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1.1 Vectors - Column and row vectors
A vector is as a list of elements, which can be ordered in a column or in a row.

COLUMN VECTOR:

(Eq 1.1.1)

ROW VECTOR:

(Eq 1.1.2)

The number of elements in a vector, namely its length, is called its dimension. Such kind of vectors 
are said to be transposed one respect each other.

The angular bracket symbols usage, as a concise representation of multidimensional vectors and 
matrices too, is usually called the "Dirac's notation" in honour of the English physicist P.A.M. Dirac 
who invented it.

(Fig. 1.1.1: P.A.M. Dirac, 1902 - 1984)  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1.2 Vectors - Addition
Vectors having the same dimension can be added together element by element. 

ADDITION OF COLUMN VECTORS:

(Eq 1.2.1)

(Eq 1.2.2)

ADDITION OF ROW VECTORS:

(Eq 1.2.3)

(Eq 1.2.4)

(Fig. 1.2.1: the inventors of vectors, some thousands of years B.C.)  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c = a + b

c1,c2,c3,...,cn = a1,+b1,a2 + b2,a3 + b3,...an + bn

c = a + b

c1,c2,c3,...,cn = a1 + b1,a2 + b2,a3 + b3,...,an + bn



1.3 Vectors - Inner product
The inner product between two vectors having the same dimension is one scalar number defined as 
follows:

(Eq 1.3.1)

The inner product of a vector with itself  is  the norm of that  vector,  which is  the square of its 
magnitude:

(Eq 1.3.2)

More generally:

(Eq 1.3.3)  

where φ is the angle between the two vectors.

Notice that for orthogonal vectors their inner product is zero:

(Eq 1.3.4)

(Fig. 1.3.1: two orthogonal directions)
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a b = ak
k
∑ bk = a1b1 + a2b2 + a3b3 + ...+ anbn

a a = a 2

a b = a b cos ϕ( )

a b = 0⇔ϕ = π
2



1.4 Vectors - Projection
A particular case is the inner product between a vector and another one having unitary magnitude:

(Eq 1.4.1)

The result of this operation represents the projection of the first vector onto the second one:

(Eq 1.4.2)

(Fig 1.4.1: vector projection)

For any given vector it is always possible to obtain a corresponding vector which is normalised to a 
unitary magnitude by dividing each of its elements by its original magnitude:

(Eq 1.4.3)

(Fig. 1.4.1: Leaning tower of Pisa - Italy)  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1.5 Vectors - Vector space
A "N-dimensional vector space" is the set of all possible vectors having a defined dimension N. 
Each vector of that space can be represented by a unique linear combination of a vector basis made 
of N orthonormal vectors:

(Eq 1.5.1: orthonormal basis)

where the greek delta is called the "Kronecker's delta" and it is equal to one when "i" is equal to "j"; 
it is zero otherwise.

The linear combination is:

(Eq 1.5.2)

The ak  coefficients of the linear combination are scalar numbers corresponding to the individual 
projections of the vector:

(Eq 1.5.3)

With respect to the given vector space and basis, those coefficients are called the "coordinates of the 
vector" while the single addenda are its "components".

(Fig. 1.5.1: various dimension vector spaces)  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u1 , u2 , u3 ,..., un{ }⇔ ui u j = δ ij

a = a1 u1 + a2 u2 + a3 u3 + ...+ an un

a1 = a u1 ,a2 = a u2 ,a3 = a u3 ,...,an = a un



2.1 Complex numbers - Cartesian form
The  "complex  numbers"  satisfy  the  "fundamental  theorem of  algebra",  which  states  that  each 
polynomial equation:

(Eq 2.1.1)

has at least one complex number as solution. With respect to this property, which does not generally 
hold for the real numbers, they represent an extension of the latter ones.

To  do  so,  complex  numbers  need  to  be  written  as  the  addition  of  a  "real  part"  "a"  and  an 
"imaginary part" "b" (both of them real numbers):

(Eq 2.1.2)

where the coefficient "i", called "imaginary unit", is defined in order to have the following property:

(Eq 2.1.3)

which, in a real number context, would have no meaning: this is the reason the name "imaginary" 
has been given to it.

This representation of a complex number is called the "cartesian form".

(Fig. 2.1.1: first publication regarding the complex numbers, by Rafael Bombelli, 1526 - 1572)  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cnz
n + cn−1z

n−1 + ...+ c2z
2 + c1z + c0 = 0

z = a + ib

i2 = −1



2.2 Complex numbers - Magnitude and phase
The complex numbers can be represented as 2D-vectors in a cartesian reference having a real axis 
and an imaginary axis frame:

(Fig 2.2.1)

According to this vector representation, a complex number also has a norm corresponding to the 
square of its magnitude:

(Eq 2.2.1)

and a phase so that:

(Eq 2.2.2)

(Fig. 2.2.1: R. Descartes, 1596 - 1650)  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a

a

b

φ



2.3 Complex numbers - Complex exponential
The exponential function can be extended to have a complex number argument:

(Eq 2.3.1)

The second factor can be evaluated by a Taylor's series expansion around x0 = 0 as follows:

(Eq 2.3.2)

The addenda of the Taylor series can be rearranged into two groups:

(Eq 2.3.3)

where the individual Taylor expansion of the "sin" and "cos" functions can be recognised:

(Eq 2.3.4)

The latter result is commonly known as "the Euler's formula".

(Fig. 2.3.1: L. Euler, 1707 - 1783)  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2.4 Complex numbers - Polar form
The complex numbers can be also represented in terms of complex exponentials, recognising from 
their cartesian representation that:

(Eq 2.4.1) 

Hence:

(Eq 2.4.2)

(Fig. 2.4.1: the hands of a clock as an example of the polar form representation of vectors)  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2.5 Complex numbers - Complex conjugate
Two complex numbers are defined to be "conjugated" each other when they have the same real and 
opposite imaginary part. In the cartesian representation that is:

(Eq 2.5.1)

while in the polar representation is:

(Eq 2.5.2)

This way the norm of a complex number can be also represented as:

(Eq 2.5.3)

Recalling the vector notation, for complex numbers vector entries this becomes:

(Eq 2.5.4)

and more generally:

(Eq 2.5.5)

represents the inner product between any two vectors having complex entries. Notice that even in a 
N-D vector space there is always a 2-D plane where two N-D vector can lie and on which it is 
possible to consider an angle between them.

(Fig. 2.5.1: Narciso, by Caravaggio, 1571 - 1610)  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z = a + ib⇔ z* = a − ib

z = ρeiϕ ⇔ z* = ρe− iϕ

z 2 = z*z

z 2 = z* z

za
* zb = za zb cos ϕ( )



3.1 Signals - Analog and digital signals
In electronics analog signals are "continuous", "real single-valued", "time-varying" signals. Digital 
signals are a representation of analog signals after a sampling and discretisation process.

EXAMPLES:

(Fig 3.1.1: various type of signals)  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3.2 Signals - Sinusoidal signals
The sinusoidal signal is probably the most important type of signal in electronics. In its most plain 
form it can be represented as:

(Eq 3.2.1)

(Fig 3.2.1: generic sinusoidal signal)
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f (t) = Acos(ω 0t +ϕ )



3.3 Signals - Phasors
A sinusoidal signal can be also represented by a complex number in its polar form:

(Eq 3.3.1)

(Fig 3.3.1: phasors)

In this picture, phasors are vectors rotating counter clockwise if the frequency is a positive value.

Notice that negative frequencies also have a meaning: they are represented by phasor vectors 
rotating clockwise.  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f (t) = Re Aei ω0t+ϕ( )⎡⎣ ⎤⎦



3.4 Signals - Complex exponential signals
A more complete visualisation of a sinusoidal signal represented by a phasor is the following graph:

(Fig 3.4.1: complex signal)

 
Notice the sinusoidal and co-sinusoidal projections onto the real and imaginary axes.
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3.5 Signals - Non-sinusoidal signals
Non-sinusoidal  signals  can  be  represented,  under  certain  hypothesis,  as  a  summation  of  many 
sinusoidal signals, each of them having a certain magnitude, phase and frequency.

This method is called "Fourier's signal analysis".

(Fig 3.5.1: J.B.J. Fourier, 1768 - 1830)
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4.1 Fourier signal analysis - Signals as vectors
In the digital approximation an analog signal can be thought as a vector made of elements having 
values corresponding to the samples and dimension corresponding to the total number of samples 
(possibly also infinitive):

(Fig 4.1.1: time sampled signal)

(Eq 4.1.1)

meaning that:

(Eq 4.1.2)
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f (t) = f = .., s−2Δt , s−Δt , s0, sΔt , s2Δt ,...

s−2Δt = f −2Δt( ), s−Δt = f (−Δt), s0 = f 0( ),...etc.



4.2 Fourier signal analysis - Continuous representation limit
As an extension to a vector of complex numbers, considering its vector representation, the norm of 
the function is:

(Eq 4.2.1)

Ideally,  with  an  infinitesimal  sampling  time,  the  discrete  vector  representation  of  a  function 
becomes continuous.

