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SUMMARY

To better understand how object recognition can
be triggered independently of the sensory channel
through which information is acquired, we devised
a task in which rats judged the orientation of a raised,
black and white grating. They learned to recognize
two categories of orientation: 0� ± 45� (‘‘horizontal’’)
and 90� ± 45� (‘‘vertical’’). Each trial required a visual
(V), a tactile (T), or a visual-tactile (VT) discrimination;
VT performance was better than that predicted
by optimal linear combination of V and T signals,
indicating synergy between sensory channels. We
examined posterior parietal cortex (PPC) and uncov-
ered key neuronal correlates of the behavioral
findings: PPC carried both graded information about
object orientation and categorical information about
the rat’s upcoming choice; single neurons exhibited
identical responses under the three modality condi-
tions. Finally, a linear classifier of neuronal popula-
tion firing replicated the behavioral findings. Taken
together, these findings suggest that PPC is involved
in the supramodal processing of shape.

INTRODUCTION

Our experience of the world depends on integrating signals

through multiple senses. In many instances we can recognize

an object independently of the modality by which we acquire

the sensory signal, implying that our knowledge about things

can be accessed and triggered through a number of sensory

pathways (Quiroga et al., 2005). In psychophysical studies,

humans, non-human primates, and rodents demonstrate height-

ened accuracy of perceptual judgements whenmultiple cues are

combined, and in some studies the increase in accuracy approx-

imates that of a statistically optimal observer (Alais and Burr,
Neu
2004; Battaglia et al., 2003; Ernst and Banks, 2002; Fetsch

et al., 2009; Guo et al., 2014; Jacobs, 1999; Raposo et al.,

2012). Neuroscientists, to date, do not have a full understanding

of how the processes of convergence, fusion, and generalization

across sensory modalities are realized, though much attention

has been focused on the problem (Battaglia et al., 2003; Drugo-

witsch et al., 2015; Ernst and Banks, 2002; Fetsch et al., 2013).

Where in the brain are distinct sensory channels combined?

Since object recognition is usually attributed to neocortical

processing, here we examine the posterior parietal cortex (PPC),

situated between primary somatosensory and visual cortices

and a target of both (Akers and Killackey, 1978; Krubitzer, 1995;

Reep et al., 1994; Whitlock et al., 2008; Wilber et al., 2014). PPC

is a good candidate for visual-tactile convergence (Olcese et al.,

2013), although in rodents the degree of multisensory conver-

gence within it is debated (Erlich et al., 2015; Harvey et al., 2012;

Licata et al., 2017; Lippert et al., 2013; Raposo et al., 2014).

In the present study, we linked the psychophysical and

neurophysiological approaches by measuring the efficiency of

multisensory integration through a behavioral test, while simulta-

neously examining neuronal processing in the PPC. As a psycho-

physical gauge of integration, we measured the capacity of rats

to judge the orientation of an object by the visual sensory

channel, by the tactile sensory channel, and by both channels

together. The results show that the same functional knowledge

of object orientation could be evoked under varying sensory

conditions, yet the most reliable judgment arose from the two

channels operating together. Next, as a neurophysiological

gauge of multisensory integration, we measured the degree to

which the activity of PPC neurons recorded during the behavioral

task could account for the rats’ supramodal recognition of object

orientation.

RESULTS

Visual-Tactile Orientation Categorization Task
We designed a visual-tactile categorization task that involves a

solid object. The discriminandum, pictured in Figure 1A, had a

circular boundary (98 mm diameter) and raised parallel bars
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Figure 1. Visual-Tactile Orientation Categorization Task

(A) Photographs of the object examined by the rat. Shown are front-side view (left) and exactly front view (right), the latter approximating the perspective of the rat.

(B) Schematic of the orientations of the stimuli and rule of the categorization task. Rats were trained to categorize orientations from 0� to 45� (solid red) in one

category and orientations from 45� to 90� (solid green) in another. When tested with �45� to 0� and 90�–135� (red and green stippling, respectively), they

immediately generalized the rule, suggesting that the categories corresponded to horizontal (H) and vertical (V); see Figure S2C.

(C) Sequential steps in the behavioral task. Each trial started with a head poke that interrupted a light beam and triggered the opening of an opaque gate,

followed by either visual, tactile, or visual-tactile access to the object. After probing the stimulus, the rat turned its head toward one spout, in this illustration

left for vertical and right for horizontal. On the right side of the figure, the sequence of actuators and sensors is shown schematically. See Figure S1A for the

experimental setup.
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(width and depth of 3.5 mm), alternately colored white and black.

It was thus accessible as both a visual and a tactile square wave

grating. Rats were trained to encounter the object to judge its

orientation on each trial, categorizing orientations in the range

of 0�–45� as horizontal, and orientations in the range of

45�–90� as vertical (Figure 1B; also see STAR Methods and

Figure S1). Figure 1C illustrates in a schematic manner the

sequence of events in the behavioral task. Each trial started

with a head poke that triggered the opening of an opaque

gate, followed by either a tactile (T) trial (in complete darkness,

with the animal allowed to touch the object with its snout and

whiskers), a visual (V) trial (under illumination but with a trans-

parent panel in front of the object to prevent contact), or a

visual-tactile (VT) trial (with the object illuminated and accessible

by touch). After sampling the stimulus, the rat turned its head

toward one spout (L or R) and licked. The boundary angle, 45�,
was rewarded randomly on left or right. The three stimulus

conditions (V, T, and VT) were randomly interleaved with 32%

likelihood per trial. The remaining 4% were control trials (neither

visual nor tactile access to the stimulus).

As a first step, we characterized the rats’ performance on

V and T (unimodal) trials and compared the performance to

that on VT trials. Next, we analyzed their accuracy in these

three conditions to determine whether they merged or else

kept separate the visual and tactile sensory information on
2 Neuron 97, 1–14, February 7, 2018
visual-tactile trials. Finally, we explored the neuronal correlates

of the convergence of sensory channels.

Improved Performance through Merging of Touch and
Vision
To quantify rats’ performance, we used a cumulative Gaussian

function to fit psychometric curves to the choice data of each

rat in each modality (see STAR Methods). Figure 2A reveals

that rats differed in their modality-specific acuity: rat 3 performed

better in the T condition (left), while rats 12 and 1 performed

better in the V condition (middle and right). All three example

rats performed better in the VT condition than in V or T alone

(in this figure, and throughout the report, green traces corre-

spond to the T condition, blue to V, and red to VT). The boost

in performance in the VT condition indicates that, when both

modalities were available, rats did not select and rely upon the

single, preferred channel; instead, they benefited from the

access to both channels of sensory input (Figure S2B).

Figure 2B shows the psychometric fits for 12 rats (pale curves,

colored according to modality). The average performance

across rats is illustrated by the thick curves. Rats showed, on

average, good orientation acuity using their whiskers and snout

(T) and slightly better performance using vision (V). Performance

was markedly superior in the VT condition, indicating multi-

sensory enhancement, consistent with Figure 2A. The standard
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Figure 2. Supralinear Performance through the Merging of Touch and Vision

(A) Three example rats that, notwithstanding differences in modality-specific acuity, each showed better performance on VT trials as compared to V and T trials.

In this and all figures, green traces correspond to the T condition, blue to V, and red to VT. Black curves are predicted psychometric curves from the Bayesian

cue-combination model. Error bars show 95% binomial confidence intervals. See Figure S2A for tests of significance.

(legend continued on next page)
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deviation, s, of the cumulative Gaussian function underlying

the psychometric curve is a robust measure of acuity, with a

small s implying a steep psychometric curve slope and high

acuity. Individual rats performed best on bimodal trials, indepen-

dently of the individual’s preferred modality: the decrease in s in

the VT versus V and T conditions was significant for all rats

(Figures S2A and S2B, bootstrap test, p < 0.001).

In the VT condition, rats also showed reduced lapse rates

compared to V and T (i.e., fewer errors on ‘‘easy’’ trials, those

near the 0� and 90� orientations, p = 0.000 for all conditions in

average curve; Figure S2A, bootstrap test) and a more accurate

detection of the horizontal and vertical boundary, assessed by

the point of subjective equality (PSE closer to 45�, p < 0.02 for

V and T in average curve compared to VT; Figure S2A, bootstrap

test). The inset in Figure 2B highlights the improved performance

in the bimodal condition versus each of the unimodal conditions,

averaged across rats. Overall, VT benefit was greater versus

T than versus V, an outcome of the better V versus T unimodal

performance. Benefit varied with stimulus orientation. At 45�,
performance can be no better than chance; thus, multisensory

integration provided no benefit. At the cardinal orientations,

0� and 90�, performance in V and T conditions was high, so

that multisensory integration could offer limited benefit. At the

intermediate orientations, 20�–35� and 55�–70�, the benefit

obtained by combining information from the two modalities

was greatest.

Did rats learn reward contingencies specific to the stimulus

orientations upon which they were trained, or did they execute

the task by spontaneously sorting any encountered stimulus,

whether familiar or novel, into the categories of horizontal and

vertical? To distinguish between the possibilities, in ten rats

who were well trained with stimuli in the range of 0�–90�, we intro-

duced trials with stimulus orientations ranging from 90�–135� and
�45� to 0� (Figure 1B, stippled sectors) interleaved with the

familiar 0�–90� trials in the same session. In the first such session,

each rat performed equally well on the new versus the familiar

stimuli (bootstrap test, all rats p > 0.29; Figure S2C). Thus, rats

seemed to solve the task by measuring the difference between

the encountered orientation and the cardinal orientations of

‘‘horizontal’’ and ‘‘vertical.’’ Theywere able to generalize this cate-

gorization rule to new stimuli upon the first instance, consistent
(B) Pale curves give the performance of 12 rats in each modality. Dark data po

show 95% binomial confidence interval. Inset shows the improved performance

orientation, averaged across rats.

