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SUMMARY

Despite their growing popularity as models of vi-
sual functions, it remains unclear whether rodents
are capable of deploying advanced shape-pro-
cessing strategies when engaged in visual object
recognition. In rats, for instance, pattern vision
has been reported to range from mere detection
of overall object luminance to view-invariant pro-
cessing of discriminative shape features. Here we
sought to clarify how refined object vision is in ro-
dents, and how variable the complexity of their vi-
sual processing strategy is across individuals. To
this aim, we measured how well rats could discrim-
inate a reference object from 11 distractors, which
spanned a spectrum of image-level similarity to
the reference. We also presented the animals with
random variations of the reference, and processed
their responses to these stimuli to derive subject-
specific models of rat perceptual choices. Our
models successfully captured the highly variable
discrimination performance observed across sub-
jects and object conditions. In particular, they re-
vealed that the animals that succeeded with the
most challenging distractors were those that inte-
grated the wider variety of discriminative features
into their perceptual strategies. Critically, these
strategies were largely preserved when the rats
were required to discriminate outlined and scaled
versions of the stimuli, thus showing that rat
object vision can be characterized as a transfor-
mation-tolerant, feature-based filtering process.
Overall, these findings indicate that rats are
capable of advanced processing of shape informa-
tion, and point to the rodents as powerful models
for investigating the neuronal underpinnings of vi-
sual object recognition and other high-level visual
functions.
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INTRODUCTION

Over the past 10 years, substantial effort has been devoted to

better understanding visual perception in rats and mice [1–8]—

from the assessment of visual acuity and contrast sensitivity

[9, 10] to the study of higher-order functions, such as object

recognition [11–19], perceptual decision making [20–23], and

the ethology of innate visual behaviors [24–26]. Despite these ef-

forts, it remains unclear whether rodents are able to deploy

advanced visual processing strategies when engaged in com-

plex perceptual tasks, such as discrimination of visual objects.

In the case of rats, some studies have found them to be capable

of onlymoderately complex perceptual strategies [15, 17, 18]. By

contrast, our group has shown that rats can recognize visual

objects in spite of major variation in their appearance (a faculty

known as ‘‘transformation-tolerant’’ or ‘‘invariant’’ recognition)

[11, 13] and extract from visual shapes multiple diagnostic fea-

tures, which are partially preserved across view changes [12].

At the same time, we found that the complexity of rat perceptual

strategy and its tolerance to transformation can be highly vari-

able across subjects and largely dependent on the specific ob-

ject pairs the animals have to discriminate [12, 14].

Overall, such a diversity of visual processing skills reported

across and within studies suggests that the complexity of rat

perceptual strategy is partly determined by the difficulty level

of the object discrimination task (with more demanding tasks

engaging more advanced strategies), and partly dependent on

the propensity of each individual to discover the full spectrum

of features afforded by the objects. According to this hypothesis,

if a group of rats was tested in a recognition task spanning a

range of complexity, only some animals would succeed in the

most challenging discriminations, and these animals would

also display the higher proficiency at retrieving and integrating

information across multiple object features. Establishing this

link between discrimination performance and complexity of the

perceptual strategy would at once reconcile the variety of find-

ings reported in the literature and confirm that (at least some)

rats are capable of advanced shape processing. Our study

was designed to test this hypothesis and assess, at the same

time, the extent to which rat perceptual strategies remain

invariant under changes in object appearance.
pril 2, 2018 ª 2018 The Author(s). Published by Elsevier Ltd. 1005
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Figure 1. Stimulus Set and Discrimination Performances

(A) The reference and distractor objects that rats were trained to discriminate.

(B) Schematic of the trial structure during training with the reference and distractor objects. Both object identity and size were randomly sampled in each in-

dividual trial according to the procedure detailed in STAR Methods. See also Figure S1.

(C) Discrimination performances, as a function of stimulus size, for the reference object and three example distractors. Each curve reports the performance of a

rat over the pool of trials recorded across the 32 sessions, during which the random tripods (Figure 2A), in addition to the reference and distractor objects, were

also presented (as illustrated in Figure 2B). Insets: overlaid pictures of the reference and each of the three distractors (with the reference rendered in a darker

shading to make both objects visible), so as to appreciate to what extent the objects overlapped.
RESULTS

We trained six rats to discriminate a ‘‘reference’’ object from 11

‘‘distractors’’ (Figure 1A) using the high-throughput rig described
1006 Current Biology 28, 1005–1015, April 2, 2018
in [7] (Figure S1). The reference was an artificial shape made of

three lobes, arranged in a tripod-like configuration. The distrac-

tors spanned a broad range of image-level similarity with the

reference, depending on how much they overlapped with the



tripod (insets in Figure 1C). The rationale of this design was to

teach the rats a ‘‘tripod versus everything else’’ categorization,

thus pushing the animals to develop a tripod recognition strategy

that was general enough to allow the classification of any

incoming visual stimulus. All objects were presented in randomly

interleaved trials (Figure 1B) across a range of sizes (15�–35�

visual angle) to induce the rats to deploy a transformation-

tolerant processing strategy, thus preventing them from relying

on low-level (i.e., screen-centered) discriminatory cues.

All the animals successfully learned the task, but their perfor-

mance varied considerably across distractors and was, overall,

strongly subject dependent (Figure 1C). At the largest sizes,

the reference was identified with high accuracy by all the rats,

whereas performance decreased gradually for smaller sizes.

Some distractors, such as the ‘‘car’’ object (distractor 3), were

correctly classified by all the animals, whereas others, such as

the ‘‘horse’’ and the ‘‘T’’ shape (distractors 9 and 11), were

correctly classified by only half of the subjects (rats 1, 5, and 6)

with high accuracy at the largest size (35�). For the remaining

rats (2–4), performance at 35� ranged between 50% and 70%

correct for the horse object, whereas it dropped to chance or

below for the ‘‘T’’ shape. Such variable proficiency suggests

that different rats extracted different combinations of diagnostic

features from the objects, and that these features were more or

less effective in supporting the discrimination of the more tripod-

looking distractors, such as the ‘‘T’’ shape. Interestingly, for the

poorer performers, the tendency to choose the distractor cate-

gory increased at small sizes, thus displaying the opposite trend

of that observed for the reference object. This is consistent with

the animals learning the ‘‘tripod versus everything else’’ discrim-

ination we intended to teach. In fact, given the poor spatial res-

olution of rat vision [27, 28], the features that were diagnostic of

the tripod identity most likely became poorly defined at sizes

lower than 20� [11–14], thus bringing the animals to choose the

‘‘everything else’’ category more often than at larger sizes.