Then the inner product summation becomes then an integral:

(Eq 4.2.2)

(Fig. 4.2.1: continuos limit representation of a summation as an integral)  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f t( ) 2 = f t( )* f t( )

f t( )* f t( ) = skΔt * skΔtΔt
k=−∞

k=+∞

∑ → f t( )* f t( )dt
−∞

+∞

∫



4.3 Fourier signal analysis - Orthonormal function basis
In order to define the reference frame of such vector space one convenient possibility is to choose a 
set of functions corresponding to orthonormal vectors. 

As  a  generalisation  of  a  vector  base,  complex  exponential  functions  characterised  by  having 
different frequencies are orthogonal each other:

(Eq 4.3.1) 

where:

(Fig 4.3.1: the Dirac's delta distribution representation)

is the Dirac's delta distribution. It is not, strictly mathematically speaking, a function.

The Dirac's delta distribution is a generalisation of the Kronecker's delta function.
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e− iω0t eiω0t 2πδ ω −ω 0( )



4.4 Fourier signal analysis - Fourier's transform
The "Fourier's transform"  a function f(t) corresponds to the projection of the function onto the 
orthonormal basis made of sinusoidal functions:

(Eq 4.4.1)

In fact the formula above represents a number of projections, one for each value ω which identifies 
the frequency axis onto which the projection occurs. 

Notice that a physical signal is always a real-valued function, hence its complex conjugate is equal 
to the signal itself, but its Fourier transform is generally complex-valued.

According to this, the signal can be represented as the summation (integration) of all its sinusoidal 
frequency components:

(Eq 4.4.2)

The latter equation corresponds to the "inverse Fourier's transform".

(Fig. 4.2.1: Fourier's transform paradigm)  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f t( )* eiωt = 1
2π

f t( )* eiωt dt = F ω( )
−∞

+∞

∫

eiωt F ω( ) = 1
2π

F ω( )e− iωt dω = f t( )
−∞

+∞

∫



4.5 Fourier signal analysis - Frequency and phase spectra
The Fourier's transform of a signal is a complex-valued function. The chart of its magnitude as a 
function of the frequency is called the "amplitude spectrum", while the one relative to its phase is 
the "phase spectrum".

(Fig 4.5.1: amplitude and phase spectra of a square wave)  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5.1 Electromagnetism - Atoms
Atoms  are  small  structures  composed  of  a  central  nucleus,  made  of  protons  and  neutrons, 
surrounded by a cloud of electrons described by a "kinetic energy operator K" and bounded to it due 
to its "potential energy V", both combined together to form the "Hamiltonian operator H":

(Eq 5.1.1)

The electrons are distributed according to their wave function, which describes the probability of 
finding an electron at a given location and time according to the "Schroedinger's time-dependent 
equation":

(Eq 5.1.2)

The boundary conditions set by the potential energy due the nucleus make the wave functions of the 
surrounding electrons having the form of "standing waves":

(Eq 5.1.3)

The solutions of this equation are called "eigen-states of H", and are represented by complex-valued 
functions ψ called "orbitals" associated to discrete - quantised - real-valued "energy levels E".

The state of an electron is a time-variable combination of its eigen-states, but when "observed" its 
state immediately changes to the closest eigen-state at the moment of the osbervation.

(Fig. 5.1.1: hydrogen atom eigenstates)  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H = K +V

i! ∂
∂t
ψ = Hψ

Eψ = Hψ



5.2 Electromagnetism - Band gap
Electrons in solid materials exhibit different structures of states according to the type of nuclei and 
nuclear arrangements they are bonded to:

(Fig 5.2.1: bandgap)

Some electrons, the ones in the valence band, always stay close to the nuclei while others may be 
able to freely move through the material when they have enough energy to be in the conduction 
band.  To do so they have to  have enough energy to  cross  a  band gap,  which depends on the 
properties of the nuclei composing the solid material in which they are. Materials having a very 
high band gap are called "insulators", as opposed to materials having a very little or no band gap, 
which are called "conductors". Materials having "not so small but not so high" band gaps are called 
"semiconductors".  The  value  of  energy  "Ef"  is  the  so  called  "Fermi  level",  also  called  "total 
electrochemical potential",  which is a property of the body considered alone (atom, molecule, cell 
membrane, piece of material, etc.) and corresponding to the amount of energy which is necessary to 
add or remove an electron from that body. Notice that when attaching the two probes of a voltmeter 
to two different places A and B of a body (or a series chain of bodies) the measured voltage exactly 
corresponds, by definition of voltage, to the difference of the Fermi levels of the two places divided 
by the elementary charge of one electron (qe = -1.602*10^-19 C):

(Eq. 5.2.1)

When in contact,  different bodies change their  original Fermi level in order to establish a new 
energy  equilibrium.  In  neuronal  cell  membranes,  perturbations  of  the  electrochemical 
boundary conditions is the key point for understanding the nature of the "action potential". 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ΔV =VA −VB = − EA − EB

qe



5.3 Electromagnetism - Electric field
The nuclei and the electrons are bonded together forming solid materials because of an attractive 
force among them. In the simplest, not fully exhaustive, picture the nuclei exert an attractive force 
on the electrons, which are subjected to.

(Fig 5.3.1: Coulomb's force)

 
This force which binds one electron to one nucleus can be described in terms of a point-like particle 
having charge "q" being subjected to the influence a an electric field "E" generated by the other one, 
according to the Coulomb's law:

(Eq 5.3.1)

 
where "E" is the electric field generated by the nucleus:

(Eq 5.3.2)

The charge "Q" is the charge of the nucleus, "r" is the distance between the two particles and "ε0" is 

the dielectric constant of the vacuum.

NOTE: do not make confusion between the electric field and the energy, since they usually 
have the same letter E.
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F = qE

E = 1
4πε0

Q
r2

q F F Q



5.4 Electromagnetism - Magnetic field
A continuous flux of free electrons somehow moving along a closed path having length "l", possibly 
inside a conductor, makes another similar circuit being attracted and aligned to its axis:

(Fig 5.4.1: Laplace's force)

This interaction can be mathematically described by a current loop subjected to a force due to a 
magnetic field "B" generated by the other one. In case of a circular loop having radius "r", it is 
possible to write the Laplace's force:

(Eq 5.4.1)

Notice the "outer product":

(Eq 5.4.2)

The expression of the magnetic field "B" takes a simple form when the loop generating it is a circle 
and when it is evaluated at its centre:

(Eq. 5.4.3)

where "I" is the current, as a quantity describing the flux of moving charge, "r" is the radius of the 
loop and "μ0" is a constant called "magnetic permeability of vacuum". Those simplifications makes 

the Laplace's force to be valid, in this case, only if used to computed the force of the adjacent loops. 
The analysis of this case turns useful to understand that in the case of two adjacent loops having 
infinitesimal radius the force between them can still be not null (because "r" cancels you in the 
outer  product).  This  suggests  a  concept  of  infinitesimal  current  loop  to  be  the  magnetic 
analogous of the point-like charge. However, permanent magnets does not have any current loop 
being responsible of their magnetic properties: their magnetism is in fact due to a the alignment of 
the "spin" of some of their electrons. The spin, historically named as suggesting a kind of rotary 
motion, is in fact a sort of intrinsic "angular momentum" particles may have which can explained 
by the "Einstein's relativity" laws. It is as linked to the relativistic analysis of the "rotations" as like 
as the concept of "rest mass" is to the relativistic analysis of the "translations".  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Il
F

F = Il × B = 2πrI × B

B = µ0
2
I
r

R × P= R P − P R



5.5 Electromagnetism - Electromagnetic waves
When varying in time, the electric and magnetic fields are not separate but are always associated 
either  with  travelling  or  stationary  electromagnetic  waves  (EM  waves)  describing  either  the 
propagation or the storage of energy in space or materials:

(Fig 5.5.1: representation of a electromagnetic plane wave)

The simplest type of EM wave is the plane wave in the free space, where the electric and the 
magnetic fields are orthogonal each other and have the following representation:

(Eq 5.5.1)

where k is 2π/λ, λ is the wavelength, ω is its frequency and c its speed of propagation which, in free 
space, corresponds to the speed of light.

Notice the link existing between the concept of speed of light as coming from the electromagnetic 
framework and the concepts of dielectric constant and the magnetic permeability separately rising 
from, respectively, the electric and the magnetic field theory.  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E = Emaxe
i kx−ωt( ), B =E

c
, c = 1

ε0µ0



6.1 Basic electronic components - Battery
The electric field can be indirectly measured by knowing its voltage potential φ:

(Eq 5.4.1)

The battery is a source of constant voltage ∆V, being the difference between the redox potentials of 
the half chemical reactions occurring at the cathode and anode:

(Eq 5.4.2)

(Fig 5.4.1: the battery)

When the circuit is closed, electrical current can flow as the result of an electric field inside the 
battery which is sustained by the chemical reactions in it.

