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Abstract

Computing global motion direction of extended visual objects is a hallmark of primate high-

level vision. Although neurons selective for global motion have also been found in mouse

visual cortex, it remains unknown whether rodents can combine multiple motion signals into

global, integrated percepts. To address this question, we trained two groups of rats to dis-

criminate either gratings (G group) or plaids (i.e., superpositions of gratings with different ori-

entations; P group) drifting horizontally along opposite directions. After the animals learned

the task, we applied a visual priming paradigm, where presentation of the target stimulus

was preceded by the brief presentation of either a grating or a plaid. The extent to which rat

responses to the targets were biased by such prime stimuli provided a measure of the spon-

taneous, perceived similarity between primes and targets. We found that gratings and

plaids, when used as primes, were equally effective at biasing the perception of plaid direc-

tion for the rats of the P group. Conversely, for the G group, only the gratings acted as effec-

tive prime stimuli, while the plaids failed to alter the perception of grating direction. To

interpret these observations, we simulated a decision neuron reading out the representa-

tions of gratings and plaids, as conveyed by populations of either component or pattern cells

(i.e., local or global motion detectors). We concluded that the findings for the P group are

highly consistent with the existence of a population of pattern cells, playing a functional role

similar to that demonstrated in primates. We also explored different scenarios that could

explain the failure of the plaid stimuli to elicit a sizable priming magnitude for the G group.

These simulations yielded testable predictions about the properties of motion representa-

tions in rodent visual cortex at the single-cell and circuitry level, thus paving the way to future

neurophysiology experiments.

Author summary

Inferring motion direction of visual objects is computationally challenging. This is

because natural objects are made of multiple oriented features. Neurons in low-level visual

areas, such as primary visual cortex (V1), can “see” only these local features through their
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small receptive fields. As a result, these neurons (known as component cells) will report the

presence of many oriented edges, each moving along a direction that is orthogonal to the

edge itself. How can the brain compute the global direction of the whole object from this

cacophony of disparate, local motion signals? Decades of studies in primates have shown

that neurons in downstream, higher-order visual areas (known as pattern cells) integrate

and combine motion signals encoded by component cells to represent global motion

direction of the whole object. Although pattern cells have also been found in rodent visual

cortex, they are so few that it is unclear whether they can support perception of global

motion. In our study, we showed that rats are indeed capable of perceiving global motion

direction of complex visual patterns and we verified, through computer simulations, that

this ability is consistent with the representation of motion information by a population of

pattern cells.

Introduction

Extracting global motion direction of visual objects is crucial to guide behavior in many etho-

logical contexts [1,2]. Such computation has been widely studied in the dorsal stream of pri-

mates, and, in particular, in the middle temporal area (MT) of the macaque [3]. This area is

known to receive direct input from neurons in primary visual cortex (V1), which signal the

“local” direction of moving elements (e.g., edges) in their small, localized, receptive fields (RF).

MT units appear to combine the afferent V1 inputs in such a way to acquire selectivity for the

“global” motion direction of visual objects (or patterns) made of multiple local edges [4]. The

leading hypothesis emerging from the primate literature is that this is achieved by integrating

the local motion signals carried by V1 afferents over different spatial positions, directions and

frequencies [3–5]. Such integration is necessary, because the local output of any V1-like edge

detector is intrinsically ambiguous insofar global motion is concerned. Any local output can

be generated by infinite combinations of global object directions and speeds. This ambiguity is

at the core of what is known, in the psychophysics literature, as the “aperture problem” [6–8]:

only by combining information from multiple, local, moving-edge detectors, it is possible to

infer global motion direction. Achieving a circuit level understanding of such computation

remains a key question in visual neuroscience.

Over the past 10 years, the development of a wide array of tools for the dissection of neural

circuits [9–13], combined with the demonstration of advanced visual behaviors in mice and

rats [14,15], has fostered the use of rodents as model systems to study visual cortical process-

ing. This led some investigators to look for the signature of motion integration in the rodent

brain [16–18]. Inspired by monkey studies [19–22], they recorded the responses of mouse

visual cortical neurons to drifting gratings and coherent plaids − i.e., complex visual patterns

made of two overlapping gratings with the same contrast and speed, but moving along inde-

pendent directions. These stimuli have been widely used to investigate motion integration in

human and non-human primates since they enable to clearly distinguish local- from global-

based motion responses. A plaid, in fact, has two well-defined local motion components and a

global direction that is different from the local ones, while, for a grating, the local and global

directions coincide [5]. By employing these stimuli, mouse visual neurons were classified as

“pattern” (i.e., responsive to global motion) or “component” (i.e., responsive to local motion).

The majority of neurons amenable to such classification fell into the component category, but

a small fraction of pattern units was reported in V1 [17,18] and in two extrastriate areas, the

lateromedial (LM) and rostrolateral (RL) areas [16]. However, the relevance of such tiny
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population of pattern cells in determining mouse motion perception was left untested (but see

further discussion of [17] below).

Even if a few studies tested the ability of rats and mice to discriminate the dominant motion

direction of random dot kinematograms [23–27] (RDKs: a task linked to motion integration,

since it requires spatial pooling of local motion cues), no study has probed the ability of

rodents to perceive and report global motion direction of plaids made of extended oriented

elements (e.g., gratings) moving along different directions. Notably, although both motion dis-

crimination tasks require some form of spatial integration, processing plaids constitutes a

more stringent testing ground of high-level motion integration than processing RDKs. In

monkey MT, only about one-third of neurons behave like pattern cells when tested with plaids,

while about 85% of MT units have been classified as pattern cells when tested with RDKs [28].

This suggests that MT neurons are better at extracting global motion direction when stimuli

are broadband in orientation, as in the case of RDKs. Consistently with such easier processing

of RDKs, as compared to plaids, only a tiny fraction of pattern cells has been found in mouse

visual cortex, while selectivity for RDKs is way more abundant (about one-third of visually

driven neurons in layers 2/3 of mouse V1) and strong enough to sustain motion discrimina-

tion accuracy of mice tested with RDKs [26].

Only in [17] mice were tested with plaids. However, rather than asking the animals to

explicitly report the perceived direction of the stimuli, the authors monitored the direction of

the optokinetic nystagmus (OKN) while presenting naïve mice with either plaids or gratings.

The resulting bimodal distribution of OKN movements tracking both the local-components

and the overall global directions of the stimulus is suggestive of mouse ability to spontaneously

perceive global motion. However, this conclusion is affected by the intrinsic limitation of

OKN-based experiments to probe cortical processing. In fact, OKN is a reflexive phenomenon

that is known to be largely controlled by subcortical structures [29–31], while motion percep-

tion in direction discrimination tasks has been shown to rely heavily on visual cortex

[26,32,33]. As a result, it remains unclear whether rodents spontaneously combine indepen-

dent motion signals of extended oriented patterns (as those found in plaids) into integrated

percepts of global motion direction.

Our study was designed to address this question and provide a thorough psychophysical

assessment of rat ability to spontaneously perceive the global direction of drifting plaids. To

this aim, we relied on a visual priming paradigm [34,35] that allowed measuring the perceptual

similarity between gratings and plaids with the same global direction, without explicitly train-

ing the animals to associate these stimuli to the same response category.

Results and discussion

A visual priming paradigm to probe spontaneous perception of global

motion direction

Rats were tested using the high-throughput behavioral rig described in [15] and previously

employed in several investigations of rat object recognition by our group [34,36–40]. Briefly,

the rig consists of six independent operant boxes, each equipped with a computer monitor for

stimulus presentation and an array of three response ports for collection of behavioral

responses. Each box bears a viewing hole on one of the walls. By protruding its head through

the hole, a rat can reach with its nose/mouth the response ports and face frontally the display.

The task is self-paced, in that a rat autonomously triggers stimulus presentation by licking the

central response port and reports the identity of the stimulus by licking either the left or right

port (details about the rig and the training procedures can be found in Materials and

Methods).
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In the first phase of the study (the training phase), a group of 11 male Long-Evans rats

(referred to as the G group in what follows) was trained to discriminate leftward- from right-

ward-drifting gratings (Fig 1A, left). Another group of 10 rats (referred to as the P group in

what follows) was trained to discriminate leftward- from rightward-drifting plaids with a

cross-angle of 120˚–i.e., composite patterns made of the superposition of two gratings drifting

along directions that were 120˚ apart (Fig 1B, left). Rats that maintained a criterion perfor-

mance of at least 70% correct choices over a four consecutive day period were considered

ready to be moved to the second phase of the study (i.e., to be tested with the priming para-

digm), but were typically kept in the training phase for a few more sessions, so as to allow bet-

ter consolidation of the task.