Uncovering Rat Perceptual Strategies
To infer the perceptual strategy employed by the rats in the

discrimination task, we took the reference object (at the size of

30� of visual angle) and randomly changed its structural parts

to obtain a new set of stimuli, referred to as ‘‘random tripods’’

(examples in Figure 2A). We then presented these stimuli to the

rats, randomly interleaved with the reference and the distractors

(Figure 2B). By separately averaging the images of the random

tripods that were classified as being the tripod and those that

were classified as being distractors, and finally subtracting the

two average images, we obtained a saliency map, known as

the ‘‘classification image’’ [29] (Figure 2C). In the classification

image, the bright (positive value) and dark (negative value) areas

indicate regions of the image plane that contained the lobes of

the random tripods with, respectively, high and low probability,

when these stimuli were classified as being the tripod. As

such, these regions were labeled as, respectively, salient and

anti-salient, with reference to the tripod identity [12, 14]. As

shown in Figure 2C (red and cyan boundaries), we also applied

a permutation test (STAR Methods), to identify the regions that

were significantly (p < 0.01) salient or anti-salient.

The classification images obtained for the six rats shared a

common structure, with the salient features matching (fully or
partially) the lobes of the tripod and the anti-salient features

covering the regions between the lobes (Figure 2D, right). At

the same time, the specific combination of features a rat relied

upon, as well as their spatial extent, varied across animals. For

instance, the animals that better classified the distractors (i.e.,

the ‘‘good performers,’’ shown in Figure 2D, top) all relied on a

small, anti-salient feature (precisely located at the intersection

of the tripod’s top lobes), which allowed assigning anti-tripod

evidence also to those distractors (as the ‘‘T’’ shape) that

more closely resembled the tripod. The lack (in rats 3 and 4) or

misplacement (in rat 2) of this feature most likely prevented the

‘‘poorer performers’’ (Figure 2D, bottom) from being just as

effective with the more tripod-resembling distractors.

To quantitatively test whether animals achieving similar perfor-

mance levels relied on similar perceptual strategies, we used

the classification images as perceptual filters to predict how

discriminable each distractor was from the tripod object. Given

a rat i, with classification image CIi, we modeled the discrimina-

bility of distractor x from the tripod t as diðx; tÞ = CIi,t� CIi,x,
whereCIi,t andCIi,x are thedot products of the classification im-

agewith, respectively, the images of the tripod and the distractor.

The dot product computes a weighted sum of the input image

(e.g., x), where the weight assigned to each pixel is the corre-

sponding value of the classification image (acting as a spatial fil-

ter); e.g., CIi,x =
P

all pixels j

CIji,x
j. This produces a scalar value that

measures howwell the input imagematches the perceptual tem-

plate. Graphically, such template-matching computation can be

represented as the overlap between the input image and the CIi,

as depicted in Figure 3A (note that here, for the sake of clarity, a

discretized version of the CIi is shown, displaying only the signif-

icantly salient and anti-salient regions, whereas the actual dot

products were computed using the original, continuous-value

classification images shown in Figure 2D).

Given a rat i, we measured the predicted discriminability

diðx; tÞ from the tripod for each of the 11 distractors, thus obtain-

ing an 11-component discriminability vector d
!

i. The vectors

obtained for each pair of rats i and j were then compared by

computing their Euclidean distance eij = kd!i � d
!

j k . This

yielded a matrix (Figure 3B, left) showing, for each pair of rats,

how similarly the two animals would perceive the distractors, if

they processed the stimuli using their classification images as

perceptual filters. This matrix was compared to another matrix

(Figure 3B, right), reporting how similarly each pair of rats actu-

ally perceived the distractors. This matrix was obtained by

computing the discriminability of each distractor from the tripod

using a d prime sensitivity index d
0
iðx; tÞ (STAR Methods),

thus obtaining, for each rat i, an 11-component discriminability

vector d
!0

i , and, for each pair of rats i and j, the Euclidean distance

e
0
ij = kd!

0

i � d
!0

j k .
As shown in Figure 3B, the predicted (left) andmeasured (right)

similarity matrices were similar (note that rats were sorted

according to the magnitude of their d
!0

i vectors, from largest to

smallest). Two clusters of rats with similar perceptual behavior

(i.e., small Euclidean distances) were visible in the matrices, in

the top-left and bottom-right corners (red frames), correspond-

ing to the groups of good (rats 5, 1, and 6) and poorer (rats
Current Biology 28, 1005–1015, April 2, 2018 1007



Figure 2. Inferring Rat Perceptual Strategies by Computing Classification Images

(A) Examples of the random variations of the reference object (referred to as ‘‘random tripods’’) that were used to infer rat perceptual strategy.

(B) Schematic of the trial structure when the random tripods were presented, in randomly interleaved trials, along with the reference and distractor objects (see

STAR Methods). See also Table S1.

(C) Illustration of the method to infer rat perceptual strategy by computing a classification image.

(D) The discrimination performances (computed over the same pool of sessions as in Figure 1C) achieved by the rats over the full set of distractors, when

presented at 30� of visual angle (left), are shown along with the classification images obtained for all the animals (right). The rats are divided, according to their

proficiency in the discrimination task, into a group of good performers (top) and a group of poorer performers (bottom).
2–4) performers of Figure 2D. Such clustering was confirmed

by the much lower average distance measured within, rather

than between, the two groups (Figure 3C; p < 0.01; one-tailed

t test). More importantly, the off-diagonal elements of the two
1008 Current Biology 28, 1005–1015, April 2, 2018
matrices (i.e., the eij and e
0
ij, with isj) were positively correlated

(Figure 3D; r = 0.64; p < 0.01; two-tailed t test). This means

that the extent to which two rats showed similar responses to

the distractor objects was well predicted by the similarity of their



Figure 3. Predicting the Perceptual Discriminability of the Distractors Using the Classification Images as Spatial Filters

(A) The overlap between the classification image of rat 1 and an example distractor object (3) provides a graphical intuition of the template-matching computation

used to infer the discriminability of the distractors from the reference.

(B) Left: prediction of how similarly each pair of rats would perceive the 11 distractors, if the animals used their classification images to process the stimuli.

Similarity was measured as the Euclidean distance between the two sets (vectors) of perceptual discriminabilities of the 11 distractors, as inferred by using the

classification images of the rats as perceptual filters. Right: estimate of how similarly each pair of rats actually perceived the distractors, with perceptual dis-

criminability quantified using a d0 sensitivity index. Similarity wasmeasured as the Euclidean distance between the two sets (vectors) of d0 obtained, across the 11
distractors, for the two animals. Rats along the axes of the matrices were sorted according to the magnitude of their d0 vectors (from largest to smallest). The red

frames highlight two groups of animals with very similar predicted and measured discriminabilities (corresponding to the ‘‘good’’ and ‘‘poorer’’ performers in

Figure 2D).