(C) Comparison of the thresholds predicted by linear combination of V and T s

thresholds on VT trials (abscissa). Each point corresponds to one rat. Error bars

(D) Comparison of mutual information between behavioral choice and stimulus c

choice and stimulus category summated from V and T trials (abscissa). Each p

bootstrapping.

(E) Synthesis of psychometric curve parameters under the three modality condi

subjective equivalence. The histograms are the summed distributions across ind

psychometric curve (slope is the change in proportion of trials in which orientatio

summed distributions across individual rats. Circled points are the average value

(F) Same analysis as in (C) for six subjects (rats 2–7) tested in a block design wher

only VT trials. Most rats showed supralinear combination of V and T signals, indica

of trials. Error bars show 95% confidence interval.

(G) Response times averaged across all test sessions for all rats. Data from V, T, a

interquartile ranges.
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with the ability of rats to generalize visual object recognition to

novel views (Tafazoli et al., 2012). In further behavioral sessions,

we included the full range of stimulus orientations. For the

purpose of analysis, stimuli in the ranges of 90�–135� and �45�

to 0� were reflected about the vertical and horizontal axes,

respectively, allowing all orientations to be treated as 0�–90�.
Merging of Modalities Is Supralinear
We next compared the performance observed in bimodal trials

to that predicted by the optimal combination of two unimodal

channels. Optimal performance was defined as the linear combi-

nation of the two independent signals, based on a framework of

Bayesian decision theory (Ernst and Banks, 2002; Fetsch et al.,

2013; Landy et al., 2011). Specifically, we fit the psychometric

data with a cumulative Gaussian function yielding two parame-

ters: the point of subjective equality (the orientation aligned to

the mean of the best-fitting cumulative Gaussian function) and

the threshold (the Gaussian function standard deviation, s).

In the Bayesian framework, the standard deviation in the

VT condition is related to the standard deviations of the unimodal

conditions as follows:

1

s2
vt

=
1

s2
v

+
1

s2
t

:

Solving the equation for sVT gives the optimal combined

threshold from single-modality estimates. Lower s corresponds

to better accuracy. Single-rat psychometric curves based on this

model of optimality are represented by the black traces in Fig-

ure 2A. To illustrate all rats together, Figure 2C plots the

measured threshold on VT trials versus the threshold predicted

by linear combination of V and T signals: 9 out of 12 rats com-

bined V and T signals in a supralinear manner (similar to rat 1

in Figure 2A), 2 in a linear manner (similar to rat 3 in Figure 2A),

and 1 sublinearly (rat 12 in Figure 2A).

As an additional approach to comparing observed perfor-

mance with that predicted by a linear model, we treated V and

T as two channels that provide the rat with streams of infor-

mation. We then compared the total amount of information

possessed by the rat on VT trials with the sum of the information

possessed, separately, on V and T trials. This approach assumes
ints and curves show the average over all rats in each modality. Error bars

in the VT condition versus V alone (blue) and T alone (green), as a function of

ignals based on Bayesian cue combination model (ordinate) with measured

indicate 95% confidence intervals by bootstrapping.

ategory in VT trials (ordinate) with the mutual information between behavioral

oint corresponds to one rat. Error bars indicate 95% confidence intervals by

tions. Each point corresponds to one rat. Abscissa denotes the rat’s point of

ividual rats, with bin size 2�. Ordinate denotes the maximum slope of the rat’s

n was judged as vertical per degree of angle change). The histograms are the

s.

e seven sessions with only V and T trials were followed by seven sessions with

ting that sensory channel integration did not depend on the modality sequence

nd VT trials are pooled. Data show mean ± SEM. See Figures S2E and S2F for
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that the information present within the sensory channels is con-

verted directly into a choice (Adibi et al., 2012) and allows us to

quantify this information according to the rat’s behavior (e.g.,

1.0 bits of information supports 100% accuracy, 0 bits supports

50%accuracy). In practice, we computed themutual information

(MI; see STAR Methods) between stimulus category (horizontal

or vertical) and the rat’s behavioral choice (left or right reward

spout) in each modality separately as well as in the combined

condition. Then we computed the quantities predicted by the

linear combination of V and T signals. In theory, the observed

merging of V and T information could be exactly linear, reflecting

the optimal combination of two independent signals: sublinear,

reflecting redundancy between the two signals, or supralinear,

reflecting synergy. If the summated quantities of V plus T infor-

mation were to exceed 1.0 bits, then the rat would possess

more information than it could express by its choices and the

model would break down; this case never occurred.

Figure 2D shows that 8 out of 12 rats combined V and T signals

in a strongly supralinear manner, 2 rats close to supralinear (one

error bar overlies the diagonal), 1 in a linear manner (both error

bars overlie the diagonal), and 1 in a sublinear manner. In sum-

mary, two analyses—Bayesian prediction of underlying threshold

and MI—both suggest that in the majority of rats the signals car-

ried by the two sensory channels were notmerged independently

but were combined in a synergistic manner (the two measures

are correlated, linear regression R = 0.6; Figure S2D).

The availability of two channels not only improved the perfor-

mance but also allowed rats tomore reliably detect the horizontal

and vertical boundary. Figure 2E plots their boundary detection

(PSE, the stimulus orientation at which left and right choices

were equally likely) along with performance (estimated by

maximum psychometric curve slope). In the VT condition, the

distribution of PSE was closer to the 45� line and curve slope

was greater; average values are in the black circles.

In standard testing, V, T, and VT trials were randomly inter-

leaved. It could be argued that supralinear performance on

VT trials occurred because rats’ motivationwas higher: inasmuch

as unimodal trials weremore difficult, ratsmight have spent fewer

attentional resources on them, with the knowledge that an easier

bimodal trial would soon follow. However, in a different set of

experiments, we tested a group of trained rats (rats 2–7) on a

block design where seven unimodal-only sessions were followed

by seven bimodal-only sessions. This configuration would be

expected to minimize any loss in motivation on unimodal trials,

since the rat could not choose to attend preferentially to bimodal

trials. For this block design, measured sVT values remained close

to or better than Bayesian optimal estimates (Figure 2F), indi-

cating that supralinear summation in the interleaved sessions

was not well explained by enhanced motivation on VT trials.

Response Time Is Correlated with Trial Difficulty
Response times were measured as the time from first possible

sensory access to the object (opening of the opaque panel) until

the first lick. Considering all sensory conditions and stimulus ori-

entations, response times were 435–734 ms (interquartile range;

Figure S2E). With trials sorted according to stimulus orientation,

it becomes apparent that response times were longer for

orientations close to the category boundary, 45� (Figure 2G).
Thus, rather than undersampling the difficult orientation due to

reduced reward likelihood, the rats in fact seemed to try to

acquire additional evidence. The distributions differed little

according to trial modality condition (Figures S2F and S2G).

Stimulus Orientation and Stimulus Category Are
Encoded by Neurons in Posterior Parietal Cortex
We recorded neuronal activity in the left PPC of trained rats (Fig-

ure 3A) after they reached a stable level of performance in the

behavioral task. For most recording sessions, the set of stimulus

orientations was reduced to angles between 0� and 90� in 15�

steps (hence seven orientations) to allow a greater number of tri-

als (and therefore neuronal samples) at each orientation. Rats

usually completed 300–500 trials per recording session. In Fig-

ure 3B, the action potential waveform and interspike interval

histogram (ISI) of a single unit is illustrated (upper plots; ISIs for

a large set of sampled neurons are given in Figure S3C). The

raster plot shows the unit’s firing on 250 (randomly selected

out of a session of 524) trials, with trial sequence conserved.

Modality conditions (V, T, and VT) are labeled by color and

were randomly interleaved. Firing rate, computed in a window

of 1 ms and smoothed with a Gaussian (s = 50 ms), is plotted

with the same color code. The neuron had a stable firing rate

of about 2 spikes/s as the rat awaited the trial onset. About

200 ms after trial onset, the neuron’s firing rate ramped upward

and remained at about 8 spikes/s until 1 s after trial onset. Similar

temporal profiles characterized V, T, and VT trials.

We examined the encoding of stimulus orientation and stim-

ulus category (the horizontal category versus the vertical one)

by grouping trials with the same orientation together. Figure 3C

shows raster plots (left plots) and peri-event time histograms

(PETHs, middle plots) of two example PPC neurons, with

responses in all modality conditions combined. Neuronal data

are aligned to the trial onset (defined as the onset of the opening

of opaque panel). Error trials and trials with 45� orientation are

excluded in these plots. The angular tuning curves (right plots,

separated by modality, based on neuronal data in a 300 ms

window preceding the reward spout lick) highlight that the two

neurons’ firing rates were modulated by stimulus orientation,

the first firing at a progressively higher rate as angle increased

from 0� to 90�, and the second firing at a progressively lower

rate from 0� to 90�. By contrast, Figure 3D shows two neurons

that carried a large signal about stimulus category: firing rates

deviated according to the upcoming action (left or right). The

angular tuning curves indicate that they were poorly modulated

by stimulus orientation within a choice category. The orientation

and category information carried by these neurons is shown in

Figure 5.