All rats starting the training phase managed to reach such criterion, although with a vari-

able learning time. Most animals needed between 10 and 25 sessions before fully acquiring the

task, while a few rats required up to 60 sessions (see Fig 2A, where the dots on the learning

curves indicate when each animal reached the criterion performance). The learning rate was

not significantly different between the two groups, as it can be appreciated by looking at the

group average learning curves (Fig 2B) and the average numbers of sessions to criterion (Fig

2C; p> 0.05, unpaired, two-tailed t-test). The discrimination performances reached by the

animals in the two groups were also very similar–although the mean performance was slightly

Fig 1. Visual stimuli and discrimination tasks. (A) Discriminations tasks administered to the rats of the grating (G)

group. During both the training (left) and priming (right) phases, a trial started when an animal triggered the central

port of a 3-way licking sensor (see Materials and Methods). During the training phase, a target grating (drifting either

leftward or rightward) was presented immediately at the onset of each trial. To receive the reward, a rat had to lick the

lateral port corresponding to the direction of motion of the presented target. During the priming phase, the structure

of the task was similar, but at the onset of each trial, a drifting prime stimulus was presented for 75 ms, followed by a 75

ms blank screen and finally by the presentation of the target grating (lasting 750 ms). The prime stimulus could move

in 19 possible directions (from 0˚ = right to 180˚ = left) and could be either a grating or a plaid. (B) Discriminations

tasks administered to the rats of the plaid (P) group. The structure of the task was the same as in A, with the key

difference that the target stimulus was a plaid instead of a grating (again drifting either leftward or rightward). In this

case, the reward was delivered when a rat licked the lateral port corresponding to the global motion direction of the

plaid. The plaid was made of two superimposed gratings, whose orientations are indicated by the gray, dashed lines,

and whose directions are shown by the black arrows. The angle between the gratings’ directions was 120˚ (red arrow).

https://doi.org/10.1371/journal.pcbi.1009415.g001
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higher for the G group than for the P group (Fig 2D; 81% vs. 79% correct), the difference was

not significant (p> 0.05, unpaired, two-tailed t-test). This indicates that rats are equally capa-

ble of discriminating motion direction of drifting gratings and plaids.

In the priming paradigm, the “target” stimulus remained the same as in the training phase

(i.e., G and P rats still had to report the direction of drifting gratings and plaids, respectively),

but now the presentation of the target was preceded by the brief presentation (75 ms) of either

a grating or a plaid drifting along one of 19 possible directions (from 0˚ = rightward to 180˚ =

leftward, in steps of 10˚; Fig 1A and 1B, right). The identity (i.e., either grating or plaid) and

the motion direction of such “prime” stimulus was randomly selected in each trial. In what

Fig 2. Learning the motion discrimination task. (A) The discrimination accuracies achieved by all the rats in the G and P groups (dark and

light gray curves, respectively) are plotted as a function of the training sessions. Each value on a curve reports the mean of the performances

achieved by the animal in the corresponding session and in the previous and following sessions (i.e., the curves are the result of applying a

moving-average filter with size 3 to the session-by-session accuracies). The dots indicate the sessions in which each rat achieved the criterion

performance of 70% correct discrimination over four consecutive days (each dot marks the first of such sessions; dark and light gray dots refer,

respectively, to the animals of the G and P groups). (B) Group average discrimination accuracies (solid lines) as a function of the training

sessions. The black and gray curves refer, respectively, to the rats of the G and P groups. The shaded regions are SE. (C) The numbers of

training sessions required by the animals in the two groups to reach the criterion performance (pale dots; same data as those already shown in

A) are reported along with their averages (dark dots; error bars are SE). Averages were not significantly different between the two groups

(p > 0.05, unpaired, two-tailed t-test). (D) The asymptotic performances (as computed by averaging the discrimination accuracies in the

session when criterion was reached and any ensuing session) of the animals in a group (pales dots) are reported along with their average (dark

dots; error bars are SE). Averages were not significantly different between the two groups (p> 0.05, unpaired, two-tailed t-test).

https://doi.org/10.1371/journal.pcbi.1009415.g002
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follows, we refer to trials in which the identities of prime and target coincide as identity-prim-
ing condition (e.g., a grating prime stimulus followed by a grating target stimulus), whereas we

refer to the opposite case as cross-priming condition (e.g., a plaid prime stimulus followed by a

grating target stimulus). Critically, the rats kept receiving feedback (i.e., either reward or a

time-out period in case of correct and incorrect choices, respectively) only about the correct-

ness of their responses to the target stimuli. The identity and direction of the prime stimuli

were never paired to either the leftward or rightward response categories. As such, the extent

to which the prime stimuli were able to affect the choices of the rats was purely due to the

spontaneous, perceived similarity between primes and targets. Assessing such similarity was

the ultimate goal of our experiments, since it allowed understanding whether, in the cross-

priming condition, the perceived motion direction of the plaids was the global one. Based on

previous motion adaptation studies in humans [41] and on former priming/masking experi-

ments carried out in rats [34,42–44], we choose the duration of the prime and of the inter-

stimulus interval (ISI) between prime and target (75 ms each) in the attempt of inducing a

strong priming effect–i.e., in the attempt of biasing rats’ responses to the target towards the

motion direction of the prime.

In what follows, we will report the accuracy of rats at discriminating the motion direction of a

target stimulus as a function of its angular distance from the direction of the prime stimulus that

preceded it. As such, the resulting priming curve will range between two extremes: 1) the case in

which the direction of the prime and target stimuli was the same (e.g., both drifting rightward),

referred to as coherent prime condition; and 2) the case in which the prime and target stimuli had

opposite directions (e.g., the prime drifting rightward and the target drifting leftward), referred to

as incoherent prime condition. The case in which the prime stimulus drifted vertically (midpoint

of the priming curve) will be referred to as neutral prime condition. This terminology will be used

for both the identity- and cross-priming conditions and for both the P and G groups.

The first step in our analysis was to verify whether the prime stimuli were indeed capable of

biasing rat choices depending on the level of coherence between their direction and that of the

target stimuli, in case of the identity-priming condition. This was the case for 10 out of 11 rats of

the G group and 9 out of 10 rats of the P group, which were therefore included in the subsequent

analysis (see Materials and Methods). For the G group, rat group average accuracy at discrimi-

nating the motion direction of the target gratings was strongly modulated, as function of the

direction of the prime grating stimulus (Fig 3A, black curve). In the coherent prime condition,

rat classification of target direction was facilitated, as compared to the reference neutral prime

condition (dashed line). Conversely, in the incoherent prime condition, rat classification accu-

racy was substantially lowered. Overall, the identity-priming curve was approximately sigmoidal.

Even for the P group, in the identity-priming condition, a strong priming was observed (Fig 3B,

black curve). Also in this case, the magnitude and sign of the priming effect depended on the

similarity between the directions of the prime and target plaid stimuli, resulting in an approxi-

mately monotonic drop of rat classification accuracy from the coherent priming condition

towards the incoherent one. The overall priming magnitude observed in the identity-priming

condition (black bars in the insets of Fig 3A and 3B) was virtually identical for the two groups,

resulting in no difference between priming magnitudes (S1 Fig, left dot). The same applied to the

difference between the performances observed for the two groups in the case of the neutral

prime stimuli (S1 Fig, right dot). Along with the results of the training phase (Fig 2), this con-

firmed that the rats in the two groups were similarly sensitive to the direction of the class of sti-

muli they were trained with (i.e., the gratings for the G group, and the plaids for the P group).

The strong modulation of rat classification accuracy in the identity-priming condition has

two important implications. First, it demonstrates the effectiveness of the priming paradigm in

capturing the perceived similarity between the learned (horizontal) motion directions of the
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target stimuli and the untrained (previously unseen) directions of the prime stimuli, in the

case in which targets and primes are either both gratings or both plaids (i.e. identity-priming
condition). Second, and more importantly, it serves as a reference against which to compare

the modulation of the accuracy observed in the cross-priming condition. In fact, the degree of

similarity between the priming curves measured in the identity- and cross-priming conditions

(i.e., between the black and gray curves in Fig 3) allows answering two key questions about the

neuronal representations of the grating and plaid stimuli.

Evidence of a shared representation of gratings’ and plaids’ motion

direction

The first question is whether these representations are “shared” (i.e., the same neural popula-

tion encodes both gratings and plaids) or “non-shared” (i.e., independent, non-overlapping

populations represent the two types of stimuli). In the former case, we would expect a substan-

tial modulation of rat classification accuracy also in the cross-priming condition, possibly as

large as in the identity-priming condition. In the latter case, no cross-priming effect would be

observable, given the independence of the two populations underlying the perception of grat-

ings and plaids. In case of shared representations, then a second crucial question could be

answered by comparing the shapes of the priming curves obtained in the identity- and cross-

priming conditions. If rats spontaneously represented the stimuli according to their global

direction, then the priming curves produced by gratings and plaids would be very similar,

Fig 3. Identity- and cross-priming curves. (A) The identity-priming curve (black) reports the mean accuracy of the rats of the G group at

discriminating the leftward from the rightward drifting gratings, as a function of the difference between the direction of these target stimuli and

the gratings that were used as prime stimuli. The cross-priming curve (gray) reports rat mean accuracy when the plaids were used instead as prime

stimuli. The shaded areas are 95% confidence intervals obtained by bootstrap (see Materials and Methods). The dashed line shows the accuracy

achieved with the neutral identity-prime stimulus (i.e., the grating drifting upward). The inset quantifies the absolute magnitude of priming

obtained in the two cases, as the mean absolute difference between the four leftmost (and rightmost) points in a curve and the point corresponding

to the neutral condition. The error bars show 95% confidence intervals obtained by bootstrap (see Materials and Methods). (B) Same as in A, but

for the rats of the P group. That is, in this case, the curves report rat mean accuracy at discriminating the leftward from the rightward drifting

plaids. The identity-priming curve (black) refers to trials where the plaids were used as prime stimuli, while the cross-priming curve (gray) refers

to trials where the gratings were used as primes. S1 Fig shows that neither the priming magnitudes (i.e., the black bars in the insets of A and B), nor

the accuracies corresponding to the neutral primes were significantly different for the rats of the two groups.

https://doi.org/10.1371/journal.pcbi.1009415.g003

PLOS COMPUTATIONAL BIOLOGY Motion integration in rats

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009415 September 14, 2021 7 / 30

https://doi.org/10.1371/journal.pcbi.1009415.g003
https://doi.org/10.1371/journal.pcbi.1009415


given that, by construction, the global direction of the prime stimuli was the same for matching

grating and plaid primes. If the opposite were true, then the priming curves produced by grat-

ings and plaids would be different.