(C) The Euclidean distances in the cells located above the diagonals of the matrices of (B) were averaged, separately, for the rats inside and outside the red

frames. The resultingwithin- and between-group average distances (±SEM)were significantly different according to a one-tailed t test (**p < 0.01 and ***p < 0.001,

respectively, for the predicted and measured distances).

(D) Relationship between themeasured and predicted Euclidean distances corresponding to the cells located above the diagonals of the matrices of (B). The two

quantities were significantly correlated according to a two-tailed t test (**p < 0.01).

(E) Relationship betweenmeasured and predicted discriminability of the distractors, as obtained (1) by considering all rats and distractor conditions together (left);

and (2) after averaging, separately for each animal, themeasured and predicted discriminabilities across the 11 distractors (right) (dots showmeans ± SEM). Both

correlations were significant according to a two-tailed t test (*p < 0.05, ***p < 0.001).
classification images, notwithstanding that the latter had been

inferred from responses to a fully independent stimulus set (the

random tripods).

These results suggest that the classification images are able to

predict the perceptual discriminability of the distractors from the

tripod both within and across rats. To verify this, we plotted the
measured d
0
i ðx; tÞ versus the predicted diðx; tÞ across all rats i and

distractors x (Figure 3E, left). The two quantities were signifi-

cantly correlated (r = 0.67; p < 0.001; two-tailed t test), with the

objects that were more dissimilar from the tripod, such as the

‘‘car’’ (distractor 3) and ‘‘phone’’ (distractor 4), yielding larger dis-

criminability (both observed and predicted) than those that were
Current Biology 28, 1005–1015, April 2, 2018 1009



Figure 4. Building Predictive Models of Rat Perceptual Choices

(A) Illustration of how the classification image obtained for rat 1 was combined with logistic regression to (1) infer the evidence gathered by the animal

about an arbitrary input image being the tripod (abscissa axis); and (2) translate this evidence into a probability of choosing the tripod category (ordinate

axis).

(B) The accuracy of various models in predicting rat responses to the full-body, regular-size random tripods is measured using a logloss function (see STAR

Methods). Predictions of five different models are shown (see caption on the right), which differed according to the classification images that were plugged into

Equation 1 (see Results). The logloss values obtained by constant-probability and nearest-neighborhood response models are also shown, to provide,

respectively, an estimate of the logloss’s upper bound and a proxy of its lower bound (gray bars).

See also Figures S2, S3, and S5.
more tripod looking, such as the ‘‘T’’ shape (distractor 11).

Among individual rats, the correlation between measured and

predicted discriminability was significant in 4 out of 6 cases

(p < 0.05), with group average r = 0.71 ± 0.07 (p < 0.005; two-

tailed t test). This means that the classification images success-

fully predicted how similar to the tripod each animal judged

the 11 distractors. At the same time, the CI-based models also

seemed to explain why different rats achieved different levels

of discriminability with the distractors—e.g., the ‘‘T’’ shape was

perceived as more discriminable from the tripod by rats 1, 5,

and 6 than by rats 2–4, in agreement with themodels’ predictions

(compare the downward triangles in Figure 3E, left). To statisti-

cally assess whether this was the case, for each rat i, we sepa-

rately averaged the d
0
i ðx; tÞ and diðx; tÞ values across the 11 dis-

tractors. The resulting scatterplot (Figure 3E, right) showed a

strong linear relationship between the measured and predicted

discriminability across the six animals (r = 0.83, p < 0.05). This

indicates that each rat used a subject-specific perceptual

strategy, whose complexity determined the animal’s sensitivity

in discriminating the distractors from the reference object.

Building Models of Rat Perceptual Choices
The discriminability of an image (e.g., a distractor) from the

tripod, as inferred by using the classification image as a filter,

can be translated into a prediction of the animal’s perceptual

choice by using logistic regression [30], i.e., by modeling the

probability of rat i to classify an input image x as being the

tripod as

piðy = 1 j xÞ= s
�
qi0 + qi1CIi,x

�
: (Equation 1)

Here, the similarity of the input image to the perceptual template

CIi (i.e., the dot product CIi,x) is weighted by a gain factor qi1 and

adjusted by an offset term qi0, thus yielding the evidence that the

animal has acquired about the presence of the tripod. As illus-

trated in Figure 4A, the logistic function s translates this evidence

into the probability that the choice y of the animal is the tripod
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category (i.e., y = 1). This model was fit to the responses of the

rat to a subset of the random tripods (the ‘‘training’’ set), and

then used to predict its responses to the held-out stimuli (the

‘‘test’’ set). Specifically, a 10-fold cross-validation procedure

was applied, where prediction performance was quantified

by computing the ‘‘logloss’’—a widely used cost function for

measuring the discrepancy between predicted response proba-

bilities and actual responses (STAR Methods).

For each rat i, we also fit five alternativemodels by applying the

same procedure, but with a key difference—rather than using

theCIi of the rat under consideration, we plugged into Equation 1

the CIj (with jsi) of the other animals. This allowed testing

whether the classification image obtained for a rat (‘‘same-CI’’

model) was able to predict its perceptual choices better (i.e.,

with lower logloss) than the classification images obtained for

the other subjects (‘‘cross-CI’’ models). To better quantify the

goodness of the same-CI model in predicting rat choices, we

also estimated the upper bound of the logloss, by implementing

a ‘‘constant-probability’’ response model with piðy = 1 j xÞ =
ptripod, i.e., the overall fraction of tripod choices over the whole

stimulus set. Obtaining the logloss’s lower bound would require

instead measuring the fraction of tripod responses to repeated

presentations of every random tripod, because no model can

capture the perceptual decisions of a subject better than the reli-

ability of its responses to every individual stimulus. However,

because each random tripod was presented only once, we

computed a proxy of the logloss’s lower bound by implementing

a ‘‘nearest-neighborhood’’ response model with piðy = 1 j xÞ =
pnearest neigh:ðxÞ, i.e., the fraction of tripod responses to the

10 stimuli that weremore similar (pixel-wise) to the input image x.

As shown in Figure 4B, the upper bound of the logloss (upper

end of the gray bars) varied considerably across rats, because it

was determined by the overall randomness of rat choices, with

more predictable responses (i.e., smaller ptripod values) yielding

smaller upper bounds (Figure S2). Critically, the same-CI models

(large black dots) reached logloss values that were considerably



Figure 5. Rat Invariant Recognition Cannot

Be Accounted for by a Fixed Template-

Matching Strategy

(A)Fractionof randomtripodsclassifiedasbeing the

tripod by the rats (black) and by models (red) that

were based on the classification images obtained

from the full-body, regular-size random tripods (i.e.,

those shown in Figures 2D and 6A). Classification

rates are reported for these full-body stimuli (left), as

well as for their outlines (right) (examples shown

at the top). Bars refer to group averages across

the six rats ±SEM. Asterisks indicate a significant

difference according to a one-tailed, paired t test

(*p < 0.05, ***p < 0.001; ns, not significant).