Notice that, by definition, the cathode is the electrode from which the current leaves a polarised 
electrical device, while the anode is the electrode from which the current flows into. According to  
this definition, the cathode and the anode can be either positive and negative charged or vice versa: 
in a discharging battery the cathode is the positive terminal and the anode is the negative, while in a 
device which consumes power its the opposite.  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6.2 Basic electronic components - Ohmic conductor
Applying a constant voltage difference ∆V to a piece of conductive material having length ∆x, the 
resulting electric field inside the conductor is:

(Eq 5.5.1)

This makes the free electrons in the conductor material moving pushed by the Coulomb force (Eq 
5.3.1). According to the Drude-Lorentz model, electrons are supposed to be constantly accelerated 
by that force but also continuously stopped and re-accelerated by hitting the nuclei they meet along 
their free path like in a pinball game, hence reaching a steady velocity:

(Fig 5.5.1: Drude & Lorentz's "pinball" model)

This model gives a first, classical, interpretation of the current density j inside a conductor:

(Eq 5.5.2)

 
where n, q, τ and m are respectively the electron's density, charge, free path and mass.

   

© Erik ZORZIN - 2015 �  of �27 100 Electronics  for Neuroscience

E = − ΔV
Δx

j = nq2τ
m

⎛
⎝⎜

⎞
⎠⎟
E



6.3 Basic electronics components - Resistor
According to the Drude-Lorentz's model the current density j flowing inside an ohmic conductor 
having length l is proportional (here by a constant 1/ρ) to the applied electric field E:

(Eq 6.3.1)

The current is hence the flux of the current density j calculated through the cross section S of the 
conductor:

(Eq 6.3.2)

This result is known as the Ohm's law, where R is the resistance of the conductor and ρ is the 
resistivity, a property that is connected to the nature of the material of which the conductor is made 
of.

(Fig 6.3.1: a commercial axial resistor)
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6.4 Basic electronic components - Capacitor
Applying battery having a voltage V across two parallel conductive plates having a surface S and 
facing each other at a distance d causes the electrons deployed at the anode being attracted by the 
vacancy of electrons depleted from the cathode:

(Fig 6.4.1: capacitor)

The phenomenon is facilitated by making the plates more closed each other, because this way the 
attraction is stronger, and also by increasing the surface, because by doing so there is more place for 
the charge. This ability is called capacitance C:

(Eq 6.4.1)  

The capacitor is a storage of energy in form of electrical field:

(Eq 6.4.2)
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6.5 Basic electronic components - Inductor
It has been observed that a variable current applied to coil made of a good conductor material leads 
to have a certain time-dependent voltage across it which is much bigger than the one predicted by 
the Ohm law:

(Fig. 6.5.1: inductor)

(Eq 6.5.1)

This result is known as the Faraday's law of induction, and the coefficient of proportionality L is 
called the inductance of the circuit, which depends on its area and shape. For a long and thin coil it 
can be calculate as:

(Eq 6.5.2)

 
The inductor is a storage of energy in form of magnetic field:

(Eq 6.5.3)

More precisely speaking, the voltage V across an inductor is due to the variation of a magnetic field 
coupled to it. This magnetic field variation can be generated either by a separate second external 
coil driven by a time-variable current or by the first coil itself. In the first case the voltage is due to 
the interaction of the magnetic field generated by the coil with itself, hence L is properly called auto 
inductance. In the second case the magneto-electric circuit is made of two coils, one exchanging 
energy with the other one: in this case L is called mutual inductance.  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7.1 From physics to electronics - Datasheets
Besides the basic electronics components, the real components used in everyday's life are much 
more sophisticated and need more information to be described.  
This information is written and made available by the manufacturer in form of "datasheets":

(Fig 7.1.1: example of datasheet)  

An important remark: DO NOT INFER ANY PROPERTY WHICH IS NOT SPECIFICALLY 
WRITTEN IN THE DATASHEET!
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7.2 From physics to electronics. - SPICE models
Furthermore,  nowadays  almost  every  component  comes  from the  manufacturer  with  a  precise 
mathematical model in form of a text file written in standard language called SPICE - Simulation 
Program with Integrated Circuit Emphasis.

An example of a SPICE model code for a NMOS-transistor:

.MODEL CMOSN NMOS LEVEL=3 PHI=0.600000 TOX=2.1200E-08 XJ=0.20000

+TPG=1 VTO=0.7860 DELTA=6.9670E-01 LD=1.6470E-07 KP=9.6379E-05

+UO=591.7 THETA=8.1220E-02 RSH=8.5450E+01 GAMMA=0.5863

+NSUB=2.7470E+16 NFS=1.98E+12 VMAX=1.7330E+05 ETA=4.3680E-02 

+KAPPA=1.3960E-01 CGDO=4.0241E-10 CGSO=4.0241E-10

+CGBO=3.6144E-10 CJ=3.8541E-04 MJ=1.1854 CJSW=1.3940E-10

+MJSW=0.125195 PB=0.800000

(Fig 7.2.1: example of SPICE code)
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7.3 From physics to electronics - CAD and simulators
Besides simple circuits, whose behaviour can be calculated by analytically and even by hand, all the 
rest have so many interactions which makes computation so extensive to be practically viable only 
by means of a computer. Circuits are represented by standard symbols identifying each component 
and drawn with a CAD - Computer Aided Design system, which is also able to simulate them:

(Fig. 7.3.1: a CAD workstation)

The final result of the process of making a circuit is usually a PCB - Printed Circuit Board.

(Fig 7.3.2: a Printed Circuit Board)  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7.4 From physics to electronics - Workflow
Electronics is made of a theoretical background, knowledge about the materials and components 
and about instruments and tools.

All this will transform circuit drawings into a real working devices operating the desired functions.

In order to be able achieve this result it is recommended to follow a workflow:

1. Define what you want → SPECIFICATION

2. Abstract the properties into functional blocks → SYNTHESIS

3. Build the blocks → IMPLEMENTATION

4. Test each block → VALIDATION

5. Take tracks of what you did → DOCUMENTATION

and always: DESIGN FOR TESTABILITY, WHICH MEANS SELECT THE TOOLS WHICH 
ARE APPROPRIATE TO THE INVESTIGATION OF YOUR QUESTIONS!

(Fig. 7.4.1: common fallacy of the design-for-testability paradigm due to the usage of tools which 
are inappropriate to the question-under-investigation)

Eventually, all this stuff will help you during the debugging!
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7.5  From  physics  to  electronics  -  Instruments,  tools  and 
materials
Common things that you need in order to start doing some electronics are:

INSTRUMENTS:

1. a multimeter
2. a variable regulated power supply
3. an oscilloscope
4. a PC with some free PCB CAD

TOOLS:

1. a soldering iron
2. a solder sucker
3. a pair of tweezers
4. a cutter
5. a pair of clippers
6. a pair of small pliers
7. some small and medium screwdrivers

MATERIALS:

1. a thread of solder
2. a fluxant pen dispenser
3. a breadboard
4. some prototyping boards
5. some "banana" and BNC cables, some "alligator" clamps and some BNC adaptors

(Fig. 7.5.1: banana and alligator --> see later in this textbook)  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8.1 Main instruments and tools - Multimeter
The multimeter is for an electronic engineer what probably is the stethoscope for a physician:

(Fig 8.1.1: multimeter)

The multimeter can perform a number of different measurements, usually at least:

1. voltage
2. current
3. resistance

Modern multimeters are usually also "autoranging",  which means they can understand themselves 
the  magnitude  of  the  variable  they  are  measuring  and  select  input  range  of  the  measuring  
instruments where this is best represented accordingly, without reaching an overflow or underflow.
They,  nowadays,  also  usually  have  a  digital  display,  as  opposed  to  a  moving  needle  indicator 
present in the legacy instruments.
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8.2  Main  instruments  and  tools  -  Variable  regulated  power 
supply
The variable regulated power supply is a device which implement an ideal constant voltage source, 
and also some others features:

(Fig 8.2.1: variable regulated power bench supply)

It can have multiple independent outputs, each of them regulating the desired voltage and having a 
variable current limit protection.
They also usually have a short-circuit protection.
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8.3 Main instruments and tools - Oscilloscope
The oscilloscope allows you to "see" signals which are varying in the time domain:

(Fig 8.3.1: oscilloscope)

Very important remark: OSCILLOSCOPES CAN MEASURE ONLY VOLTAGES!

NOTE: 
Nowadays many, even low cost, oscilloscopes can also show signals in the frequency domain.
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8.4 Main instruments and tools - Soldering iron and sucker
The soldering iron and the solder sucker pump are two complementary instruments: the first one is 
used  to  create  solder  joints  between  electronic  components/wires  while  the  second  one,  in 
combination with the first one, is used to remove a solder joint:

 
(Fig 8.4.1: soldering iron and solder sucker pump)
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8.5 Main instruments and tools - Common materials
The  breadboard,  solder  and  flux  pen  are  common  disposable  materials  in  electronics.  The 
"breadboards" can come in different flavours, usually at least two: the one where you can plug-in 
components and wires as many time as necessary (the white one below in Fig. 8.5.1), and the one 
on which components and wires are supposed to be firmly soldered on (the green one below in Fig. 
8.5.1).