In the G group (Fig 2A), the cross-priming curve (gray) was almost flat and significantly

different from the identity-priming curve (black), as shown by the non-overlapping 95% confi-

dence intervals (shaded areas). The priming magnitude produced by the plaid stimuli was

found to be significantly smaller than that produced by the gratings (Fig 2A, inset: gray vs.

black bar; non-overlapping 95% confidence intervals). This inability of the plaids (when used

as prime stimuli) to affect the discrimination (hence the perception) of the target gratings sug-

gests that, for the rats of the G group, the neuronal population representing the direction of

the gratings was poorly activated by the presentation of the plaids.

By contrast, in the P group, the cross-priming and identity-priming curves largely over-

lapped (Fig 2B: gray vs. black curve). As a result, the priming magnitude observed in the two

conditions was equally large (Fig 2B, inset: gray vs. black bar; overlapping 95% confidence

intervals). In other words, the gratings and plaids (when used as prime stimuli) were equally

effective at biasing rat discrimination of the target plaids. This indicates that the same neuronal

population was active during the presentation of both kinds of stimuli, as expected in case of a

shared representation of gratings and plaids. More importantly, the priming produced by grat-

ings and plaids was not only equivalent in terms of overall magnitude, but it was also very sim-

ilar for matching (global) directions of the two stimuli (i.e., overlapping curves in Fig 2B). This

strongly suggests that the representation of plaids in rats trained to discriminate such stimuli

(P group) is not only shared with the representation of gratings but is structured in such a way

to encode plaids’ global motion direction.

Rat perception of drifting plaids is more consistent with a pattern- than a

component-based representation of motion signals

To test more formally the extent to which the priming curves observed for the P group are con-

sistent with a representation of global motion direction of the plaid stimuli, we performed a

decoding analysis using linear classifiers. We simulated two alternative scenarios: a representa-

tion made of pattern cells (i.e., neurons tuned to the global direction of the plaids) and a repre-

sentation made of component cells (i.e., neurons tuned to the local direction of the constituent

gratings of the plaids). While it may seem obvious that only a pattern-based representation can

underly the results of Fig 3B, the use of a low-level, component-based representation cannot

be ruled out without further analysis for at least three reasons. First, rats are capable of solving

apparently complex visual tasks (e.g., object recognition) using very simple, low-level strategies

(e.g., measuring global luminance differences among the objects) [45,46], unless the stimuli

and tasks are carefully designed to specifically engage higher-order, shape-based processing

[36–38]. The same applies to visual object representations in V1, which can support recogni-

tion of visual objects despite image-level transformations (e.g., translation, scaling and rota-

tion) to a surprising extent [47–49]. This is because they can rely on mean luminance

differences among the objects–only if such differences are leveled out, higher-order extrastriate

areas become necessary to support invariant object recognition [47]. Second, as already men-

tioned in the Introduction, evidence about the existence of pattern cells in rodents is so sparse

[16–18] that it is questionable whether those few pattern cells reported in previous studies

have any role in mediating rodent motion perception. Finally, previous monkey studies have

pointed out that component cells may actually display a pattern-like behavior if direction tun-

ing is broad enough [50]. Hence the need of exploring which scenario can yield the virtually

undistinguishable identity- and cross-priming curves of Fig 3B.
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Both the component- and the pattern-based representations were simulated as a population

of 24 units, whose preferred directions homogeneously spanned the [0˚ 360˚] range (i.e., one

unit tuned to every direction in steps of 15˚; Fig 4A and 4B). The tuning curves of the simu-

lated units were defined by Von Mises functions [51,52], which are the circular analog of

Gaussian functions and whose width is controlled by the parameter k, which is equivalent to

the inverse of the variance of a Gaussian distribution [53] (see Materials and Methods for

details). In our simulations, k was set to 7, which roughly corresponds to a tuning curve with a

full width at half maximum (FWHM) of about 50˚ (see grayscale matrix in Fig 4A and 4B). By

construction, for a component cell, the response to the drifting plaids as a function of their

direction featured two peaks, separated by 120˚ (Fig 4A, bottom). These peaks correspond to

the global directions of the plaid that bring one of the constituent gratings to be aligned to the

preferred (local) direction of the unit (i.e., the one shown in Fig 4A, top). Conversely, the tun-

ing curves of the simulated pattern cells featured a single peak, corresponding the global direc-

tion of the stimulus (no matter whether grating or plaid) they were tuned to (Fig 4B) (see

Materials and Methods for further details).

We used these populations to simulate how a rat trained to discriminate leftward from

rightward drifting plaids (i.e., same task of the animals in the P group; see Fig 1B) would spon-

taneously categorize the novel, previously unseen gratings and plaids used as prime stimuli,

under the assumption of either a purely pattern-based or a purely component-based represen-

tation. Rat perceptual decisions were simulated by training a logistic classifier to discriminate

the leftward from the rightward drifting plaids, based on their representation in the simulated

neural population space. As a result of the training, each classifier learned to rely on a specific

subset of the units of the representation, as shown by the weights’ distribution of Fig 4C and

4E. We then tested how each classifier categorized the sets of drifting plaids and gratings used

in the identity- and cross-priming experiments. This yielded generalization curves (Fig 4D and

4F) that, in the [0˚ 180˚] range, are equivalent to the identity- and cross-priming curves of Fig

3B (to ease the comparison with the latter, the right side of the curves in Fig 4D and 4F is

grayed out).

The shape of the generalization curves can be understood by considering the corresponding

weights’ distribution resulting from training with the 0˚- and 180˚-drifting plaids. In the case

of the component representation, these training stimuli activated mostly the units tuned for

directions at ±60˚ with respect to the direction of the stimuli themselves. As a result, the classi-

fier learned to assign large, positive weights to the units tuned at ~60˚ and ~300˚ (i.e., those

providing the strongest evidence of a rightward, 0˚-drifting plaid), and large, negative weights

to the units tuned at ~120˚ and ~240˚ (i.e., those providing the strongest evidence of a left-

ward, 180˚-drifting plaid)–hence, the twin positive and negative peaks in the weights’ distribu-

tion (Fig 4C).

When the classifier was presented with test plaids spanning the whole [0˚ 360˚] range of

directions, the proportion of rightward choices (solid curve in Fig 4D) was obviously maximal

(i.e., 100%) at 0˚ (since this was the rightward training direction), but then dropped quickly,

becoming minimal (i.e., 0%) for a plaid drifting at 60˚. In fact, for this stimulus, one of the con-

stituent gratings activated the units tuned at ~0˚, where the weights were close to zero (see Fig

4C), while the other grating activated the units tuned at ~120˚, where the weights were large

but negative, since those units signaled the presence of the leftward, 180˚-drifting plaid. When

the direction of the test plaid further increased, the proportion of rightward choices grew

again, reaching a new positive peak at 120˚. This was because one of the constituent gratings of

the plaid activated the units tuned at 60˚ (with large, positive weights), while the other grating

activated those tuned at 180˚ (where the weights were close to zero). The generalization curve

reached again another minimum when the test plaid drifted at 180˚ (the leftward training
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Fig 4. Simulating the discrimination accuracy afforded by component- and a pattern-based representations for rats trained to discriminate drifting plaids.

(A) Tuning curves (rows) for a simulated population of 24 components cells, whose preferred directions homogeneously spanned the [0˚ 360˚] range, starting from
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direction), with the constituent gratings that activated the units tuned at 120˚ and 240˚, with

large, negative weights. As shown in Fig 4D, a mirror trend was produced for plaids drifting

along directions larger than 180˚ (grayed out portion of the curves).

As for the generalization curve obtained when feeding to the classifier isolated drifting grat-

ings (dashed, gray curve in Fig 4D, which is equivalent to the cross-priming curve of Fig 3B), it

largely followed the shape of the weights’ distribution. This can be easily understood, given

that a grating provided as much evidence of rightward (leftward) motion as close its direction

was to the positive (negative) peaks of the weights’ distribution. As a result, the generalization

curves produced by plaids and gratings (solid vs. dashed curve in Fig 4D) followed completely

different trends, with no overlap. In addition, none of them matched the monotonic decrease

observed for the corresponding identity- and cross-priming curves of Fig 3B. Together, this

strongly suggests that a representation made of component cells is incompatible with the prim-

ing curves measured for the rats of the P group.

A very different result was found for the simulated representation of pattern cells. In this

case, the weights’ distribution had a large, positive peak at 0˚, corresponding to the units cod-

ing for the rightward motion, as well as a large, negative peak at 180˚, corresponding to the

units coding for the leftward motion (Fig 4E). Given that, by construction, the pattern cells

responded in the same way to isolated gratings and plaids having the same (global) direction,

the generalization curves corresponding to the identity- and cross-priming conditions fully

overlapped (Fig 4F, black, solid line vs. gray, dashed line). More importantly, they both fol-

lowed a monotonic, decreasing trend in the [0˚ 180˚] range, which largely trailed the shape of

the weights’ distribution. These trends were highly consistent with those observed for the

priming curves of Fig 3B. This shows that, differently from the case of the component repre-

sentation, a representation made of pattern cells would support the identity- and cross-prim-

ing curves obtained for the rats of the P group.