(B) Same as above, but with classification rates

referring to the random tripods presented at the

default, regular size (30�) and additional sizes—i.e.,

the whole size range, in the case of model pre-

dictions (red curve), and size 25�, in the case of rat

responses (blackdots). Dots refer to groupaverages

across the six rats ±SEM. Same statistical analysis

as in (A).

See also Figure S4.
lower than the upper bounds, and were either halfway toward or

close to the losses of the nearest-neighborhood models (lower

end of the gray bars). This means that the CI-based models

explained rat choices much better than could be achieved by

guessing (based on the overall rat propensity to respond

‘‘tripod’’), and they reached performances not far from those

achieved by a ‘‘look-up’’ model based on nearest neighbors.

More importantly, for five out of six rats, the same-CI model

yielded logloss values that were lower than those returned by

all the cross-CI models (small black dots), and this pattern was

highly significant (p < 0.0006; binomial test; STAR Methods).

This implies that each rat relied on a distinctive perceptual strat-

egy, whose specificity waswell captured by the classification im-

age. This conclusion was strengthened by a second analysis,

where, for each rat, the logistic regression model (Equation 1)

was first fitted to the full set of random tripods and then tested

for its ability to predict the responses to the 11 distractors,

when presented at 30� of visual angle. The predicted and

measured distractor evidences were strongly and significantly

correlated (Figure S3), following the same trends already found

at the level of perceptual discriminability (Figure 3).

Modeling Rat Invariant Recognition
The success of the logistic regression model in predicting rat

perceptual choices does not imply that the animals filtered every

incoming stimulus using a fixed perceptual template. Such a

rigid template-matching computation would prevent the animals

from correctly classifying transformed versions of the objects—

for instance, those resulting in global luminosity changes, such

as size variations. This can be appreciated by considering the

argument of Equation 1—the smaller (or dimmer) the object

in the input image x becomes, the smaller its dot product with

the template ðCIi,xÞ gets, and the more likely it becomes for

the object to be classified as a distractor. This scenario is at

odds with the tolerance of rat object vision to identity-preserving

transformations [7] (see also Figure 1C). To directly show that a

fixed template-matching strategy is not able to account for rat

invariant recognition, we measured how well the logistic regres-
sion model, derived to account for rat discrimination of full-body

stimuli at 30� of visual angle, generalized to outlined and scaled

versions of the random tripods (83% of their original size, corre-

sponding to scaling the reference object from 30� to 25� of visual
angle). We then compared the performance of the model to the

actual performances of the rats with these transformed stimuli.

Reducing an object to its outline leaves its overall shape

largely unaltered, while substantially changing the luminance

cues that define the object. As expected, a template-matching

model, developed to specifically process full-body stimuli,

showed little cue invariance, predicting a much lower fraction

of tripod responses to the outline than to the full-body random

tripods (Figure 5A, red bars; p < 0.001; one-tailed, paired

t test). By contrast, rats displayed a fully cue-invariant behavior,

with the fraction of tripod responses being virtually identical for

outline versus full-body random tripods (black bars; p = 0.97).

A similar finding applied to size variations (Figure 5B). The logistic

regression model, trained with the random tripods at size 30�,
predicted a significant decrease of the probability of tripod re-

sponses as the size of the random tripods becomes smaller

(red curve; p < 0.001; F8,40 = 113.488; one-way ANOVA). This

trend did not match that observed for the rats, where the fraction

of tripod responses was actually slightly larger (although not

significantly) for the ‘‘small-size’’ (25�) than for the ‘‘regular-

size’’ (30�) random tripods (black dots; p = 0.12; one-tailed,

paired t test). In summary, for both the outlines and small-size

stimuli, the model significantly underestimated the probability

of tripod responses (p = 0.03 and p = 0.02, respectively). This

conclusion was confirmed by a similar analysis performed with

the reference and distractor objects, where a fixed-size tem-

plate-matching model failed to account for the modulation of

rat responses as a function of size (Figure S4).

These findings suggest that the rat visual system most likely

achieves invariant recognition by matching the visual input not

to a single (fixed) perceptual template but to a bank of perceptual

filters with similar shape, iterated across multiple scales, posi-

tions, etc.—aprocess reminiscent of thecomputationsperformed

by theprimate ventral stream [31] andby state-of-the-artmachine
Current Biology 28, 1005–1015, April 2, 2018 1011



Figure 6. Transformation Tolerance of Rat Perceptual Strategies

The classification images obtained, for the six rats, from (A) the regular-size (30�), full-body random tripods; (B) their outlines (top) and the filled-in versions of their

outlines (bottom); and (C) the small-size (25�), full-body random tripods. Note that the classification images in (A) are those already shown in Figure 2D. See also

Figures S5 and S6.
vision systems [32, 33]. This hypothesis can be tested by

computing classification images from stimuli transformed along

a variety of dimensions (i.e., luminance-cue and size changes

in our study) and then checking the consistency of the result-

ing perceptual templates in terms of their ability to predict rat

choices.

In the case of the outline stimuli, the classification images still

displayed salient and anti-salient features (Figure 6B, top) that,

although thinner and more scattered, largely matched those ob-

tained for the full-body stimuli (Figure 6A). Such consistency

became even more apparent after replacing the outline random

tripods with their filled-in versions in the computation of the clas-

sification images (Figure 6B, bottom). The rationale was to infer

the strategies that the rats would deploy, if they extracted diag-

nostic information not only from the features that were actually

visible (the outlines) but also from the (empty) bodies of the ob-

jects, so as to perceptually fill the lobes of the random tripods

and process them as solid features.

To quantitatively assess whether the perceptual strategy of

rat i was similar when extracted from the full-body or the outline

stimuli, we plugged the classification image CIoi obtained from

the outlines into Equation 1 and tested the ability of the logistic

regression model to predict the responses of the animal to the

full-body stimuli. When this ‘‘same-CIo’’ model was built using

the classification image derived from the actual outlines, it was

outperformed by most of the ‘‘cross-CI’’ models (compare the
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empty green to the small black dots in Figure 4B). By contrast,

when the same-CIo model was based on the classification image

derived from the filled-in outlines, it yielded the lowest logloss for

3 out of 6 rats, and the second lowest logloss for another animal

(solid green dots). Although this result was only marginally signif-

icant (p = 0.06; binomial test), it indicates that, for many rats, the

perceptual strategy was largely preserved under variation of the

luminance cues that defined the visual stimuli. In addition, the su-

periority of the model based on the filled-in versions of the out-

lines over the one based on the actual outlines (p = 0.01; binomial

test) suggests that rats did indeed process the outline stimuli by

perceptually filling their inside, so as to effectively treat them as

solid-body objects.