%  %  

%  
(Fig 8.5.1: breadboards, solder and flux pen)
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9.1 Commercial components - Resistors
There are different types of resistors. Mainly electronics components are divided in two categories: 
pass-through hole (PTH) and surface-mount devices (SMD):

%  %

(Fig. 9.1.1: PTH resistor -on left- and SMD resistors -on right-)

The PTH resistors have a color code which defined the nominal value:

(Fig 9.1.2: the color code)
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9.2 Commercial components - Capacitors
There  any  many types  of  capacitors,  the  main  two categories  are  the  "non polarised"  and  the 
"polarised":

%  %  
(Fig 9.2.1: PTH capacitors)

(Fig. 9.2.2: SMD capacitors)
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9.3 Commercial components - Inductors
 
There are many types of inductors, most of them also have a so called magnetic "core":

(Fig 9.3.1: PTH and SMD inductors)
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9.4 Commercial components - Cables and connectors

Here there are some examples of cables which are commonly used in laboratory:

(Fig 9.4.1: banana and alligator clamp cable; yes, the fruit and beast were definitely out-of-scope)

(Fig 9.4.2: BNC cable and connectors)

(Fig 9.4.3: IDC -on left- and DB9 -on right- connectors)
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9.5 Commercial components - Others
Various electronic components:

%
(Fig 9.5.1: various electronic components)  

and various electronic modules:

(Fig 9.5.2: various electronic modules)  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10.1 DC circuits - Voltage and current source
The term DC stands for "direct current". It used to identify situations where either the voltages or 
the currents involved in a circuit do not depend on time, in other words when they are constant.

The simplest examples are the following circuits:

- Voltage generator attached to a resistor

(Fig 10.1.1: voltage generator)

- Current generator attached to a resistor

(Fig 10.1.2: current generator)
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10.2 DC circuits - Kirchoff's laws
The Kirchoff's laws describe how current and voltage behave in circuits. They have general validity 
in  either  stationary  or  quasi-stationary  time-variable  condition  (until  radiative  effects  become 
important, otherwise the relativistic electromagnetism formulation must be used):

- 1ST KIRCHOFF'S LAW

The algebraic sum of all currents converging to a node is zero.

(Fig 10.2.1: first Kirchoff's law)

Currents  entering  a  node  are  considered  to  be  positive,  while  the  ones  exiting  the  node  are 
considered to be negative. In other words, in a node the sum of all entering currents must equal the 
sum of all exiting currents. This basically corresponds to conservation of the charge for electrostatic 
fields.  
- 2ND KIRCHOFF'S LAW

The algebraic sum of all voltages along a mesh is zero.

(Fig 10.2.2: second Kirchoff's law)

Currents entering passive components make voltage drops with positive pole at the entering side, 
currents flowing inside voltage generators go from the negative pole to the positive pole. In other 
words, in a mesh the sum of all voltage drops must equal the sum of all the voltage generators. This 
is because the electrostatic field is a conservative field.  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10.3 DC circuits - Node analysis
This is an example of a DC circuit:

(Fig 10.3.1: example of DC circuit)

which gives the following simultaneous equations:

% %

(Eq 10.3.1)

from which the mesh currents IA and IB can be calculated and hence the voltage of each node can be 
obtained.

R1IA + R2 IA − IB( ) =V1
R2 IB − IA( )+ R3IB + R4IB = 0

⎧
⎨
⎪

⎩⎪
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10.4 DC circuits - Series and parallel circuits
There are two very small circuit topologies which are very important to know: 

- SERIES (resistors)

(Fig 10.4.1: series circuit)

- PARALLEL (resistors)

(Fig 10.4.2: parallel circuit)
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10.5 DC circuits - Thevenin’s theorem
The Thevenin's theorem shows how to replace a portion of circuit with an equivalent circuit made 
of only one voltage source in series with only one circuit element:

(Fig 10.5.1: circuit)

The method works as follows:

1. Leave alone the portion of circuit of interest (here, remove R2)
2. Open all the current sources
3. Calculate the equivalent voltage between A and B
4. Short all the voltage sources
5. Calculate the equivalent resistance between A and B

The resulting equivalent circuit is then:

(Fig 10.5.2: equivalent circuit)

The latter circuit is "equivalent" of the original one in the sense that, from the point of view of the 
nodes A and B around which the equivalent circuit has been developed, the voltage between A and 
B and the current from A to B remain the same.  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11.1 AC circuits - Linear circuits
The term AC stands for alternate circuit and is used when circuits are driven by sinusoidal voltage 
or current sources. The case of electromagnetic radiation is still not considered: this analysis is valid 
when the radiative effects are negligible.

Among all the possible circuits, an important category is the one called "linear circuits". Linear 
circuits are circuits for which all waveforms in it, voltage or current, are linear combinations of 
sinusoids having different amplitude or phase but maintaining the same frequency.

In other words, the presence of the circuit elements does not alter the frequency of the sources, but 
in case only the amplitude or the phase.

There are only some circuit elements having this property, they are:

1. Resistors  
2. Capacitors  
3. Inductors  
4. Ideal amplifiers

All the theorems of DC circuits, build from the same elements in the list, also hold for the linear 
circuits: in fact DC linear circuits are a special case of AC linear circuits having frequency equals to 
zero.

NOTICE: once again, the assumption is that radiative effects are negligible otherwise the relativistic 
equations of the electromagnetism should be taken in account. This assumption is generally valid 
when  the  electromagnetic  energy  due  to  the  radiative  phenomena  is  small  compared  to  the 
electromagnetic energy present within the circuit elements. Just as a rule of thumb, in range of 
voltage magnitude up to about 10V, current magnitude up to about 1A, frequency up to about 10 
MHz and circuit size up to about 1 cubic meter the assumption is usually valid.  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11. 2 AC circuits - Impedance of a resistor
The main concept in AC circuit analysis is the "impedance".  
The impedance is the extension of the concept of resistance for AC circuits:

(Eq 11.2.1)

(Fig 11.2.1: impedance of a resistor)

 
where it has been made use of the Ohm's law.

Notice that:

(Eq. 11.1.2)
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11.3 AC circuits - Impedance of a capacitor
The impedance of a capacitor comes from the Coulomb's law and the definition of current:

(Eq 11.3.1)

Using those equations, the impedance of a capacitor is:

(Eq 11.3.2)

(Fig 11.3.1: impedance of a capacitor)  

Notice the AC generator is a voltage generator.
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11.4 AC circuits - Impedance of an inductor
The impedance of an inductor comes from the Faraday's law:

(Eq 11.4.1)

(Eq 11.4.2)

(Fig 11.4.1: impedance of an inductor)

 
Notice this time the AC generator is a current generator.
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11.5 AC circuits - Ideal amplifiers
The ideal amplifier is a device having an input impedance equals to infinity (no current is drawn 
from the source attached to its input) and output impedance equals to zero (it can drive any load 
holding its output voltage unchanged). The ratio between the output and the input voltage is called 
"voltage gain" or simply "gain", while the ratio between the output and the input current is the 
"current gain":

(Fig 11.5.1: ideal amplifier)

The voltage gain is hence:

(Eq. 11.5.1)

Notice that the output and the input voltage are in phase.  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12.1 Filters - Transfer function
In electronics, filters are 2-port network circuits able to transform a signal applied to their input into 
an output signal having a different frequency spectrum respect to the input signal.  
Important filters are the "linear filters", which can only change the amplitude and the phase of each 
frequency  component  present  in  the  input  signal.  They  cannot  create  in  the  output  frequency 
components  not  present  in  the  input.  More  precisely,  linear  filters  are  "linear  time-invariant 
systems".

The mathematical description of this transformation in the frequency domain is:

(Eq 12.1.1)  
where A(ω) is called "transfer function" of the filter and:

(Eq 12.1.2)

are the Fourier transforms of their associated time-varying signals.

 
Transfer functions which can be written on a rational polynomial form are important because they 
can be implement by lumped element circuits:

(Eq 12.1.3)

The roots of N(s) are called "zeros", while the ones of D(s) are called "poles". The degree of the 
rational  polynomial  (which  is  the  maximum  between  the  degree  of  the  numerator  and  the 
denominator) is called "order" of the filter.
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12.2 Filters - Kernel
The "kernel" is the associated representation of the transfer function in the time domain:

(Eq 12.2.1)

where the kernel k(t) is the inverse Fourier transform of the transfer function A(ω) of the filter:

(Eq 12.2.2)

 
This is the result of the so called "convolution theorem".
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12.3 Filters - Low pass filter
The low pass filter  rejects  frequencies above its  cut-off  frequency.  It  can be implemented as a 
polynomial filter:

(Eq 12.3.1)

where %  is the "cut-off frequency" of the filter, defined as the frequency at which the output signal 
is attenuated by 3dB respect to its level in the pass-band.