To verify the extent to which this conclusion depended on the width of the tuning curves of

the simulated units, we allowed the parameter k (that defines the width of the Von Mises func-

tions) to range from 0.5 to 11. Examples of the resulting tuning curves obtained for the simu-

lated component cells are shown in S2A Fig. At very low k, as a result of the increased

broadness of the tuning, the two peaks in the response to the plaid stimuli (solid curves)

tended to merge. This translated in a broadening of the weights’ distribution of the logistic

classifier (S2B Fig) and in a concomitant increase of the similarity between the generalization

curves obtained for gratings and plaids (S2C Fig; dashed vs. solid curves). To quantify this sim-

ilarity, we computed the absolute differences between the proportions of rightward choices in

the two generalization curves across all tested directions and we averaged them. The resulting

average difference was large (as already shown in Fig 4D) for k> 5 but became negligible for

k< 3 (S2D Fig). This corresponds to peaks in the tuning curves with FWHM ~ 80˚ or wider

(see S2A Fig). Therefore, a population of component cells with such a broad tuning could in

0˚ (first row), up to 345˚ (last row), in steps of 15˚. The responses of the units are shown as a function of 24 possible directions (columns) of the grating (top) and

plaid (bottom) stimuli. The gray scale bar indicates the intensity of the response. (B) Same as in A but for a population of 24 simulated pattern cells. (C) Weights

assigned to each of the 24 component cells in A (the x axis reports the preferred direction of each unit) by a logistic classifier that was trained to discriminate a 0˚-

(rightward) from a 180˚-drifting (leftward) plaid. (D) Fraction of times that the logistic classifier fed with the component-based representation (whose weights are

shown in C) classified the test stimuli as drifting rightward (i.e., at 0˚). The test stimuli were either plaids (solid black curve) or gratings (dashed gray curve) spanning

the whole [0˚ 360˚] range of directions. (E) Weights assigned to each of the 24 pattern cells in B by a logistic classifier that was trained to discriminate a 0˚-

(rightward) from a 180˚-drifting (leftward) plaid. (F) Same as in D, but for the logistic classifier fed with the pattern-based representation (whose weights are shown

in E). Note that, by construction, the curves in C-F are symmetrical around the middle point on the abscissa (180˚). To emphasize that the leftward halves of the

curves in D and F correspond (and should be compared) to the curves with matching colors in Fig 3B, the rightward sides of D and F were grayed out. S2 Fig reports

an extended version of these simulations, where a range of widths of the tuning curves (from very broad to very narrow) was tested. S3 Fig reports a version of these

simulations where gratings instead of plaids were used as training stimuli.

https://doi.org/10.1371/journal.pcbi.1009415.g004
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principle account for the overlapping identity- and cross-priming curves obtained for the P

group in our experiments (Fig 3B).

To understand whether this is a plausible scenario, one would need to measure the width of

tuning of component cells in rodent visual cortex. Unfortunately, the few studies investigating

component and pattern cells in mouse visual cortex did not perform a statistical characteriza-

tion of the sharpness of their orientation tuning. This prevented our simulated units from

quantitatively matching a physiological ground-truth in terms of orientation tuning. Neverthe-

less, the tuning curves of the example component cells reported in rodent studies investigating

this topic feature such sharp and narrow peaks over the orientation axis to decisively fall in the

regime corresponding to k>> 5 in our simulations (i.e., with FWHM << 60˚) [16,17]. A sim-

ilar conclusion is supported by the general tendency of orientation tuning to be quite sharp in

mouse and rat visual cortex [49,52,54–59]. As such, the most likely hypothesis is that the stim-

ulus representation underlying the priming curves of the P group (Fig 3B) consisted of pattern,

rather than component cells. Further neurophysiological studies will be necessary to verify this

hypothesis–e.g., by directly testing, as done here in our simulations, the extent to which popu-

lations of recorded component and pattern cells yield direction classification curves that are

consistent with the priming curves measured in our experiments.

For completeness, we also simulated a scenario where the training stimuli were gratings

instead of plaids. That it, we checked whether the priming curves obtained for the G group

could possibly be explained by a purely component- or a purely pattern-based representation.

As shown in S3A Fig, in the case of a simulated representation of component cells, the classi-

fier learned to discriminate 0˚- from 180˚-drifting gratings by assigning large, positive weights

to the units tuned at ~0˚ and large, negative weights to the units tuned at ~180˚. As a result,

when tested with grating directions spanning the whole circle, the classifier accuracy trailed

the shape of the weights’ distribution (S3B Fig, black, solid line), following an approximately

sigmoidal trend in the [0˚ 180˚] range. When tested with drifting plaids, the classifier accuracy

peaked instead at 60˚ and reached a minimum at 120˚, consistently with the 120˚ cross-angle

of the plaids (S3B Fig, gray, dashed line). In the case of a simulated pattern representation, the

behavior of the classifier was identical to the one already observed for the simulated P group

(Fig 4E and 4F). The weights were maximal at 0˚ and minimal at 180˚ (S3C Fig) and the accu-

racy curves were the same no matter whether the classifier was tested with gratings or plaids

(S3D Fig, black vs. gray line), following a sigmoidal trend in the [0˚ 180˚] range.

In conclusion, in the case of the G group, while both the component- and the pattern-based

representations could account for the shape of the identity-priming curve (Fig 3A, black line),

neither of them could properly explain the shape of the cross-priming curve (Fig 3A, gray line)

or, better, the lack of cross-priming. As explored in the next sections, other tuning or reading

out mechanisms need to be invoked to account for this phenomenon.

Summary of our findings

The results presented in Fig 3B suggest that rats are capable of spontaneously combining local

motion cues into integrated percepts of global motion direction of a complex visual pattern.

Our simulations show that this ability is consistent with a representation of global motion sig-

nals, as the one provided by pattern cells (Figs 4 and S2). As such, our findings strongly suggest

that rats are capable of processing motion stimuli by relying on pattern-like representations.

This, in turn, establishes a candidate perceptual correlate of the neuronal selectivity for global

motion previously reported across rodent visual cortical areas [16–18], suggesting that, despite

being a tiny fraction of the overall visual cortical population, rodent pattern cells may play an

important (possibly preferential) role in the processing of visual motion. However, such
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motion integration ability only emerged in rats trained to discriminate the plaid stimuli (P

group). The animals trained in the grating discrimination task (G group) were instead virtually

insensitive to the plaids (Fig 3A) and this finding could neither be explained by simulating a

component- nor a pattern-based representation (S3 Fig).

Critically, the different cross-priming magnitude observed for the rats of the two groups

cannot be explained by an overall lower discriminability of the plaid stimuli, i.e., by a lower

sensitivity of rats to plaids as compared to gratings. As already explained, our experiments

show that both kinds of stimuli are equally well processed by rats, with the G and P groups

reaching statistically undistinguishable performances in the training phase of our study, both

in terms of learning rate and discrimination accuracy (Fig 2). In addition, both kinds of stimuli

(gratings and plaids) were equally effective when used as primes in the identity priming tests

(compare black curves and bars in Fig 3A and 3B), yielding statically undistinguishable prim-

ing magnitudes (S1 Fig). In other words, the failure of the plaid stimuli to affect the discrimi-

nation of the gratings for the G group cannot possibly be accounted for by a general inability

of rats to perceive, process or discriminate drifting plaids. Our fully counterbalanced design,

with the high plaid discrimination performance (Fig 2) and the strong priming effect induced

by the plaids in the P group (Figs 3 and S1), implies that the insensitivity of rats in the G group

to the plaids depended on their training history. This suggests a training-dependent recruit-

ment of different populations of motion detectors in the two groups, with the neuronal popu-

lation relied upon by the rats of the G group to encode the gratings failing to effectively

represent the plaids.

In the following sections we provide two tentative explanations of such observations based

on different sets of assumptions. Simulations of component- and pattern-based representa-

tions and linear read-out mechanisms (similar to those shown in Fig 4) allowed testing the

ability of such assumptions to possibly explain our findings.

Simulating a scenario where training with either gratings or plaids leads to

a decoding pool enriched of either component or pattern cells

The first explanation rests on the hypothesis that the specific discrimination being reinforced

during the training biased the recruitment of the visual cortical pool that was read out by

downstream decision neurons towards either a more component-enriched or a more pattern-

enriched cell population (referred to as the “decoding pool” in what follows). Such a task-

dependent selection of the decoding pool may stem from differences between component and

pattern cells in terms of two key properties: i) their relative proportion within visual cortex;

and ii) the intensity of their responses to gratings and plaids.

With regard to the first property, although the number of studies investigating motion inte-

gration in rodent visual cortical areas is still limited [16–18], a finding that is consistent among

them is that component cells by far outnumber pattern cells, with the former being ~25% of

direction-tuned units and the latter being about ~5% (with the rest being unclassified). With

respect to the second property, a well-known phenomenon likely affecting the strength of grat-

ing and plaid responses is cross-orientation suppression [60–63], which has been recently doc-

umented also in rodents [42,64,65]. It consists in a reduction of the response to the preferred

oriented stimulus when this is presented together with other stimuli with different orienta-

tions. This means that cross-orientation suppression could, in principle, lead to diminished

responses to plaids as compared to gratings. However, most studies documenting this phe-

nomenon mainly targeted V1, without distinguishing between pattern and component cells.

In addition, when focusing on studies of motion integration in rodents [16–18], it was difficult

to draw any insight about the incidence of cross-orientation suppression in pattern and
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component cells, because of methodological limitations (e.g., tuning curves normalization and

calcium imaging lacking spike-count-level information). This is why we turned to the primate

literature, finding hints of cross-orientation suppression being stronger in component cells

than in pattern cells [20,21].