A similar analysis was carried out for the classification images

CIsi obtained from the small-size random tripods (shown in Fig-

ure 6C). These images were rescaled, so as to match the size

of the regular-size CIi, and were plugged into Equation 1 to

test their ability to predict the responses of the animals to the

regular-size stimuli. The resulting ‘‘same-CIs’’ models (red dots

in Figure 4B) outperformed the cross-CI models for 4 out of 6

rats, and this pattern was highly significant (p = 0.003; binomial

test). This means that the perceptual strategies used by the

rats remained largely preserved across size variations. This

conclusion was supported by the identical ability of the

CIi-based and CIsi -based models to predict rat responses to

both the small-size and regular-size distractors (Figure S5).



DISCUSSION

Our study was inspired by previous applications of classification

image approaches, such as the Bubbles method [34–36], to

uncover rat visual processing strategies [12, 14, 15] but, different

from these earlier studies, our experimental design relied on

three innovative features. First, we trained rats to discriminate

a reference object (the ‘‘tripod’’) not from a single but from

many different distractors (Figure 1A). This allowed ranking the

animals on the basis of their classification accuracy (Figure 2D).

Second, to infer rat perceptual strategies, we produced altered

versions of the reference (the ‘‘random tripods’’) by randomly

varying its structure (Figure 2A), rather than applying additive

or multiplicative noise [29]. Such a generative approach, rarely

applied in classification image studies [37–40], allowed sampling

a region of the shape space, centered over the reference, in a

rather homogeneous way. This yielded a perceptual template

(Figure 2C) that could be used as a spatial filter to infer the dis-

criminability of the distractors (Figure 3) and build predictive

models of rat perceptual choices [30] (Figure 4). This marks the

third difference from previous rat studies—we went beyond an

image-level analysis of the classification images, and we explic-

itly tested their ability to account for rat visual perception. As

such, our approach adds to a growing body of studies combining

classification images with other computational methods to pre-

dict perceptual decisions [30, 41–43] and infer visual processing

mechanisms from behavioral and neurophysiological data

[37, 43–46]. Future behavioral studies could take inspiration

from these approaches to investigate aspects of rodent vision

that were beyond the scope of our experiments—e.g., the repre-

sentation of object information in different spatial frequency

bands could be explored, by relying on multi-resolution genera-

tive or filtering manipulations [34, 44, 47].

Validity and Implications of Our Findings
Our study revealed that rats process visual objects by employing

subject-specific perceptual strategies, whose complexity ex-

plains the variable proficiency of the animals in the discrimination

task (Figures 3, 4, and S3). In addition, we showed that rat ability

to recognize objects despite changes in their appearance is

consistent with a parallel processing of the visual input through

multiple perceptual filters (Figures 4B, 5, S4, and S5), whose

shape is largely preserved across transformations (Figure 6)

but that are properly reformatted (e.g., rescaled) to deal with

the specific transformations the objects undergo.

As is customary in psychophysical studies of object vision,

these conclusions were drawn from experiments performed

with a specific set of visual objects and a limited number of trans-

formations (variations of size and luminance cues), where we

concentrated the statistical power of our analyses (with thou-

sands of behavioral trials collected for each class of stimuli;

see Table S1). Nevertheless, we believe that our findings have

general implications with regard to the perceptual mechanisms

underlying rat invariant recognition. In fact, we have previously

shown that the perceptual strategy underlying the recognition

of the tripod is well preserved across a large number and variety

of identity-preserving transformations (two sizes, two positions,

and two in-plane and two in-depth rotations) [12, 14]. In these

earlier studies, however, we did not test whether the classifica-
tion images derived from different transformations could work

as spatial filters to account for rat perceptual choices. By now

interpreting these earlier findings in the light of our current re-

sults, we can infer that rat invariant recognition is consistent

with a multi-level filtering process. Because this conclusion

was derived in the context of the ‘‘tripod versus everything

else’’ categorization, the perceptual templates inferred in our ex-

periments are specific to the tripod stimulus. However, there is

no reason to believe that the same processing principles (i.e.,

the filtering of the input images through multiple salient and

anti-salient features) do not apply to the recognition of any other

object, as long as it is made of multiple, well-discriminable

structural elements (such as the lobes of the tripod)—only,

objects with different shapes will be processed using different

combinations of visual features, as already shown in one of our

previous classification image studies [14].

Another issue deserving discussion is whether the complex

(multi-feature) perceptual templates found in our study reflect a

systematic extraction of multiple diagnostic features from every

stimulus in every trial or, instead, result from pooling together

much simpler (single-feature) strategies, independently applied

by the rats on a trial-by-trial basis (e.g., because of shifts of

attention, gaze, or head position). A classification image, by

itself, cannot be used to infer the perceptual strategies deployed

in single trials, because it is built using a large statistics of

stimulus-response associations [29]. However, when applied

as a filter in a logistic regression model (Equation 1), it does pre-

dict perceptual choices at the level of individual stimuli/trials. As

such, the low logloss values attained by the same-CI models in

Figure 4B (relative to the upper bounds) are, by themselves, an

indication that a unique, multi-feature strategy was consistently

applied by the rats across different trials. A further indication

is provided by the even lower logloss values reached by the

nearest-neighborhood response models. In fact, if a rat

randomly picked its strategy, on a trial-by-trial basis, from a

repertoire of simple perceptual templates, one would expect

responses to very similar random tripods to be highly variable,

bringing the performance of the nearest-neighborhood model

close to the logloss’s upper bound. In addition, with the excep-

tion of rat 2, the classification images were well preserved over

time, yielding stable logloss values and being more similar within

than between rats (Figure S6).

With regard to eyemovements, rats, when stationary (as in our

behavioral rig), maintain fixation for long stretches of time, mak-

ing only sporadic saccades [26, 48, 49]. Moreover, no evidence

of target-oriented saccades has even been reported in rodents.

As for head movements, we have checked in a previous study

[12] that head position is highly reproducible across trials and

very stable during stimulus presentation, until a rat starts its

motor response to report its choice. Therefore, eye or head

movements are unlikely to explain the variable complexity of

perceptual strategies revealed by the classification images.