(Fig 12.3.1: first order low-pass filter)  

ω 0
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12.4 Filters - High pass filter
The high pass filter rejects frequencies below its cut-off frequency. It  can be implemented as a 
polynomial filter:

(Eq 12.4.1)

where %  is the "cut-off frequency" of the filter, defined as the frequency at which the output signal 
is attenuated by 3dB respect to its level in the pass-band.

(Fig 12.4.1: first order high-pass filter)  

ω 0
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12.5 Filters - Band pass and notch filters
By cascading low pass and high pass filters having different cut-off frequencies it is possible to 
implement either a "band pass" or a "notch filter":

(Fig 12.5.1: band-pass -upper panel- and notch -lower panel- filters)

Notice that an "all pass filter" exists too, which does not change the amplitude of any frequency 
component but can change their phase. If specifically designed it can work as a "delay line", which 
is a circuit able to delay all frequency components of a signal by a defined amount of time equal for 
each frequency component.
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13.1 Semiconductors - Silicon wafers
In order to build semiconductor devices a very high quality silicon is  necessary.  Two common 
methods of production are the "Czochralski" (CZ) and the "floating zone" (FZ) processes:

(Fig 13.1.1: CZ and FZ crystal growing methods)

In the CZ method a "crystal seed" is pulled up from a melting of "poly-silicon", creating a pure 
"mono crystal" silicon rod.
In the FZ method an impure silicon rod is scanned up and down by a ring in which high frequency 
current flows: the high frequency induce a strong magnetic field in the silicon rod, which melts it 
creating a floating zone having a gradient of temperature from the inside to the outside of the axis of 
the rod. This gradient of temperature corresponds to a gradient of concentration of impurities, which 
are this way pumped off axis by osmosis. The impurities then falls down by gravity. Scanning up 
and down the rod makes the bottom of it collecting all the impurities. At the end of the process the 
bottom is cut off and the remaining part is a pure mono crystal.

The mono crystals are later cut in circular slices, called "wafers". The semiconductor devices are 
then built on the wafer by means of photolithographic process localised in many small square-like 
areas which are later cut into small chips, the so called "microchips".  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13.2 Semiconductors - Doping
Pure  crystal  silicon is  called  "intrinsic".  In  intrinsic  silicon at  room temperature  there  is  some 
probability  for  an  electron  to  cross  the  energy  gap  and  become  a  conduction  electron.  This 
probability can be changed dramatically by inserting some "dopant" atoms in the crystal lattice.

N-TYPE SEMICONDUCTORS

By substituting a silicon atom with a phosphorus atom the latter one becomes positively ionised and 
liberates one electron in the conduction band, adding it to the lattice as a free electron:

(Fig 13.2.1: N-type doped silicon)

P-TYPE SEMICONDUCTORS

Similarly, by substituting a silicon atom with a boron atom the latter attracts a neighbour electron 
and becomes negatively ionised. By doing so it leaves a "hole" (also called "electron vacancy")  
which will be subsequently filled by another electron, and so on creating a moving positive charge 
in the crystal:

(Fig 13.2.2: P-type doped silicon)
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13.3 Semiconductors - PN-junctions
By welding together a P-type region and an N-type region a PN-junction is obtained:

(Fig 13.3.1: the semiconductor silicon diode)
 
The free electrons in the N-region tend to recombine with the free holes in the P-region, changing 
the charge distribution across the junction and hence creating an electric field. The existence of such 
electric field is detected by the presence of the built-in voltage, which arises from it and which value 
depends on the dopants. Usually for silicon it is about 0.7V at room temperature.

Notice the junction is not obtained by simply putting a P-type silicon in contact with a N-type 
silicon: the two parts needs to have the crystal lattice to be in perfect continuation in order to make 
a proper PN-junction. When correctly done, whatever the used technique, this corresponds to have 
the two parts physically "welded" together.  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13.4 Semiconductors - Diodes
A diode is a device for which the conduction is made asymmetric by the conditions of polarisation 
of a PN-junction. Because of this property, diodes mainly conduct electricity only in one direction:

(Fig 13.4.1: forward bias)

In the forward bias, the electric field generated by the battery pushes the holes in the P-region and 
the electrons in the N-regions towards each other, shortening the charge unbalance region across the 
junction. If the voltage of the battery is greater than the built-in voltage of the PN-junction then the 
energy gap across the junction is zeroed and current can flow.

In reverse bias, the electric field generated by the battery makes the charge unbalance region across 
the junction becoming bigger and no current can flow:

(Fig 13.4.2: inverse bias)

Notice that in both P and N regions there is always a certain small amount of so called "minority 
charge carriers". In the P-region the "majority charge carriers" are the holes, while in the N-region 
they are the electrons.  The minority charge carriers are responsible of a small current which is 
always opposite to the main stream due to the majority charge carriers. This makes the net forward 
current to be a little bit smaller than the one purely due to the majority charge carries; conversely in 
reverse bias the current is not exactly zero but there is always a certain small small amount of 
"reverse current" due to the minority charge carriers.  
© Erik ZORZIN - 2015 �  of �64 100 Electronics  for Neuroscience



13.5 Semiconductors - Transistors
By using photolythographic processes it is possible to build the following structure on a silicon 
wafer:

(Fig 13.5.1: MOSFET operative regions and water tap analogy)  

This is a MOSFET - Metal Oxide Semiconductor Field Effect Transistor (Transfer resistor). This 
device can work in two different regions: "ohmic", where in acts as a voltage-controlled linear 
resistor and "saturation", where it works as linear amplifier (see later).

In a P-type MOSFET, a N-channel appears as a consequence of a positive gate repelling holes in the 
bulk material. The gate voltage controls the width of the channel, hence its conductivity. A voltage 
applied between the source and the drain makes a second current flowing between them, whose 
magnitude is modulated by acting on the channel according to the ohmic or saturation operative 
modes. Notice that the "source" and "drain" terms refer to the charge carriers in the channel: hence 
for a P-type MOSFET the source terminal is a source of electrons; similarly for the drain terminal.  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14.1 Amplifiers - Single transistor amplifiers
The fundamental amplifier is made of a single transistor:

(Fig 14.1.1: single amplifier circuit)

(Fig 14.1.2: single amplifier transfer characteristic curves)  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14.2 Amplifiers - Differential amplifiers
A differential amplifier can be obtained by combining two single-ended amplifiers:

(Fig 14.2.3: differential amplifier)

The mosfets M1 and M2 at the input stage make a very high input impedance, while the mosfet M4 
makes a very low output impedance.

The circuit made of M3 and M4 is called "current mirror" and its function is to copy the drain 
current of M3 and setting an equal drain current in M4.

The M3 can be seen as a single transistor amplifier having M1 as variable source resistor. The 
operating point of M3, due to the negative feedback occurring because of its gate-to-source loop 
connection, will self adjust on the load line, whose angle depends on the equivalent resistance of 
M1, so that its drain current would be the only possible value for which its gate voltage matches its 
source voltage, since they are the same.  
The M4 will then copy that current on the right arm of the circuit, hence the current in the RL is 

controlled from both the M1, via the copied current, and the M2 according to the 1st

Kirchoff's law applied to the output node.
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14.3 Amplifiers - Operational amplifiers
The operational amplifier is a differential amplifier with single-ended output and has got a very high 
gain (e.g. 108). It is also characterised by having a very high input impedance at both inputs and a 
quite low output impedance:

(Eq 14.3.1)

(Fig 14.3.1: operational amplifier internal diagram)  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14.4 Amplifiers - Non-inverting op-amp configuration
The typical use of an operational amplifier is the following one:

(Fig 14.4.1: non-inverting op-amp configuration)

(Eq 14.4.1)

(Eq 14.4.2)

Notice that the "closed loop gain" G does not depend on the "open loop gain" A, if the latter one is 
big enough.  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14.5 Amplifiers - Instrumentation amplifiers
The ultimate topology of amplifier which is very important in order to amplify very weak signals in 
the "instrumentation amplifier":

(Fig 14.5.1: instrumentation op-amp)

It  has  the  advantage  of  having a  very  high input  impedance  due  the  two input  op-amps,  it  is 
differential, it is very linear due to the feedback and the output has a good low impedance that 
means it can drive a load without having the output voltage affected. The first two op-amps compute 
respectively GV1 and GV2 while the third one computes the difference of the two previous results, 

hence:

(Eq 14.5.1)

The V1 input is the called signal input, while V2 is the reference input. 

In  neural  recordings  V1  would  be  connected  to  the  signal  electrode,  while  V2  would  be 
connected to the reference electrode. Notice the ground is different from the reference: both 
signal and reference are measured versus ground, which should be at a stable potential.