Our hypothesis is that the combined effect of component cells being more numerous than

pattern cells, but also more sensitive to cross-orientation suppression, led the decoding pool to

become dominated by component cells in the case of training with gratings (G group) and by

pattern cells in the case of training with plaids (P group). In turn, this would qualitatively

explain the difference in terms of cross-priming found for the rats of the G and P groups (Fig

3), as graphically illustrated in Fig 5A and 5B. Briefly, in the case of training with gratings (Fig

5A, top), these stimuli would strongly activate both pattern (orange) and component (green)

cells (filled and unfilled neurons indicate, respectively, responsive and unresponsive units). As

such, the selection of the neuronal decoding pool by a downstream decision neuron would not

be biased towards either class of neurons (because of no differences in their responsiveness).

However, since the component cells substantially outnumber the pattern cells, the decoding

pool would contain more of the former (black-boundary neurons) than of the latter (red-

boundary neurons). This follows from the assumption that the selection of the decoding pool

is the result of a random sampling from the subpopulation of all responsive units. This, in

turn, is consistent with the idea that such recruiting process is mediated by some form of plas-

ticity similar to the reward-gated Hebbian learning reviewed in [66]. In the priming experi-

ment, all the neurons in the decoding pool would be active during presentation of the grating

primes (Fig 5A, middle), leading to the strong identity priming observed in Fig 3A (solid

curve). By contrast, most component cells in the pool would be strongly depressed by cross-

orientation suppression during presentation of the plaid primes (Fig 5A, bottom; empty black-

boundary neurons), and the few pattern cells in the pool (orange-filled, red-boundary neu-

rons), although active, would not be enough to affect the perception of the target stimulus.

Hence, the lack of cross-priming in the group of rats trained with gratings (Fig 3A, gray

curve).

In the case of training with plaids (Fig 5B, top), these stimuli would strongly activate the

population of pattern cells (orange-filled neurons) but only weakly excite the component cells

(green-filled neurons), because of cross-orientation suppression. This would lead to a strong

bias towards the recruitment of pattern cells in the decoding pool (red-boundary neurons) by

a downstream decision neuron. When tested with prime stimuli, such pattern-enriched pool

would respond with a similar intensity to both kinds of primes (grating and plaids; Fig 5B,

middle and bottom panels respectively), leading to similar priming curves in both identity-

and cross-priming conditions, as shown in Fig 3B (solid vs. gray curve). This would account

for the shared representation of global motion direction observed for rats trained with plaids.

To quantitatively test whether the mechanistic account hypothesized in the previous para-

graphs could explain our findings, we built a computational model where a decision neuron

had to select his afferent units from a mixed population of component and pattern cells, in

order to discriminate the direction of either drifting gratings or plaids. The relative proportion

of simulated component (80%) and pattern (20%) cells roughly matched that found, on aver-

age, across rodent visual areas V1, LM and RL [16–18]. Each unit was simulated as a Poisson

spiking neuron, whose average firing rate as a function of direction was defined by a von

Mises function [51,52] having a peak that was randomly sampled across the [0˚ 350˚] direction

axis (see Materials and Methods for details).

In addition, to simulate cross-orientation suppression in component cells, their peak

responses to plaids were set to half their peak responses to gratings. On the other hand, pattern

cells were assumed to be unaffected by cross-orientation suppression. As for the simulation of
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Fig 5. Simulating a scenario where training with either gratings or plaids leads to a decoding pool enriched of either

component or pattern cells. (A) Cartoon illustrating how training with gratings would lead to the selection of a decoding pool

enriched of component cells, under the assumption that: 1) component cells are more numerous than pattern cells; and 2) cross-

orientation suppression is stronger for component than pattern cells. The sketched pyramidal neurons represent either component

(green) or pattern (orange) cells. Filled and unfilled neurons indicate, respectively, responsive and unresponsive units. Black- and
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Fig 4, the decision neuron consisted in a logistic classifier that was trained to discriminate

between 0˚- and 180˚-drifting stimuli (i.e., leftward vs. rightward motion). This classifier sim-

ply performed a weighted sum over the inputs provided by all the simulated component and

pattern cells, followed by the application of a sigmoidal nonlinearity. As a result of training,

the weights became adjusted in such a way to maximize the classification accuracy (eventually

attaining 100% in such a simple motion discrimination task).

When trained in the grating discrimination task (to simulate the training regime of the G

group), the classifier learned to rely more heavily on those motion detectors (no matter

whether component or pattern cells) whose preferred direction was close to that of the training

stimuli. This is shown in Fig 5C (top), where the weights of the simulated units as a function of

their preferred direction are reported. For both the component (green dots) and pattern

(orange dots) cell populations, the most informative neurons were those with preferred direc-

tion close to 0˚ (rightward-drifting gratings) and 180˚ (leftward-drifting gratings), while the

units tuned around the vertical drift direction (i.e., 90˚ and 270˚) were assigned close-to-zero

weights. Given these weight distributions, we simulated different degrees of sparsity con-

straints on the connectivity of the decision neuron. This was done by pruning input connec-

tions with progressively larger weight magnitude, thus gradually reducing the size of the

decoding pool. However, given the very similar weight magnitudes of the component and pat-

tern cells, the level of pruning did not alter their relative proportion in the decoding pool–this

proportion remained the same as in the original population (i.e., 80% vs. 20%; Fig 5C, bottom).

This confirmed the intuition (see Fig 5A) that training with gratings, even in presence of asym-

metric cross-orientation suppression (i.e., affecting component but not pattern cells), leads to

a decoding pool that simply reflects the proportion of component and pattern cells of the over-

all cortical population and, as such, is component-enriched.

A very different scenario emerged when we simulated the training of the P group in the

plaid discrimination task (see Fig 5D). The weight distribution learned by the classifier for the

pattern cell population (top, orange dots) was the same as in the grating discrimination task.

This is because our simulated pattern cells were by definition immune to cross-orientation

suppression. On the other hand, the weight distribution for the component cell population

(green dots) was very different from that obtained in the grating discrimination task. First,

since these cells responded to the components of the plaids (i.e., their constituent gratings), the

classifier learned to assign larger weights to those units with preferred direction at ±60˚ (i.e.,

half plaid cross-angle) with respect to the global directions of the leftward- and rightward-

drifting plaids (same as for the simulations shown in Fig 4C). In addition, because the

red-boundary neurons indicate the cells that the decision neuron learned to rely upon to discriminate the rightward- from the

leftward-drifting gratings (i.e., the cells in the decoding pool). The grating stimuli activate equally strongly the component and

pattern cells, but, being the former more numerous, the decoding pool is mainly composed of component cells (top). When tested

with gratings, the cells in the decoding pool are strongly activated (middle), but, when they are tested with plaids, they are only

weakly activated (bottom), because of cross-orientation suppression. (B) Cartoon illustrating how training with plaids would lead to

the selection of a decoding pool enriched of pattern cells. Because of cross-orientation suppression, component cells are weakly

activated by plaids, thus the decoding pool is enriched of pattern cells (top). As a result, the decoding pool is strongly activated

when presented with both plaids (middle) or gratings (bottom). (C) Top: weights assigned to a mixed population of component

(green) and pattern (orange) cells, as a function of their preferred direction, by a logistic classifier that was trained to discriminate a

0˚- (rightward) from a 180˚-drifting (leftward) grating. Bottom: The proportion of component (green) and pattern cells (orange),

initially set to, respectively, 80% and 20% of the total, remained unchanged when weights with increasingly larger magnitude were

progressively set to zero (i.e., pruned from the decoding pool). (D) Top: same as in C (top) but for a logistic classifier trained to

discriminate a 0˚- (rightward) from a 180˚-drifting (leftward) plaid. Because of cross-orientation suppression, the classifier learned

to assign weights with lower magnitude to the component cells. Bottom: as a result, when the input connections to the classifier

were made increasingly sparser (by pruning weights with progressively larger magnitude), the proportion of pattern cells in the

decoding pool (orange) reached and overtook the proportion of component cells (green). As shown in S4 Fig, this reversal in the

proportion of pattern and component cells did not take place if the latter were not affected by cross-orientation suppression.

https://doi.org/10.1371/journal.pcbi.1009415.g005
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simulated components cells were affected by cross-orientation suppression, the classifier

learned to rely less on component than on pattern cells, thus assigning lower weights to the

former than to the latter (compare the absolute height of the peaks in the distributions of

green and orange dots in Fig 5D, top). As a result, when the sparsity of the connections to the

decision neuron was increased, by leaving in the decoding pool only inputs with progressively

larger weight magnitude, the proportions of component and pattern cells in the pool followed

opposite, mirror trends (Fig 5D, bottom). While the former decreased (green curve), the latter

increased (orange curve), eventually leading to a reversal of the fraction of component and pat-

tern cells in the decoding pool when the decision neuron was pruned of 90% of its potential

inputs. This confirmed the intuition (see Fig 5B) that cross-orientation suppression can, at

least in principle, strongly bias the recruitment of pattern cells in the decoding pool, under the

constraint of sparse connectivity to the decision neurons, thus leading to a pattern-enriched

representation despite the prevalence of component cells in the overall cortical population.

