hat{D}(\ell) = \frac{\pi \left(\ell_1^2 - \ell_2^2 + 2i\ell_1 \ell_2 \right)}{|\ell|^2}
\]

was used (this implies \(D D^* = \pi^2 \)).

Fourier back-transformation then yields

\[
\kappa(\theta) - \kappa_0 = \frac{1}{\pi} \int_{\mathbb{R}^2} d^2 \theta' D^*(\theta - \theta') \gamma(\theta')
\]

Kaiser & Squires (1993)
The shearing of images is a spin-2 field. It is useful to spend some time on the description of spin-2 fields.

\[\gamma_1 > 0 \quad \gamma_1 < 0 \quad \gamma_2 > 0 \quad \gamma_2 < 0 \]

Rotating the coordinate system counterclockwise by \(\phi \) changes

\[\gamma_1 + i \gamma_2 \rightarrow (\gamma_1 + i \gamma_2) e^{-2i\phi} \]

Keeping track of that phase as we rotate coordinates, the Fourier decomposition can be written in terms of real functions \(\varepsilon \) and \(\beta \) as

\[(\gamma_1 + i \gamma_2)(x) \equiv \int \frac{d^2k}{(2\pi)^2} \left[\varepsilon(k) + i \beta(k) \right] e^{2i\phi_k} e^{i\vec{k} \cdot \vec{x}} \]

where \(\varepsilon \) is parity even and \(\beta \) is parity odd.

The \(E \)-mode is simply \(\kappa \) -- tangential shear around overdensities.

The \(B \)-mode is very small for gravitational lensing -- “swirling” around overdensities.
Distortion - IV

\[\langle \epsilon(l)\epsilon(l') \rangle = (2\pi)^2 \delta(l - l') C_l^{EE} \]
\[\langle \beta(l)\beta(l') \rangle = (2\pi)^2 \delta(l - l') C_l^{BB} \]
\[\langle \epsilon(l)\beta(l') \rangle = (2\pi)^2 \delta(l - l') C_l^{EB} \]

Using Gauss theorem

\[\langle \gamma_t \rangle(\theta) = \kappa(\theta) - \langle \kappa \rangle(\theta) \]

The tangential shear provides a direct measure of the **mass contrast**. It is a **local** measurement. This can be used to estimate projected masses within a radius with few assumptions about the radial matter distribution.
Convergence Power Spectrum

The convergence power spectrum is defined as,

\[
\langle \tilde{\kappa}(\ell) \tilde{\kappa}^*(\ell') \rangle = (2\pi)^2 \delta_D(\ell - \ell') \, P_{\kappa}(\ell)
\]

And is related to the 3D mass power spectrum as,

\[
P_{\kappa}(\ell) = \frac{9}{4} \Omega_m^2 \left(\frac{H_0}{c} \right)^4 \int_0^{\chi_{\infty}} d\chi \frac{g^2(\chi)}{a^2(\chi)} P_\delta \left(k = \frac{\ell}{\chi}, \chi \right)
\]

Limber approximation

Cooray & Hu 2001
COSMOLOGY WITH WEAK LENSING
In context

Slide by E. Huff

Survey area (deg²)

Completed:
2005 2009 Ongoing

Beginning science operations:
2022 2023 2026
The Dark Energy Survey (DES)

- 570 Megapixel camera for the Blanco 4m telescope in Chile.
- Observed in 5 imaging bands (grizY) : photometric redshifts
- Full survey 758 nights (2013-19)
- **This talk** DES Y3 (2013-16).
- **Wide field**: 5000 sq. deg. with limiting depth i <~ 24
- **Deep field**: 30 sq. deg. with near-IR YJHK bands, 10x wide field depth

courtesy of Martin Crocce
Cosmic Shear

shape (ellipticity) - shape correlation

$$\xi \sim \langle e(\theta')e(\theta + \theta) \rangle$$
cosmic shear

\[\xi_\pm = \langle e_t(\theta')e_t(\theta' + \theta) \rangle \]
\[- \langle e_x(\theta')e_x(\theta' + \theta) \rangle \]
\[\propto \sigma_8^2 \]

1x2pt
galaxy clustering

\[w(\theta) = \langle \delta(\theta')\delta(\theta' + \theta) \rangle \]
\[\propto b^2 \sigma_8^2 \]