This is particularly interesting to study the effect of the external noise cancellation:

(Eq 14.5.2)

which is valid when both the signal and the reference electrodes are close enough in order to pick 
up the same noise and at the same time the reference electrode is collecting the time average of all 
the  neural  activities  of  the  local  population  of  neurons,  which  corresponds  to  the  "local  field 
potential".  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15.1 Basic digital circuits - Boolean algebra
The Boolean algebra is a set of rules and theorems describing mathematical operations in the binary 
numeric system. In this system numbers are made by sequences of only two different symbols: "0" 
and "1".

Here is an example of binary-to-decimal numeric conversion:

%

(Eq 15.1.1)

and here is an example of decimal-to-binary numeric conversion by successive integer divisions:

%  
(Eq 15.1.2)

The backward sequence of successive remainders gives the binary representation of the decimal 
number.

The fundamental operations are "AND", "OR" and "NOT":

(Fig 15.1.1)

and the fundamental relations between those operations are the "De Morgan's laws":

NOT(X AND Y) = (NOT X) OR (NOT Y)

NOT(X OR Y) = (NOT X) AND (NOT Y) 

(Eq 15.1.2)

(Fig 15.1.1:  fundamental logic operations)  

11001= 1⋅24 +1⋅23 + 0 ⋅22 + 0 ⋅21 +1⋅20 = 16 + 8 + 0 + 0 +1= 25

25
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2
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6
2
= 3 R=0 ,

3
2
= 1 R=1 ,

1
2
= 0 R=1
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15.2 Basic digital circuits - Logic gates
The fundamental  digital  operations  can be  implemented by electronic  circuits  known as  "logic 
gates", whose behaviour is described by "truth tables":

(Fig 15.2.1: basic logic gates truth tables)
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15.3 Basic digital circuits - NOT gate
Logic gates are implemented using a complementary circuit topology.  
A "pull-up" network (PUN) is  connected to a "pull-down" network (PDN), making a so called 
"CMOS": "Complementary MOS (Metal-Oxide Semiconductor)" circuit topology:

(Fig 15.3.1: the NOT gate)

 
The NOT gate is also called inverter.
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15.4 Basic digital circuits - NAND gate
Within the CMOS technology it is not possible to directly implement an AND gate by using the 
PUN and PDN circuit topology. Only "negative logic" can be implemented this way:

(Fig 15.4.1: the NAND gate)

 
Anyway, an AND gate can be implemented by a cascade of a NAND gate and NOT gate.
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15.5 Basic digital circuits - NOR gate
Similarly to the NAND gate, in CMOS technology only a NOR gate can be implemented:

(Fig 15.5.1)

 
Similarly, an OR gate can be implemented by a cascade of a NOR and a NOT gate.
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16.1 Advanced digital circuits - Combinational logic
Combinational logic circuits are digital circuits where the status of the outputs depends only on the 
status of the inputs and not on the time. They can be synthesised by writing the truth table:

(Fig 16.1.1: truth table of a combinational circuit)

The logic function for the output can be obtained by summing the "minterms", which are built by 
reading the rows of the truth table corresponding to a "1" output, negating the variables which are 
"0", and multiplying them together:

(Eq 16.1.1)

Alternatively, the same function can be obtained by multiplying the "maxterms", which are built by 
reading the rows of the truth table corresponding to a "0" output, negating the variables which are 
"1" , and adding them together:

(Eq 16.1.2)
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16.2 Advanced digital circuits - Sequential logic
Sequential logic circuits are circuits whose status of the outputs depends on the status of the inputs 
and also the time. They are characterised by feedback connections:

e.g. THE CLOCK OSCILLATOR

%
(Fig 16.2.1: the oscillator)

The capacitor is charged by the output of the NOT gate. When the voltage across the capacitor is 
enough this makes the output changing state, making the capacitor discharging. When the voltage 
across the capacitor is then low enough the output changes state and a new cycle begins.

e.g. THE FLIP-FLOP

%
(Fig 16.2.2: the SR flip-flop)

 
The flip-flop is one of the simplest RAM - Random Access Memory.  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16.3 Advanced digital circuits - Counters
The D-type flip-flop latches the value of the input data (D) into the output (Q) every time there is a 
clock (CLK) cycle:

(Fig 16.3.1: the D-type flip-flop)

 
By cascading flip-flops in a closed loop a binary counter is obtained:

(Fig 16.3.2: the binary counter)
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16.4 Advanced digital circuits - Arithmetic Logic Unit
An "Arithmetic Logic Unit - ALU" is a circuit which takes "operands" and "operations" as inputs 
and produces an output corresponding to the evaluation of the operands according to the selected 
operation:

(Fig 16.4.1: a basic arithmetic logic unit)

The inputs A and B feed an AND gate, which performs a two-bit binary multiplication, and also a 
XOR gate, which performs a two-bit binary addition (without carry). The "OP" input selects either 
one of the two other AND gates in gating configuration, making either the multiplication or the 
addition result passing at the "RES" output.

This is just a very simple example which explains how ALU work. Notice also the XOR gate:

(Fig 16.4.2)
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16.5 Advanced digital circuits - Central Processing Unit
The  "Central  Processing  Unit  -  CPU"  is  a  device  able  to  perform  computation  by  reading 
instructions made of  operands and operators  from a memory in  form of  an indexed list  called 
"program".

(Fig 16.5.1: CPU model)

A clock oscillator makes a program counter incrementing an address. A combinational circuit takes 
the address lines as inputs and produces an output data flow according to boolean functions which 
depends on the information coded by the program. The arithmetic logic unit hence decodes the 
operands  and  the  operators  from  the  data  flow  and  selects  the  appropriate  combinational,  or 
sequential, circuits which implements the operation. The final output can be in principle read from a 
display device or stored back to a memory, according to the instruction written in the program.

In the example above a very simple CPU architecture has been described, which is hereby only able 
to  read  a  program from a  ROM -  Read  Only  Memory  and  calculate  simple  operations  while 
outputting the results in form of serial stream of binary data.

More  generally,  the  circuit  resulting  from  of  the  application  of  both  combinational  and 
sequential circuits is a so called "state machine".

The  status  of  a  state  machine  is  fully  described  by  the  instantaneous  value  of  all  its  boolean 
variables.  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17.1 Neural networks - The action potential
The modern era of the neural networks began with the pioneer work of McCulloch and Pitts (1943).

(Fig 17.1.1: McCullock -left- and Pitts -right-)

They described a neuron as "device" having inputs and outputs and they recognised the "action 
potential" as the elementary piece of information building the neural signals.

(Fig 17.1.2: a neuron and an action potential)  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17.2 Neural networks - Modelling an artificial neuron
The McCullock-Pitts model (MCP) consists in both the description of an action potentials in terms 
of time-varying variables and the neural networks as circuits of neurons.

The action potential has been described in the MCP as an event: something which can be present or 
not present at a given time instant. A boolean variable keeps tracks of its presence as time goes by: 
if the action potential is not present then value of the variable is "0", if it is present the value is "1".

This way a boolean variable can effectively describe a neural spike train:

S(t) = ...1100011101001100001...

(Fig 17.2.1: neural spike train)

Notice the time can be "discrete", because the neurons do not fire again before their refractory 
period has passed: hence the spikes cannot overlap each other over time.

The neuron's "dendrides" has been recognised as the inputs of the system: they take the value of the 
variable the see and they multiply it for a "weight" coefficient.

The neuron's "soma" has been recognised as a functional centre which summates all the weighted 
inputs.

The neuron's "axon" has been recognised as the output of the system: it generates an action potential 
according to the comparison of the result of the summation operated by the soma and an internal 
"threshold", as follows:

(Fig 17.2.2: MCP neuron) (Eq 17.2.1)  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17.3 Neural networks - Neural boolean logic
By choosing the appropriate weights and thresholds, neutrons can implement logic gates:

(Fig 17.3.1: NOT gate)

(Fig 17.3.2: OR gate)

(Fig. 17.3.3: AND gate)

Notice that in the NOT gate, the weight attached to the "x" input is negative: this corresponds to an 
"inhibitory" input. The "K" input is an input which is constant in time and equal to "1": this means a 
continuously spiking train has been attached to that input.  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 17.4 Neural networks - State machines
As a result  of the neural boolean logic,  neural networks are in fact an implementation of state 
machines. More precisely it has ben proved (Kleene - 1956, Minsky - 1967 and Kremer - 1995) that 
"every state-machine is equivalent to and can be implemented by some neural network".

An example of state machine is, for instance, a turnstile:

(Fig 17.4.1: a turnstile and its corresponding state diagram)

In this example the behaviour of the turnstile has been described by a "state diagram". Starting from 
the  black  dot  the  machine  goes  in  the  "locked"  state.  Pushing  the  turnstile  will  not  make  the 
machine exiting from that state, unless a coin is inserted. Then the machine goes to the "unlocked" 
state. Putting other coins will not make the machine exiting from the latter state but pushing the 
turnstile will allow the person to pass and will make the machine returning to its original "locked" 
state.