As a control experiment, we repeated the whole simulation without any cross-orientation

suppression (S4 Fig). As expected, regardless of whether the classifier was trained with drifting

gratings or plaids, it assigned similarly large weights to the component and pattern cells that

better supported the discrimination task (S4 Fig, top). Thus, the only factor controlling the

proportion of component and pattern cells in the decoding pool was the much larger number

of the former in the overall population of available motion detectors. As a result, even when

the sparsity of the connections to the decision neuron was progressively increased, the relative

proportion of component and pattern cells in the decoding pool did not change. For both the

simulated G and P groups, the component cells dominated the decoding pool (S4 Fig, bottom).

Such component-enriched decoding pool, along with the lack of cross-orientation suppres-

sion, would produce similarly large identity- and cross-priming magnitudes for both groups,

thus failing to account for the absence of cross-priming observed for the G group (Fig 3A). In

addition, being the decoding pool mainly made of local motion detectors, the resulting iden-

tity- and cross-priming curves would follow different trends, as already shown in the simula-

tions of Figs 4D and S3B.

Simulating a scenario where a decision neuron reading out a pattern

representation fails to be activated by plaids, if originally trained to

discriminate drifting gratings

Despite the plausibility of the mechanism illustrated in the previous section, the key assumption

of having weaker cross-orientation suppression on pattern cells than on component cells rests

on hints from the primate literature only and has never been directly demonstrated in rodents.

In addition, in our simulations, the decision neurons drew their inputs from a mixed popula-

tion of pattern and component cells. That is, we assumed the decision neuron to pool from dif-

ferent stages of a putative motion processing hierarchy. Considering primates, this assumption

is clearly at odd with the higher functional and anatomical rank of MT, with respect to V1,

along the dorsal stream [3,4]. In monkeys, the MT representation would be the one to be read

by downstream decision areas, no matter whether the incoming stimuli are gratings, plaids or

even more complex patterns (e.g., hyperplaids or any other shape). Thus, decision neurons

would not read out a mixed population of component and pattern cells (as we simulated in the

previous section), as V1 component cells would only serve as a necessary, intermediate step to

build up MT pattern cells. Decision neurons would only have access to the higher-order motion

representation conveyed by MT pattern cells, regardless of the stimulus to be processed.

In the case of rodents, it is still unclear whether a similar hierarchy of dorsal areas exists,

but at least one study has reported extra-striate area RL to be richer of pattern cells than V1
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[16]. In addition, although an anatomical hierarchy of motion processing stages as structured

as the one found in primates may not exist in rodents, pattern cells distributed over striate and

extrastriate cortex could still sit above component cells along the functional motion processing

chain. In fact, pattern cells, given their ability to encode motion direction in a shape-indepen-

dent way, would behave as better motion detectors than component cells in virtually any visu-

ally guided behavior. As such, motion information could still be preferentially routed from

visual cortical areas (e.g., V1, RL, LM) to higher-order decision centers (i.e., frontal and parie-

tal cortices) mainly via pattern cells. This possibility is consistent with the well-established abil-

ity of distinct subpopulations, within mouse V1, to selectively make (receive) target-specific

projections with (from) downstream (upstream) areas [56,67–70]. In addition, it is consistent

with a very recent study showing that multiple visual areas (V1, LM and AL) are causally

involved in coding stimulus orientation and contrast [71]–a demonstration that the represen-

tation of key visual features is distributed among neuronal populations within distinct visual

areas.

In light of these considerations, an alternative scenario to interpret our findings is one

where: i) decision neurons receive inputs mainly from pattern cells, regardless of the motion

discrimination task to be performed (i.e., the decoding pool is, by “construction”, pattern

enriched); and ii) pattern cells are as sensitive to cross-orientation suppression as component

cells are. The question is whether these assumptions are consistent with the difference in the

magnitude of cross-priming produced by plaids on the rats of the G group (Fig 3A) and by

gratings on the rats of the P group (Fig 3B). To account for this difference, we reasoned that

pattern cells connected to a given decision neuron could fire less in response to plaids (because

of cross-orientation suppression) than in response to gratings. This could lead the decision

neuron to form stronger synaptic connections with its afferent pattern cells in the case of train-

ing with plaids than with gratings, under the assumption that some compensatory mechanisms

actively keep the weighted input to the decision neuron around a target setpoint. Such com-

pensatory process would be fully consistent with the well-known role played by homeostatic

plasticity in cortex, where the overall synaptic strength scales as a function of the magnitude of

the input, so as to maintain the average firing rate of cortical neurons within a given range

[72–74].

To verify the plausibility of these intuitions, we simulated a downstream decision neuron

reading out the representation conveyed by a population of pattern cells with strong cross-ori-

entation suppression. As done in the previous section, we implemented the decision neuron as

a logistic classifier with a regularization term on the L2 norm of its “synaptic” weights, so as to

simulate the effect of homeostatic plasticity. The classifier was trained to discriminate either

gratings or plaids drifting in opposite directions (i.e., 0˚ vs. 180˚ motion direction). As a result

of the cross-orientation suppression, the L2 norm of the population vectors fed as inputs to the

classifier was larger for the gratings than for the plaids (Fig 6A). This led the magnitude of the

weights to become larger in the case of training with the plaids than with the gratings (Fig 6B),

with the L2 norm of the weights’ vector being more than twice as large in the former case (Fig

6C).

This had the “homeostatic” effect of nearly equalizing the magnitude of the weighted inputs

to the classifier, when this was fed with the same kind of stimuli that were used for training. As

shown in Fig 6D, the weighted inputs resulting from presenting drifting gratings to the classi-

fier that was trained to discriminate grating motion direction (solid black curve) were very

close to the weighted inputs resulting from presenting drifting plaids to the classifier that was

trained to discriminate plaid motion direction (solid gray curve). This would explain the

strong identity priming observed for the rats of both the G and P groups in our experiment

(Fig 3, black curves). At the same time, the large weights’ magnitude resulting from the
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training with the plaids also guaranteed a very strong weighted input in the case of presenta-

tion of the grating stimuli (dashed gray curve in Fig 6D). This would explain the strong cross-

priming observed for the rats of the P group (Fig 3B, gray curve). By contrast, the much smaller

weights resulting from training with the gratings yielded a near-zero weighted input in the

case of presentation of the plaid stimuli (dashed black curve in Fig 6D). This would explain the

very small cross-priming observed for the rats of the G group (Fig 3A, gray curve). A plaid

prime stimulus would simply be too weak (because of cross-orientation suppression) to acti-

vate the decision neuron through the weak, grating-adapted synaptic weights.

Fig 6. Simulating a scenario where a decision neuron reading out a population of pattern cells fails to be strongly activated

by drifting plaids, when originally trained to discriminate drifting gratings. (A) L2 norms of the population vectors fed as

inputs to a decision neuron (simulated as a logistic classifier with L2 regularization) that was trained to discriminate either a 0˚-

from 180˚-drifting grating (black) or a 0˚- from 180˚-drifting plaid (gray). The classifier received inputs from a population of

pattern cells. Each bar reports the mean of the norms of the input populations vectors produced by the 0˚- and 180˚-drifting

stimuli. (B) Weights assigned by the logistic classifier to the population of pattern cells as a function of their preferred direction, in

case of training with gratings (top) and plaids (bottom). (C) L2 norms of the weights shown in B. (D) Weighted inputs to the

logistic classifier, originally trained to discriminate either gratings (black curves) or plaids (gray curves), when the population of

simulated pattern cells was presented with drifting stimuli, homogeneously spanning the [0˚ 360˚] range of directions. Such

stimuli were either of the same kind (solid curves) or of a different kind (dashed curves) of those used during training. For

instance, a classifier originally trained with plaids was tested with either plaids (gray, solid curve) or gratings (gray, dashed curve).

https://doi.org/10.1371/journal.pcbi.1009415.g006
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Conclusions and implications

Although speculative in nature, the two explanations detailed in the previous paragraphs and

backed up by our simulations propose an account for the behavioral data reported in our

study. Importantly, they both rest on well-defined physiological assumptions. As such, they

give rise to alternative hypotheses about the neural mechanisms underlying the processing of

motion information that could be tested experimentally. For instance, the first explanation

(Fig 5) would be supported by observing cross-orientation suppression acting way more

strongly on component than on pattern cells in rodent visual cortex. On the other hand, the

second explanation (Fig 6) would be corroborated by observing that cross-orientation suppres-

sion affects equally strongly pattern and component cells, and by finding a projection-specific

enrichment in the proportion of pattern cells relaying visual information to decision making

centers, such as posterior parietal cortex (PPC) [75–78].

In conclusion, our study not only yields behavioral evidence of motion integration in

rodents, but also provides solid grounding for future investigations aimed at dissecting the

neuronal circuits underlying integration of local motion cues into global motion percepts. In

fact, as highlighted in a recent perspective [79], a behavioral task involving direction discrimi-

nation of gratings and plaids is a necessary ingredient of future experiments aimed at establish-

ing a correlational and/or causal link between pattern-like responses observed in rodent visual

cortex and integrated motion perception.

Materials and methods

Ethics statement

All animal procedures were conducted in accordance with the international and institutional

standards for the care and use of animals in research and were approved by the Italian Ministry

of Health and after consulting with a veterinarian (Project DGSAF 25271, submitted on

December 1, 2014 and approved on September 4, 2015, approval 940/2015-PR).

Animal procedures

We trained 21 male Long Evans rats (Charles River Laboratory) in a motion direction discrim-

ination task. Upon arrival in the lab, rats weighed ~250 g, and they grew up to ~500 g. Animals

started training during ~ 7th postnatal week. During the experimental period, they had free

access to food, while their access to water was restricted. Their daily liquid intake included

5–15 ml of a 1:4 juice-water solution, plus an ad libitum water access for one hour after train-

ing. Training sessions lasted 50–70 minutes and took place 5 days per week.