At themechanistic level, our study suggests that visual objects

are represented by neuronal populations that are capable of

coding complex features in a transformation-tolerant way. Inter-

estingly, we have recently found evidence of such cortical

processing in rat lateral extrastriate areas [50]. Together, these

findings support the existence of a rodent object-processing

pathway, and pave the way for the investigation of visual cortical
Current Biology 28, 1005–1015, April 2, 2018 1013



processing using the powerful experimental approaches that

rodent species afford [1–8].
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects
Six adult male Long-Evans rats (Charles River Laboratories) were used for behavioral testing. At the arrival, the animals were around

8 weeks old and weighted approximately 200 g. During the course of the experiment, their weight grew to over 500 g. Rats had free

access to food but werewater restricted. That is, they received 4-8mL of pear juice as a reward during the course of a daily behavioral

session and, in addition, they had access to water ad libitum for 1 h at the end of each session. Each rat was trained in a single daily

session (lasting�1.5 hr), 5 days per week, with free access towater in the remaining 2 days of theweek. All animal procedures were in

agreement with international and institutional standards for the care and use of animals in research and were approved by the Italian

Ministry of Health: project N. DGSAF 25271 (submitted on Dec. 1, 2014) was approved on Sep. 4, 2015 (approval N. 940/2015-PR);

project N. 933-X/10 (submitted on Feb. 216, 2012) was approved according to the legislative decree 116/ 92, article 7.

METHOD DETAILS

Behavioral rig
The behavioral rig consisted of two racks, each equipped with three operant boxes, to allow training simultaneously the whole group

of animals in daily sessions of about 1.5 h. A picture of the whole rig can be found in [7], while a schematic of the operant box is shown

in Figures S1A and S1B. Each box was equipped with: (1) a 21.5’’ LCDmonitor (Samsung; 2243SN) used as the stimulus display, with

a mean luminance of 43 cd/mm2 and an approximately linear luminance response curve; (2) an array of three stainless steel feeding

needles (Cadence Science), positioned �10 mm apart from each other and connected to three capacitive touch sensors (Phidgets;

1110), used for initiation of behavioral trials, collection of responses and delivery of the reward; and (3) two computer-controlled sy-

ringe pumps (New Era Pump Systems; NE-500), connected to the left-side and right-side feeding needles, used for automatic liquid

reward delivery. Access to the sensors was allowed trough a viewing hole (4 cm in diameter) in the wall facing the monitor (Figures

S1A and S1B). This hole enabled the rat to extend his head out of the box and frontally face the stimulus display at approximately

30 cm from its eyes. The location and size of the hole were such that the animal had to reproducibly place its head in the same position

with respect to the monitor to trigger stimulus presentation. As a result, head position was reproducible across behavioral trials and

very stable during stimulus presentation, as quantified in a previous study using the same apparatus [12]. This allowed a precise

control over the retinal size of the stimuli.
e1 Current Biology 28, 1005–1015.e1–e5, April 2, 2018

mailto:zoccolan@sissa.it
https://www.mathworks.com/
https://www.mathworks.com/
https://mworks.github.io/
http://www.povray.org/


Visual stimuli
As described in the Results and in the next section, the rats were trained to discriminate a reference object (with a tripod-looking,

Y-shaped structure) from 11 distractors (Figure 1A). These stimuli were amix of artificial shapes and renderings of computer-graphics

models of natural objects, and they have all been previously used in behavioral [11–13] and neurophysiological [50] studies of rat

object vision. The artificial shapes were built using the geometric primitives available with the ray tracer software POV-Ray (http://

www.povray.org), while the natural objects were mesh-grid models freely downloadable from the web. All the stimuli were rendered

using POV-Ray, as gray scale images against a black background, in such a way to be approximately equal in size (i.e., diameter of a

bounding circle) along either the vertical (height) or horizontal (width) dimension. The default size of each object (i.e., the size used for

the initial training of the rats; see below) was 35� of visual angle and they were all presented in the center of the stimulus display. By

design, the distractors spanned a broad range of image-level similarity with the reference, based on howmuch they overlapped with

the tripod object (see examples of overlaps in the insets of Figure 1C). This allowed differentiating the rats, based on their level of

proficiency with the various distractors (see performance curves in Figures 1C and 2D).

In a later phase of the experiment, the animals were also presented with a new battery of stimuli, obtained by randomly altering the

reference object (when considered at 30� of visual angle). These stimuli, referred to as random tripods, were used to infer rat percep-

tual strategy, by applying a classification image method that was appositely designed for this study. As mentioned in the Discussion,

one of the key features of this method was precisely the way in which the random tripods were generated. Rather than applying ad-

ditive noise (as in typical classification image studies [29]) or multiplicative noise (as, for instance, in the Bubbles method [34–36],

recently used to investigate rat visual perception [12, 14, 15]), we randomly changed the 3d structure itself of the geometrical prim-

itives of the tripod (i.e., their orientation, size and aspect ratio; see Figure 2A). This allowed obtaining whole objects (i.e., structurally

altered tripods), rather than partially degraded or masked versions of the reference (i.e., noisy tripods). As a consequence, the set

of random tripods spanned quite uniformly the stimulus display, and the resulting classification images were not constrained within

the boundaries of the reference or distractor objects (as in our previous application of the Bubbles method [12, 14]), but extended

over the whole image plane. As explained in the next sections, this was critical to obtain general, predictive models of rat perceptual

decisions using logistic regression models. During the course of the experiment, a new set of 120 random tripods was generated for

each session used to obtain the classification image data (total of 32 sessions; see next section).

Transformed versions of the random tripods were also produced to obtain the perceptual templates used by the rats to process

outline and small size stimuli. Specifically, we took all the original random tripods (i.e., the 120 3 32 full-body objects, generated as

variations of the 30� tripod object), we extracted their boundaries using a custom written script in MATLAB (Mathworks), and we

generated outline versions of the stimuli, with the borders rendered in full white, with a thickness of 1.2� of visual angle (see examples

in Figures 5A and 6B). These stimuli were presented during an additional cycle of 32 sessions.We also produced a third set of random

tripods, by taking the original stimuli and scaling them down to�83% of their original size, corresponding to scaling the tripod object

from 30� to 25� of visual angle (see examples in Figures 5B and 6C). This set of small-size random tripods was presented during an

additional cycle of 32 sessions.

Experimental design
The animals were trained to initiate a behavioral trial and trigger stimulus presentation, by inserting their heads through the viewing

hole facing the stimulus display (Figures S1A and S1B) and by licking the central sensor (Figure S1C). The rats learned to associate

each object identity with a specific reward port – presentation of the reference object required a response to the right-side port, while

presentation of a distractor was associated to the left-side port (Figure S1C). A correct response prompted the delivery of the liquid

reward through the corresponding port (i.e., feeding needle). A reinforcement tone was also played to signal the successful accom-

plishment of the task. In case of an incorrect choice, no reward was delivered and a 1–3 s timeout started, during which a failure tone

sounded and the monitor flickered from black to middle gray at a rate of 15 Hz. The stimulus presentation time was set to 3 s, during

which the rat had to make a response. In the case of a correct choice, the stimulus was kept on the monitor for an additional 4 s from

the time of the response (i.e., during the time the animal collected his reward). In the case of an incorrect response, the stimulus dis-

appeared and the timeout sequence started. If an animal did not respond within the 3 s time frame, the trial was classified as ignored.