2x2pt
galaxy-galaxy lensing

\[\gamma_t(\theta) = \langle \delta(\theta')e_t(\theta' + \theta) \rangle \]
\[\propto b \sigma_8^2 \]

3x2pt

courtesy of Martin Crocce
3x2pt Data-vector

DES uses correlation functions in angular or configuration space.

\[
\begin{align*}
\hat{w}^i(\theta) &= \sum_{\ell} \mathcal{G}_0 (\ell, \theta_{\text{min}}, \theta_{\text{max}}) \, C_{\delta\delta}^{ij}(\ell) \\
\hat{\gamma}_t^{ij}(\theta) &= \sum_{\ell} \mathcal{G}_2 (\ell, \theta_{\text{min}}, \theta_{\text{max}}) \, C_{\delta\delta}^{ij}(\ell) \\
\hat{\xi}^{ij}_\pm(\theta) &= \sum_{\ell} \mathcal{G}_4,\pm (\ell, \theta_{\text{min}}, \theta_{\text{max}}) \left[C_{\eta\eta}^{ij}(\ell) \pm C_{BB}^{ij}(\ell) \right]
\end{align*}
\]

From 4 lens and 4 source tomographic bins we get \(\hat{D} \equiv \{ \hat{w}^i(\theta), \hat{\gamma}_t^{ij}(\theta), \hat{\xi}^{ij}_\pm(\theta) \} \)

- 4 auto correlation functions for clustering
- 10 bin paris for galaxy-galaxy lensing
- 10 bin pairs fro cosmic shear+ and 10 bin pairs for cosmic shear-

462 data-points after scale-cuts with a total S/N = 87 (twice DESY1)

\(G_0, G_2, G_4 \) are analytical function that take into account projections of lensing on the sphere see Stebbins 1996

\(\xi^{ij}_\pm(\theta) = \langle \epsilon_t \epsilon_t \pm \epsilon_x \epsilon_x \rangle(\theta) \).
How beautiful!!!

....but in practice....

“I know I’m out of touch with reality. That’s my best stress-management technique!”
- Linear galaxy bias only valid on large scales
- Galaxies intrinsically aligned (not randomly oriented)
- Estimating galaxy distances through photometric redshifts in few bands
- Measuring and deconvolving the Point Spread Functions (PSF)
- Shear estimations bias calibration with image simulations
- Galaxy images blend
- Blending couples with photometric redshifts
- Galaxy images are taken with a wide range of observing conditions
- Observing conditions imprint large-scale density fluctuations
3x2pt Data + Model fit

cosmic shear Amon, + (2021), Secco, Samuroff, + (2021)
galaxy-galaxy lensing Prat, + (2021)
galaxy clustering Rodriguez-Monroy, + (2021)
Internal consistency

Two correlated cosmological probes:

1. **Cosmic shear** (blue)
2. **Galaxy clustering** and **tangential shear** (orange)

We find consistency between them.

Cosmic shear most sensitive to clustering amplitude.

Galaxy clustering and **tangential shear** more sensitive to total matter density.
DES only 3x2pt results

We combine these into the \textbf{3x2pt} probe of large-scale structure.

A factor of 2.1 improvement in signal-to-noise from DES Year 1 (and in the $\sigma_8 - \Omega_m$ plane).

\[
S_8 = 0.776^{+0.017}_{-0.017} \quad (0.776)
\]

In ΛCDM: \quad $\Omega_m = 0.339^{+0.032}_{-0.031} \quad (0.372)$

\[
\sigma_8 = 0.733^{+0.039}_{-0.049} \quad (0.696)
\]

In wCDM: \quad $\Omega_m = 0.352^{+0.035}_{-0.041} \quad (0.339)$

\[
w = -0.98^{+0.32}_{-0.20} \quad (-1.03)
\]
Low-z vs High-z in ΛCDM

We test the robustness of ΛCDM by comparing measurements of the clustering amplitude at low-redshift to the prediction from the cosmic microwave background (CMB) at high-redshift.

We find no significant evidence of inconsistency between DES Y3 3×2pt and Planck CMB at 1.5σ (p-value=0.13). Cosmic shear only at 2.1σ Suspiciousness of 0.7σ (p-value = 0.48).