Behavioral apparatus and visual stimuli

The behavioral rig was the same previously used in several studies of rat visual perception car-

ried out by our group [34,36–40]. It consisted of two racks, each equipped with three operant

boxes to allow training a batch of six rats simultaneously [15,35]. In each box, one of the walls

bore a 3 cm-diameter hole, so that a rat could extend its head outside the box and face frontally

the stimulus display (a LCD monitor ASUS Ve228 located in front of the viewing hole at 30

cm). The box was equipped with three stainless-steel feeding needles (Cadence Science),

located right outside the viewing hole, and serving as response ports and for reward delivery.

To this end, each needle was connected to a led-photodiode pair to detect when the nose of the

animal approached and touched it. The two ports positioned to the right and to the left of the

hole were connected to two computer-controlled syringe pumps (New Era Pump Systems NE-

500) for delivery of liquid reward, while the central port served exclusively to trigger the onset
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of each behavioral trial. Each rat learnt to extend its head through the viewing hole, lick the

central needle to trigger stimulus presentation and then lick either the left or right port to

report the identity of the visual stimulus presented in the current trial. In case of correct

response, the reward was delivered through the feeding needle. In case of an incorrect choice,

a 1–3 s timeout period started, with the stimulus display flickering from black to middle gray

at a rate of 15 Hz (during this period, a “failure” sound was also played). Stimulus presentation,

response collection and reward delivery were controlled via workstations running the open

source MWorks software (https://mworks.github.io/). Pictures and CAD drawings of the behav-

ioral rig, showing the location of the animal with respect to the stimulus display and response

ports, can be found in Fig 6 of ref. [15], supplementary figure 1 of ref. [36] and Fig 1 of ref. [40].

As explained in the Results, the rats were divided in two groups. The animals in the G

group were trained to discriminate gratings drifting horizontally in opposite directions, i.e.,

180˚ (leftward) vs. 0˚ (rightward). The rats of the P group were trained to discriminate two

drifting plaids, whose global motion direction was, again, either 180˚ or 0˚. The grating stimuli

consisted in full-field, full-contrast, sine wave drifting gratings with a temporal frequency of 2

Hz and a spatial frequency of 0.04 cycles/˚. The plaid stimuli were constructed by superimposi-

tion of two half-contrast gratings (again 0.04 cycles/˚ and 2 Hz) with a motion direction differ-

ence of 120˚ (i.e., 120˚ plaid cross-angle). In the experiments with the priming paradigm (see

below), the drift direction of the prime stimuli (either gratings or plaids) was randomly sam-

pled in each trial from 19 possible directions (i.e., from 0˚ to 180˚ in steps of 10; see Fig 1).

Experimental design—Training phase

As soon as a rat licked the central response port, the target stimulus appeared (either a grating

or a plaid depending on the animal’s experimental group) and remained on screen for 2 s. To

prevent rats from making very quick, impulsive responses, a trial was aborted if the animal’s

reaction time was lower than 300 ms. In such a case, the animal’s response was not evaluated

(neither reward or time-out was administered), the stimulus was immediately turned off, and

a brief tone was played. Such “too fast” trials were also excluded from the analysis. Similarly,

trials in which the rat responded more than 2 s after the offset of the stimulus were considered

“ignored” and excluded from the analysis. No reward was delivered in these invalid trials. In

order to accomplish the task and receive the reward, the rat had to reach and lick the response

port matching the global motion direction of the target stimulus. Correct execution of such

task was rewarded equally for both directions during each experimental session. In correct tri-

als, the target stimulus remained on the screen for the whole reward delivery period, so as to

strengthen the operant association between stimulus response and reward. On the other hand,

when the animal provided an incorrect response, reward was not delivered, the stimulus was

immediately turned off and the timeout period started (see previous section). The results of

the training phase are shown in Fig 2.

Experimental design—Priming paradigm

In the priming paradigm, a prime stimulus was shown to the animal before the target stimulus.

The prime duration was 75 ms, the inter-stimulus interval (ISI, i.e., the interval separating the

offset of the prime from the onset of the target) was also 75 ms and the target duration was 750

ms. As in the training phase, “too fast” or “ignored” trials were excluded from the analysis.

Only, a trial was defined as “ignored” if the rat responded more than 1 s after the onset of the

target stimulus. As a result, the allowed response window extended from 300 to 1000 ms from

target onset. As in the training phase, an animal, in order to obtain the reward, had to reach

and lick the response port (right or left) corresponding to the global motion direction of the
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target. Accordingly, no feedback was ever provided to the rat regarding the motion direction

of prime stimuli. In this paradigm, the target was not kept on screen during the reward,

because there was no longer any need to favor the association between response, stimulus, and

reward. Only animals maintaining a performance in the training task greater that 70% for 4

consecutive days were tested with this priming paradigm.

The rationale of this design rests on well-established findings in the human psychophysics

literature [41,80–82], where presenting an “adapter” before a “test” stimulus has been shown

to bias the perception of the test, depending on two key factors: the duration of the adapter

and the inter stimulus interval (ISI) between adapter and target presentation. When the bias

induced by the adapter attracts the perceptual choices towards the identity of the adapter itself,

this effect is called “priming”. Vice versa, when it repels the perceptual choices away from the

identity of the adapter, it is named “adaptation after-effect”. Our group has previously shown

that brief presentation of a static shape (~50 ms), followed by a short ISI (66 ms), is able to

induce a strong and robust priming effect on rat response to a target shape [34]. Here, we

adapted this paradigm to moving stimuli, and we relied on previous motion priming studies in

humans [41] to select the timing parameters of the task, in the attempt of inducing a strong

priming effect.

Analysis of behavioral data

Only rats displaying a strong identity-priming effect where included in the analysis described

in the main text. Quantitatively, this corresponded to setting a threshold on the absolute prim-

ing magnitude in the identity priming condition amounting to 5%. Priming magnitude was

computed averaging together the mean values of the absolute differences between the left and

right extremes (4 points per side) of each priming curve with respect to the neutral prime con-

dition (insets in Fig 3). The enforcement of such criterion led to the rejection of one rat per

group, bringing the number of rats included in the analysis to 10 animals for the G group and

to 9 animals for the P group out of the original 11 animals trained in grating direction discrim-

ination and 10 trained in plaid direction discrimination.

To statistically compare the identity- and cross-priming curves obtained for each group of

rats (black and gray curves in Fig 3) we performed a bootstrap analysis, in which the recorded

behavioral sessions were resampled 50 times with replacement for each animal independently.

This gave us the possibility to estimate a bootstrap standard deviation for both the average

identity- and cross-priming curves of Fig 3, as well as for the average priming magnitudes

computed as described above (insets in Fig 3). Bootstrap standard deviations were then used

to compute normal 95% confidence intervals for the aforementioned quantities (displayed in

Fig 3 as shaded regions around the priming curves and as error bars in the bar plot shown in

the insets) [83]. In computing confidence intervals for the 19 points of a priming curve, the

critical value corresponding to the chosen confidence level was adjusted for multiple compari-

sons using Bonferroni correction. A similar bootstrap procedure was used to obtain the confi-

dence intervals in S1 Fig.

Computational modeling

To interpret the results of our psychophysical tests, we simulated a decision neuron reading

out the activity of a simulated population of either component or pattern cells fed with either

grating or plaid stimuli. Three different simulations were performed to test the consistency of

our findings with three possible scenarios concerning the tuning of rat visual neurons for

motion direction and the choice of the decoding pool by the decision neuron. These simula-

tions have been already described in the Results and in the legends of Figs 4–6. Below, we
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explain some additional technical details about how we modeled the populations of simulated

component and pattern cells and how we implemented the logistic classifier used to simulate

the decision neuron.

Simulations to check the consistency of the priming curves observed for the P group

with a pattern-based representation of global motion direction. To check whether the

shape of the priming curves observed for the rats of the P group (Fig 3B) was more consistent

with a component-like or a pattern-like representation, we trained a logistic classifier to solve

the same motion discrimination task that was administered to the rats (i.e., 0˚- vs. 180˚-drift-

ing plaids), based on the responses of a simulated population of either component of pattern

cells (Fig 4). We then tested how the trained classifier would decode the full range of drifting

plaids and gratings used to obtain, respectively, the identity- and cross-priming curves in Fig

3B. To simulate the tuning for local and global motion direction of the populations of compo-

nent and pattern cells, we used 24 Von Mises functions [51,52] centered at equispaced angles

along the circle (spaced by 15˚). The von Mises functions, which are the circular analogs of

Gaussian functions, have a width that is controlled by the parameter k, which, in turn, is equiv-

alent to the inverse of the variance of a Gaussian distribution [53]. The peak value of the func-

tions (and thus of the tuning curves) was set to 1 for all the simulated units.

For a pattern cell, the simulated tuning curve was the same regardless of whether the input

stimulus was a plaid or a grating stimulus (compare matching rows in the top and bottom pan-

els of Fig 4B). That is, by construction, each simulated pattern cell responded to the global

direction of the plaid stimuli. Conversely, for a component cell, the simulated tuning curve

was defined by a single Von Mises function in case of presentation of the grating stimuli (Fig

4A, top), but was defined by the superimposition of two von Mises functions (with the peaks

being 120˚ apart) in case of presentation of the plaid stimuli (Fig 4A, bottom). That is, by con-

struction, each simulated component cell responded to the local directions of the constituent

gratings of the plaid stimuli, rather than to the global direction of the plaid. For both the simu-

lated pattern and component cells, the Von Mises functions were summed to a constant back-

ground activity. In addition, to emulate the variability of neuronal firing in response to

identical stimuli, in each simulated trial, the actual response to a given stimulus was affected

by Gaussian noise with zero mean and σ = 0.25. The k parameter of the Von Mises functions

of the simulated pattern and component cells was set to 7 in the main simulation shown in Fig

4, while it was allowed to range between 0.5 and 11 in the more extended simulations of S2

Fig. The ratio between the peak of the tuning curves and the background rate was set to 10.