To prevent the rats from making very quick, impulsive responses, a trial was aborted if the animal’s reaction time was lower than

300 ms. In such cases, neither reward or time-out was administered, the stimulus was immediately turned off, and a brief tone

was played. Over the course of a session, an animal typically performed between 400 and 500 behavioral trials.

The response-side associated to the tripod object (i.e., the right-side port; Figure S1C)was chosen in such away to be the opposite

of that used in a previous study, where the tripod required a response to the left-side port [12]. This allowed counter-balancing the

stimulus/response-side association across the two studies. This wasmotivated by the fact that, in this earlier study, we found a pref-

erence, across all tested rats, for the top-left lobe of the tripod, as the dominant salient feature determining their perceptual

choices [12]. We suspected that the asymmetry in the classification images obtained in that study was determined by the fact

that rats had to collect the reward form the left-side port after a correct identification of the tripod. Our hypothesis was that the

animals, by orienting their head toward the left-side port following a correct response to the tripod, and thus observing the object’s

left lobe during collection of the reward, learnt to rely more heavily on that specific lobe as a salient feature of tripod’s identity. Inter-

estingly, also in our current study most classification images were asymmetrical (Figure 6A), but with the opposite preference – the
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tripod’s right lobe, instead of the left one, was the dominant diagnostic feature of tripod’s identity. Taken together, these opposite

asymmetries found in the two studies do support our hypothesis about the stimulus/response-side association influencing the pref-

erence of the animals for a specific side of the tripod object.

To ease the acquisition of the task, rats were initially trained to discriminate the reference object from two of the distractors only

(#1 and 8). These stimuli were chosen because we knew, from previous studies [11–13], that rats can be trained to discriminate them

from the tripod. During this phase of the training, the tripod was presented in 50% of the trials, while each of the two distractors was

presented in 25% of the trials. Once performance with these initial stimuli reached 70% correct discrimination, the remaining 9 dis-

tractors were introduced. To gradually habituate the rats to these new stimuli, we initially kept the proportion of the previously pre-

sented distractors at 25% of the total (12.5% each) and we equally shared the remaining 25% of the trials among the new distractors

(�2.8% each). Once the rats achieved 70% correct discrimination on at least half of the new distractors, we equated the fraction of

presented trials for all the distractors (�4.55% each). Training then continued until the rats reached a stable overall performance

(across all stimulus conditions and over the course of five consecutive sessions) of 70% correct discrimination.

Following the acquisition of this task, we used a staircase procedure to familiarize the rats with size variations of the objects,

bringing the animals to tolerate size changes from 15� to 35� of visual angle, in steps of 2.5�. Details about this procedure can be

found in [11]. Briefly, each rat started the task with the stimuli being presented across a range of possible sizes (initially, only the

default size of 35� of visual angle was allowed). If the animal responded correctly to 7 out of 10 consecutive trials at the smallest al-

lowed size, the complete set of stimuli (reference and distractors) at a size that was smaller of 2.5� was added to the pool of possible

stimulus conditions (i.e., the range of possible sizeswas extended of 2.5�). We then took the smallest size reached by the rat in a given

session, we increased it by 5�, and we used that value as the lower bound of the range of sizes initially presented in the next session.

Once the animal consistently reached size 15� for five consecutive sessions, we stopped the staircase procedure, and we assessed

its performance across the entire stimulus set (i.e., all combinations of object identities and sizes) in a final cycle of sessions, where all

the sizes were equally likely to be presented in each trial (Figure 1B). These sessions allowed assessing the performance of each rat

with every object, across the whole size span, yielding curves that were similar to those shown in Figure 1C (which refer to the

following phase of the experiment, where the rats were also presented with the random tripods; see next paragraph).

Next, rats were tested in sessions were the stimulus pool included the reference and distractor objects (presented across the

whole size range), as well as the random tripods. The latter stimuli were presented, randomly interleaved with the other objects,

in 10%–20%of the trials (Figure 2B). Responses of the animals to these trials were treated in a special way. Since none of the random

tripods was associated to either the reference or the distractor category, and because we wanted to assess how the rats spontane-

ously classified these stimuli, no feedback was provided to the rats about the outcome of their choices. Following the response to a

random tripod, neither the reward nor the time-out period was administered – the stimulus was removed from the display and the rat

was allowed to immediately initiate a new trial. As shown in a previous study [11], the animals were not disturbed by these no-feed-

back trials, as long as theywere sparsely interleaved with the regular trials that gave the rats the possibility to gain the reward. The rats

kept performing the task and, more importantly, they did not respond randomly to the random tripods, but automatically classified

them according to their perceived similarity with the reference object – this was assessed a posteriori, by having obtained statistically

significant classification images from these stimuli (see next section).

Asmentioned above, each rat was administered a total of 32 sessions with randomly interleaved random tripods. Afterward, a new

cycle of 32 sessions started, where the regular stimuli (i.e., reference and distractors) were randomly interleaved to the outline ver-

sions of the random tripods. Finally, a last cycle of 32 sessionswas administered, where the regular stimuli were randomly interleaved

with the scaled versions of the random tripods. The total amounts of trials administered during these three phases of the experiment

are reported in Table S1, separately for the regular stimuli (i.e., the reference and distractor objects presented across the full span of

sizes) and the random tripod objects.

All the experimental protocols (i.e., presentation of the visual stimuli, collection and evaluation of the behavioral responses, and

administration of reward or time-out period with associated reinforcement sounds) were implemented using the freeware, open-

source software package MWorks (http://mworks-project.org/).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis
Our study rests on two synergistic modeling approaches: 1) the computation of classification images, aimed at inferring rat percep-

tual strategies; and 2) the application of logistic regression, aimed at obtaining predictive models of rat perceptual choices. Both pro-

cedures have already been qualitatively described in the Results. Here, we provide a more detailed explanation, with a special

emphasis on the statistical assessment of the classification images and the cross-validation procedure to fit and test the logistic

regression model.

Classification images and their significance
To build a classification image, we first separately averaged the images of the random tripods that were classified by a rat as being the

tripod and those that were classified as belonging to the distractor category. By subtracting the two resulting average images, we

obtained a saliency map (the classification image [29]), which revealed what regions of the image plane more heavily influenced

the rat to choose the reference (bright areas) or the distractor (dark areas) category (Figure 2C). Following a convention established
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in previous studies [12, 14], these bright and dark regions were named as, respectively, salient and anti-salient (with reference to the

tripod identity). By applying a permutation test, we statistically assessed what portions of these regions were significantly more likely

(or less likely) than expected by chance to lead the rat to choose the tripod category, when some part of the random tripods hit them

(see Figure 2C).