Responses in Posterior Parietal Cortex Are Supramodal
The tuning curves of Figure 3C and 3D suggest that, while

neuronal firing could vary according to orientation (first pair of

neurons) or category (second pair of neurons), it was largely

invariant to differences in modality (in right plots, compare

green, blue, and red curves). For the first quantitative test of

modality invariance, we merged the data across all stimulus ori-

entations. In Figure 4A, each point represents the average firing

rates of one neuron (total, 622 neurons) in a 300 ms window
Neuron 97, 1–14, February 7, 2018 5
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Figure 3. Encoding of Stimulus Orientation and

Stimulus Category in Posterior Parietal Cortex

(A) Upper: the target area, PPC (green), is located

between visual cortex (blue) and the vibrissal region of

somatosensory cortex, Bf. Lower: histological section

demonstrating recording sites in the LPtA zone of PPC

according to Paxinos and Watson (2007).

(B) Upper left: example PPC neuron action potentials

(150 single waveforms and their average, black).

Upper right: interspike interval histogram. Lower:

raster plot showing the unit’s firing on 250 randomly

selected trials. Modality conditions (V, T, and VT) are

labeled by color. Firing rate, computed in a window of

1 ms and smoothed with a Gaussian (s = 50 ms), is

plotted with the same color code. Shaded bands

are ±SEM.

(C and D) Raster plots (left plots), peri-event time

histograms (PETHs, middle plots, smoothed with a

Gaussian kernel s = 50 ms), and angular tuning curves

(right plots, separated by modality) of four example

PPC neurons. Error trials and trials with 45� orientation
are excluded. Trials are grouped by stimulus orienta-

tion (see color key). Tuning curves show average

firing rate for trials grouped with the same stimulus

orientation in a 300 ms window preceding the reward

spout lick. Data points show the average firing rate per

angle ±SEM. The curves are cumulative Gaussian fits

(see STAR Methods).
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Figure 4. Supramodal Responses in Posterior Parietal Cortex

(A) Each point denotes the average firing rates of one neuron (total, 622 neurons) in a 300 ms window preceding the reward spout lick in V, T, and VT trials,

separately. Points are clustered about a line (orange) corresponding to equal responses under the threemodality conditions. Data are not separated according to

orientation.

(B) Separated by angles (colors), points indicate the firing rate of all neurons, again in the 300 ms window preceding the reward spout lick, in T (abscissa) versus

V (ordinate) trials. R is the Pearson linear correlation coefficient.

(C) Upper plots: mean firing rates on T (abscissa) versus V (ordinate) trials for each of the six tested orientations for two neurons. Linear regression coefficient and

slope are reported on the plot. The neuron in the left panel was also illustrated in the lower plot of Figure 3C and the neuron in the right panel from the upper plot of

Figure 3D. Data points show the average firing rate per angle ±SEM. Lower plots: histograms are the distributions of the linear regression coefficients for all

neurons (left) and slopes for neurons with statistically significant regression coefficient (right).

(D) Upper histogram:modality selectivity for a population of 622 PPC neurons. Positive index values correspond to higher firing rate for V trials and negative values

to higher firing for T trials. Lower histogram: category selectivity for the same population of neurons. Positive index values correspond to higher firing rate for

leftward choices and negative values to higher firing for rightward choices. See Figure S4 for time course of selectivity index measured for each neuron.
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preceding the reward spout lick in V, T, and VT trials, sepa-

rately. The proximity of nearly all points to the diagonal line

attests to the supramodal character of these neurons: a given

neuron’s overall engagement in the task was nearly equal under

the three modality conditions.
Next, we separated the data according to orientation to

find out whether invariance to modality persisted across all

orientations. Figure 4B illustrates the firing rate of all neurons,

again in the 300 ms window preceding the reward spout lick,

in T (abscissa) versus V (ordinate) trials. The independence of
Neuron 97, 1–14, February 7, 2018 7
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firing rate on modality held across the six stimulus orientations;

the Pearson linear correlation coefficient, R, between firing rate

on V and T trials ranged from 0.96 to 0.99.

To obtain a population summary, for each neuron we consid-

ered the firing rates on V and T trials as two coordinates and

plotted the resulting response values (again, in the 300 ms win-

dow preceding the reward spout lick) for each of the six tested

orientations, as illustrated for two neurons in the upper plots of

Figure 4C. The left plot shows a neuron whose response is

modulated by stimulus orientation and the right plot shows a

neuron whose response is modulated by the choice category

associated with stimulus orientation. For all neurons, we

computed the strength and slope of the V versus T linear regres-

sion through the six points. A neuron can yield linear regression

with coefficient R = 1 and regression slope also 1 only if it sat-

isfies two conditions: variation in firing rate according to stimulus

orientation and/or category, and equivalent firing rate for the two

modalities. The histograms in Figure 4C (lower plots) are the

distributions of the regression coefficients (left) and slopes of

the statistically significant coefficients (right); both distributions

show a peak near 1, highlighting the similarity in response in

the two sensory modalities.

Neurons ShowGreater Selectivity for Stimulus Category
Than for Stimulus Modality
The nearly equal responses of neurons on V, T, and VT trials

imply that the studied population did not inform the brain about

the modality in which the object was presented, though modal-

ity selectivity of many PPC neurons has been reported in recent

work (Raposo et al., 2014). We further examined the problem by

comparing stimulus modality selectivity to stimulus category

selectivity in the same population. To carry out the comparison,

we employed a selectivity measure (Feierstein et al., 2006)

based on receiver operator characteristic (ROC) analysis. The

measure defines how well the firing rate of a given neuron can

be used to classify the modality of the stimulus (visual versus

tactile) as well as the rat’s categorization of the stimulus

(measured by its choice, right versus left). The metric is propor-

tional to the area under the ROC curve, which is scaled from�1

to 1. Figure 4D, upper histogram, shows the distribution of

modality selectivity for the population of 622 PPC neurons.

Just 5% (30 out of 622) were selective (p < 0.01; permutation

test) for stimulus modality, and the analysis does not point to

an overall preference for either modality among these 30 neu-

rons. To test whether modality preference was modulated by

the rat’s upcoming choice, we did the same analysis with

right-choice and left-choice trials separated, doubling the

number of tests (2 per neuron). In the 1,244 tests, the same

5% proportion was selective.

Figure 4D, lower histogram, shows the distribution of category

selectivity for the same population of neurons; over 50% of

neurons (318 out of 622) were significantly selective (p < 0.01;

permutation test) for the upcoming choice of the rat. A greater

number of neurons (219 out of 318 neurons) was selective for

turns to the right (index < 0) than to the left (index > 0), suggesting

overall opposite-side preference in left PPC. In sum, this popula-

tion of neurons did not appear to be informative about themodal-

ity of the stimulus but instead generated a robust signal about
8 Neuron 97, 1–14, February 7, 2018
stimulus properties—orientation and the choice category asso-

ciated with that orientation—irrespective of modality (also see

Figure S4).

While Figures 4C and 4D considered the category and modal-

ity signal separately in single neurons, it was of interest to know

how the properties of stimulus orientation and category were

carried jointly. Two alternative coding schemes might hold: (1)

the properties of stimulus orientation and category were carried

jointly, such that no neuron could be cleanly classified as an

‘‘orientation-coding’’ or a ‘‘category-coding’’ neuron, or (2) the

population of neurons separated into two distinct functional

classes, ‘‘orientation’’ and ‘‘category.’’ Selecting between the

models is non-trivial because there are inherent correlations

between task parameters: since stimulus orientation predicts

its perceived category, a neuron that encodes purely angle will

also have responses that vary according to category; likewise,

a neuron that encodes purely category will also have responses

that vary according to angle.

To disentangle the two correlated coding properties, we

developed a conditional information theoretic measure. This

measure extracts the information that a neuron carried about

stimulus category (assessed by choice) conditional on a specific

stimulus angle. For instance, suppose that a rat judged 80% of

30� trials as horizontal (giving 80% accuracy); the analysis would

estimate how much information neuronal responses carried

about the perceived category of the stimulus, conditional on

the 30� orientation. The same measure can be applied to extract

the information that a neuron carried about angle conditional on

the perceived category (again, assessed by choice) in that set of

trials. In this way we could estimate the information a given

neuron conveyed about both signals, while removing the effect

of task correlation.

The mutual information was computed in a 200 ms window,

shifted in 50ms steps, from the start of the trial until the response

lick, and the maximum value was taken. The scatterplot in Fig-

ure 5 illustrates the joint conditional information values for 622

neurons. The plot can be interpreted as showing howmuch addi-

tional information a neuron carried about category (abscissa) or

angle (ordinate) conditional on a fixed value of the other feature.

The marginal distributions (the quantities of one type of condi-

tional information, pooled across all neurons) are made evident

by projecting the scatterplot upward and rightward to form

histograms. About 50% of neurons (315 out 622, p < 0.01) car-

ried significant information about category conditional on angle

(blue triangles and blue histogram projection); a small set of

neurons carried a very strong category signal (green dashed

ellipses). About 45%of neurons (284 out of 622, p < 0.01) carried

significant information about stimulus angle conditional upon

perceived category (brick-colored triangles and histogram pro-

jection). About 38% of neurons (239 out of 622, p < 0.01, boot-

strap test) carried significant conditional information about

both orientation and choice (stars and ochre-colored histograms

and squares). This seemingly counter-intuitive form of coding

signifies that a neuron fired at a significantly different rate ac-

cording to the rat’s choices, while also firing in a graded manner

for angle steps within a category; the firing rate difference across

the category boundary was larger than the firing rate differences

within category. The circled neurons, labeled 1–4, correspond to



Figure 5. Joint Information about Stimulus

Orientation and Category in Posterior Parietal

Cortex

Data points illustrate for 622 neurons the values of

conditional mutual information computed from the

start of the trial until the response lick. Informationwas

measured between firing rate and stimulus angle

conditional on stimulus category as well as the infor-

mation between firing rate and category conditional

on stimulus angle. Neurons numbered as 1–4 corre-

spond to the same neurons of Figures 3C and 3D, top

to bottom. Dashed ellipse in main plot highlights a

small set of neurons that carried particularly high

conditional category information; dashed ellipse in

marginal histogram indicates the same set of neurons.
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the four neurons illustrated in Figures 3C and 3D in order from

top to bottom. Around 42% (262 out of 622) of neurons carried

neither conditional angle nor conditional category information

(gray squares and histograms).

