Introduction to quantum groups. 2020
Plan of the course.
- Poisson algebras and quantization. Notes.
- Poisson-Lie groups and Lie bialgebras. Notes.
- Dual Poisson-Lie groups, symplectic leaves. Notes.
- Classical r-matrix. Notes.
- Quantum groups and algebras. Example of sl(2). Notes.
- Hopf algebras. Notes.
- Quantum R-matrix.Notes.
- Drinfeld-Jimbo quantum groups. Notes.
- RTT realization. Notes.
- Function on quantum SL(2). Notes.
- Function on quantum SL(n). Notes.
- Lusztig's group. Notes.
- Universal R-matrix. Notes.
- Drinfeld double. Notes.
Recordings of the lectures. playlist.
Affine quantum groups. 2021
Plan of the course.
- Quantum groups (quick review). Notes
- Affine Lie algebras, affine Weyl groups Notes.
- Affine Lie algebras, representations.
- Affine quantum sl(2), PBW generators. Notes.
- Affine quantum sl(2), new Drinfeld realization. Notes
- Factorization of R matrix. Notes.
- RLL realization for affine sl(2). Notes
- Finite dimensional representations of affine sl(2). Notes.
- q-characters for affine sl(2). Notes.
- q-characters Notes.
- Schur-Weyl duality. Hecke algebras. Notes.
- Semi-infinite construction Notes.
- Bosonization, vertex operators Notes.
- Baxter subalgebras, XXZ model. KZ integrals. Bether ansantz.
- q-characters from Baxter subalgebras. TQ relations.
Recordings of the lectures. playlist.
Introduction to quantum groups. 2023
Plan of the course.
- Poisson algebras and quantization. Notes.
- Poisson-Lie groups and Lie bialgebras. Notes.
- Classical r-matrices. Notes.
- Dual Poisson-Lie groups, symplectic leaves. Notes.
- Quantum groups and algebras. Example of sl(2). Notes.
- Hopf algebras. Notes.
- Quantum R-matrices.Notes.
- Drinfeld-Jimbo quantum groups. Notes.
- Finite dimensional Representation of Uq(g). Notes.
- Drinfeld double. Drinfeld theorem. Notes.
- RTT realization. Notes.
- Functions on quantum SL(2). Notes.
- Functions on quantum SL(n). Notes.
- Lusztig's group. Notes.
- Factorization of universal R matrix . Notes.
Recordings of the lectures. playlist.