Tamara Grava

  • Professor, University of Bristol Associate Professor SISSA
  • Random matrices, special functions and orthogonal polynomials

    1. Random Lax matrices
    2. Random matrix and combinatorial properties of correlation functions
    3. Moments of characteristics polynomials and Painlevé equations
    4. Asymptotic of orthogonal polynomials on the plane
    5. WKB analysis of anharmonic oscillators and poles of Painlevé equation

    Relevant publications

    1. The Stieltjes-Fekete problem and degenerate orthogonal polynomials. M.Bertola, E. Chavez-Heredia, T. Grava. Int. Math. Res. Not. IMRN 2024, no. 11, 9114 - 9141.
    2. Exactly solvable anharmonic oscillator, degenerate orthogonal polynomials and Painlevé II. M.Bertola, E. Chavez-Heredia, T. Grava. Comm. Math. Phys. 405 (2024), no. 2, Paper No. 52, 62 pp.
    3. Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, circular β-ensemble and double confluent Heun equation. Grava, Tamara; Mazzuca, Guido Comm. Math. Phys. 399 (2023), no. 3, 1689-1729.
    4. Discrete integrable systems and random Lax matrices. Grava, Tamara; Gisonni, Massimo; Gubbiotti, Giorgio; Mazzuca, Guido J. Stat. Phys. 190 (2023), no. 1, Paper No. 10, 35 pp.
    5. Jacobi ensemble, Hurwitz numbers and Wilson polynomials. Gisonni, Massimo; Grava, Tamara; Ruzza, Giulio Lett. Math. Phys. 111 (2021), no. 3, Paper No. 67, 38 pp.
    6. Entanglement of two disjoint intervals in conformal field theory and the 2D Coulomb gas on a lattice. Grava, Tamara; Kels, Andrew P.; Tonni, Erik Phys. Rev. Lett. 127 (2021), no. 14, Paper No. 141605, 6 pp.
    7. Laguerre ensemble: correlators, Hurwitz numbers and Hodge integrals. Gisonni, Massimo; Grava, Tamara; Ruzza, Giulio Ann. Henri Poincaré 21 (2020), no. 10, 3285–3339.
    8. A representation of joint moments of CUE characteristic polynomials in terms of Painlevé functions. Basor, Estelle; Bleher, Pavel; Buckingham, Robert; Grava, Tamara; Its, Alexander; Its, Elizabeth; Keating, Jonathan P. Nonlinearity 32 (2019), no. 10, 4033–4078.
    9. Painlevé IV critical asymptotics for orthogonal polynomials in the complex plane. Bertola, Marco; Elias Rebelo, José Gustavo; Grava, Tamara SIGMA Symmetry Integrability Geom. Methods Appl. 14 (2018), Paper No. 091, 34 pp.
    10. Orthogonal polynomials for a class of measures with discrete rotational symmetries in the complex plane. Balogh, F.; Grava, T.; Merzi, D. Constr. Approx. 46 (2017), no. 1, 109–169.
    11. On the Tracy-Widomβ distribution for β=6. Grava, T.; Its, A.; Kapaev, A.; Mezzadri, F. SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 105, 26 pp.
    12. Asymptotics for the partition function in two-cut random matrix models. Claeys, T.; Grava, T.; McLaughlin, K. D. T.-R. Comm. Math. Phys. 339 (2015), no. 2, 513 - 587.
    13. Critical asymptotic behavior for the Korteweg-de Vries equation and in random matrix theory. T. Claeys, T. Grava. Random matrix theory, interacting particle systems, and integrable systems, 71 - 92, Math. Sci. Res. Inst. Publ., 65, Cambridge Univ. Press, New York, 2014.
    14. Large parameter behavior of equilibrium measures. T. Grava, Fei-Ran Tian, Commun. Math. Sci. 4 (2006), no. 3, 551--573.
    15. Singular ZN-curves and the Riemann-Hilbert problem. Enolski, V. Z.; Grava, T. Int. Math. Res. Not. 2004, no. 32, 1619–1683.
    16. Thomae type formulae for singular Z_N curves. V. Z.Enolski, T.Grava. Lett. Math. Phys. 76 (2006), no. 2-3, 187--214.
    17. Partition function for multi-cut matrix models.T. Grava. J. Phys. A 39 (2006), no. 28, 8905–8919.