The bands around the diagonal are a boundary of R0.05 bits

of information (corresponding to 1 standard deviation of the

whole dataset); the fact that 78% of neurons that carried infor-

mation about both angle and category were clustered between

the bands indicates that PPC neurons tended to express both

stimulus coding and category coding. The simultaneous repre-

sentation of both task properties suggests that PPC is involved

in a supramodal stimulus-to-category transformation.

Choices Are Encoded by Neuronal Population Activity
To this point, we evaluated each neuron as an independent unit.

However, it is likely that the rat executes the behavior using

signals carried in a collective manner by a large set of neurons

(Safaai et al., 2013). Thus, we sought to characterize the extent

to which the rats’ performance could be supported by the mes-

sage contained within populations of PPC neurons. We used a

linear discriminant classifier (Duda et al., 2012; Vencatasawmy

and Krzanowski, 2002; see STAR Methods) to obtain an

estimate of the population signal. The training data for the

classifier consisted of the single-trial responses, in a 300 ms
epoch before the response lick, of a popula-

tion of simultaneously recorded neurons

across a set of trials that did not include

the test trial; after training, the classifier pre-

dicted the rat’s choices on the test trial on

the basis of the population’s response.

The train and test cycle was repeated to

yield a predicted choice on every trial. To

challenge the robustness and generality of

the classifier across modalities and stim-

ulus angles, trials with the specific orienta-

tion and sensory modality of the test trial

were omitted from the training set. A classi-

fier trained without trials of the angle and

modality of the tested trial could success-

fully decode population activity only if that

population carried a robust sensory code

(i.e., that generalized from the training trials’
angles to the test trial angle) and a supramodal signal (i.e., that

generalized from the training modality conditions to the test trial

modality condition).

As schematically illustrated for one typical session (Figure 6A),

the classifier was able to determine a boundary that could sepa-

rate the population’s activity into two states associated with the

rat’s two choices. In this example, PPC population activity was

decoded as a left (circle) or right (triangle) choice on test trials

with stimuli at 0� in T condition after training with trials with orien-

tations from 15� to 90� in V and VT conditions. The decoded trials

(dark red points) correspond to 0� stimulus.

Figure 6B evaluates the classifier’s real performance on a trial-

by-trial basis for each session separately (ten sessions from

five rats). We assessed classifier performance as the rats

approached and examined the object, considering neuronal

activity in a 100 ms window shifted in 50 ms steps (activity

aligned to the time of first response lick). About 1 s before the

response (i.e., before trial onset), the decoder’s performance

was around 50%. This suggests that the PPC population did

not manifest a choice bias before encountering the stimulus.

Performance gradually increased to >90%on average by around

250 ms before the response lick. Peak decoder performance

measured in 5 rats ranged from 91% to 99% (9 sessions), with

1 session at 70% (p < 0.001, permutation test). To make sure
Neuron 97, 1–14, February 7, 2018 9
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Figure 6. Choices Are Encoded by Neuronal Population Activity

(A) Illustration of the linear discriminant classifier used to decode choices from the population activity. The clouds of circles and triangles show the sets of

response population vectors produced in different trials of a single recording session. Circles are associated with turning to the left spout, triangles with the right

spout. Symbols representing data from training trials have no border, while the symbols representing data from test trials have a black border and are grouped

within the dashed boundaries. Since the test data fall on the correct side of the discrimination boundary (near the training trials of the same symbol),

the performance in this schematic dataset would be perfect.

(B) Actual trial-by-trial performance of the decoder for each session separately (ten sessions from five rats) is in gray. Black is average across sessions. Decoder

performance is measured based on neuronal activity aligned to the time of first response lick; 100 ms windows shifted in 50ms steps. True decoder performance

surpasses 90% correct.

(C) Average psychometric curves (see STARMethods for the fit) based on decoding neuronal responses (solid lines) and the rats’ observed psychometric curves

(dashed lines). Data are presented as mean ±SEM. See Figure S5B for individual sessions and modalities.
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the decoder’s performance did not result from the activity of only

a few neurons with strong choice-related signals, we examined

the classifier weight associated with each neuron. Almost all

neuronal weights were non-zero in each session, indicating

that every neuron in the population contributed to the classifier’s

performance (Figure S5A).

By separating the classifier’s performance according to stim-

ulus orientation, we obtained in Figure 6C psychometric curves

based on decoding neuronal responses (solid lines), and we

compared them to the rats’ observed psychometric curves

(dashed lines). Across different modalities, the signal carried

by the PPC population closely paralleled behavior. Notably,

since for each trial the classifier was trained using only trials

with modality different from the test trial, we can conclude

that the population code was supramodal and could account

for the rats’ behavior (Figure S5B). The signal carried by the

PPC population also closely paralleled behavior when the
10 Neuron 97, 1–14, February 7, 2018
classifier training set included the modality of the test trial

(Figure S5C).

DISCUSSION

Unimodal Perceptual Capacities and Their Supralinear
Combination
This study presents a new behavioral paradigm to investigate

whether and how rats combine information from multiple

sensory modalities. Results obtained in the two single-modality

conditions offer novel insights. Rats were able to perform fine

orientation discriminations in the purely visual (V) condition, con-

firming that the visual capacities of Long-Evans rats might be

widely underestimated (Zoccolan, 2015). In the purely tactile (T)

condition, rats were also able to perform fine orientation discrim-

inations using their snout and whiskers. In an earlier report

(Polley et al., 2005), rats learned in a single trial to avoid shock
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by escaping the arm of amaze containing protruding vertical bars

on the wall; horizontal bars marked the safe arms. Orientation

detection was whisker dependent, and resolution was on the or-

der of 45�. In our study, in bothmodalities rats were sensitive to 5�

angle differences (e.g., non-overlapping error bars for neighboring

angles in Figures 2A and 2B). Within our set of rats, some

performed better in the V condition and others in the T condition.

Because of such individual variability, generalizations about rats’

comparative acuity in vision and touch cannot be made.

We used each rat’s psychometric curves in the V and T condi-

tions to compute the psychometric curve expected in the VT

condition by optimal Bayesian combination of the two unimodal

channels. The majority of rats exhibited actual VT performance

significantly better than that predicted by the standard Bayesian

ideal-observer model. We refer to this deviation from the model

as ‘‘supralinearity.’’ Additional analyses found that the orienta-

tion information that rats demonstrated in the VT condition

was greater than the sum of the quantities of information they

demonstrated in the V and T conditions, a second confirmation

of supralinear combination of the two channels.

Supralinear behavioral combination of sensory channels has

been found in previous studies (Fetsch et al., 2009, 2011; Kiani

et al., 2013; Raposo et al., 2012). It could occur if the information

available on unimodal trials were only partially exploited, while

the information available on bimodal trials were completely

exploited. The unimodal signal would then be underestimated

by the experimenter, and the accuracy on bimodal trials would

appear to surpass that predicted by the linear sum of (underesti-

mated) unimodal signals (Raposo et al., 2012). Partial exploita-

tion of information on unimodal trials might stem from reduced

motivation: rats are sensitive to overall reward rate, and unimo-

dal trials yield lower average reward rates than do bimodal trials.

Therefore they might attend less to unimodal trials, preferring to

invest their attentional resources in bimodal trials, where the

investment would be more frequently rewarded. With lower

expected net reward on unimodal trials, rats may give priority

to speed over accuracy (Drugowitsch et al., 2014, 2015). In a

bounded evidence accumulation framework, the greater speed

could be realized by lowering the decision threshold, thus

prematurely truncating the processing of unimodal stimuli

(Kiani et al., 2008, 2013).

However, our results do not support the notion of non-optimal

use of information on unimodal trials. In all modality conditions,

rats’ response time was nearly 150ms longer on trials with orien-

tation near the 45� category boundary (Figure 2G), indicating that

they did not truncate the collection of evidence on more difficult

trials. Similarly, response time distributions were similar across

the three modality conditions (Figure S2F), suggesting an

attempt to accumulate sensory evidence on unimodal trials

just as on bimodal trials. Finally, we tested rats with sessions

comprised of a single modality condition. In V-only or T-only ses-

sions, rats could not choose to attend preferentially to VT trials,

so unimodal performance should come close to its maximal

possible value. Yet, comparing across sessions, rats still com-

bined V and T signals in a supralinear fashion to guide VT perfor-

mance (Figure 2F).

