Integrability and randomness
- Integrable systems with random initial data and random Lax matrices
- Probabilistic Riemann-Hilbert problems
- Solitons, interacting particles and generalised hydrodynamics
I study integrable nonlinear dispersive equations and discrete equations
with random initial data deriving typical behaviours and fluctuation of their solutions (3. 7. 8. 9. 10.)
In particular I am studying soliton gases that are a collection of solitons with random parameters that interact elastically with each other, similar to a gas of particles (3.). Soliton gases describe a wide range of strongly nonlinear phenomena in fluids and optical media and are linked to
fundamental nonlinear behaviours such as the formation of rogue waves and the modulation instability.
In a deterministic setting I have studied the collective behaviour of large set of solitons and derived the generalised hydrodynamic equations for the average description of their interactions (1. 2. 5. 6. 11.)
Relevant publications
- Shielding of breathers for the focusing nonlinear Schroedinger equation. G. Falqui, T. Grava, C. Puntini. Preprint.
- Dbar-problem for focusing nonlinear Schrödinger equation and soliton shielding. M.Bertola, T. Grava, G. Orsatti. Preprint.
- Law of Large Numbers and Central Limit Theorem for random sets of solitons of the focusing nonlinear Schrödinger equation. M. Girotti, T. Grava, K.D. T-R McLaughlin, J. Najnudel, Preprint.
- Integrable operators, dbar-problems, KP and NLS hierarchy. M.Bertola, T. Grava, G. Orsatti.
Nonlinearity 37 (2024), no. 8, Paper No. 085008, 33 pp.
- Soliton versus the gas: Fredholm determinants, analysis, and the rapid oscillations behind the kinetic equation. Girotti, Manuela; Grava, Tamara; Jenkins, Robert; McLaughlin, Ken T.-R.; Minakov, Alexander Comm. Pure Appl. Math. 76 (2023), no. 11, 3233-3299.
- Soliton shielding of the focusing nonlinear Schrödinger equation. Bertola, Marco; Grava, Tamara; Orsatti, Giuseppe Phys. Rev. Lett. 130 (2023), no. 12, Paper No. 127201, 6 pp.
- Equilibrium spacetime correlations of the Toda lattice on the hydrodynamic scale. Mazzuca, Guido; Grava, Tamara; Kriecherbauer, Thomas; McLaughlin, Kenneth T.-R.; Mendl, Christian B.; Spohn, Herbert J. Stat. Phys. 190 (2023), no. 8, Paper No. 149, 22 pp.
- Generalized Gibbs ensemble of the Ablowitz-Ladik lattice, circular β -ensemble and double confluent Heun equation. Grava, Tamara; Mazzuca, Guido Comm. Math. Phys. 399 (2023), no. 3, 1689-1729.
- Discrete integrable systems and random Lax matrices. Grava, Tamara; Gisonni, Massimo; Gubbiotti, Giorgio; Mazzuca, Guido J. Stat. Phys. 190 (2023), no. 1, Paper No. 10, 35 pp.
- Correlation functions for a chain of short range oscillators. Grava, T.; Kriecherbauer, T.; Mazzuca, G.; McLaughlin, K. D. T.-R. J. Stat. Phys. 183 (2021), no. 1, Paper No. 1, 31 pp.
- Rigorous asymptotics of a KdV soliton gas. Girotti, M.; Grava, T.; Jenkins, R.; McLaughlin, K. D. T.-R. Comm. Math. Phys. 384 (2021), no. 2, 733–784.
- Adiabatic invariants for the FPUT and Toda chain in the thermodynamic limit. Grava, T.; Maspero, A.; Mazzuca, G.; Ponno, A. Comm. Math. Phys. 380 (2020), no. 2, 811–851.