To model the training received by the rats in our experiment, we sampled for 500 times the

responses of the whole population of either pattern or component cells to each of the 0˚- and

180˚-drifting plaids used during the training phase. We then trained a logistic regression clas-

sifier to discriminate the two sets of 0˚ and 180˚ responses using gradient descent (imple-

mented by the Matlab function “fminunc”) and including and L2 regularization term in the

cost function (whose parameter lambda was set to 1). The weights resulting from such training

are those shown in Fig 4C and 4E. Finally, we fed to the classifier grating and plaid stimuli

spanning the full range of possible global motion directions (from 0˚ to 345˚ in steps of 15˚)

and we plotted the probability for each class of stimuli to be classified as moving rightward as a

function of its direction (Fig 4D and 4F). The same simulations were also repeated by training

the classifier with 0˚- and 180˚-drifting gratings (to simulate the results obtained with the G

group) instead of 0˚- and 180˚-drifting plaids. The results of these simulations are shown in

S3 Fig.

Simulations to explore the mechanisms that could lead to a strong cross-priming only

in case of training with plaid stimuli–scenario #1. To obtain a proof of principle that the

mechanisms illustrated in Fig 5A and 5B could lead to a decoding pool enriched of pattern
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cells in case of training with plaids, we carried out a second simulation. As before, we trained a

logistic regression classifier in the same motion direction discrimination task that was admin-

istered to our animals. This time, however, the response properties of the simulated compo-

nent and pattern cells, as well as their relative proportion, better matched either the known

properties derived from the rodent literature [16–18] or those inferred based on the monkey

literature [20,21]. First, the simulated population of pattern and component cells was much

larger (i.e., 1000 units). It was composed of Poisson firing neurons with either “component” or

“pattern” tuning curves, built in the same way as described in the previous section. Second,

their proportion was 80% and 20% respectively, so as to match the highest ratio of pattern to

component cells observed in rodent visual cortex [16]. As in the previous simulation, we used

Von Mises functions to define the tuning curves of component and pattern cells (see descrip-

tion in the previous section). In this case however, the preferred directions of the simulated

neurons were not equispaced but drawn randomly from a uniform distribution over the circle.

Baseline value of tuning curves was set to 2 spikes/second. Von Mises function of random

amplitude (normally distributed around 8 spikes/s with standard deviation of 1 spike per sec-

ond) were added to this baseline. The firing rate of the units in each trial was drawn from a

Gaussian distribution with mean equal to the value set by the tuning curves and standard devi-

ation of 2 spikes/s. The width (i.e., the parameter k; see previous paragraph) of the Von Mises

functions was adjusted in such a way that the Orientation Selectivity Index (OSI) of the result-

ing population of component cells was distributed according to a Gaussian with a mean of 0.7

and a standard deviation of 0.1, while the Direction Selectivity Index (DSI) was distributed

according to a Gaussian with a mean of 0.6 and a standard deviation of 0.2. OSI and DSI are

standard measures of orientation and direction tuning, whose definition can be found, for

instance, in [49,52,55,59].

To account for the imperfect cross-angle invariance documented by [17] we enlarged the

width of Von Mises functions used to simulate the tuning of pattern cells to plaids by dividing

the k parameter previously used to define their tuning to gratings (see previous paragraph) by

a factor 4. This made the responses of our simulated pattern cells better matched to the known

properties of mouse pattern cells, reproducing their tendency to have broader tuning curves

when tested with plaids than with gratings, especially when the plaids have a large cross-angle

(such as the one used in our study, i.e. 120˚).

Finally, we simulated cross-orientation suppression in component cells–that is, we imposed

that the peak responses of component cells to the plaids were half of their peak responses to

the gratings, while pattern cells were implemented as being fully unaffected by cross-orienta-

tion suppression (i.e., same peak responses to plaids and gratings). This scenario was simulated

because our goal was to test the hypothesis that, if cross-orientation suppression affected

strongly component cells but not pattern cells, then the decision neuron would learn to prefer-

entially connect with the latter, in the case of training with the plaid stimuli.

To model the training received by the rats in our experiment, we sampled for 200 times the

responses of the mixed population of pattern or component cells to each of the 0˚- and 180˚-

drifting stimuli (either grating or plaids) used during the training phase. We then trained a

logistic regression classifier to discriminate the two sets of 0˚ and 180˚ responses using gradi-

ent descent (implemented by the Matlab function “fminunc”) and including and L2 regulariza-

tion term in the cost function (whose parameter lambda was set to 1). The weights resulting

from such training are those shown in Fig 5C and 5D (top). Finally, we simulated a scenario

where, as a result of this training, the decision neuron would maintain only the strongest of its

synaptic connections with sensory neurons encoding the drifting stimuli. To incorporate this

sparseness constraint on the connectivity of the decision neuron, we progressively pruned the

weakest synaptic weights by applying a quantile-based thresholding to their magnitude after
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training (i.e., by setting to zero any weight below the chosen quantile of the original weight

magnitude distribution). We then quantified the proportion of pattern and component cells

that survived the pruning and remained in the decoding pool of the decision neuron as a func-

tion of the quantile used as a threshold (Fig 5C and 5D, bottom). As a control, the whole simu-

lation was also run without incorporating cross-orientation suppression in the responses of

component cells (S4 Fig).

Simulations to explore the mechanisms that could lead to a strong cross-priming only

in case of training with plaid stimuli–scenario #2. Here, we simulated an alternative sce-

nario where a decision neuron (modeled, again, as a logistic classifier) is connected to a pool of

sensory neurons made exclusively of pattern cells that are strongly affected by cross-orienta-

tion suppression. As such, the parameters of the simulations were the same as those described

in the previous section, with only two notable differences: 1) no component cells were

included in the decoding pool, but only pattern cells; 2) cross-orientation suppression affected

pattern cells instead of components cells, and its impact was twice as strong as that of the previ-

ous stimulation (i.e., peak responses to plaids were 25% of peak responses to gratings). The

training of the classifier was the same as described in the previous section. Note that the L2 reg-

ularization term in the cost function played the role of a homeostatic constraint on the overall

weights’ magnitude. Again, we compared the weights’ distributions resulting from training

with plaids and gratings (Fig 6B) and we also quantified the magnitude of weighted input (i.e.,

sensory “evidence”) to the decision neuron, depending on the training and prime stimuli

(Fig 6D).

Supporting information

S1 Fig. Rats of the Grating and Plaid groups display equally strong identity priming. (A)

Difference between the priming magnitudes measured for the G and P groups in the case of

the identity-priming experiment (i.e., between the black bars in the insets of Fig 3A and 3B).

Error bars are 95% confidence intervals obtained by bootstrap (see Materials and Methods).

(B) Difference between the performances measured for the G and P groups with the neutral

priming conditions, i.e., the 90˚-drifitng (upward) graitng and plaid primes. Error bars are

95% confidence intervals obtained by bootstrap.

(TIF)

S2 Fig. Simulating the discrimination accuracy afforded by a component-based representa-

tion with different degree of direction tuning. (A) Example tuning curves over the direction

axis, as obtained for increasingly large values of the parameter k, which controlled the width of

the Von Mises functions used to simulate the tuning of the component cells (see main text).

For each value of k, a population of 24 components cells was simulated, whose preferred direc-

tions homogeneously spanned the [0˚ 360˚] range (same as in Fig 3A). The figure shows how

one of such cells (the one with preferred direction = 160˚) responded to drifting gratings (gray

dashed curve) and plaids (black solid curve) as a function of their direction. For k = 7, the

curves report the same values already shown in the rows of Fig 3A (top and bottom, respec-

tively) corresponding to the preferred direction of 160˚. (B) Weights assigned to the 24 simu-

lated component cells by a logistic classifier that was trained to discriminate a 0˚- (rightward)

from a 180˚-drifting (leftward) plaid. The parameter k varies as indicated in A. (C) Fraction of

times that the logistic classifier fed with the component-based representation (whose weights

are shown in B) classified the test stimuli as drifting rightward (i.e., at 0˚). The test stimuli

were either plaids (solid black curve) or gratings (dashed gray curve) spanning the whole [0˚

360˚] range of directions. The parameter k varies as indicated in A. (D) Absolute difference

between the pairs of curves shown in C for plaid and gratings (averaged across all tested
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directions) as a function of the parameter k.

(TIF)

S3 Fig. Simulating the discrimination accuracy afforded by component- and a pattern-

based representations for rats trained to discriminate drifting gratings. Same simulations

as those shown in Fig 4C, 4D, 4E and 4F, but the classifier was trained to discriminate 0˚- from

180˚-drifting gratings rather than 0˚- from 180˚-drifting plaids.

(TIF)

S4 Fig. Simulating a scenario where training with both gratings and plaids leads to a

decoding pool enriched of component cells. Same simulations as those shown in Fig 5C and

5D, but without imposing cross-orientation suppression in the component cells.

(TIF)

S1 Data. This zipped archive contains the source data (as a collection of.mat files) to pro-

duce all the plots presented in the main and supporting figures.

(ZIP)
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