If supralinear combination is not well explained by enhanced

motivation on VT trials, what account might better explain the
results? Both cue-combination models employed in our study

(Bayesian decision theory and MI) assume independence of

the sensory channels. The observed supralinearity could result

from a violation of that assumption—visual and tactile signals

might not be processed independently in bimodal trials. The

presence of one signal might affect how the other is acquired

by the sensorimotor system. For instance, the visual cue might

help the rat palpate the surface with its whiskers more efficiently,

boosting the tactile signal (Prescott et al., 2011). Further studies

analyzing head andwhisker kinematics will be required to assess

this hypothesis. A second possible form of interaction is synergy

between the two processing pathways within cortex. Inhibition

between cortical regions could allow activity evoked through

one modality to suppress the non-specific noise in the other

modality’s stimulus representation. Evidence of direct functional

connections between sensory cortical processing regions is

emerging. In the mouse, activation of auditory cortex by a noise

burst drives local GABAergic inhibition in the primary visual cor-

tex, via cortico-cortical connections (Iurilli et al., 2012). Similarly,

brief pulses of auditory noise sharpen orientation selectivity

of L2/L3 pyramidal neurons in primary visual cortex (Ibrahim

et al., 2016).

Posterior Parietal Cortex Participates in the Generation
of a Supramodal Representation
In search of a cortical processing region that might be involved in

the construction of the supramodal object representation

revealed by behavioral testing, we focused on PPC. Primate

PPC receives input from cortical areas representing multiple

sensory modalities and communicates back to these territories

(Cavada and Goldman-Rakic, 1989; Leichnetz, 2001). PPC in

rats is held to be homologous to primate PPC, as it shares the

characteristic reciprocal connectivity with sensory, frontal,

temporal, and limbic cortical regions (Akers and Killackey,

1978; Miller and Vogt, 1984; Reep et al., 1994; Whitlock et al.,

2008; Wilber et al., 2014). It is thus well positioned to receive

unimodal sensory signals (Kolb and Walkey, 1987; Olcese

et al., 2013; Reep et al., 1994) and transmit a processed form

of those signals to downstream cortical regions.

In our behavioral task, the signals present in PPC—and thus

distributed to its targets—appear to incorporate two key proper-

ties. The first is a fully supramodal representation of the episode.

Each neuron’s firing rates were the same under the V, T, and VT

conditions. Indeed, the orientation and category signal carried

by neurons in the three modality conditions could not be distin-

guished except by its greater robustness in VT trials—mirroring

the greater behavioral robustness in VT trials (Figure 6C). The

second is a representation of the episode that, neuron by neuron,

ranged from orientation tuning to category tuning. Since orienta-

tion and perceived category were correlated, the two forms of

coding were distributed along a single dimension, such that an

individual neuron could show graded steps in firing rate within

an orientation category (thus, stronger angle tuning) or else a

large step in firing rate around 45� (thus, stronger category tun-

ing). In order to quantify the message carried by populations of

PPC neurons, we trained a linear classifier to distinguish the

rat’s choice based on the population’s firing. When tested, the

classifier replicated the rat’s behavior on over 90% of trials
Neuron 97, 1–14, February 7, 2018 11
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(Figure 6B). Considering together the two key properties, we

suggest that PPC contributes to the formation of a supramodal

representation of the object and participates in the percept-

to-action transformation carried out by a network of cortical

regions. This interpretation is based on correlations between

trial-by-trial neuronal firing and whole-animal behavior; evidence

for a direct causal role of PPC might emerge from external

manipulations of this region during execution of the behavior.

Our experiment accentuates the high degreeof task-dependent

plasticity inherent in the function of PPC.While PPC could receive

orientation-tuned signals from earlier stages of visual cortical pro-

cessing (Wang et al., 2012), tactile orientation tuning has not been

reported in barrel cortex and may be generated in PPC to meet

specificbehavioraldemands.Furthermore, the reward rulebound-

ary of 45� was set arbitrarily, and its neuronal correlate must also

be generated to meet behavioral demands. These observations

lead to the conclusion that the functional properties of PPC

neurons are not hardwired but rather emerge through a learning

process in order to solve the requirements of ongoing tasks.

Formation of Neuronal ‘‘Knowledge’’ about Real Objects
Numerous studies have trained subjects to associate the

sensory data originating in two modalities by some arbitrary

rule (Sarko et al., 2013). In a recent study in which rats judged

the quantities of auditory and/or visual pulses in a train, many

neurons in PPC responded differentially on trials of the two mo-

dalities; indeed, modality itself could be decoded from neuronal

firing (Raposo et al., 2014). This contrasts with the modality-free

coding of the object in our study.

We hypothesize that supramodal coding is a consequence of

the nearly simultaneous arrival in PPC of congruous signals,

through two sensory channels, about a real object. Coherence

between modalities, as in our study, might better reflect the

statistics of the real world. Vision and touch have likely evolved

together to explore the shape, form, and spatial properties of

the environment. A rodent might need to maneuver through

oriented bars, whether those bars are seen or felt. In general,

the brain’s capacity to call up knowledge about things indepen-

dently of sensory input channel (Quiroga et al., 2005) requires a

stage of processing in which the same information is encoded

by both channels, and PPC seems to contribute to this abstrac-

tion of stimuli from sensory domains.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twelve male Long–Evans rats (Charles River Laboratories, Calco, Italy) were used. They were caged in pairs, except for implanted

rats which were housed alone. They were maintained on a 12/12 hr light/dark cycle; experiments were conducted during the light

phase. Upon arrival they were 8 weeks old, weighing approximately 250 g, and typically grew to over 600 g over the course of the

study. They had free access to food in the cage. To promote motivation in the behavioral task, rats were water-deprived on days

of training/testing. During each session they received 17-22 mL of pear juice diluted in water (1 unit juice: 4 units water) as reward.

After the session they were given access to water ad libitum for 1 hr, though they were rarely thirsty. Rats were examined weekly by a

veterinarian. Protocols conformed to international norms and were approved by the Ethics Committee of SISSA and by the Italian

Health Ministry (license numbers 569/2015-PR and 570/2015-PR).
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METHOD DETAILS

Apparatus
The main chamber of the apparatus, custom-built in opaque white Plexiglas, measured 253 253 37 (H3W3 L, cm) (Figure S1A).

The rat started a trial by interrupting an infrared beam detected by a phototransistor (Figure 1C). Beam interruption triggered fast

opening of an opaque panel (through a rotational motion of 40� in 75 ms), actuated by a stepper-motor, uncovering a circular

hole (diameter 5 cm) in the front wall through which the rat could extend its head to see and touch the object. The stimulus was

3 cm behind the opaque panel (further details below) and the reward spouts were 2 cm lateral to the edge of the stimulus.

The apparatus was in a Faraday cagewhich, with door closed, provided acoustic, visual, and electromagnetic isolation. An array of

12 infrared emitters (l = 850 nm, OSRAM Opto Semiconductors GmbH, Germany) illuminated the stimulus port to permit the inves-

tigator tomonitor behavior and to execute video recording without providing visible illumination for the rat. On V and VT trials, a pair of

6 white LED arrays illuminated the stimulus. Two infrared-sensitive video systems (Point Grey Flea, Edmund Optics, Barrington, NJ)

registered the rat’s actions. The first camera, equipped with a macro lens (Fujinon TV HF25HA-1B Lens, Fujifilm, Tokyo) mounted

25 cm above the stimulus delivery area (distance with respect to the center of stimulus), monitored the rat’s interaction with the

object. In some sessions, this camera was set to 250 f/s to monitor head, snout and whisker position andmovement during behavior.

The second camera provided awide-angle view (Fujinon HF9HA-1B Lens, Fujifilm, Tokyo) andmonitored the entire setup, illuminated

with adjustable infrared LEDs, at 30 f/s.

Reward spouts included custom-made infrared diode sensors interrupted by the tongue. Only the licking signal from the correct

spout triggered the pump motor (NE-500 programmable OEM; New Era Pump Systems, mounted on a vibration-cancellation

pedestal) to extrude the reward, 0.05mL per trial of diluted pear juice. Lickingmarked the end of the trial, accompanied by the closure

of the opaque front panel. The default setting of the ‘window of opportunity’ from opaque panel opening to initiate reward collection

was 2 s, but could be varied by the experimenter to influence the cadence of the rats (e.g., in a slow rat, the window could be reduced

to promote urgency). Before the next trial began, the motor on which the stimulus was mounted rotated to generate the next

orientation.

Rats are sensitive to reward volume and will quickly develop a strong side preference if the two pumps deliver unequal quantities.

Reward volume is a function of the number of steps executed by the pump motor. To make sure that equal volumes of reward were

delivered at both ports, we regularly calibrated the pumps according to the following procedure. A computer program ran the stepper

motor for 5,000 steps and we measured the volume of the displaced water both from the measurement marks on the syringes and a

graduated cylinder. We repeated this step 3 times for each pump separately.

Custom made software was developed using LabVIEW (National Instruments, Austin, TX). An AVR32 board (National Instruments)

andmultipleArduinoShields (National Instruments) acquiredall sensor signals andcontrolled themotors, LEDs,and the rewardsyringe

pumps. All the sensors, actuators (including motors and pumps) and lights were interfaced with the computer program allowing full

control over a wide range of parameters governing the flow of the training and testing. Although fully automatic, the software allowed

the experimenter to modify all the parameters of the task and control the lights, sensors and motors online as needed.

Visual-tactile Stimulus Presentation
The stimulus was a black and white square-wave grating within a circular 9.8 cm-diameter circumference, built in-house by a 3D

printer (3D Touch, BFB Technologies, Figure 1A). It was mounted on a stepper-motor and rotated to generate the trial’s intended

orientation (Figure 1B). Within behavioral testing sessions each stimulus orientation was sampled from a uniform distribution

in 5� steps between �45� and 135� and presented in a semi-random fashion (sampling without replacement). In neuronal recording

sessions, stimuli were sampled in 15� steps from 0� to 90� to allow a greater quantity of neuronal data for each orientation.