The test was carried out according to the following procedure.We produced 100 randomly shuffled versions of rat responses to the

whole set of random tripods. For each set of permuted responses, we computed a permuted classification image, in the sameway as

described above. Note that this procedure preserved the proportion of rat responses in the two categories across all permutations,

while totally destroying the correct associations between stimuli and responses. We then virtually stacked the 100 permuted clas-

sification images on top of each other and, for each pixel in the image plane, we computed the empirical distribution of its intensity

values across the 100 images. We thus obtained null distributions of classification image values at each pixel location, under the hy-

pothesis of random responses of the rat to the random tripods. We then obtained smooth versions of such distributions by fitting

them with one-dimensional Gaussians. Finally, we compared the actual classification image values to the null distributions obtained

at the corresponding image plane (i.e., pixel) locations. A value falling on the right tail of its null distribution, within the 0.01 significance

region, was considered as significantly salient. Conversely, a value falling on the left tail of its null distribution, within the 0.01 signif-

icance region, was considered as significantly anti-salient. These significantly salient and anti-salient regions were delineated with,

respectively, red and cyan boundaries (or patches) in the classification images shown in Figures 2, 3, 4, and 6.

This approachwas also applied to obtain classification images and estimate their statistical significance from the outline (Figure 6B,

top) and the small-size (Figure 6C) random tripods. In the case of the outline stimuli, classification images were also obtained from

their filled-in versions (Figure 6B, bottom). These stimuli were produced by taking the outline random tripods and filling uniformly their

inside with white color.

Fit of the logistic regression model
To predict the probability of a rat i to classify an arbitrary input image x as being the tripod, we plugged the classification image CIi
obtained for that animal into the logistic regression model defined by Equation 1. The regression parameters qi0 and qi1 (described in

the Results) were obtained by fitting the model to the responses of the rat to either the whole set or a subset of the random tripods.

The same applied to the classification image itself, which was always obtained using the same pool of random tripods that were later

used to fit the model’s parameters. The entire set of random tripods was used when the predictions of the models had to be

compared to the responses of the rats to the regular stimuli (i.e., the reference and the distractor objects), as in Figures S3–S5.

Instead, when themodels were used to predict rat responses to the random tripods themselves, a 10-fold cross-validation procedure

was used, so as to test the true ability of the models to generalize their predictions to an independent set of data (Figure 4B).

The cross-validation procedure worked as follows. For each rat, the set of random tripods was randomly divided into 10 subsets.

Iteratively, each of these subsets was left out, so as to be used as the test dataset, while the remaining 9 were used as the training

dataset, to obtain the classification image and fit the model’s parameters. The ability of the model to predict rat responses to the

random tripods was then measured as the average of the model performance across the 10 left-out test sets. Critically, the same

cross-validation procedure was applied any time that the model was used to predict the responses of a rat to the random tripods,

no matter whether the classification image plugged into Equation 1 was the one of the animal under consideration (same-CImodels;

big black dots and small colored dots in Figure 4B) or the classification images of a different rat (cross-CImodels; small black dots in

Figure 4B). This allowed comparing the goodness of the classification images to predict the choices of a rat, independently of the

possible bias of the animal (since the bias term qi0, as well as the gain factor qi1, were always included in every model and fitted to

the animal’s responses).

The fitting procedure was based on theminimization of a cost function, known as the logloss (aka logarithmic loss or cross-entropy

loss), using a gradient descent method. The logloss is the normalized negative log-likelihood of the true responses, given the prob-

abilistic outcomes of the model’s predictions on the same input images [51], and is defined by the following equation:

lðq0; q1Þ= � 1

N

XN

k = 1

yk log p
�
yk = 1 j xk�+ �

1� yk
�
log

�
1� p

�
yk = 1 j xk��; (Equation 2)

where N is the number of samples used to train the model, k is a running index, and the probabilities pðyk = 1 j xkÞ are given by the

logistic regression model of Equation 1 (although here, for the sake of brevity, their dependence on qi0 and qi1 is not made explicit).

It can be noticed that this equation is composed of two terms. The first term is positive when the response yk of the rat is 1 (tripod

category) and vanishes when the response is 0 (distractor category). The opposite happens in the second term, so that the two terms

take care of the two possible choices of the rat independently. When the model predicts a high probability of responding 1 and the

actual response was indeed 1, the first term adds only a small contribution to the loss (it vanishes only if the predicted probability is

exactly 1, which does not happen in practice, since the sigmoid function in Equation 1 reaches its extreme values only asymptotically,

when its argument grows or decrease indefinitely; see Figure 4A). Conversely, if the model predicts a small probability, the contribu-

tion to the loss is high, reflecting the fact that the model’s prediction is poor. The larger is the confidence of the model in a wrong

prediction, the higher is the contribution to the total loss. Similar considerations can be done for the second term, when the actual

response of the rat was 0 (distractor category).
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The logloss was minimized by writing a custom script in MATLAB (Mathworks), using the glmfit function of the Statistics and

Machine Learning Toolbox with binomial distribution and logit as the canonical link function (MATLAB version: 2017a).

Assessing the evolution of the classification images over time
To check the stability of each rat’s perceptual strategy over time, we again divided the pool of trials in which the random tripods were

presented in two subsets: 10% of the data were left out, to be used as the test set, while the remaining 90% of the trials (the training

data, N trials) were sorted according to the time at which they had been presented and then split in 4 consecutive sets of equal size

(when the total number of trials Nwas not divisible by 4, we ceiled N/4 to the lowest integer and left out the remainder). From each of

the four sets of trials, we computed the corresponding classification image (see Figure S6A), we plugged it into Equation 1 to fit the

logistic regression model, and we estimated the ability of the model to predict the responses of the rat to the trials belonging to the

test set, by computing the logloss. The whole procedure was repeated 10 times, by randomly splitting, in each run, the random tripod

trials in a test and a training set. The resulting logloss values obtained across the ten runs were then averaged to obtain the curves

shown in Figure S6B.

Statistical tests
The statistical tests used to assess the significance of our findings are reported in the Results and in the legends of the figures. Here,

we only describe in more details the binomial test used to evaluate the overall significance of the comparisons between same-CI

models and cross-CI models in Figure 4B. This test was carried out according to the following logic. We computed the probability

of obtaining a number of successes in 6 Bernoulli trials that was equal or higher than the number of times a given model (e.g., the

same-CI model) outperformed all other alternative models (e.g., the cross-CI models). In the case of the same-CI model versus

cross-CI models comparisons (i.e., large black dots and small colored dots versus small black dots in Figure 4B), the chance of

success in each Bernoulli trial was set to 1/6. In the case of the filled-in same-CIo model versus same-CIo model comparison (i.e.,

solid green dots versus empty green dots in Figure 4B), the chance of success in each trial was set to 0.5.

DATA AND SOFTWARE AVAILABILITY

Data and custom MATLAB codes used to generate all analyses are available from the Lead Contact upon request.
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