Roughly similar as in DESY1 but with an increase in precision in both probes.
The *Hubble* parameter tension

Local measurements of h, e.g. from Cepheids variable stars (SHOES collab.), with MIRA variable stars, masers, strong lensing time delays, etc tend to find higher h values than derived by CMB observations at high-z assuming ΛCDM

BAO+BBN+DES 3x2 similar constraining power as *Planck* CMB, all combined leads to

$$ h = 0.680^{+0.004}_{-0.003} $$

Roughly 4σ smaller than SHOES
Joint constraints

Combining all these data sets we find:

In ΛCDM:

\[
S_8 = 0.812^{+0.008}_{-0.008} \quad (0.815)
\]

\[
\Omega_m = 0.306^{+0.004}_{-0.005} \quad (0.306)
\]

\[
\sigma_8 = 0.804^{+0.008}_{-0.008} \quad (0.807)
\]

\[
h = 0.680^{+0.004}_{-0.003} \quad (0.681)
\]

\[
\sum m_\nu < 0.13 \text{ eV} \quad (95\% \text{ CL})
\]

In wCDM:

\[
\sigma_8 = 0.810^{+0.010}_{-0.009} \quad (0.804).
\]

\[
\Omega_m = 0.302^{+0.006}_{-0.006} \quad (0.298).
\]

\[
w = -1.03^{+0.03}_{-0.03} \quad (-1.00)
\]
DARK ENERGY with DES 3yr

Pivot: z~0.3

arXiv:2207.05766
Neutrinos

Sterile Neutrinos

\[
k_{fs} = \frac{0.8 h \text{Mpc}^{-1}}{\sqrt{1 + z}} \left(\frac{m_{\text{eff}}}{(1\text{eV})\Delta N_{\text{eff}}} \right)
\]

Active Neutrinos

\[
\Delta N_{\text{eff}} > 0.047
\]

<table>
<thead>
<tr>
<th>Model</th>
<th>All External</th>
<th>All data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Lambda\text{CDM})</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>(w\text{CDM})</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>(w_0-w_a)</td>
<td>0.25</td>
<td>0.26</td>
</tr>
<tr>
<td>(\Omega_k)</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td>(N_{\text{eff}})</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>(\Sigma_0-\mu_0)</td>
<td>0.21</td>
<td>0.14</td>
</tr>
<tr>
<td>Binned (\sigma_8(z))</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>(A_L)</td>
<td>0.14</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Modification of gravity and evolution of growth
We find that the $\sim 3\sigma$ tension with Planck CMB data that was found in Asgari et al. (2021) and Heymans et al. (2021) is not resolved by either extending the parameter space beyond flat ΛCDM, or by restricting it through fixing the amplitude of the primordial power spectrum to the Planck best-fit value.
On the degeneracy between baryon feedback and massive neutrinos as probed by matter clustering and weak lensing

Gabriele Parimbelli1,2, Matteo Viel1,3,4, Emiliano Sefusatti5,6

1SSSA - International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
2INFN - National Institute for Nuclear Physics, Via Valerio 2, 34127 Trieste, Italy
3INAF - Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34131 Trieste, Italy
4IPFU - Institute for Fundamental Physics of the Universe, Via Beirut 2, 34151 Trieste, Italy

E-mail: gabrielle@sienna.it, viel@sienna.it, emiliano.sefusatti@inaf.it

Baryons? Neutrinos? to ease the "tensions"......
Concentrations of $\sim 10^3$ galaxies
$\sigma_v \sim 500-1000$ km/s
Size: ~ 1-2 Mpc
Mass: $\sim 10^{14}$-10^{15} Msun
$\Rightarrow \lambda_i \approx 10$ Mpc
Baryon content:
\Rightarrow cosmic share ($\sim 15\%$) in hydrostatic equilibrium
ICM temperature:
$\Rightarrow T \sim 2$-10 keV
\Rightarrow fully ionized plasma; Thermal bremsstrahlung
$\Rightarrow n_e \sim 10^{-2}$-$10^{-4}$ cm$^{-3}$
$\Rightarrow L_X \sim n_e^2 V \sim 10^{45}$ erg/s

Physical properties of GCs as inferred from optical and X-ray observations
Cosmology with Galaxy Clusters - II

SZ-Clusters

- Signal virtually independent of redshift
- Proportional to the l.o.s. integration of neTe ~ pressure
- Wider dynamic range accessible compared to X-rays
- We are now in the era of SZ cluster cosmology (e.g. ACT, SPT, Planck)