The depth and width of the grooves was 3.5 mm. Visual acuity is measured in cycles per degree (cpd), an assessment of the

number of lines that can be seen as distinct within a degree of the visual field:

Acuity =
1

23 tan�1
�
h
d

� cpd
where h is the width of each line in the stimulus and d is the distance from the eye. Considering the 3 cm distance behind the opaque

panel (Figure S1A), at the moment of panel opening each cycle of the 14 cycles would occupy 23tan�1ð3:5=30Þ= 13:31� of visual
angle, for a total stimulus coverage of about 117�. The spatial frequency of the gratings would be 1=ð23tan�1ð3:5=30ÞÞ= 0:075 cycles

per degree of visual angle. As the normal visual acuity of Long–Evans rats has been estimated as�1 cpd (Prusky et al., 2002), the bars

would be expected to be resolvable. Rats also have a large depth of focus, from 7 cm to infinity (Powers and Green, 1978). The width

of the binocular field directly in front of the rat’s nose, generally considered the animal’s binocular viewing area (Mei et al., 2012),

ranges from approximately 40�-110�, depending on head pitch (Wallace et al., 2013). The 117� stimulus should thus completely cover

the rat’s binocular visual field.

The apparatus allowed stimuli to be explored in three different conditions. In the visual-only condition (V), ambient light was set to

10.24 cd/mm2 (KonicaMinolta LS-100 luminancemeter, Tokyo) and a transparent panel in front of the illuminated stimulus prevented

tactile contact. In the tactile-only condition (T), the transparent panel was rotated out of the head-poke and the rat leaned forward to
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examine the stimulus with whiskers and snout in the dark; ambient light measured as 0 cd/mm2. In the visual-tactile (VT) condition,

rats were able to both see and touch the stimulus. In a control condition, rats could neither see nor touch the stimulus (transparent

panel in front of the stimulus and luminance set to 0).

The stimulus stepper-motor was controlled through a feedback system with a digital step counter to maintain the exact desired

orientation and prevent possible changes due to the rat’s contact with the stimulus, e.g., the rat could not rotate the stimulus with

its paws. They contacted the object with the macrovibrissae (the long whiskers arranged in rows A-E) and the microvibrissae, which

are much shorter and are clustered around the nose and lips (Brecht et al., 1997). Rats mostly projected their whiskers forward and

made very small movements (seeMovie S1) perhaps engaging in ‘‘foveal’’ whisking (Berg andKleinfeld, 2003). In themany thousands

of examined video-recorded trials taken from the entire set of rats, no observation was made of a T or VT trial in which the animal

reached out to contact the object with its paws. As evident in Movie S1, due to the structure of the head-hole (or for implanted

rats, head-slit), it was essentially impossible for the rats to extent their paws toward the stimulus delivery area to reach the stimulus;

rather they held onto a horizontal bar inside the box arena and extended their head toward the stimulus. The head opening did not

extend vertically downward far enough to allow the rat to comfortably pass its paw between its head and the edge of the opening.

Behavioral Task and Training
Duration of training to reach stable performance was typically 4–6 weeks, with 1 session per day, and varied according to individual

differences in rate of learning. The training protocol proceeded across the following stages:

Stage 1: Handling

For half an hour each day, for 5–7 days, the investigator held and petted the rat and fed it by hand and a dropper pipette. Therewas no

water restriction.

Stage 2: Training to Head-poke and Collect the Reward

From this stage onward, a water restriction schedule was implemented, whereby the rat collected reward in the apparatus and had

free access to water immediately after each session and during the weekend. As the first step of this stage, the rat learned to interrupt

the LED beam with its head to open the opaque panel. With panel open, the rat was allowed to examine the stimulus by V and

T signals; only the cardinal orientations, 0� and 90�, were presented. After opening of the opaque panel, reward was available at either

spout. Rats learned in < 10 trials that reward was triggered by licking. This stage usually lasted 1 day.

Stage 3: Implementation of the Stimulus Rule on Cardinal Orientations

Training continued in the VT condition. Only the cardinal orientations, 0� and 90�, were presented. The rule associating grating orien-

tation with the side of reward availability was implemented, however if the first choice was wrong, the rat was allowed to proceed to

the opposite (correct) spout, where the reward was dispensed immediately. The first lick was regarded as the correct/incorrect

response for performance measures. By this ‘error remediation’ protocol, the rat began to detect the relationship between stimulus

features and reward location. This not only kept it motivated in the task but also gave it further opportunities for stimulus/reward

association since it could sample the stimulus during error remediation. This stage usually lasted 1-5 days.

Stage 4: Introducing Delay as a Punishment

As before, only the cardinal orientations, 0� and 90�, were presented. Stimulus examination was in the VT condition. In this stage,

a short delay (0.5–2.5 s) was introduced if the rat licked the incorrect spout, after which it could obtain the reward to the opposite

(correct) spout. This stage usually lasted 1-3 days.

Stage 5: Rewarding Correct Response Only

As before, only the cardinal orientations, 0� and 90�, were presented. Stimulus examination was in the VT condition. Now the rat was

rewarded only when it licked the correct spout as a first choice, and the trial ended with a delay of 1-2 s (as punishment) if it licked the

incorrect spout. Faced with gradually increasing error costs across Stages 3-5, they performed above 75% correct in as few as 2 to

7 days (Figure S1C). Typically the rat completed 200–300 trials in these initial training stages.

Stage 6: Training to Discriminate Cardinal Orientations in Interleaved Modality Conditions

The rat was presentedwith interleaved V, T, and VT trials with equal probability in a random sequence. In the first session of this stage,

rats could perform with accuracy of 70%–90% in the V and T conditions, suggesting that the percept of the object in the previous

multimodal (VT) condition was naturally extended to the unimodal V and T conditions. This stage usually lasted 1-5 days (Figure S1C).

Stage 7: Training to Discriminate the Full Range of Orientations in Interleaved Modality Conditions

In this stage, all of the orientations were presented within each category (i.e., 0�-45� versus 45�-90�; Figure 1B) in 5� angular steps. At
45� the reward was given with 50%probability at either spout. The rat received equal numbers of trials in each orientation and in each

modality. This stage usually lasted 5-14 days (Figure S1E).

With stable performance achieved, the subsequent sessions were taken as final test data. Behavioral measures were taken with

stimuli in 5� steps, however in neurophysiological recording sessions, in order to collect as much neuronal data per condition as

possible, the resolution was reduced to 15� steps. Rats usually completed 300–500 trials per recording session. Similar to the stan-

dard task, trials of all modalities were interleaved.

Random Modality Training
We trained four rats in the random modality protocol to assess whether multimodal enhancement could have been caused by

training. The difference between the random modality and standard protocols was the presentation of randomly interleaved V, T,
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and VT trials with equal probability from Stage 2 onward; in other words, Stage 6 did not constitute a separate stage in this training

protocol. Progress in Stages 3–5 was more difficult for these rats and required �3–5 weeks of training. This probably occurred

because discovering the rule of the task and stimulus/reward contingencywasmore complex: ratsmight have assumed that stimulus

modality (e.g., absence or presence of the light and transparent panel) was a salient fact and had to learn to ignore this factor

(Figure S1D).

Control Experiments
Exclusion of Olfaction

Since olfaction has been implicated in the performance of object recognition tasks ostensibly dependent on other sensorymodalities

(Astur et al., 2002), we carried out five control procedures. First, we washed the stimulus object with soap and water before and after

each training session. In addition, before each session, we wiped the stimulus surface and grooves with a multi-purpose disinfectant

solution (Virkon, DuPont, Wilmington, DE). Second, once rats learned the easy conditions (Stage 6), for 3–4 sessions we paused the

experiment every 10 trials, wiped the stimulus with the disinfectant solution and put it back, letting the rat continue the task. Third, we

substituted different copies of the stimulus on different trials, which would confuse the rat if it were using olfactory cues. Fourth, we

printed an object where tactile features (raised bars) were absent but the stimulus was otherwise identical to the standard stimulus

(the visual gratings were 2D printed on the object). With this stimulus, rats could only perform the categorization task above chance

level in V and VT trials but not on T trials. Importantly, multisensory enhancement was not observed—the performance in VT trials was

similar to that of V, confirming not only the absence of olfactory cues, but also a lack of visual distortion due to the transparent

screen used on V trials. Finally, on randomly selected trials the stepping motor rotated the stimulus 180� in a random fashion. Doing

so maintained the orientation but would cause a left-right reversal of any olfactory cues.

Exclusion of the Motor’s Acoustic Noise

If detectable, the noise made by the stepping motor could inform the rat of the change in orientation between trials according to its

duration. First, we sought to assess whether the sound of the motors fell within the acoustic sensitivity range of Long-Evans rats. We

recorded sounds (LAN-XI type 3052; Bruel and Kjaer, Nærum, Denmark) during all possible movements of the stimulus motor and

examined the frequency spectrum. Figure S1B shows the frequency spectrum of the motor noise in comparison to the measured

hearing range of rats reported previously. The highest frequencies generated by the motor were below 500 Hz signifying that rats,

which possess the higher-frequency hearing characteristic of mammals (Heffner et al., 1994; Kelly and Masterton, 1977; Masterton

and Diamond, 1973; Ölveczky, 2011), would be expected to be insensitive to such sounds.