This can also be described in terms of its "state transition table":

(Fig 17.4.1: state transition table of a turnstile)  

Current state Input Next state Ouput

Locked Coin Unlocked Un lock t u rns t i l e so 
cus tomer can push 
through

Push Locked None

Unlocked Coin Unlocked None

Push Locked When customer has 
pushed through lock 
turnstile
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17.5 Neural networks - Neural network implementation
According to the turnstile example, the same corresponding state machine can be implemented in 
different ways. At least two of them are interesting:

- ALGORITHMIC APPROACH:

The following program (here showed in "pseudo-code" language) might be interpreted by a CPU 
system:

1: state = locked;
2: turnstile = NOT(pushed);
3: rotate = FALSE;
4: IF (coin inserted) THEN
5: (state =  NOT(locked));
6: ELSE
7: (state = locked);
8: IF (turnstile = pushed AND state = NOT(locked)) THEN
9: rotate = TRUE;
10: state = locked;
11: ELSE
12: rotate = FALSE;
13: GOTO(4);

- ARCHITECTURAL APPROACH:

The same problem can be solved by the following circuit:

(Fig 17.5.1: a S_R flip-flop solving the turnstile state machine)

It is the S-R flip-flop. Compared to the algorithmic solution the architectural one is much more 
efficient in terms of components used for the implementation: this is not necessarily true and it 
introduces the topic of "optimisation" of computation.  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18.1 Digital signal processing - Comparators
The  comparator  circuit  compares  an  analog  input  signal  with  a  programmable  threshold  (by 
properly settings the value of the resistors in the voltage divider), and gives at the output a digital 
signal which status indicates whether the analog signal is above or below the threshold:

(Fig 18.1.1)

%
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18.2 Digital signal processing - Analog to digital converters
The analog-to-digital conversion is the procedure of transforming an analog time varying signal into 
a  digital  time stream of  binary numbers  corresponding to  discrete  voltage levels  of  the analog 
signal. This operation is possible through the use of special circuits called ADC - Analog to Digital 
Converters. There are many different types of ADC circuits, but the most important nowadays is the 
"Sigma-Delta".

(Fig 18.2.1: sigma-delta ADC)

It works as follows:
1. Assume there is a certain almost constant voltage input VIN during a period of CLOCK.
2. The output "A" of the integrator is then ramping up or down, according to the polarity of VIN. 

The ramping speed depends on the magnitude of VIN.
3. The output of the 1-bit comparator is fed back and controls a switch (a 1-bit DAC).
4. The output voltage "B" of the switch jumps up or down according to the comparator's output: 

this makes the average value of "B" to be equal to the constant input VIN.
5. The summing node subtracts "B" from VIN, the latter voltage is then averaged by the integrator
6. Because  the  averaging  (integration)  is  a  linear  operation,  the  average  of  the  subtraction  is 

equivalent to the subtraction of the average: hence the result in "A" is the "error voltage" VERR 
= VIN - AVG(VIN). 

7. VIN is almost constant in CLOCK period, hence VERR is small and stays around zero, which is 
the voltage versus which the comparators compares.

8. The 1-bit serial data stream at the output of the comparator is therefore a digital representation, 
in terms of density of "1s" and "0s", of the AVG(VIN) during each CLOCK period: there are 
more "1s" when VIN is close to VREF and more "0s" when VIN is close to -VREF.

9. The binary data stream is then numerically processed by a CPU system.

So, even if you have only 1 bit available but you are fast enough then you can still do a lot of 
things: never underestimate the power of a bit!  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Figure 4: First-Order Sigma-Delta ADC 
 
Intuitively, a Σ-Δ ADC operates as follows. Assume a dc input at VIN. The integrator is 
constantly ramping up or down at node A. The output of the comparator is fed back through a 1-
bit DAC to the summing input at node B. The negative feedback loop from the comparator 
output through the 1-bit DAC back to the summing point will force the average dc voltage at 
node B to be equal to VIN. This implies that the average DAC output voltage must equal the 
input voltage VIN. The average DAC output voltage is controlled by the ones-density in the 1-bit 
data stream from the comparator output. As the input signal increases towards +VREF, the number 
of "ones" in the serial bit stream increases, and the number of "zeros" decreases. Similarly, as the 
signal goes negative towards –VREF, the number of "ones" in the serial bit stream decreases, and 
the number of "zeros" increases. From a very simplistic standpoint, this analysis shows that the 
average value of the input voltage is contained in the serial bit stream out of the comparator. The 
digital filter and decimator process the serial bit stream and produce the final output data.  
 
For any given input value in a single sampling interval, the data from the 1-bit ADC is virtually 
meaningless. Only when a large number of samples are averaged, will a meaningful value result. 
The Σ-Δ modulator is very difficult to analyze in the time domain because of this apparent 
randomness of the single-bit data output. If the input signal is near positive full-scale, it is clear 
that there will be more "1"s than "0"s in the bit stream.  Likewise, for signals near negative full-
scale, there will be more "0"s than "1"s in the bit stream.  For signals near midscale, there will be 
approximately an equal number of "1"s and "0"s.  Figure 5 shows the output of the integrator for 
two input conditions.  The first is for an input of zero (midscale).  To decode the output, pass the 
output samples through a simple digital lowpass filter that averages every four samples.  The 
output of the filter is 2/4.  This value represents bipolar zero.  If more samples are averaged, 
more dynamic range is achieved.  For example, averaging 4 samples gives 2 bits of resolution, 
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18.3 Digital signal processing - Digital to analog converters
The digital-to-analog conversion is the procedure of transforming a digital time stream of binary 
numbers into an analog time varying signal made of discrete voltage levels proportional to the 
numeric values in the digital time stream. This operation is possible by using DAC - Digital to 
Analog Converters circuits.

The simplest DAC circuit is the R-2R resistor ladder network:

(Fig 18.3.1: R-2R ladder based DAC)

 
Assuming the binary number is the N-bit number:

(Eq 18.3.1)  

then the voltage output value is:

(Eq 18.3.2)

 
where VREF is a fixed value corresponding to the voltage level of each bit.
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18.4 Digital signal processing - Sampling
Both ADCs and DACs circuits implement a signal conversion in the time domain.

However, such kind of conversions cannot be done continuously in time, because this would require 
an  infinitive  amount  of  information  stored  either  in  analog  or  digital  form.  Since  this  it  not 
physically possible, signals have to be approximated by a time-sampling:

(Fig 18.4.1: sampling)

Notice the time sampling (horizontal axis) is not related to the quantisation of the sampled value 
(vertical axis).

The vertical axis quantisation corresponds, in the analog world, the smallest amount of value the 
instrument (e.g. signal amplifier) can resolve. In the digital representation this corresponds to the 
encoding of the sampled value represented as a number having a certain number of bits.

The horizontal axis quantisation, namely the time-sampling, sets the "sampling rate".

The "data rate" is the amount of data per unit of time which corresponds to information the system 
has to store, either in analog or digital form.

e.g.
input range = -10V...+10V divided in 4096 intervals --> resolution = (10 - (-10))/4096 = 4.88mV
number of bits per sample = log2(4096) = 12bits
sampling time = 50us --> sampling frequency = 1/50us = 20kHz = 20000 samples/s
data rate = 12bits * 20000 samples/s = 240000 bits/s --> 240000/8 = 30kbytes/s  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18.5 Digital signal processing - Aliasing
In order to avoid artefacts in their approximate representation, signals must be sampled according to 
their bandwidth and the sampling theorem:

the sampling frequency must be at least twice the bandwidth of the signal

If not, a phenomena called aliasing will occur:

(Fig 17.5.1: aliasing)

In this case a high frequency (red) signal has been sampled with a too low sampling frequency. The 
effect is that a reconstruction of the sampled signal, via interpolation of the collected samples, will 
result in a wrong low frequency (blue) signal.

Notice that, in order to be correctly sampled, the signal of interest must have a limited frequency 
bandwidth. Only if this is true then the correct sampling frequency can be chosen. 
If not, as usually when working with physical signals, the bandwidth of the signal must be limited 
before sampling it by using an appropriate analog low-pass filter, called anti-aliasing filter.