Inverse Compton scattering of CMB photons off the ICM electrons
Cosmology with Galaxy Clusters - III

What do we need to do cosmology with GCs? 1) robust cluster catalogs with large z leverage (with well understood purity and completeness; look for e.g. DES, SPT-3G, eROSITA, Euclid) 2. accurate absolute mass calibration (from weak lensing or X-ray once bHE is better characterized) 3. sufficiently low-scatter mass proxy information (mainly from X-ray and SZ follow-up; optical is more expensive and still affected from large scatter)

\[
\frac{dN(X,z)}{dXdz} = \frac{dV}{dz} f(X,z) \int_0^{\infty} \frac{dn(M,z)}{dM} \frac{dp(X|M,z)}{dX} dM
\]

dV/dz: volume [priors from BAO, SN, CMB
f(X,z) observational strategy - selection function
dn/dM cosmology Mass function
dp/dX - astrophysics [from sims/mocks/observations]

σ₈ Ωₘ⁰.5 ~ const
Cosmology with Galaxy Clusters - IV: constraints from gas fractions

~ 40 X-ray Clusters - measurement of f_{gas}
from hydrostatic equilibrium
sample of relaxed and hot GCs from Chandra
also some WL mass estimates to further constrain the model

$$f_{\text{gas}}(z, M_{2500}) = \gamma(z, M_{2500}) \frac{\Omega_D}{\Omega_m},$$

$$\gamma(z, M_{2500}) = \gamma_0 (1 + \gamma_1 z) \left(\frac{M_{2500}}{3 \times 10^{14} M_\odot} \right)^{\alpha}$$

Mantz+21
Costanzi+2018: abundance and weak-lensing of RedMapper clusters from SDSS \((z=0.1-0.3)\)

\[S_8 \equiv \sigma_8 (\Omega_m/0.3)^{0.5} = 0.79^{+0.05}_{-0.04}. \]

No evidence of tension with CMB constraints and constraints from other cluster catalogues
Cosmology with Galaxy Clusters - VI: constraints from SZ cluster

Bocquet+2018: cluster counts in the SPT-SZ survey (z=0.25-1.75)
→ 377 clusters used, supplemented by HST+Magellan WL mass and Chandra X-ray observations

$$\Omega_m = 0.276 \pm 0.047$$
$$\sigma_8 = 0.781 \pm 0.037$$

- Allow neutrino mass to be a free parameter
- Test of growth of structure in agreement with GR
Cosmology with Galaxy Clusters

XXL (Pacaud+18)
HIFLUGCS MF+fgas (Schellenberger+17)
HIFLUGCS MF (Schellenberger+17)
RASS+WtG MF+fgas (Mantz+15)
SPT (Bocquet+18)
SPT (de Haan+16)
Planck 2015 (XXIV)
ACT (Hasselfield+13)
SDSS (Costanzi+18)
HSC Y-1 (Hikage+18)
DES Y-1 (Abbott+18)
KiDS+VIKING (Hildebrandt+18)
KiDS+GAMA (van Uitert+18)
KiDS-450 (Hildebrandt+17)
Planck 2018 (VI)
Planck 2015 (XIII)
WMAP9 (Hinshaw+13)
Cosmology with Galaxy Clusters and the IGM - new tension???

Esposito+22 w

Detection signal noise-ratio vs Cluster Mass

\[
\ln(\zeta) = \ln A_{SZ} + B_{SZ} \ln \left(\frac{M_{500} h_{70}}{4.3 \times 10^{14} M_\odot} \right) + C_{SZ} \ln \left(\frac{E(z)}{E(0.6)} \right)
\]
Lensing and Clusters - Summary

- Weak gravitational lensing: fundamental cosmological observables which, unlike galaxy clustering and similarly to Lyman-alpha, allows access to non-linear scales
- Tremendous progress in the last decade: KiDS, DES, CFHTLens. Mathematically very neat modelling, in practice much harder
- Probe of structure growth: some S_8 tension seems to be present
- Galaxy Cluster number counts also very important to constrain s_8-Omegam: results in agreement with WL
- Again: exciting future: for WL: Euclid and LSST, for GCs: eROSITA, Euclid, Roman telescope.