Nevertheless, as a further caution we implemented an algorithm that generated a series of 2–4 random clockwise and counter-

clockwise rotations, with variable degrees of rotation, before concluding at the desired orientation. Change duration was thus

uncoupled to tested orientation. In a final control experiment, in several sessions we set the object orientation by hand between trials.

A nearby motor, unconnected to the object, set orientations uncorrelated with the one accessible in the apparatus. The rats

responded to the orientation of the manually controlled orientation, not the inaccessible motor-controlled orientation, indicating

that they used the intended visual and tactile cues, not the motor noise.

Catch Trials

During each test session, in 4%of trials the rat was not allowed to either see or touch the stimulus—the transparent panel remained in

front of the stimulus and white light was off. Performance was not significantly different from the expected chance performance of

50% (Figure S2H).

Acquisition of Neuronal Data
After rats showed stable performance in the behavioral task (> 75%correct and consistent slope of psychometric curve over themost

recent 15 sessions), they underwent a surgical operation for electrode implantation.

Five of the Long-Evans rats trained in the behavioral task were used for neuronal recordings. Two days prior to surgery rats were

housed individually to habituate them to the cage conditions and had access to food and water ad libitum.

Microelectrode devices
Depending on the desired duration of the neuronal recordings and intended neuronal dataset rats were implanted either with fixed

microwire array electrodes or custom-made movable arrays. Fixed Microwire arrays (ZIF-Clip, Tucker-Davis Technologies, Alachua,

FL) were comprised of 16 or 32 polyimide-insulated tungsten wires of 33 mm diameter, 250 mm electrode spacing and 375 mm

row spacing (Figure S3A). Each wire was individually laser-cut to the desired length and configuration with a 45� angle of cut at

the electrode tip. The impedance of the eachwire was 100-300 kU (tested at 1 kHz in saline), and around 150-400 kUwhenmeasured

in vivo. Reference and ground wires were connected to the arrays with impedance 20 kU. The arrays were designed in a way that

wires with two different lengths were interleaved. This resulted in half of the electrodes having 400 mm tip-length difference with

the others. Through this configuration we could record simultaneously from two different depths with a single array.

As an alternative method, we developed a custom-made miniaturized movable microdrive for microwire arrays (Figure S3B).

The 16 or 32 channel microwire array used in these drives had similar build specification and electrical properties as the fixed arrays.

However, the electrodes were connected to the implant connector via a flexible printed circuit board that allowed the array end to be

advanced or retracted by a screw. The arrays were advanced 50-100 mm after each recording session.
e4 Neuron 97, 1–14.e1–e8, February 7, 2018



Please cite this article in press as: Nikbakht et al., Supralinear and Supramodal Integration of Visual and Tactile Signals in Rats: Psychophysics and
Neuronal Mechanisms, Neuron (2018), https://doi.org/10.1016/j.neuron.2018.01.003
General Surgical Procedures
Animals were anesthetized with Isoflurane (2.5% for induction and craniotomy, 1.5% for maintenance) delivered through a snout

mask. Anesthesia was maintained by monitoring respiration as well as foot pinch responses throughout the surgical procedure.

The animals were placed in a stereotaxic apparatus (Harvard Apparatus, Holliston, MA). Ophthalmic ointment (Epigel, Ceva,

Libourne, France) was applied to keep the eyes moistened throughout surgery.

In order to keep the heart rate constant and preventmucus secretion in the airways, animals were injectedwith atropine (1.5mg/kg)

one hour after the onset of anesthesia. Half of the dose of analgesic (Rymadil, 5 mg/kg) was injected one hour after the onset of anes-

thesia and the rest of the dose was injected at the end of the surgery before waking the animal. Antibiotic (Baytril, 5 mg/kg) was also

injected before waking the rat.

Ratswere thengivenantibioticenrofloxacin (Baytril; 5mg/kgdelivered through thewaterbottle) for up to48hrafter surgery.During the

one-week recovery time, rats hadunlimitedaccess towater and food.Recording sessions in thebehavioral apparatus began thereafter.

Electrode Implantation
After shaving and sterilizing the scalp with iodine solution, lidocaine topical gel was applied to provide local analgesia before perform-

ing scalp incisions. Then the skull was cleaned and three to four anchoring screwswere fixed in the skull to support the dental cement

and the microdrive. One of the screws was advanced deep enough to touch the dura and served as the reference and another one

served as the ground (in some cases reference and ground wires were shorted).

The craniotomy was made above the left PPC (centered 3.8 mm posterior to bregma, 2.5 mm left of midline, �2 mm anteropos-

terior; �3.5 mmmediolateral in size). Although the craniotomy was made as small as possible, in the case of larger craniotomies we

performed additional steps to minimize brain dimpling during electrode insertion. First, dura mater was removed using a small hy-

podermic needle (guage-25) whose tip was bent to form a small hook. Then a drop of sterile Vaseline ointment was put in the middle

of the craniotomy and the surgical cyanoacrylate adhesive (Histoacryl, B.Braun,Melsungen, Germany) was applied directly to the pial

surface bordering the edge of the cranial opening. This procedure fastened the piamater to the overlying bone edge and the resulting

surface tension prevented the brain from depressing under the advancing electrodes. The hydrophobic ointment in the middle of

craniotomy prevented the spread of tissue adhesive on the brain.

With the brain anchored to the bone, the 16 or 32 channel microwire arrays were inserted by slowly advancing a stereotaxic micro-

manipulator (SM-25C, Narashige). While lowering the arrays during implantation, the quality of raw signals was monitored and the

detected spikes were clustered and sorted online using the OpenEx toolbox (Tucker-Davis Technologies). The array was fixed at

a depth of �1100 mm below the pial surface, where it became possible to distinguish the spontaneous firing of action potentials.

The depth of the recording site is consistent with an electrode tip position in cortical layer 4. However our analyses and conclusions

do not depend on the precise laminar localization of the neurons.

Once at the desired depth, the remaining exposed brain surface was either covered with bio-compatible silicon (KwikSil, World

Precision Instruments, Sarasota, FL) or a custom-made antibiotic containing Vaseline based ointment depending on the type of

electrode array implanted—fixed or movable microdrive respectively. The fixed array or the body of microdrive was then attached

to the skull by dental cement (SEcure Starter Kit, Sun Medical, Moriyama, Japan).

Electrophysiological Recordings
After passing through a unity-gain digital headstage amplifier chip (Intan Technologies, Los Angeles, CA), physiological recordings

were digitized at a sampling rate of 25 kHz directly inside the headstage clip (ZCD-32, Tucker-Davis Technologies). Digitized signals

were then routed to a digital commutator (ACO-32, Tucker-Davis Technologies). This active commutator prevented twisting or bind-

ing of the headstage cable while reliably tracking rotation on the headstage cable. The signals were passed to a digital headstage

manifold (PZ-4, Tucker-Davis Technologies) through a single cable for transfer to a digital signal processor base station (RZ-2,

Tucker-Davis Technologies) via optical fibers, where they were amplified and stored on a computer. Together with the neuronal

data, all of the event-related signals from the sensors, lights and motors in the behavioral apparatus were sent synchronously to

the RZ-2 DSP, digitized and stored.

Histology
At the conclusion of the series of electrophysiological recording sessions, the rat was deeply anesthetized with Urethane (1.5mg/kg).

To mark the final positions of electrode tips, electrolytic microlesions were made by passing 10 mA current for a through each

electrode for 10 s to achieve optimal charge density necessary for lesioning. After lesioning, the animal was perfused transcardially

with 4% paraformaldehyde. The brains was extracted and postfixed in 4% paraformaldehyde for 24–48 hr and then in sucrose

solution (15% solution then 30% solution). After postfixation, 30 mm coronal sections of the brains were cut on a microtome

(SM2010-R Sliding microtome, Leica, Wetzlar, Germany). Slides were Nissl-stained and electrode trajectories were reconstructed

under a microscope.

Quantification and Statistical Analysis
Analysis of Behavioral Data

We analyzed the behavioral data in MATLAB (MathWorks, Natick, MA) and LabVIEW.
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Generation of Psychometric Curves

To quantify a single rat’s performance, we fit psychometric curves to its choice data separately for each modality. For a given orien-

tation, we calculated the proportion of trials categorized as vertical. Ideally rats would categorize all trials with angle greater than 45�

as vertical and all trials with angle less than 45� as horizontal. For 45� trials, choices should be evenly distributed between vertical and

horizontal. However, task difficulty grows in the vicinity of 45�, such that real performance is better described by a sigmoid function

with an inflection point at the point of subjective equality (PSE), the orientation at which subjects report the stimulus with equal likeli-

hood as horizontal or vertical. In unbiased rats, the PSE should be at 45�. We generated psychometric functions using a cumulative

Gaussian function with the general form given in equation below based on (Wichmann and Hill, 2001). The parameter estimation was

then performed in MATLAB using maximum-likelihood estimation:

jðx;m;s;g; lÞ=g+ ð1� g� lÞFðx;m; sÞ:
The two-parameter function Fðx;m; sÞ, is defined by a cumulative Gaussian distribution, as follows:

Fðx;m;sÞ= 1

2

�
1+ erf

�
x � m

s
ffiffiffi
2

p
��

where x is the stimulus orientation, g is the lower-bound of the functionj, and l is the lapse rate. Often, g and l are considered to arise

from stimulus-independent mechanisms of guessing and lapsing. m is the mean of the probability distribution that determines the

displacement along the abscissa of the psychometric function–a reflection of the subject’s bias–and s is the standard deviation of

the cumulative Gaussian distribution. s determines the slope of the psychometric function, a commonmeasure of acuity. To generate

the psychometric curves, we utilized the data corresponding to the range of orientations from �45� to 135�, with data from orienta-

tions�45�–0� and 90�–135� reflected along the horizontal and vertical axes, respectively (e.g., responses to 115� trials were merged

with responses to 75� trials). This allowed all data to fit onto one sigmoid, extending from 0� to 90�.
Test of Significance for the Fitted Psychometric Curves

Errors around the performance value for each orientation and modality condition were expressed as a 95% binomial proportion

confidence interval computed by approximating the distribution of errors about a binomially-distributed observation, bp, with a normal

distribution:

bp ±1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
bpð1� bpÞ

r

where bp is the proportion of correct trials (Bernoulli) and n is the number of trials.