The same for the analog reconstruction of a digital time sampled stream of data: the analog output 
signal must be filtered with a similar analog low-pass filter, according to the sampling.
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19.1 Electrodes - Modelling an electrode
Metal electrodes immersed in an electrolyte fluid are characterised by having a certain impedance. 
In order to evaluate it let us consider a simple model, where the cathode of battery is connected to a 
perfect conductor electrode through a perfect conductor  
wire and the electrode is a sphere having radius R. The anode of the battery is connected to a metal 
container, much larger than the dimension of the electrode and whose walls are far from it filled 
with an electrolyte having dielectric constant ε and conductivity g:

(Fig 19.1.1: simple model of an electrode)

 
The wire connecting the battery to the sphere is supposed to be insulated from the fluid.
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19.2 Electrodes - Electric field
Due to the assumptions made in the simplified model, the electric field in the proximity of the 
electrode can be obtained as a function of the radial distance r by applying the Faraday's law to the 
conductive sphere:

(Eq 19.2.1)

Since the electric field is, by definition of potential, opposite to the gradient of its potential it is 
possible to calculate a relation between them:

(Eq 19.2.2)

 
Hence the relation is:

(Eq 19.2.3)
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19.3 Electrodes - Current density
Because the electrolyte has a certain conductivity g there is a current flow from the electrode to the 
(conductive) walls of the container.  The current density can be calculate by means of the local 
Ohm's law:

(Eq 19.3.1)

Hence the current I is obtained by integration over a spherical surface surrounding the electrode:

(Eq 19.3.2)

Since this is valid for all concentric spheres centred in the centre of the electrode, it is possible to 
choose the one having radius R where we know the potential V(r) to be equal by the voltage U set 
by the battery:

(Eq 19.3.3)
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19.4 Electrodes - Impedance of an electrode
Finally the impedance can be calculated as the ratio between the voltage and the current:

(Eq 19.4.1)

 
Notice the so calculated impedance is a real number, therefore it is a pure resistance:

(Eq 19.4.2)

 
where ρ = 1/g is the "resistivity" of the fluid.
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19.5 Electrodes - Comments
There are some interesting things to notice:

1. The impedance of an electrode is purely resistive, so let us call it resistance         

2. The resistance of an electrode is inversely proportional to the curvature of its tip         

3. The resistance of an electrode is not the resistance of the wire it is made of         

4. The resistance of the electrode depends on the resistivity of the fluid in which it is          
immersed, but not on its dielectric constant 

5. The resistance of the electrode is, in fact, the equivalent resistance of a system made          
of an electrode, a fluid and a conductive container which is supposed to be very large and 
very far from the electrode itself. This latter assumption would correspond to the fact the 
container would act as an ideal ground. 

6. Considering the latter note, also notice the resistance of an electrode does not explicitly         
depend on the geometry of  the ground electrode:  if  the ground electrode is  made of  a 
perfect, large and far piece of metal then the value of the equivalent resistance of the 
electrode does not depend on the geometry and the location of the ground electrode. 
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20.1 Neural recordings - Sensitivity of an electrode
Considering the brownian motion of the constitutive particles (ions and electrons) of electrical 
resistor, there is always random white-noise gaussian-distributed current in it due to its temperature 
which leads to the following average voltage drop measurable across any open resistor: 

(Eq 20.1.1) 

which is called the "Johnson-Nyquist" noise, where kB = 1.38*10-23 J/K is the Boltzmann's constant, 
T is the absolute temperature (in Kelvin), R is the resistance and ! is the considered bandwidth of 
the white noise. Typical conditions for a neural signal electrode are: a resistance of 1Mohm, room 
temperature T = 300K ! = 20kHz, Under those conditions the thermal noise is: 

(Eq 20.1.2)

It means whatever signal lower than that value remains buried inside that noise for that electrode. 
This is very useful in electrophysiology, because this is what makes neural signal isolation possible: 
far and weak neurons will not be captured as a signal, near and strong neurons will pass that 
threshold and will become visible, as shown in the following picture: 

(Fig 20.1.3: neural spikes) 

Notice here the polarity of the action potentials are reversed: it is because this is the case of an 
extracellular recording, so the electrode is outside the cell membrane.  

Δf

Δf

© Erik ZORZIN - 2015 �  of �96 100 Electronics  for Neuroscience

VJN T( ) = 4kBTRΔf

VJN = 4 ⋅1.38 ⋅10−23 ⋅300 ⋅106 ⋅2 ⋅104 ! 18µV



20.2 Neural recordings - Reference and ground electrodes 

The purpose of the reference electrode is to make the noise cancellation (see before). 
It works on two assumptions: 
A) the reference is close enough to the signal electrode, in order to pick-up the same noise. 
B) the reference "listens" to all neurons in the area of interest, collecting the local field potential 

--> hence its impedance must be lower than the signal electrode, otherwise it would not be possible 
for it to capture many signals (even from relatively far and weak neurons) converging to it. 

Using a high impedance electrode as reference will not do the job: it would just record the 
signal of another neuron, and then the differential amplifier will just measure the difference 
between two (or a few) neurons, not the difference between the neuron of interest and its local 
field potential pedestal. The same apply for the ground electrode. 

Possible sources of artefacts in neural recordings are: 
1. wrong impedance of the signal electrode 
2. wrong impedance of the reference electrode 
3. wrong impedance of the ground electrode   
4. wrong location of the signal electrode 
5. wrong location of the reference electrode 
6. wrong ground of the ground electrode 

Short circuiting the reference with the ground electrode or, even worse, removing the reference 
electrode leaving its corresponding input floating are common misconceptions. 

It is therefore very important to: 

1. think about the correct impedance and location of all the electrodes 
2. make use of a good ground 
3. always properly connect and use the reference electrode 

there is really nothing else to know in order to have good neural 
recordings: all the rest are just pirate workarounds. 

(Fig. 20.2.1: common pirate workarounds misconceptions in electrophysiology) 
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20.3 Neural recordings - Electromagnetic radiation
Electrical signals are not restricted to propagate into electric cables or electronic components: they 
can also propagate through many different media, including insulator materials, air and vacuum. 

They do this without net transportation of charge, but modulating the electric and the magnetic 
fields which permeate the surrounding space. The transportation of information, which is related to 
a transportation of energy, corresponds to the phenomena of "electro-magnetic radiation". 

In the figure below, a "radiating dipole" is shown: 

(Fig 20.3.1: a radiating dipole)     (Eq 20.3.1) 

When the polarity of the dipole is changed over time by means of an oscillator, the electric field 
lines around it propagate apart from it in a kind of expanding "bubbles" detaching from the dipole 
and travelling at the speed of light through the surrounding media. This is energy, in terms of 
photons of a certain wavelength, which the radiator looses and which has to be constantly provided 
by the power supply powering up the oscillator. 

The core mathematics and physics of this phenomena is described by the "Maxwell's equations". 
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20.4 Neural recordings - Electromagnetic current induction
The electro-magnetic radiation of an oscillating dipole can make another distant dipole oscillating, 
due to the electric and magnetic forces associated to the field: this is the basic concept of "radio 
transmission". Besides the radiated energy, there is always a part of energy which does not go away 
from the transmitter but stay close to it. The wave length which is associated to the frequency of 
oscillation sets the boundary for the different arrangements of the energy: 

(Eq 20.4.1) 

where c = 299792485 m/s is the speed of light and "n" is the "index of refraction" of the media. For 
the vacuum n = 1, for air n = 1.000293. For other materials it can be bigger. As a first 
approximation, objects staying inside a range equal to ! are in the so called "near field" or 
"induction field" region, while the ones staying outside that range are in the so called "far field" or 
"radiation" region. Considering a closed circular ring made of an electrical conductor in presence of 
an electro-magnetic field and having radius "R", cross section "A" and conductivity "g" it is 
possible to show there is an electric current "induced" at distance on it: 

(Eq 20.4.2) 

Hence, recalling the definition of current and the local Ohm's law: 

(Eq 20.4.3) 

Which means a time variable magnetic field, and its associated electric field, "induces" a time 
variable current I in a closed loop circuit coupled to them. 
Notice the bigger the radius, the bigger the induced current. Also notice the faster the 
variation of B, the bigger the induced current. 

λ
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20.5 Neural recordings - Electromagnetic shielding
The result of the computation of the electric current induced in a loop of wire by a time-varying 
electro-magnetic field shows that the induction effect is proportional to the radius of the loop, hence 
by shrinking all possible loops the effects of the induction are minimised. This is particularly 
important in the case of "ground loops" which may occur between two distant pieces of equipment 
connected together: 

(Fig 20.5.1: ground loop) 

Another possibility, is to put whatever device is sensitive to inductions inside a "Faraday cage". 
Faraday cages are basically 3-dimensional topologically closed empty balls made of a good 
electrical conductor. Since they are 3-dimensional closed manifolds, they do not exhibit any open 
surface through which a net flux of either electric or magnetic external field can induce currents or 
polarise charges. They work fine in the electrostatic case or in the radiative case when in the far 
field region. In the near field region the magnetic field scan be strong in a way that the electric 
conductivity of the metal of a Faraday cage might be not enough high in order to reflect the 
incoming electromagnetic waves. In this case it can be useful to surround the Faraday cage with 
another one made with a good ferromagnetic material (e.g. iron). The latter cage will work against 
the strong magnetic field by trapping it and making circulating it inside the thickness of its 
ferromagnetic walls, due to the high magnetic permeability of the material. An "electric" Faraday 
cage is usually enough, but the "magnetic" one might become important too in case of strong low 
frequency noise, for which the corresponding wavelength could be so long that everything is within 
the near field radius. For the same reason, sometimes electric Faraday cages are made in metal mesh 
and not full solid metal: if the pitch of the mesh is much finer than the wavelength of the radiated 
noise signal then it will not pass through it: it basically means that in those circumstances the 
average conductivity of the cage, even considering the holes, is enough. 

(Fig 20.5.2: Faraday cage shielding an engineer in front of his Teslacoil. Hint: do not try it at home)
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