For statistical tests of significance, we performed a non-parametric test based on bootstrapping, as follows. We computed a

distribution of the peak slope values from the first derivatives of the fitted functions based on 1,000 resamples of the performance

data. We then performed pairwise comparisons between all the slope values generated via bootstrapping from fitted psychomet-

ric function of each sensory condition, calculated the overlap between the distributions and computed the p-values. The same

procedure was repeated for tests of significance for other psychometric curve parameters such as PSE and lapse rates

(Figure S2A).

Modeling Behavioral Data with Bayesian Cue Combination

According to the linear ideal–observer model of cue integration (Alais and Burr, 2004; Ernst and Banks, 2002; Jacobs, 1999; Körding

and Wolpert, 2006; Landy et al., 2011), the bimodal sensory signal, Svt, arises from linear summation of two unimodal signals as

follows:

Svt =wvSv +wtSt

where Sv is visual orientation signal and St is tactile orientation signal. If each S is considered a Gaussian random variable with mean,

m, and variance, s2, then the optimal estimate of Svt, can be computed by setting the weights (wv, wt) proportional to the reliability

(i.e., inverse variance) of Sv and St.

The bimodal reliability will then be equal to the sum of the unimodal cue reliabilities:

1

s2
vt

=
1

s2
v

+
1

s2
t

:

We fitted the psychometric data with a cumulative Gaussian function yielding two parameters: the point of subjective equality

(mean of the best fitting cumulative Gaussian function) and the threshold (as its standard deviation, s). Solving the equation above

for svt gives the optimal combined threshold from two unimodal thresholds.

Information Theoretic Analysis of Behavioral Data

To quantify the information extracted by the rat in each sensory modality we performed a mutual information analysis. We assumed

that the information extracted by the rat about the stimulus orientation was converted directly into a choice; following this assump-

tion, the rat’s behavioral accuracy allows a direct estimate of the signal present in the sensory system. The quantity of information that

the behavioral response (left or right) conveys about the stimulus category (horizontal or vertical) can be quantified by Shannon’s

mutual information formula (Cover and Thomas, 2012; Shannon, 1948)
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IðR;SÞ=
X
r;s

PðsÞPðr j sÞlog2

Pðr j sÞ
PðrÞ :

wherePðsÞ is the probability of presentation of a given stimulus category (horizontal or vertical), Pðr j sÞ is the conditional probability of
the rat’s response (right or left choice) given the category of stimulus, and PðrÞ is themarginal probability of response r (rat’s choice to

left or right) unconditional on the stimulus category. All of the information values in equation above were computed using Information

Breakdown Toolbox (Magri et al., 2009).

Neuronal Data Analysis
Spike detection and sorting were performed using automatic MATLAB clustering algorithms (Wave_Clus; see Quiroga et al., 2004).

Our intention was to analyze only well-separated single units based on interspike interval histogram with refractory period as well as

stable waveform and firing rates throughout the recording session. However, single-tip electrode recordings, unlike tetrode record-

ings, can allow somemulti-unit records to leak into the dataset. Multi-unit recordings, however, would be expected to show reduced

functional tuning (e.g., orientation or category) since the distinct properties of single-units would be pooled and diluted. The high de-

gree of tuning present in most recordings is a further argument for generally robust single-unit sorting. An initial analysis of neuronal

responses included a continuous-time data analysis approach. We first convolved the spike train of each neuron (with 1 ms resolu-

tion) with Gaussian kernels ðs= 50msÞ to obtain spike density functions. Kernels were corrected for the edge effect. Peri-event time

histograms (PETHs) were computed by considering spike times separately in relation to two specific events, depending on the

intended analysis: stimulus onset (defined by the opening of the opaque panel) and time of first lick. The spike trains for these epochs

were aligned to the stimulus onset or to the first response lick, respectively. Onset-aligned or first lick-aligned time-dependent spike

density functions, which give an estimate of the instantaneous firing rate, were used for the rest of the analysis explained below.

For some analyses we computed Shannon’s Mutual Information (Shannon, 1948), hereafter referred to simply as information.

Information measures how much knowledge of the neuronal response reduces an observer’s uncertainty (or entropy) about the

parameter of interest. In this formulation, the amount of information which can be extracted from the firing rate of a neuron R, about

the task-related parameter, S, can be computed as:

IðR;SÞ=
X
r;s

PðsÞPðr j sÞlog2

Pðr j sÞ
PðrÞ :

where PðsÞ is the probability of presentation of a given task parameter, s, Pðr j sÞ is the conditional probability of observing a neuronal

response, r, given the presentation of the task parameter, s, and PðrÞ is the marginal probability occurrence of neuronal response, r,

among all possible responses unconditional on the task parameter. For example when measuring information about stimulus

orientation, PðsÞ is the probability of a given stimulus orientation.

When estimating the information in the neuronal response, we were concerned about spurious information values caused by the

inherent correlations between task parameters. Therefore, to determine whether neurons encode the stimulus orientation in a graded

manner, we computed the stimulus information that could not be explained by other possible parameters (like future action of the

animal). Specifically, we measured conditional stimulus information:

IðR;C j qÞ= IðR;C; qÞ � IðR; qÞ
likewise,

IðR; q jCÞ= IðR;C; qÞ � IðR;CÞ
where, q is the grating orientation, C is the binary action of the animal (left or right), R, is the neuron’s firing rate, IðR;C; qÞ, is the joint

mutual information between firing rate and stimulus orientation and rat’s choice, IðR; q jCÞ is the information between firing rate of the

neuron and stimulus orientation, conditioned on animal’s decision. To solve the complementary inherent correlation, we computed

IðR;C j qÞ, the mutual information between firing rate and rat’s choice, conditioned on stimulus orientation.

To quantify neuronal selectivity for category andmodality, we used an ideal observer decoding based on ROC analysis (Green and

Swets, 1966). PETHs from the pre-decision epoch were constructed from spike trains by averaging firing rates in 1 ms bins and

smoothing with a 50 ms Gaussian kernel. Trials were grouped according to two different variables: stimulus category (assessed

by the rat’s response, left or right) and the sensory modality available for sensing orientation (visual versus tactile). The ROC analysis

was then carried out on the distribution of the group of trials from the smoothed spike trains (Feierstein et al., 2006; Raposo et al.,

2014). Category and modality preference were calculated from the area under the ROC curve (AUC) and defined as

23ðAUC� 0:5Þ This value could range from �1 to 1, where �1 indicates that the neuron always fired more preceding right choice

and 1 means that the neuron always fired more preceding left choice. Similarly a modality preference of �1 indicates that

neuron always fired more for tactile trials and a modality preference of 1 means that the neuron always fired more for visual trials.

The modality preference was calculated for leftward and rightward choices separately and was then averaged.

In order to determine whether the activity of a PPC neuronal population encoded the rat’s choices on a trial by trial basis, we used

Fisher linear discriminant analysis (LDA) (Duda et al., 2012; Vencatasawmy and Krzanowski, 2002) as a classifier. The classifier finds
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themost effective linear boundary to separate the activity of the population of neurons according to the rat’s choices, left versus right.

The classifier was trained on population responses in a 300ms epoch before the reward spout lick andmade trial-by-trial predictions

of rats’ choices according to the following procedure.

First we performed a dimensionality reduction using singular value decomposition (SVD) to identify the dimensions in neuronal

space that captured the most variance in the data. For each recording session the data were summarized into a matrix, M, with

size N3T whose columns correspond to the average of smoothed, z-scored population responses of N neurons in T trials in a single

session (N = 65, 32, 66, 61, 83, 53, 82, 36, 81, 63). SVD performed singular value decomposition of matrix M, such that M=U:S:VT ,

where S is the diagonal matrix whose diagonal elements are non-negative singular values, and U and V are left and right singular

vectors respectively. Then we chose the first n ðn< =NÞ columns of U that correspond to the 80% explained variance and projected

M onto M� as follows:

M� =UT
n :M

Then by reprojecting the n-dimensional population vector ðM�Þ onto a line where the samples of each choice are optimally

separated, the LDA found the optimized projection directions ðvÞ whereby the between-class variance in the data is maximized

relative to the within-class variance. Defining xL and xR the centers of the cluster of points corresponding to choice left and choice

right, respectively, the within-class scatter matrix ðSwÞ is given by:

Sw =S1 +S2 =
X
x˛L

ðx � xLÞðx � xLÞT +
X
x˛R

ðx � xRÞðx � xRÞT

And the optimal direction that separates the points of class 1 and class 2 can be shown to be:

v =S�1
w ðxL � xRÞ

Next, we assigned each trial to one of the two classes according to the minimum Euclidean distance in the direction of (v).
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